drm/i915: pass ELD to HDMI/DP audio driver
[linux-2.6.git] / drivers / gpu / drm / i915 / intel_dp.c
blob6cbde9ff1ec673adc2fed8f7c66a5f3c74eb06c0
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43 #define DP_LINK_CONFIGURATION_SIZE 9
45 struct intel_dp {
46 struct intel_encoder base;
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 bool has_audio;
51 int force_audio;
52 uint32_t color_range;
53 int dpms_mode;
54 uint8_t link_bw;
55 uint8_t lane_count;
56 uint8_t dpcd[8];
57 struct i2c_adapter adapter;
58 struct i2c_algo_dp_aux_data algo;
59 bool is_pch_edp;
60 uint8_t train_set[4];
61 uint8_t link_status[DP_LINK_STATUS_SIZE];
64 /**
65 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
66 * @intel_dp: DP struct
68 * If a CPU or PCH DP output is attached to an eDP panel, this function
69 * will return true, and false otherwise.
71 static bool is_edp(struct intel_dp *intel_dp)
73 return intel_dp->base.type == INTEL_OUTPUT_EDP;
76 /**
77 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
78 * @intel_dp: DP struct
80 * Returns true if the given DP struct corresponds to a PCH DP port attached
81 * to an eDP panel, false otherwise. Helpful for determining whether we
82 * may need FDI resources for a given DP output or not.
84 static bool is_pch_edp(struct intel_dp *intel_dp)
86 return intel_dp->is_pch_edp;
89 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
91 return container_of(encoder, struct intel_dp, base.base);
94 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
96 return container_of(intel_attached_encoder(connector),
97 struct intel_dp, base);
101 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
102 * @encoder: DRM encoder
104 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
105 * by intel_display.c.
107 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
109 struct intel_dp *intel_dp;
111 if (!encoder)
112 return false;
114 intel_dp = enc_to_intel_dp(encoder);
116 return is_pch_edp(intel_dp);
119 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
120 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_link_down(struct intel_dp *intel_dp);
123 void
124 intel_edp_link_config(struct intel_encoder *intel_encoder,
125 int *lane_num, int *link_bw)
127 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
129 *lane_num = intel_dp->lane_count;
130 if (intel_dp->link_bw == DP_LINK_BW_1_62)
131 *link_bw = 162000;
132 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
133 *link_bw = 270000;
136 static int
137 intel_dp_max_lane_count(struct intel_dp *intel_dp)
139 int max_lane_count = 4;
141 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
142 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
143 switch (max_lane_count) {
144 case 1: case 2: case 4:
145 break;
146 default:
147 max_lane_count = 4;
150 return max_lane_count;
153 static int
154 intel_dp_max_link_bw(struct intel_dp *intel_dp)
156 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
158 switch (max_link_bw) {
159 case DP_LINK_BW_1_62:
160 case DP_LINK_BW_2_7:
161 break;
162 default:
163 max_link_bw = DP_LINK_BW_1_62;
164 break;
166 return max_link_bw;
169 static int
170 intel_dp_link_clock(uint8_t link_bw)
172 if (link_bw == DP_LINK_BW_2_7)
173 return 270000;
174 else
175 return 162000;
178 /* I think this is a fiction */
179 static int
180 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
182 struct drm_crtc *crtc = intel_dp->base.base.crtc;
183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
184 int bpp = 24;
186 if (intel_crtc)
187 bpp = intel_crtc->bpp;
189 return (pixel_clock * bpp + 7) / 8;
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
195 return (max_link_clock * max_lanes * 8) / 10;
198 static int
199 intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct drm_device *dev = connector->dev;
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206 int max_lanes = intel_dp_max_lane_count(intel_dp);
208 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210 return MODE_PANEL;
212 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213 return MODE_PANEL;
216 /* only refuse the mode on non eDP since we have seen some weird eDP panels
217 which are outside spec tolerances but somehow work by magic */
218 if (!is_edp(intel_dp) &&
219 (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220 > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221 return MODE_CLOCK_HIGH;
223 if (mode->clock < 10000)
224 return MODE_CLOCK_LOW;
226 return MODE_OK;
229 static uint32_t
230 pack_aux(uint8_t *src, int src_bytes)
232 int i;
233 uint32_t v = 0;
235 if (src_bytes > 4)
236 src_bytes = 4;
237 for (i = 0; i < src_bytes; i++)
238 v |= ((uint32_t) src[i]) << ((3-i) * 8);
239 return v;
242 static void
243 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 int i;
246 if (dst_bytes > 4)
247 dst_bytes = 4;
248 for (i = 0; i < dst_bytes; i++)
249 dst[i] = src >> ((3-i) * 8);
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
254 intel_hrawclk(struct drm_device *dev)
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 uint32_t clkcfg;
259 clkcfg = I915_READ(CLKCFG);
260 switch (clkcfg & CLKCFG_FSB_MASK) {
261 case CLKCFG_FSB_400:
262 return 100;
263 case CLKCFG_FSB_533:
264 return 133;
265 case CLKCFG_FSB_667:
266 return 166;
267 case CLKCFG_FSB_800:
268 return 200;
269 case CLKCFG_FSB_1067:
270 return 266;
271 case CLKCFG_FSB_1333:
272 return 333;
273 /* these two are just a guess; one of them might be right */
274 case CLKCFG_FSB_1600:
275 case CLKCFG_FSB_1600_ALT:
276 return 400;
277 default:
278 return 133;
282 static int
283 intel_dp_aux_ch(struct intel_dp *intel_dp,
284 uint8_t *send, int send_bytes,
285 uint8_t *recv, int recv_size)
287 uint32_t output_reg = intel_dp->output_reg;
288 struct drm_device *dev = intel_dp->base.base.dev;
289 struct drm_i915_private *dev_priv = dev->dev_private;
290 uint32_t ch_ctl = output_reg + 0x10;
291 uint32_t ch_data = ch_ctl + 4;
292 int i;
293 int recv_bytes;
294 uint32_t status;
295 uint32_t aux_clock_divider;
296 int try, precharge;
298 /* The clock divider is based off the hrawclk,
299 * and would like to run at 2MHz. So, take the
300 * hrawclk value and divide by 2 and use that
302 * Note that PCH attached eDP panels should use a 125MHz input
303 * clock divider.
