Merge branch 'akpm' (fixes from Andrew)
[linux-2.6/cjktty.git] / fs / nilfs2 / super.c
blobc7d1f9f18b094fb1f281fb0dfcb6b53328dc72fe
1 /*
2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
30 * from
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/crc32.h>
47 #include <linux/vfs.h>
48 #include <linux/writeback.h>
49 #include <linux/seq_file.h>
50 #include <linux/mount.h>
51 #include "nilfs.h"
52 #include "export.h"
53 #include "mdt.h"
54 #include "alloc.h"
55 #include "btree.h"
56 #include "btnode.h"
57 #include "page.h"
58 #include "cpfile.h"
59 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
60 #include "ifile.h"
61 #include "dat.h"
62 #include "segment.h"
63 #include "segbuf.h"
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
67 "(NILFS)");
68 MODULE_LICENSE("GPL");
70 static struct kmem_cache *nilfs_inode_cachep;
71 struct kmem_cache *nilfs_transaction_cachep;
72 struct kmem_cache *nilfs_segbuf_cachep;
73 struct kmem_cache *nilfs_btree_path_cache;
75 static int nilfs_setup_super(struct super_block *sb, int is_mount);
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
78 static void nilfs_set_error(struct super_block *sb)
80 struct the_nilfs *nilfs = sb->s_fs_info;
81 struct nilfs_super_block **sbp;
83 down_write(&nilfs->ns_sem);
84 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85 nilfs->ns_mount_state |= NILFS_ERROR_FS;
86 sbp = nilfs_prepare_super(sb, 0);
87 if (likely(sbp)) {
88 sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89 if (sbp[1])
90 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91 nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
94 up_write(&nilfs->ns_sem);
97 /**
98 * nilfs_error() - report failure condition on a filesystem
100 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101 * reporting an error message. It should be called when NILFS detects
102 * incoherences or defects of meta data on disk. As for sustainable
103 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104 * function should be used instead.
106 * The segment constructor must not call this function because it can
107 * kill itself.
109 void nilfs_error(struct super_block *sb, const char *function,
110 const char *fmt, ...)
112 struct the_nilfs *nilfs = sb->s_fs_info;
113 struct va_format vaf;
114 va_list args;
116 va_start(args, fmt);
118 vaf.fmt = fmt;
119 vaf.va = &args;
121 printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
122 sb->s_id, function, &vaf);
124 va_end(args);
126 if (!(sb->s_flags & MS_RDONLY)) {
127 nilfs_set_error(sb);
129 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
130 printk(KERN_CRIT "Remounting filesystem read-only\n");
131 sb->s_flags |= MS_RDONLY;
135 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
136 panic("NILFS (device %s): panic forced after error\n",
137 sb->s_id);
140 void nilfs_warning(struct super_block *sb, const char *function,
141 const char *fmt, ...)
143 struct va_format vaf;
144 va_list args;
146 va_start(args, fmt);
148 vaf.fmt = fmt;
149 vaf.va = &args;
151 printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
152 sb->s_id, function, &vaf);
154 va_end(args);
158 struct inode *nilfs_alloc_inode(struct super_block *sb)
160 struct nilfs_inode_info *ii;
162 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
163 if (!ii)
164 return NULL;
165 ii->i_bh = NULL;
166 ii->i_state = 0;
167 ii->i_cno = 0;
168 ii->vfs_inode.i_version = 1;
169 nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode, sb->s_bdi);
170 return &ii->vfs_inode;
173 static void nilfs_i_callback(struct rcu_head *head)
175 struct inode *inode = container_of(head, struct inode, i_rcu);
176 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
178 if (mdi) {
179 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
180 kfree(mdi);
182 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
185 void nilfs_destroy_inode(struct inode *inode)
187 call_rcu(&inode->i_rcu, nilfs_i_callback);
190 static int nilfs_sync_super(struct super_block *sb, int flag)
192 struct the_nilfs *nilfs = sb->s_fs_info;
193 int err;
195 retry:
196 set_buffer_dirty(nilfs->ns_sbh[0]);
197 if (nilfs_test_opt(nilfs, BARRIER)) {
198 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
199 WRITE_SYNC | WRITE_FLUSH_FUA);
200 } else {
201 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
204 if (unlikely(err)) {
205 printk(KERN_ERR
206 "NILFS: unable to write superblock (err=%d)\n", err);
207 if (err == -EIO && nilfs->ns_sbh[1]) {
209 * sbp[0] points to newer log than sbp[1],
210 * so copy sbp[0] to sbp[1] to take over sbp[0].
212 memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
213 nilfs->ns_sbsize);
214 nilfs_fall_back_super_block(nilfs);
215 goto retry;
217 } else {
218 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
220 nilfs->ns_sbwcount++;
223 * The latest segment becomes trailable from the position
224 * written in superblock.