305 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306 if (IS_GEN6(dev))
307 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308 else
309 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310 } else if (HAS_PCH_SPLIT(dev))
311 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312 else
313 aux_clock_divider = intel_hrawclk(dev) / 2;
315 if (IS_GEN6(dev))
316 precharge = 3;
317 else
318 precharge = 5;
320 /* Try to wait for any previous AUX channel activity */
321 for (try = 0; try < 3; try++) {
322 status = I915_READ(ch_ctl);
323 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
324 break;
325 msleep(1);
328 if (try == 3) {
329 WARN(1, "dp_aux_ch not started status 0x%08x\n",
330 I915_READ(ch_ctl));
331 return -EBUSY;
334 /* Must try at least 3 times according to DP spec */
335 for (try = 0; try < 5; try++) {
336 /* Load the send data into the aux channel data registers */
337 for (i = 0; i < send_bytes; i += 4)
338 I915_WRITE(ch_data + i,
339 pack_aux(send + i, send_bytes - i));
341 /* Send the command and wait for it to complete */
342 I915_WRITE(ch_ctl,
343 DP_AUX_CH_CTL_SEND_BUSY |
344 DP_AUX_CH_CTL_TIME_OUT_400us |
345 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
346 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
347 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
348 DP_AUX_CH_CTL_DONE |
349 DP_AUX_CH_CTL_TIME_OUT_ERROR |
350 DP_AUX_CH_CTL_RECEIVE_ERROR);
351 for (;;) {
352 status = I915_READ(ch_ctl);
353 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
354 break;
355 udelay(100);
358 /* Clear done status and any errors */
359 I915_WRITE(ch_ctl,
360 status |
361 DP_AUX_CH_CTL_DONE |
362 DP_AUX_CH_CTL_TIME_OUT_ERROR |
363 DP_AUX_CH_CTL_RECEIVE_ERROR);
364 if (status & DP_AUX_CH_CTL_DONE)
365 break;
368 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
369 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
370 return -EBUSY;
373 /* Check for timeout or receive error.
374 * Timeouts occur when the sink is not connected
376 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
377 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
378 return -EIO;
381 /* Timeouts occur when the device isn't connected, so they're
382 * "normal" -- don't fill the kernel log with these */
383 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
384 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
385 return -ETIMEDOUT;
388 /* Unload any bytes sent back from the other side */
389 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
390 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
391 if (recv_bytes > recv_size)
392 recv_bytes = recv_size;
394 for (i = 0; i < recv_bytes; i += 4)
395 unpack_aux(I915_READ(ch_data + i),
396 recv + i, recv_bytes - i);
398 return recv_bytes;
401 /* Write data to the aux channel in native mode */
402 static int
403 intel_dp_aux_native_write(struct intel_dp *intel_dp,
404 uint16_t address, uint8_t *send, int send_bytes)
406 int ret;
407 uint8_t msg[20];
408 int msg_bytes;
409 uint8_t ack;
411 if (send_bytes > 16)
412 return -1;
413 msg[0] = AUX_NATIVE_WRITE << 4;
414 msg[1] = address >> 8;
415 msg[2] = address & 0xff;
416 msg[3] = send_bytes - 1;
417 memcpy(&msg[4], send, send_bytes);
418 msg_bytes = send_bytes + 4;
419 for (;;) {
420 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
421 if (ret < 0)
422 return ret;
423 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
424 break;
425 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
426 udelay(100);
427 else
428 return -EIO;
430 return send_bytes;
433 /* Write a single byte to the aux channel in native mode */
434 static int
435 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
436 uint16_t address, uint8_t byte)
438 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
441 /* read bytes from a native aux channel */
442 static int
443 intel_dp_aux_native_read(struct intel_dp *intel_dp,
444 uint16_t address, uint8_t *recv, int recv_bytes)
446 uint8_t msg[4];
447 int msg_bytes;
448 uint8_t reply[20];
449 int reply_bytes;
450 uint8_t ack;
451 int ret;
453 msg[0] = AUX_NATIVE_READ << 4;
454 msg[1] = address >> 8;
455 msg[2] = address & 0xff;
456 msg[3] = recv_bytes - 1;
458 msg_bytes = 4;
459 reply_bytes = recv_bytes + 1;
461 for (;;) {
462 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
463 reply, reply_bytes);
464 if (ret == 0)
465 return -EPROTO;
466 if (ret < 0)
467 return ret;
468 ack = reply[0];
469 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
470 memcpy(recv, reply + 1, ret - 1);
471 return ret - 1;
473 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
474 udelay(100);
475 else
476 return -EIO;
480 static int
481 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
482 uint8_t write_byte, uint8_t *read_byte)
484 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
485 struct intel_dp *intel_dp = container_of(adapter,
486 struct intel_dp,
487 adapter);
488 uint16_t address = algo_data->address;
489 uint8_t msg[5];
490 uint8_t reply[2];
491 unsigned retry;
492 int msg_bytes;
493 int reply_bytes;
494 int ret;
496 /* Set up the command byte */
497 if (mode & MODE_I2C_READ)
498 msg[0] = AUX_I2C_READ << 4;
499 else
500 msg[0] = AUX_I2C_WRITE << 4;
502 if (!(mode & MODE_I2C_STOP))
503 msg[0] |= AUX_I2C_MOT << 4;
505 msg[1] = address >> 8;
506 msg[2] = address;
508 switch (mode) {
509 case MODE_I2C_WRITE:
510 msg[3] = 0;
511 msg[4] = write_byte;
512 msg_bytes = 5;
513 reply_bytes = 1;
514 break;
515 case MODE_I2C_READ:
516 msg[3] = 0;
517 msg_bytes = 4;
518 reply_bytes = 2;
519 break;
520 default:
521 msg_bytes = 3;
522 reply_bytes = 1;
523 break;
526 for (retry = 0; retry < 5; retry++) {
527 ret = intel_dp_aux_ch(intel_dp,
528 msg, msg_bytes,
529 reply, reply_bytes);
530 if (ret < 0) {
531 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
532 return ret;
535 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
536 case AUX_NATIVE_REPLY_ACK:
537 /* I2C-over-AUX Reply field is only valid
538 * when paired with AUX ACK.
540 break;
541 case AUX_NATIVE_REPLY_NACK:
542 DRM_DEBUG_KMS("aux_ch native nack\n");
543 return -EREMOTEIO;
544 case AUX_NATIVE_REPLY_DEFER:
545 udelay(100);
546 continue;
547 default:
548 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
549 reply[0]);
550 return -EREMOTEIO;
553 switch (reply[0] & AUX_I2C_REPLY_MASK) {
554 case AUX_I2C_REPLY_ACK:
555 if (mode == MODE_I2C_READ) {
556 *read_byte = reply[1];
558 return reply_bytes - 1;
559 case AUX_I2C_REPLY_NACK:
560 DRM_DEBUG_KMS("aux_i2c nack\n");
561 return -EREMOTEIO;
562 case AUX_I2C_REPLY_DEFER:
563 DRM_DEBUG_KMS("aux_i2c defer\n");
564 udelay(100);
565 break;
566 default:
567 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
568 return -EREMOTEIO;
572 DRM_ERROR("too many retries, giving up\n");
573 return -EREMOTEIO;
576 static int
577 intel_dp_i2c_init(struct intel_dp *intel_dp,
578 struct intel_connector *intel_connector, const char *name)
580 DRM_DEBUG_KMS("i2c_init %s\n", name);
581 intel_dp->algo.running = false;
582 intel_dp->algo.address = 0;
583 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
585 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
586 intel_dp->adapter.owner = THIS_MODULE;
587 intel_dp->adapter.class = I2C_CLASS_DDC;
588 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
589 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
590 intel_dp->adapter.algo_data = &intel_dp->algo;
591 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
593 return i2c_dp_aux_add_bus(&intel_dp->adapter);
596 static bool
597 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
598 struct drm_display_mode *adjusted_mode)
600 struct drm_device *dev = encoder->dev;
601 struct drm_i915_private *dev_priv = dev->dev_private;
602 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
603 int lane_count, clock;
604 int max_lane_count = intel_dp_max_lane_count(intel_dp);
605 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
606 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
608 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
609 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
610 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
611 mode, adjusted_mode);
613 * the mode->clock is used to calculate the Data&Link M/N
614 * of the pipe. For the eDP the fixed clock should be used.
616 mode->clock = dev_priv->panel_fixed_mode->clock;
619 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
620 for (clock = 0; clock <= max_clock; clock++) {
621 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
623 if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
624 <= link_avail) {
625 intel_dp->link_bw = bws[clock];
626 intel_dp->lane_count = lane_count;
627 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
628 DRM_DEBUG_KMS("Display port link bw %02x lane "
629 "count %d clock %d\n",
630 intel_dp->link_bw, intel_dp->lane_count,
631 adjusted_mode->clock);
632 return true;
637 if (is_edp(intel_dp)) {
638 /* okay we failed just pick the highest */
639 intel_dp->lane_count = max_lane_count;
640 intel_dp->link_bw = bws[max_clock];
641 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
642 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
643 "count %d clock %d\n",
644 intel_dp->link_bw, intel_dp->lane_count,
645 adjusted_mode->clock);
647 return true;
650 return false;
653 struct intel_dp_m_n {
654 uint32_t tu;
655 uint32_t gmch_m;
656 uint32_t gmch_n;
657 uint32_t link_m;
658 uint32_t link_n;
661 static void
662 intel_reduce_ratio(uint32_t *num, uint32_t *den)
664 while (*num > 0xffffff || *den > 0xffffff) {
665 *num >>= 1;
666 *den >>= 1;
670 static void
671 intel_dp_compute_m_n(int bpp,
672 int nlanes,
673 int pixel_clock,
674 int link_clock,
675 struct intel_dp_m_n *m_n)
677 m_n->tu = 64;
678 m_n->gmch_m = (pixel_clock * bpp) >> 3;
679 m_n->gmch_n = link_clock * nlanes;
680 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
681 m_n->link_m = pixel_clock;
682 m_n->link_n = link_clock;
683 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
686 void
687 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
688 struct drm_display_mode *adjusted_mode)
690 struct drm_device *dev = crtc->dev;
691 struct drm_mode_config *mode_config = &dev->mode_config;
692 struct drm_encoder *encoder;
693 struct drm_i915_private *dev_priv = dev->dev_private;
694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
695 int lane_count = 4;
696 struct intel_dp_m_n m_n;
697 int pipe = intel_crtc->pipe;
700 * Find the lane count in the intel_encoder private
702 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
703 struct intel_dp *intel_dp;
705 if (encoder->crtc != crtc)
706 continue;
708 intel_dp = enc_to_intel_dp(encoder);
709 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
710 lane_count = intel_dp->lane_count;
711 break;
712 } else if (is_edp(intel_dp)) {
713 lane_count = dev_priv->edp.lanes;
714 break;
719 * Compute the GMCH and Link ratios. The '3' here is
720 * the number of bytes_per_pixel post-LUT, which we always
721 * set up for 8-bits of R/G/B, or 3 bytes total.