226 clear_nilfs_discontinued(nilfs);
228 /* update GC protection for recent segments */
229 if (nilfs->ns_sbh[1]) {
230 if (flag == NILFS_SB_COMMIT_ALL) {
231 set_buffer_dirty(nilfs->ns_sbh[1]);
232 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
233 goto out;
235 if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
236 le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
237 sbp = nilfs->ns_sbp[1];
240 spin_lock(&nilfs->ns_last_segment_lock);
241 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
242 spin_unlock(&nilfs->ns_last_segment_lock);
244 out:
245 return err;
248 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
249 struct the_nilfs *nilfs)
251 sector_t nfreeblocks;
253 /* nilfs->ns_sem must be locked by the caller. */
254 nilfs_count_free_blocks(nilfs, &nfreeblocks);
255 sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
257 spin_lock(&nilfs->ns_last_segment_lock);
258 sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
259 sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
260 sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
261 spin_unlock(&nilfs->ns_last_segment_lock);
264 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
265 int flip)
267 struct the_nilfs *nilfs = sb->s_fs_info;
268 struct nilfs_super_block **sbp = nilfs->ns_sbp;
270 /* nilfs->ns_sem must be locked by the caller. */
271 if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
272 if (sbp[1] &&
273 sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
274 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
275 } else {
276 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
277 sb->s_id);
278 return NULL;
280 } else if (sbp[1] &&
281 sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
282 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
285 if (flip && sbp[1])
286 nilfs_swap_super_block(nilfs);
288 return sbp;
291 int nilfs_commit_super(struct super_block *sb, int flag)
293 struct the_nilfs *nilfs = sb->s_fs_info;
294 struct nilfs_super_block **sbp = nilfs->ns_sbp;
295 time_t t;
297 /* nilfs->ns_sem must be locked by the caller. */
298 t = get_seconds();
299 nilfs->ns_sbwtime = t;
300 sbp[0]->s_wtime = cpu_to_le64(t);
301 sbp[0]->s_sum = 0;
302 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303 (unsigned char *)sbp[0],
304 nilfs->ns_sbsize));
305 if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
306 sbp[1]->s_wtime = sbp[0]->s_wtime;
307 sbp[1]->s_sum = 0;
308 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
309 (unsigned char *)sbp[1],
310 nilfs->ns_sbsize));
312 clear_nilfs_sb_dirty(nilfs);
313 return nilfs_sync_super(sb, flag);
317 * nilfs_cleanup_super() - write filesystem state for cleanup
318 * @sb: super block instance to be unmounted or degraded to read-only
320 * This function restores state flags in the on-disk super block.
321 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
322 * filesystem was not clean previously.
324 int nilfs_cleanup_super(struct super_block *sb)
326 struct the_nilfs *nilfs = sb->s_fs_info;
327 struct nilfs_super_block **sbp;
328 int flag = NILFS_SB_COMMIT;
329 int ret = -EIO;
331 sbp = nilfs_prepare_super(sb, 0);
332 if (sbp) {
333 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
334 nilfs_set_log_cursor(sbp[0], nilfs);
335 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
337 * make the "clean" flag also to the opposite
338 * super block if both super blocks point to
339 * the same checkpoint.
341 sbp[1]->s_state = sbp[0]->s_state;
342 flag = NILFS_SB_COMMIT_ALL;
344 ret = nilfs_commit_super(sb, flag);
346 return ret;
350 * nilfs_move_2nd_super - relocate secondary super block
351 * @sb: super block instance
352 * @sb2off: new offset of the secondary super block (in bytes)
354 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
356 struct the_nilfs *nilfs = sb->s_fs_info;
357 struct buffer_head *nsbh;
358 struct nilfs_super_block *nsbp;
359 sector_t blocknr, newblocknr;
360 unsigned long offset;
361 int sb2i = -1; /* array index of the secondary superblock */
362 int ret = 0;
364 /* nilfs->ns_sem must be locked by the caller. */
365 if (nilfs->ns_sbh[1] &&
366 nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
367 sb2i = 1;
368 blocknr = nilfs->ns_sbh[1]->b_blocknr;
369 } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
370 sb2i = 0;
371 blocknr = nilfs->ns_sbh[0]->b_blocknr;
373 if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
374 goto out; /* super block location is unchanged */
376 /* Get new super block buffer */
377 newblocknr = sb2off >> nilfs->ns_blocksize_bits;
378 offset = sb2off & (nilfs->ns_blocksize - 1);
379 nsbh = sb_getblk(sb, newblocknr);
380 if (!nsbh) {
381 printk(KERN_WARNING
382 "NILFS warning: unable to move secondary superblock "
383 "to block %llu\n", (unsigned long long)newblocknr);
384 ret = -EIO;
385 goto out;
387 nsbp = (void *)nsbh->b_data + offset;
388 memset(nsbp, 0, nilfs->ns_blocksize);
390 if (sb2i >= 0) {
391 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
392 brelse(nilfs->ns_sbh[sb2i]);
393 nilfs->ns_sbh[sb2i] = nsbh;
394 nilfs->ns_sbp[sb2i] = nsbp;
395 } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
396 /* secondary super block will be restored to index 1 */
397 nilfs->ns_sbh[1] = nsbh;
398 nilfs->ns_sbp[1] = nsbp;
399 } else {
400 brelse(nsbh);
402 out:
403 return ret;
407 * nilfs_resize_fs - resize the filesystem
408 * @sb: super block instance
409 * @newsize: new size of the filesystem (in bytes)
411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
413 struct the_nilfs *nilfs = sb->s_fs_info;
414 struct nilfs_super_block **sbp;
415 __u64 devsize, newnsegs;
416 loff_t sb2off;
417 int ret;
419 ret = -ERANGE;
420 devsize = i_size_read(sb->s_bdev->bd_inode);
421 if (newsize > devsize)
422 goto out;
425 * Write lock is required to protect some functions depending
426 * on the number of segments, the number of reserved segments,
427 * and so forth.