723 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
724 mode->clock, adjusted_mode->clock, &m_n);
726 if (HAS_PCH_SPLIT(dev)) {
727 I915_WRITE(TRANSDATA_M1(pipe),
728 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
729 m_n.gmch_m);
730 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
731 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
732 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
733 } else {
734 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
735 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
736 m_n.gmch_m);
737 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
738 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
739 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
743 static void
744 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
745 struct drm_display_mode *adjusted_mode)
747 struct drm_device *dev = encoder->dev;
748 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
749 struct drm_crtc *crtc = intel_dp->base.base.crtc;
750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
752 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
753 intel_dp->DP |= intel_dp->color_range;
755 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
756 intel_dp->DP |= DP_SYNC_HS_HIGH;
757 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
758 intel_dp->DP |= DP_SYNC_VS_HIGH;
760 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
761 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
762 else
763 intel_dp->DP |= DP_LINK_TRAIN_OFF;
765 switch (intel_dp->lane_count) {
766 case 1:
767 intel_dp->DP |= DP_PORT_WIDTH_1;
768 break;
769 case 2:
770 intel_dp->DP |= DP_PORT_WIDTH_2;
771 break;
772 case 4:
773 intel_dp->DP |= DP_PORT_WIDTH_4;
774 break;
776 if (intel_dp->has_audio) {
777 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
778 pipe_name(intel_crtc->pipe));
779 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
780 intel_write_eld(encoder, adjusted_mode);
783 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
784 intel_dp->link_configuration[0] = intel_dp->link_bw;
785 intel_dp->link_configuration[1] = intel_dp->lane_count;
786 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
789 * Check for DPCD version > 1.1 and enhanced framing support
791 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
792 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
793 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
794 intel_dp->DP |= DP_ENHANCED_FRAMING;
797 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
798 if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
799 intel_dp->DP |= DP_PIPEB_SELECT;
801 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
802 /* don't miss out required setting for eDP */
803 intel_dp->DP |= DP_PLL_ENABLE;
804 if (adjusted_mode->clock < 200000)
805 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
806 else
807 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
811 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
813 struct drm_device *dev = intel_dp->base.base.dev;
814 struct drm_i915_private *dev_priv = dev->dev_private;
815 u32 pp;
818 * If the panel wasn't on, make sure there's not a currently
819 * active PP sequence before enabling AUX VDD.
821 if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
822 msleep(dev_priv->panel_t3);
824 pp = I915_READ(PCH_PP_CONTROL);
825 pp |= EDP_FORCE_VDD;
826 I915_WRITE(PCH_PP_CONTROL, pp);
827 POSTING_READ(PCH_PP_CONTROL);
830 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
832 struct drm_device *dev = intel_dp->base.base.dev;
833 struct drm_i915_private *dev_priv = dev->dev_private;
834 u32 pp;
836 pp = I915_READ(PCH_PP_CONTROL);
837 pp &= ~EDP_FORCE_VDD;
838 I915_WRITE(PCH_PP_CONTROL, pp);
839 POSTING_READ(PCH_PP_CONTROL);
841 /* Make sure sequencer is idle before allowing subsequent activity */
842 msleep(dev_priv->panel_t12);
845 /* Returns true if the panel was already on when called */
846 static bool ironlake_edp_panel_on(struct intel_dp *intel_dp)
848 struct drm_device *dev = intel_dp->base.base.dev;
849 struct drm_i915_private *dev_priv = dev->dev_private;
850 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
852 if (I915_READ(PCH_PP_STATUS) & PP_ON)
853 return true;
855 pp = I915_READ(PCH_PP_CONTROL);
857 /* ILK workaround: disable reset around power sequence */
858 pp &= ~PANEL_POWER_RESET;
859 I915_WRITE(PCH_PP_CONTROL, pp);
860 POSTING_READ(PCH_PP_CONTROL);
862 pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
863 I915_WRITE(PCH_PP_CONTROL, pp);
864 POSTING_READ(PCH_PP_CONTROL);
866 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
867 5000))
868 DRM_ERROR("panel on wait timed out: 0x%08x\n",
869 I915_READ(PCH_PP_STATUS));
871 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
872 I915_WRITE(PCH_PP_CONTROL, pp);
873 POSTING_READ(PCH_PP_CONTROL);
875 return false;
878 static void ironlake_edp_panel_off(struct drm_device *dev)
880 struct drm_i915_private *dev_priv = dev->dev_private;
881 u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
882 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
884 pp = I915_READ(PCH_PP_CONTROL);
886 /* ILK workaround: disable reset around power sequence */
887 pp &= ~PANEL_POWER_RESET;
888 I915_WRITE(PCH_PP_CONTROL, pp);
889 POSTING_READ(PCH_PP_CONTROL);
891 pp &= ~POWER_TARGET_ON;
892 I915_WRITE(PCH_PP_CONTROL, pp);
893 POSTING_READ(PCH_PP_CONTROL);
895 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
896 DRM_ERROR("panel off wait timed out: 0x%08x\n",
897 I915_READ(PCH_PP_STATUS));
899 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
900 I915_WRITE(PCH_PP_CONTROL, pp);
901 POSTING_READ(PCH_PP_CONTROL);
904 static void ironlake_edp_backlight_on(struct drm_device *dev)
906 struct drm_i915_private *dev_priv = dev->dev_private;
907 u32 pp;
909 DRM_DEBUG_KMS("\n");
911 * If we enable the backlight right away following a panel power
912 * on, we may see slight flicker as the panel syncs with the eDP
913 * link. So delay a bit to make sure the image is solid before
914 * allowing it to appear.