429 down_write(&nilfs->ns_segctor_sem);
431 sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
432 newnsegs = sb2off >> nilfs->ns_blocksize_bits;
433 do_div(newnsegs, nilfs->ns_blocks_per_segment);
435 ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
436 up_write(&nilfs->ns_segctor_sem);
437 if (ret < 0)
438 goto out;
440 ret = nilfs_construct_segment(sb);
441 if (ret < 0)
442 goto out;
444 down_write(&nilfs->ns_sem);
445 nilfs_move_2nd_super(sb, sb2off);
446 ret = -EIO;
447 sbp = nilfs_prepare_super(sb, 0);
448 if (likely(sbp)) {
449 nilfs_set_log_cursor(sbp[0], nilfs);
451 * Drop NILFS_RESIZE_FS flag for compatibility with
452 * mount-time resize which may be implemented in a
453 * future release.
455 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
456 ~NILFS_RESIZE_FS);
457 sbp[0]->s_dev_size = cpu_to_le64(newsize);
458 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
459 if (sbp[1])
460 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
461 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
463 up_write(&nilfs->ns_sem);
466 * Reset the range of allocatable segments last. This order
467 * is important in the case of expansion because the secondary
468 * superblock must be protected from log write until migration
469 * completes.
471 if (!ret)
472 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
473 out:
474 return ret;
477 static void nilfs_put_super(struct super_block *sb)
479 struct the_nilfs *nilfs = sb->s_fs_info;
481 nilfs_detach_log_writer(sb);
483 if (!(sb->s_flags & MS_RDONLY)) {
484 down_write(&nilfs->ns_sem);
485 nilfs_cleanup_super(sb);
486 up_write(&nilfs->ns_sem);
489 iput(nilfs->ns_sufile);
490 iput(nilfs->ns_cpfile);
491 iput(nilfs->ns_dat);
493 destroy_nilfs(nilfs);
494 sb->s_fs_info = NULL;
497 static int nilfs_sync_fs(struct super_block *sb, int wait)
499 struct the_nilfs *nilfs = sb->s_fs_info;
500 struct nilfs_super_block **sbp;
501 int err = 0;
503 /* This function is called when super block should be written back */
504 if (wait)
505 err = nilfs_construct_segment(sb);
507 down_write(&nilfs->ns_sem);
508 if (nilfs_sb_dirty(nilfs)) {
509 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
510 if (likely(sbp)) {
511 nilfs_set_log_cursor(sbp[0], nilfs);
512 nilfs_commit_super(sb, NILFS_SB_COMMIT);
515 up_write(&nilfs->ns_sem);
517 return err;
520 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
521 struct nilfs_root **rootp)
523 struct the_nilfs *nilfs = sb->s_fs_info;
524 struct nilfs_root *root;
525 struct nilfs_checkpoint *raw_cp;
526 struct buffer_head *bh_cp;
527 int err = -ENOMEM;
529 root = nilfs_find_or_create_root(
530 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
531 if (!root)
532 return err;
534 if (root->ifile)
535 goto reuse; /* already attached checkpoint */
537 down_read(&nilfs->ns_segctor_sem);
538 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
539 &bh_cp);
540 up_read(&nilfs->ns_segctor_sem);
541 if (unlikely(err)) {
542 if (err == -ENOENT || err == -EINVAL) {
543 printk(KERN_ERR
544 "NILFS: Invalid checkpoint "
545 "(checkpoint number=%llu)\n",
546 (unsigned long long)cno);
547 err = -EINVAL;
549 goto failed;
552 err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
553 &raw_cp->cp_ifile_inode, &root->ifile);
554 if (err)
555 goto failed_bh;
557 atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
558 atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
560 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
562 reuse:
563 *rootp = root;
564 return 0;
566 failed_bh:
567 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
568 failed:
569 nilfs_put_root(root);
571 return err;
574 static int nilfs_freeze(struct super_block *sb)
576 struct the_nilfs *nilfs = sb->s_fs_info;
577 int err;
579 if (sb->s_flags & MS_RDONLY)
580 return 0;
582 /* Mark super block clean */
583 down_write(&nilfs->ns_sem);
584 err = nilfs_cleanup_super(sb);
585 up_write(&nilfs->ns_sem);
586 return err;
589 static int nilfs_unfreeze(struct super_block *sb)
591 struct the_nilfs *nilfs = sb->s_fs_info;
593 if (sb->s_flags & MS_RDONLY)
594 return 0;
596 down_write(&nilfs->ns_sem);
597 nilfs_setup_super(sb, false);
598 up_write(&nilfs->ns_sem);
599 return 0;
602 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
604 struct super_block *sb = dentry->d_sb;
605 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
606 struct the_nilfs *nilfs = root->nilfs;
607 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
608 unsigned long long blocks;
609 unsigned long overhead;
610 unsigned long nrsvblocks;
611 sector_t nfreeblocks;
612 int err;
615 * Compute all of the segment blocks
617 * The blocks before first segment and after last segment
618 * are excluded.
620 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
621 - nilfs->ns_first_data_block;
622 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625 * Compute the overhead
627 * When distributing meta data blocks outside segment structure,
628 * We must count them as the overhead.
630 overhead = 0;
632 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
633 if (unlikely(err))
634 return err;
636 buf->f_type = NILFS_SUPER_MAGIC;
637 buf->f_bsize = sb->s_blocksize;
638 buf->f_blocks = blocks - overhead;
639 buf->f_bfree = nfreeblocks;
640 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
641 (buf->f_bfree - nrsvblocks) : 0;
642 buf->f_files = atomic_read(&root->inodes_count);
643 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
644 buf->f_namelen = NILFS_NAME_LEN;
645 buf->f_fsid.val[0] = (u32)id;
646 buf->f_fsid.val[1] = (u32)(id >> 32);
648 return 0;
651 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
653 struct super_block *sb = dentry->d_sb;
654 struct the_nilfs *nilfs = sb->s_fs_info;
655 struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
657 if (!nilfs_test_opt(nilfs, BARRIER))
658 seq_puts(seq, ",nobarrier");
659 if (root->cno != NILFS_CPTREE_CURRENT_CNO)
660 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
661 if (nilfs_test_opt(nilfs, ERRORS_PANIC))
662 seq_puts(seq, ",errors=panic");
663 if (nilfs_test_opt(nilfs, ERRORS_CONT))
664 seq_puts(seq, ",errors=continue");
665 if (nilfs_test_opt(nilfs, STRICT_ORDER))
666 seq_puts(seq, ",order=strict");
667 if (nilfs_test_opt(nilfs, NORECOVERY))
668 seq_puts(seq, ",norecovery");
669 if (nilfs_test_opt(nilfs, DISCARD))
670 seq_puts(seq, ",discard");
672 return 0;
675 static const struct super_operations nilfs_sops = {
676 .alloc_inode = nilfs_alloc_inode,
677 .destroy_inode = nilfs_destroy_inode,
678 .dirty_inode = nilfs_dirty_inode,
679 .evict_inode = nilfs_evict_inode,
680 .put_super = nilfs_put_super,
681 .sync_fs = nilfs_sync_fs,
682 .freeze_fs = nilfs_freeze,
683 .unfreeze_fs = nilfs_unfreeze,
684 .statfs = nilfs_statfs,
685 .remount_fs = nilfs_remount,
686 .show_options = nilfs_show_options
689 enum {
690 Opt_err_cont, Opt_err_panic, Opt_err_ro,
691 Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
692 Opt_discard, Opt_nodiscard, Opt_err,
695 static match_table_t tokens = {
696 {Opt_err_cont, "errors=continue"},
697 {Opt_err_panic, "errors=panic"},
698 {Opt_err_ro, "errors=remount-ro"},
699 {Opt_barrier, "barrier"},
700 {Opt_nobarrier, "nobarrier"},
701 {Opt_snapshot, "cp=%u"},
702 {Opt_order, "order=%s"},
703 {Opt_norecovery, "norecovery"},
704 {Opt_discard, "discard"},
705 {Opt_nodiscard, "nodiscard"},
706 {Opt_err, NULL}
709 static int parse_options(char *options, struct super_block *sb, int is_remount)
711 struct the_nilfs *nilfs = sb->s_fs_info;
712 char *p;
713 substring_t args[MAX_OPT_ARGS];
715 if (!options)
716 return 1;
718 while ((p = strsep(&options, ",")) != NULL) {
719 int token;
720 if (!*p)
721 continue;
723 token = match_token(p, tokens, args);
724 switch (token) {
725 case Opt_barrier:
726 nilfs_set_opt(nilfs, BARRIER);
727 break;
728 case Opt_nobarrier:
729 nilfs_clear_opt(nilfs, BARRIER);
730 break;
731 case Opt_order:
732 if (strcmp(args[0].from, "relaxed") == 0)
733 /* Ordered data semantics */
734 nilfs_clear_opt(nilfs, STRICT_ORDER);
735 else if (strcmp(args[0].from, "strict") == 0)
736 /* Strict in-order semantics */
737 nilfs_set_opt(nilfs, STRICT_ORDER);
738 else
739 return 0;
740 break;
741 case Opt_err_panic:
742 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
743 break;
744 case Opt_err_ro:
745 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
746 break;
747 case Opt_err_cont:
748 nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
749 break;
750 case Opt_snapshot:
751 if (is_remount) {
752 printk(KERN_ERR
753 "NILFS: \"%s\" option is invalid "
754 "for remount.\n", p);
755 return 0;
757 break;
758 case Opt_norecovery:
759 nilfs_set_opt(nilfs, NORECOVERY);
760 break;
761 case Opt_discard:
762 nilfs_set_opt(nilfs, DISCARD);
763 break;
764 case Opt_nodiscard:
765 nilfs_clear_opt(nilfs, DISCARD);
766 break;
767 default:
768 printk(KERN_ERR
769 "NILFS: Unrecognized mount option \"%s\"\n", p);
770 return 0;
773 return 1;
776 static inline void
777 nilfs_set_default_options(struct super_block *sb,
778 struct nilfs_super_block *sbp)
780 struct the_nilfs *nilfs = sb->s_fs_info;
782 nilfs->ns_mount_opt =
783 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
786 static int nilfs_setup_super(struct super_block *sb, int is_mount)