916 msleep(300);
917 pp = I915_READ(PCH_PP_CONTROL);
918 pp |= EDP_BLC_ENABLE;
919 I915_WRITE(PCH_PP_CONTROL, pp);
922 static void ironlake_edp_backlight_off(struct drm_device *dev)
924 struct drm_i915_private *dev_priv = dev->dev_private;
925 u32 pp;
927 DRM_DEBUG_KMS("\n");
928 pp = I915_READ(PCH_PP_CONTROL);
929 pp &= ~EDP_BLC_ENABLE;
930 I915_WRITE(PCH_PP_CONTROL, pp);
933 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
935 struct drm_device *dev = encoder->dev;
936 struct drm_i915_private *dev_priv = dev->dev_private;
937 u32 dpa_ctl;
939 DRM_DEBUG_KMS("\n");
940 dpa_ctl = I915_READ(DP_A);
941 dpa_ctl |= DP_PLL_ENABLE;
942 I915_WRITE(DP_A, dpa_ctl);
943 POSTING_READ(DP_A);
944 udelay(200);
947 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
949 struct drm_device *dev = encoder->dev;
950 struct drm_i915_private *dev_priv = dev->dev_private;
951 u32 dpa_ctl;
953 dpa_ctl = I915_READ(DP_A);
954 dpa_ctl &= ~DP_PLL_ENABLE;
955 I915_WRITE(DP_A, dpa_ctl);
956 POSTING_READ(DP_A);
957 udelay(200);
960 /* If the sink supports it, try to set the power state appropriately */
961 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
963 int ret, i;
965 /* Should have a valid DPCD by this point */
966 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
967 return;
969 if (mode != DRM_MODE_DPMS_ON) {
970 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
971 DP_SET_POWER_D3);
972 if (ret != 1)
973 DRM_DEBUG_DRIVER("failed to write sink power state\n");
974 } else {
976 * When turning on, we need to retry for 1ms to give the sink
977 * time to wake up.
979 for (i = 0; i < 3; i++) {
980 ret = intel_dp_aux_native_write_1(intel_dp,
981 DP_SET_POWER,
982 DP_SET_POWER_D0);
983 if (ret == 1)
984 break;
985 msleep(1);
990 static void intel_dp_prepare(struct drm_encoder *encoder)
992 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
993 struct drm_device *dev = encoder->dev;
995 /* Wake up the sink first */
996 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
998 if (is_edp(intel_dp)) {
999 ironlake_edp_backlight_off(dev);
1000 ironlake_edp_panel_off(dev);
1001 if (!is_pch_edp(intel_dp))
1002 ironlake_edp_pll_on(encoder);
1003 else
1004 ironlake_edp_pll_off(encoder);
1006 intel_dp_link_down(intel_dp);
1009 static void intel_dp_commit(struct drm_encoder *encoder)
1011 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1012 struct drm_device *dev = encoder->dev;
1014 if (is_edp(intel_dp))
1015 ironlake_edp_panel_vdd_on(intel_dp);
1017 intel_dp_start_link_train(intel_dp);
1019 if (is_edp(intel_dp)) {
1020 ironlake_edp_panel_on(intel_dp);
1021 ironlake_edp_panel_vdd_off(intel_dp);
1024 intel_dp_complete_link_train(intel_dp);
1026 if (is_edp(intel_dp))
1027 ironlake_edp_backlight_on(dev);
1029 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1032 static void
1033 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1035 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1036 struct drm_device *dev = encoder->dev;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1040 if (mode != DRM_MODE_DPMS_ON) {
1041 if (is_edp(intel_dp))
1042 ironlake_edp_backlight_off(dev);
1043 intel_dp_sink_dpms(intel_dp, mode);
1044 intel_dp_link_down(intel_dp);
1045 if (is_edp(intel_dp))
1046 ironlake_edp_panel_off(dev);
1047 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1048 ironlake_edp_pll_off(encoder);
1049 } else {
1050 if (is_edp(intel_dp))
1051 ironlake_edp_panel_vdd_on(intel_dp);
1052 intel_dp_sink_dpms(intel_dp, mode);
1053 if (!(dp_reg & DP_PORT_EN)) {
1054 intel_dp_start_link_train(intel_dp);
1055 if (is_edp(intel_dp)) {
1056 ironlake_edp_panel_on(intel_dp);
1057 ironlake_edp_panel_vdd_off(intel_dp);
1059 intel_dp_complete_link_train(intel_dp);
1061 if (is_edp(intel_dp))
1062 ironlake_edp_backlight_on(dev);
1064 intel_dp->dpms_mode = mode;
1068 * Native read with retry for link status and receiver capability reads for
1069 * cases where the sink may still be asleep.