788 struct the_nilfs *nilfs = sb->s_fs_info;
789 struct nilfs_super_block **sbp;
790 int max_mnt_count;
791 int mnt_count;
793 /* nilfs->ns_sem must be locked by the caller. */
794 sbp = nilfs_prepare_super(sb, 0);
795 if (!sbp)
796 return -EIO;
798 if (!is_mount)
799 goto skip_mount_setup;
801 max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
802 mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
804 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
805 printk(KERN_WARNING
806 "NILFS warning: mounting fs with errors\n");
807 #if 0
808 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
809 printk(KERN_WARNING
810 "NILFS warning: maximal mount count reached\n");
811 #endif
813 if (!max_mnt_count)
814 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
816 sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
817 sbp[0]->s_mtime = cpu_to_le64(get_seconds());
819 skip_mount_setup:
820 sbp[0]->s_state =
821 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
822 /* synchronize sbp[1] with sbp[0] */
823 if (sbp[1])
824 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
825 return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
828 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
829 u64 pos, int blocksize,
830 struct buffer_head **pbh)
832 unsigned long long sb_index = pos;
833 unsigned long offset;
835 offset = do_div(sb_index, blocksize);
836 *pbh = sb_bread(sb, sb_index);
837 if (!*pbh)
838 return NULL;
839 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
842 int nilfs_store_magic_and_option(struct super_block *sb,
843 struct nilfs_super_block *sbp,
844 char *data)
846 struct the_nilfs *nilfs = sb->s_fs_info;
848 sb->s_magic = le16_to_cpu(sbp->s_magic);
850 /* FS independent flags */
851 #ifdef NILFS_ATIME_DISABLE
852 sb->s_flags |= MS_NOATIME;
853 #endif
855 nilfs_set_default_options(sb, sbp);
857 nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
858 nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
859 nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
860 nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
862 return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
865 int nilfs_check_feature_compatibility(struct super_block *sb,
866 struct nilfs_super_block *sbp)
868 __u64 features;
870 features = le64_to_cpu(sbp->s_feature_incompat) &
871 ~NILFS_FEATURE_INCOMPAT_SUPP;
872 if (features) {
873 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
874 "optional features (%llx)\n",
875 (unsigned long long)features);
876 return -EINVAL;
878 features = le64_to_cpu(sbp->s_feature_compat_ro) &
879 ~NILFS_FEATURE_COMPAT_RO_SUPP;
880 if (!(sb->s_flags & MS_RDONLY) && features) {
881 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
882 "unsupported optional features (%llx)\n",
883 (unsigned long long)features);
884 return -EINVAL;
886 return 0;
889 static int nilfs_get_root_dentry(struct super_block *sb,
890 struct nilfs_root *root,
891 struct dentry **root_dentry)
893 struct inode *inode;
894 struct dentry *dentry;
895 int ret = 0;
897 inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
898 if (IS_ERR(inode)) {
899 printk(KERN_ERR "NILFS: get root inode failed\n");
900 ret = PTR_ERR(inode);
901 goto out;
903 if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
904 iput(inode);
905 printk(KERN_ERR "NILFS: corrupt root inode.\n");
906 ret = -EINVAL;
907 goto out;
910 if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
911 dentry = d_find_alias(inode);
912 if (!dentry) {
913 dentry = d_make_root(inode);
914 if (!dentry) {
915 ret = -ENOMEM;
916 goto failed_dentry;
918 } else {
919 iput(inode);
921 } else {
922 dentry = d_obtain_alias(inode);
923 if (IS_ERR(dentry)) {
924 ret = PTR_ERR(dentry);
925 goto failed_dentry;
928 *root_dentry = dentry;
929 out:
930 return ret;
932 failed_dentry:
933 printk(KERN_ERR "NILFS: get root dentry failed\n");
934 goto out;
937 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
938 struct dentry **root_dentry)
940 struct the_nilfs *nilfs = s->s_fs_info;
941 struct nilfs_root *root;
942 int ret;
944 mutex_lock(&nilfs->ns_snapshot_mount_mutex);
946 down_read(&nilfs->ns_segctor_sem);
947 ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
948 up_read(&nilfs->ns_segctor_sem);
949 if (ret < 0) {
950 ret = (ret == -ENOENT) ? -EINVAL : ret;
951 goto out;
952 } else if (!ret) {
953 printk(KERN_ERR "NILFS: The specified checkpoint is "
954 "not a snapshot (checkpoint number=%llu).\n",
955 (unsigned long long)cno);
956 ret = -EINVAL;