1071 static bool
1072 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1073 uint8_t *recv, int recv_bytes)
1075 int ret, i;
1078 * Sinks are *supposed* to come up within 1ms from an off state,
1079 * but we're also supposed to retry 3 times per the spec.
1081 for (i = 0; i < 3; i++) {
1082 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1083 recv_bytes);
1084 if (ret == recv_bytes)
1085 return true;
1086 msleep(1);
1089 return false;
1093 * Fetch AUX CH registers 0x202 - 0x207 which contain
1094 * link status information
1096 static bool
1097 intel_dp_get_link_status(struct intel_dp *intel_dp)
1099 return intel_dp_aux_native_read_retry(intel_dp,
1100 DP_LANE0_1_STATUS,
1101 intel_dp->link_status,
1102 DP_LINK_STATUS_SIZE);
1105 static uint8_t
1106 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1107 int r)
1109 return link_status[r - DP_LANE0_1_STATUS];
1112 static uint8_t
1113 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1114 int lane)
1116 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1117 int s = ((lane & 1) ?
1118 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1119 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1120 uint8_t l = intel_dp_link_status(link_status, i);
1122 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1125 static uint8_t
1126 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1127 int lane)
1129 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1130 int s = ((lane & 1) ?
1131 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1132 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1133 uint8_t l = intel_dp_link_status(link_status, i);
1135 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1139 #if 0
1140 static char *voltage_names[] = {
1141 "0.4V", "0.6V", "0.8V", "1.2V"
1143 static char *pre_emph_names[] = {
1144 "0dB", "3.5dB", "6dB", "9.5dB"
1146 static char *link_train_names[] = {
1147 "pattern 1", "pattern 2", "idle", "off"
1149 #endif
1152 * These are source-specific values; current Intel hardware supports
1153 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1155 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1157 static uint8_t
1158 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1160 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1161 case DP_TRAIN_VOLTAGE_SWING_400:
1162 return DP_TRAIN_PRE_EMPHASIS_6;
1163 case DP_TRAIN_VOLTAGE_SWING_600:
1164 return DP_TRAIN_PRE_EMPHASIS_6;
1165 case DP_TRAIN_VOLTAGE_SWING_800:
1166 return DP_TRAIN_PRE_EMPHASIS_3_5;
1167 case DP_TRAIN_VOLTAGE_SWING_1200:
1168 default:
1169 return DP_TRAIN_PRE_EMPHASIS_0;
1173 static void
1174 intel_get_adjust_train(struct intel_dp *intel_dp)
1176 uint8_t v = 0;
1177 uint8_t p = 0;
1178 int lane;
1180 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1181 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1182 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1184 if (this_v > v)
1185 v = this_v;
1186 if (this_p > p)
1187 p = this_p;
1190 if (v >= I830_DP_VOLTAGE_MAX)
1191 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1193 if (p >= intel_dp_pre_emphasis_max(v))
1194 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1196 for (lane = 0; lane < 4; lane++)
1197 intel_dp->train_set[lane] = v | p;
1200 static uint32_t
1201 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1203 uint32_t signal_levels = 0;
1205 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1206 case DP_TRAIN_VOLTAGE_SWING_400:
1207 default:
1208 signal_levels |= DP_VOLTAGE_0_4;
1209 break;
1210 case DP_TRAIN_VOLTAGE_SWING_600:
1211 signal_levels |= DP_VOLTAGE_0_6;
1212 break;
1213 case DP_TRAIN_VOLTAGE_SWING_800:
1214 signal_levels |= DP_VOLTAGE_0_8;
1215 break;
1216 case DP_TRAIN_VOLTAGE_SWING_1200:
1217 signal_levels |= DP_VOLTAGE_1_2;
1218 break;
1220 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1221 case DP_TRAIN_PRE_EMPHASIS_0:
1222 default:
1223 signal_levels |= DP_PRE_EMPHASIS_0;
1224 break;
1225 case DP_TRAIN_PRE_EMPHASIS_3_5:
1226 signal_levels |= DP_PRE_EMPHASIS_3_5;
1227 break;
1228 case DP_TRAIN_PRE_EMPHASIS_6:
1229 signal_levels |= DP_PRE_EMPHASIS_6;
1230 break;
1231 case DP_TRAIN_PRE_EMPHASIS_9_5:
1232 signal_levels |= DP_PRE_EMPHASIS_9_5;
1233 break;
1235 return signal_levels;
1238 /* Gen6's DP voltage swing and pre-emphasis control */
1239 static uint32_t
1240 intel_gen6_edp_signal_levels(uint8_t train_set)
1242 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1243 DP_TRAIN_PRE_EMPHASIS_MASK);
1244 switch (signal_levels) {
1245 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1246 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1247 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1248 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1249 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1250 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1251 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1252 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1253 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1254 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1255 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1256 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1257 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1258 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1259 default:
1260 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1261 "0x%x\n", signal_levels);
1262 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1266 static uint8_t
1267 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1268 int lane)
1270 int i = DP_LANE0_1_STATUS + (lane >> 1);
1271 int s = (lane & 1) * 4;
1272 uint8_t l = intel_dp_link_status(link_status, i);
1274 return (l >> s) & 0xf;
1277 /* Check for clock recovery is done on all channels */
1278 static bool
1279 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1281 int lane;
1282 uint8_t lane_status;
1284 for (lane = 0; lane < lane_count; lane++) {
1285 lane_status = intel_get_lane_status(link_status, lane);
1286 if ((lane_status & DP_LANE_CR_DONE) == 0)
1287 return false;
1289 return true;
1292 /* Check to see if channel eq is done on all channels */
1293 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1294 DP_LANE_CHANNEL_EQ_DONE|\
1295 DP_LANE_SYMBOL_LOCKED)
1296 static bool
1297 intel_channel_eq_ok(struct intel_dp *intel_dp)
1299 uint8_t lane_align;
1300 uint8_t lane_status;
1301 int lane;
1303 lane_align = intel_dp_link_status(intel_dp->link_status,
1304 DP_LANE_ALIGN_STATUS_UPDATED);
1305 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1306 return false;
1307 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1308 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1309 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1310 return false;
1312 return true;