957 goto out;
960 ret = nilfs_attach_checkpoint(s, cno, false, &root);
961 if (ret) {
962 printk(KERN_ERR "NILFS: error loading snapshot "
963 "(checkpoint number=%llu).\n",
964 (unsigned long long)cno);
965 goto out;
967 ret = nilfs_get_root_dentry(s, root, root_dentry);
968 nilfs_put_root(root);
969 out:
970 mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
971 return ret;
974 static int nilfs_tree_was_touched(struct dentry *root_dentry)
976 return root_dentry->d_count > 1;
980 * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
981 * @root_dentry: root dentry of the tree to be shrunk
983 * This function returns true if the tree was in-use.
985 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
987 if (have_submounts(root_dentry))
988 return true;
989 shrink_dcache_parent(root_dentry);
990 return nilfs_tree_was_touched(root_dentry);
993 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
995 struct the_nilfs *nilfs = sb->s_fs_info;
996 struct nilfs_root *root;
997 struct inode *inode;
998 struct dentry *dentry;
999 int ret;
1001 if (cno < 0 || cno > nilfs->ns_cno)
1002 return false;
1004 if (cno >= nilfs_last_cno(nilfs))
1005 return true; /* protect recent checkpoints */
1007 ret = false;
1008 root = nilfs_lookup_root(nilfs, cno);
1009 if (root) {
1010 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1011 if (inode) {
1012 dentry = d_find_alias(inode);
1013 if (dentry) {
1014 if (nilfs_tree_was_touched(dentry))
1015 ret = nilfs_try_to_shrink_tree(dentry);
1016 dput(dentry);
1018 iput(inode);
1020 nilfs_put_root(root);
1022 return ret;
1026 * nilfs_fill_super() - initialize a super block instance
1027 * @sb: super_block
1028 * @data: mount options
1029 * @silent: silent mode flag
1031 * This function is called exclusively by nilfs->ns_mount_mutex.
1032 * So, the recovery process is protected from other simultaneous mounts.
1034 static int
1035 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1037 struct the_nilfs *nilfs;
1038 struct nilfs_root *fsroot;
1039 struct backing_dev_info *bdi;
1040 __u64 cno;
1041 int err;
1043 nilfs = alloc_nilfs(sb->s_bdev);
1044 if (!nilfs)
1045 return -ENOMEM;
1047 sb->s_fs_info = nilfs;
1049 err = init_nilfs(nilfs, sb, (char *)data);
1050 if (err)
1051 goto failed_nilfs;
1053 sb->s_op = &nilfs_sops;
1054 sb->s_export_op = &nilfs_export_ops;
1055 sb->s_root = NULL;
1056 sb->s_time_gran = 1;
1057 sb->s_max_links = NILFS_LINK_MAX;
1059 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1060 sb->s_bdi = bdi ? : &default_backing_dev_info;
1062 err = load_nilfs(nilfs, sb);
1063 if (err)
1064 goto failed_nilfs;
1066 cno = nilfs_last_cno(nilfs);
1067 err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1068 if (err) {
1069 printk(KERN_ERR "NILFS: error loading last checkpoint "
1070 "(checkpoint number=%llu).\n", (unsigned long long)cno);
1071 goto failed_unload;
1074 if (!(sb->s_flags & MS_RDONLY)) {
1075 err = nilfs_attach_log_writer(sb, fsroot);
1076 if (err)
1077 goto failed_checkpoint;
1080 err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1081 if (err)
1082 goto failed_segctor;
1084 nilfs_put_root(fsroot);
1086 if (!(sb->s_flags & MS_RDONLY)) {
1087 down_write(&nilfs->ns_sem);
1088 nilfs_setup_super(sb, true);
1089 up_write(&nilfs->ns_sem);
1092 return 0;
1094 failed_segctor:
1095 nilfs_detach_log_writer(sb);
1097 failed_checkpoint:
1098 nilfs_put_root(fsroot);
1100 failed_unload:
1101 iput(nilfs->ns_sufile);
1102 iput(nilfs->ns_cpfile);
1103 iput(nilfs->ns_dat);
1105 failed_nilfs:
1106 destroy_nilfs(nilfs);
1107 return err;
1110 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1112 struct the_nilfs *nilfs = sb->s_fs_info;
1113 unsigned long old_sb_flags;
1114 unsigned long old_mount_opt;
1115 int err;
1117 old_sb_flags = sb->s_flags;
1118 old_mount_opt = nilfs->ns_mount_opt;
1120 if (!parse_options(data, sb, 1)) {
1121 err = -EINVAL;
1122 goto restore_opts;
1124 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1126 err = -EINVAL;
1128 if (!nilfs_valid_fs(nilfs)) {
1129 printk(KERN_WARNING "NILFS (device %s): couldn't "
1130 "remount because the filesystem is in an "
1131 "incomplete recovery state.\n", sb->s_id);
1132 goto restore_opts;
1135 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1136 goto out;
1137 if (*flags & MS_RDONLY) {
1138 /* Shutting down log writer */
1139 nilfs_detach_log_writer(sb);
1140 sb->s_flags |= MS_RDONLY;
1143 * Remounting a valid RW partition RDONLY, so set
1144 * the RDONLY flag and then mark the partition as valid again.