1315 static bool
1316 intel_dp_set_link_train(struct intel_dp *intel_dp,
1317 uint32_t dp_reg_value,
1318 uint8_t dp_train_pat)
1320 struct drm_device *dev = intel_dp->base.base.dev;
1321 struct drm_i915_private *dev_priv = dev->dev_private;
1322 int ret;
1324 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1325 POSTING_READ(intel_dp->output_reg);
1327 intel_dp_aux_native_write_1(intel_dp,
1328 DP_TRAINING_PATTERN_SET,
1329 dp_train_pat);
1331 ret = intel_dp_aux_native_write(intel_dp,
1332 DP_TRAINING_LANE0_SET,
1333 intel_dp->train_set, 4);
1334 if (ret != 4)
1335 return false;
1337 return true;
1340 /* Enable corresponding port and start training pattern 1 */
1341 static void
1342 intel_dp_start_link_train(struct intel_dp *intel_dp)
1344 struct drm_device *dev = intel_dp->base.base.dev;
1345 struct drm_i915_private *dev_priv = dev->dev_private;
1346 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1347 int i;
1348 uint8_t voltage;
1349 bool clock_recovery = false;
1350 int tries;
1351 u32 reg;
1352 uint32_t DP = intel_dp->DP;
1355 * On CPT we have to enable the port in training pattern 1, which
1356 * will happen below in intel_dp_set_link_train. Otherwise, enable
1357 * the port and wait for it to become active.
1359 if (!HAS_PCH_CPT(dev)) {
1360 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1361 POSTING_READ(intel_dp->output_reg);
1362 intel_wait_for_vblank(dev, intel_crtc->pipe);
1365 /* Write the link configuration data */
1366 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1367 intel_dp->link_configuration,
1368 DP_LINK_CONFIGURATION_SIZE);
1370 DP |= DP_PORT_EN;
1371 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1372 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1373 else
1374 DP &= ~DP_LINK_TRAIN_MASK;
1375 memset(intel_dp->train_set, 0, 4);
1376 voltage = 0xff;
1377 tries = 0;
1378 clock_recovery = false;
1379 for (;;) {
1380 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1381 uint32_t signal_levels;
1382 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1383 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1384 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1385 } else {
1386 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1387 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1390 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1391 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1392 else
1393 reg = DP | DP_LINK_TRAIN_PAT_1;
1395 if (!intel_dp_set_link_train(intel_dp, reg,
1396 DP_TRAINING_PATTERN_1 |
1397 DP_LINK_SCRAMBLING_DISABLE))
1398 break;
1399 /* Set training pattern 1 */
1401 udelay(100);
1402 if (!intel_dp_get_link_status(intel_dp))
1403 break;
1405 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1406 clock_recovery = true;
1407 break;
1410 /* Check to see if we've tried the max voltage */
1411 for (i = 0; i < intel_dp->lane_count; i++)
1412 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1413 break;
1414 if (i == intel_dp->lane_count)
1415 break;
1417 /* Check to see if we've tried the same voltage 5 times */
1418 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1419 ++tries;
1420 if (tries == 5)
1421 break;
1422 } else
1423 tries = 0;
1424 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1426 /* Compute new intel_dp->train_set as requested by target */
1427 intel_get_adjust_train(intel_dp);
1430 intel_dp->DP = DP;
1433 static void
1434 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1436 struct drm_device *dev = intel_dp->base.base.dev;
1437 struct drm_i915_private *dev_priv = dev->dev_private;
1438 bool channel_eq = false;
1439 int tries, cr_tries;
1440 u32 reg;
1441 uint32_t DP = intel_dp->DP;
1443 /* channel equalization */
1444 tries = 0;
1445 cr_tries = 0;
1446 channel_eq = false;
1447 for (;;) {
1448 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1449 uint32_t signal_levels;
1451 if (cr_tries > 5) {
1452 DRM_ERROR("failed to train DP, aborting\n");
1453 intel_dp_link_down(intel_dp);
1454 break;
1457 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1458 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1459 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1460 } else {
1461 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1462 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1465 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1466 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1467 else
1468 reg = DP | DP_LINK_TRAIN_PAT_2;
1470 /* channel eq pattern */
1471 if (!intel_dp_set_link_train(intel_dp, reg,
1472 DP_TRAINING_PATTERN_2 |
1473 DP_LINK_SCRAMBLING_DISABLE))
1474 break;
1476 udelay(400);
1477 if (!intel_dp_get_link_status(intel_dp))
1478 break;
1480 /* Make sure clock is still ok */
1481 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1482 intel_dp_start_link_train(intel_dp);
1483 cr_tries++;
1484 continue;
1487 if (intel_channel_eq_ok(intel_dp)) {
1488 channel_eq = true;
1489 break;
1492 /* Try 5 times, then try clock recovery if that fails */
1493 if (tries > 5) {
1494 intel_dp_link_down(intel_dp);
1495 intel_dp_start_link_train(intel_dp);
1496 tries = 0;
1497 cr_tries++;
1498 continue;
1501 /* Compute new intel_dp->train_set as requested by target */
1502 intel_get_adjust_train(intel_dp);
1503 ++tries;
1506 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1507 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1508 else
1509 reg = DP | DP_LINK_TRAIN_OFF;
1511 I915_WRITE(intel_dp->output_reg, reg);
1512 POSTING_READ(intel_dp->output_reg);
1513 intel_dp_aux_native_write_1(intel_dp,
1514 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1517 static void
1518 intel_dp_link_down(struct intel_dp *intel_dp)
1520 struct drm_device *dev = intel_dp->base.base.dev;
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 uint32_t DP = intel_dp->DP;
1524 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1525 return;
1527 DRM_DEBUG_KMS("\n");
1529 if (is_edp(intel_dp)) {
1530 DP &= ~DP_PLL_ENABLE;
1531 I915_WRITE(intel_dp->output_reg, DP);
1532 POSTING_READ(intel_dp->output_reg);
1533 udelay(100);
1536 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1537 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1538 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1539 } else {
1540 DP &= ~DP_LINK_TRAIN_MASK;
1541 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1543 POSTING_READ(intel_dp->output_reg);
1545 msleep(17);
1547 if (is_edp(intel_dp))
1548 DP |= DP_LINK_TRAIN_OFF;
1550 if (!HAS_PCH_CPT(dev) &&
1551 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1552 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1554 /* Hardware workaround: leaving our transcoder select
1555 * set to transcoder B while it's off will prevent the
1556 * corresponding HDMI output on transcoder A.