1146 down_write(&nilfs->ns_sem);
1147 nilfs_cleanup_super(sb);
1148 up_write(&nilfs->ns_sem);
1149 } else {
1150 __u64 features;
1151 struct nilfs_root *root;
1154 * Mounting a RDONLY partition read-write, so reread and
1155 * store the current valid flag. (It may have been changed
1156 * by fsck since we originally mounted the partition.)
1158 down_read(&nilfs->ns_sem);
1159 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1160 ~NILFS_FEATURE_COMPAT_RO_SUPP;
1161 up_read(&nilfs->ns_sem);
1162 if (features) {
1163 printk(KERN_WARNING "NILFS (device %s): couldn't "
1164 "remount RDWR because of unsupported optional "
1165 "features (%llx)\n",
1166 sb->s_id, (unsigned long long)features);
1167 err = -EROFS;
1168 goto restore_opts;
1171 sb->s_flags &= ~MS_RDONLY;
1173 root = NILFS_I(sb->s_root->d_inode)->i_root;
1174 err = nilfs_attach_log_writer(sb, root);
1175 if (err)
1176 goto restore_opts;
1178 down_write(&nilfs->ns_sem);
1179 nilfs_setup_super(sb, true);
1180 up_write(&nilfs->ns_sem);
1182 out:
1183 return 0;
1185 restore_opts:
1186 sb->s_flags = old_sb_flags;
1187 nilfs->ns_mount_opt = old_mount_opt;
1188 return err;
1191 struct nilfs_super_data {
1192 struct block_device *bdev;
1193 __u64 cno;
1194 int flags;
1198 * nilfs_identify - pre-read mount options needed to identify mount instance
1199 * @data: mount options
1200 * @sd: nilfs_super_data
1202 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1204 char *p, *options = data;
1205 substring_t args[MAX_OPT_ARGS];
1206 int token;
1207 int ret = 0;
1209 do {
1210 p = strsep(&options, ",");
1211 if (p != NULL && *p) {
1212 token = match_token(p, tokens, args);
1213 if (token == Opt_snapshot) {
1214 if (!(sd->flags & MS_RDONLY)) {
1215 ret++;
1216 } else {
1217 sd->cno = simple_strtoull(args[0].from,
1218 NULL, 0);
1220 * No need to see the end pointer;
1221 * match_token() has done syntax
1222 * checking.
1224 if (sd->cno == 0)
1225 ret++;
1228 if (ret)
1229 printk(KERN_ERR
1230 "NILFS: invalid mount option: %s\n", p);
1232 if (!options)
1233 break;
1234 BUG_ON(options == data);
1235 *(options - 1) = ',';
1236 } while (!ret);
1237 return ret;
1240 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1242 s->s_bdev = data;
1243 s->s_dev = s->s_bdev->bd_dev;
1244 return 0;
1247 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1249 return (void *)s->s_bdev == data;
1252 static struct dentry *
1253 nilfs_mount(struct file_system_type *fs_type, int flags,
1254 const char *dev_name, void *data)
1256 struct nilfs_super_data sd;
1257 struct super_block *s;
1258 fmode_t mode = FMODE_READ | FMODE_EXCL;
1259 struct dentry *root_dentry;
1260 int err, s_new = false;
1262 if (!(flags & MS_RDONLY))
1263 mode |= FMODE_WRITE;
1265 sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1266 if (IS_ERR(sd.bdev))
1267 return ERR_CAST(sd.bdev);
1269 sd.cno = 0;
1270 sd.flags = flags;
1271 if (nilfs_identify((char *)data, &sd)) {
1272 err = -EINVAL;
1273 goto failed;
1277 * once the super is inserted into the list by sget, s_umount
1278 * will protect the lockfs code from trying to start a snapshot
1279 * while we are mounting
1281 mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1282 if (sd.bdev->bd_fsfreeze_count > 0) {
1283 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1284 err = -EBUSY;
1285 goto failed;
1287 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1288 sd.bdev);
1289 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1290 if (IS_ERR(s)) {
1291 err = PTR_ERR(s);
1292 goto failed;
1295 if (!s->s_root) {
1296 char b[BDEVNAME_SIZE];
1298 s_new = true;
1300 /* New superblock instance created */
1301 s->s_mode = mode;
1302 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1303 sb_set_blocksize(s, block_size(sd.bdev));
1305 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1306 if (err)
1307 goto failed_super;
1309 s->s_flags |= MS_ACTIVE;
1310 } else if (!sd.cno) {
1311 int busy = false;
1313 if (nilfs_tree_was_touched(s->s_root)) {
1314 busy = nilfs_try_to_shrink_tree(s->s_root);
1315 if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1316 printk(KERN_ERR "NILFS: the device already "
1317 "has a %s mount.\n",
1318 (s->s_flags & MS_RDONLY) ?
1319 "read-only" : "read/write");
1320 err = -EBUSY;
1321 goto failed_super;
1324 if (!busy) {
1326 * Try remount to setup mount states if the current
1327 * tree is not mounted and only snapshots use this sb.
1329 err = nilfs_remount(s, &flags, data);
1330 if (err)
1331 goto failed_super;
1335 if (sd.cno) {
1336 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1337 if (err)
1338 goto failed_super;
1339 } else {
1340 root_dentry = dget(s->s_root);
1343 if (!s_new)
1344 blkdev_put(sd.bdev, mode);
1346 return root_dentry;
1348 failed_super:
1349 deactivate_locked_super(s);
1351 failed:
1352 if (!s_new)
1353 blkdev_put(sd.bdev, mode);
1354 return ERR_PTR(err);
1357 struct file_system_type nilfs_fs_type = {
1358 .owner = THIS_MODULE,
1359 .name = "nilfs2",
1360 .mount = nilfs_mount,
1361 .kill_sb = kill_block_super,
1362 .fs_flags = FS_REQUIRES_DEV,
1364 MODULE_ALIAS_FS("nilfs2");
1366 static void nilfs_inode_init_once(void *obj)
1368 struct nilfs_inode_info *ii = obj;
1370 INIT_LIST_HEAD(&ii->i_dirty);
1371 #ifdef CONFIG_NILFS_XATTR
1372 init_rwsem(&ii->xattr_sem);
1373 #endif
1374 address_space_init_once(&ii->i_btnode_cache);
1375 ii->i_bmap = &ii->i_bmap_data;
1376 inode_init_once(&ii->vfs_inode);
1379 static void nilfs_segbuf_init_once(void *obj)
1381 memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1384 static void nilfs_destroy_cachep(void)
1387 * Make sure all delayed rcu free inodes are flushed before we
1388 * destroy cache.
1390 rcu_barrier();
1392 if (nilfs_inode_cachep)
1393 kmem_cache_destroy(nilfs_inode_cachep);
1394 if (nilfs_transaction_cachep)
1395 kmem_cache_destroy(nilfs_transaction_cachep);
1396 if (nilfs_segbuf_cachep)
1397 kmem_cache_destroy(nilfs_segbuf_cachep);
1398 if (nilfs_btree_path_cache)
1399 kmem_cache_destroy(nilfs_btree_path_cache);
1402 static int __init nilfs_init_cachep(void)
1404 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1405 sizeof(struct nilfs_inode_info), 0,
1406 SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1407 if (!nilfs_inode_cachep)
1408 goto fail;
1410 nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1411 sizeof(struct nilfs_transaction_info), 0,
1412 SLAB_RECLAIM_ACCOUNT, NULL);
1413 if (!nilfs_transaction_cachep)
1414 goto fail;
1416 nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1417 sizeof(struct nilfs_segment_buffer), 0,
1418 SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1419 if (!nilfs_segbuf_cachep)
1420 goto fail;
1422 nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1423 sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1424 0, 0, NULL);
1425 if (!nilfs_btree_path_cache)
1426 goto fail;
1428 return 0;
1430 fail:
1431 nilfs_destroy_cachep();
1432 return -ENOMEM;
1435 static int __init init_nilfs_fs(void)
1437 int err;
1439 err = nilfs_init_cachep();
1440 if (err)
1441 goto fail;
1443 err = register_filesystem(&nilfs_fs_type);
1444 if (err)
1445 goto free_cachep;
1447 printk(KERN_INFO "NILFS version 2 loaded\n");
1448 return 0;
1450 free_cachep:
1451 nilfs_destroy_cachep();
1452 fail:
1453 return err;
1456 static void __exit exit_nilfs_fs(void)
1458 nilfs_destroy_cachep();
1459 unregister_filesystem(&nilfs_fs_type);
1462 module_init(init_nilfs_fs)
1463 module_exit(exit_nilfs_fs)