1558 * Combine this with another hardware workaround:
1559 * transcoder select bit can only be cleared while the
1560 * port is enabled.
1562 DP &= ~DP_PIPEB_SELECT;
1563 I915_WRITE(intel_dp->output_reg, DP);
1565 /* Changes to enable or select take place the vblank
1566 * after being written.
1568 if (crtc == NULL) {
1569 /* We can arrive here never having been attached
1570 * to a CRTC, for instance, due to inheriting
1571 * random state from the BIOS.
1573 * If the pipe is not running, play safe and
1574 * wait for the clocks to stabilise before
1575 * continuing.
1577 POSTING_READ(intel_dp->output_reg);
1578 msleep(50);
1579 } else
1580 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1583 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1584 POSTING_READ(intel_dp->output_reg);
1587 static bool
1588 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1590 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1591 sizeof(intel_dp->dpcd)) &&
1592 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1593 return true;
1596 return false;
1600 * According to DP spec
1601 * 5.1.2:
1602 * 1. Read DPCD
1603 * 2. Configure link according to Receiver Capabilities
1604 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1605 * 4. Check link status on receipt of hot-plug interrupt
1608 static void
1609 intel_dp_check_link_status(struct intel_dp *intel_dp)
1611 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1612 return;
1614 if (!intel_dp->base.base.crtc)
1615 return;
1617 /* Try to read receiver status if the link appears to be up */
1618 if (!intel_dp_get_link_status(intel_dp)) {
1619 intel_dp_link_down(intel_dp);
1620 return;
1623 /* Now read the DPCD to see if it's actually running */
1624 if (!intel_dp_get_dpcd(intel_dp)) {
1625 intel_dp_link_down(intel_dp);
1626 return;
1629 if (!intel_channel_eq_ok(intel_dp)) {
1630 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1631 drm_get_encoder_name(&intel_dp->base.base));
1632 intel_dp_start_link_train(intel_dp);
1633 intel_dp_complete_link_train(intel_dp);
1637 static enum drm_connector_status
1638 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1640 if (intel_dp_get_dpcd(intel_dp))
1641 return connector_status_connected;
1642 return connector_status_disconnected;
1645 static enum drm_connector_status
1646 ironlake_dp_detect(struct intel_dp *intel_dp)
1648 enum drm_connector_status status;
1650 /* Can't disconnect eDP, but you can close the lid... */
1651 if (is_edp(intel_dp)) {
1652 status = intel_panel_detect(intel_dp->base.base.dev);
1653 if (status == connector_status_unknown)
1654 status = connector_status_connected;
1655 return status;
1658 return intel_dp_detect_dpcd(intel_dp);
1661 static enum drm_connector_status
1662 g4x_dp_detect(struct intel_dp *intel_dp)
1664 struct drm_device *dev = intel_dp->base.base.dev;
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 uint32_t temp, bit;
1668 switch (intel_dp->output_reg) {
1669 case DP_B:
1670 bit = DPB_HOTPLUG_INT_STATUS;
1671 break;
1672 case DP_C:
1673 bit = DPC_HOTPLUG_INT_STATUS;
1674 break;
1675 case DP_D:
1676 bit = DPD_HOTPLUG_INT_STATUS;
1677 break;
1678 default:
1679 return connector_status_unknown;
1682 temp = I915_READ(PORT_HOTPLUG_STAT);
1684 if ((temp & bit) == 0)
1685 return connector_status_disconnected;
1687 return intel_dp_detect_dpcd(intel_dp);
1691 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1693 * \return true if DP port is connected.
1694 * \return false if DP port is disconnected.
1696 static enum drm_connector_status
1697 intel_dp_detect(struct drm_connector *connector, bool force)
1699 struct intel_dp *intel_dp = intel_attached_dp(connector);
1700 struct drm_device *dev = intel_dp->base.base.dev;
1701 enum drm_connector_status status;
1702 struct edid *edid = NULL;
1704 intel_dp->has_audio = false;
1706 if (HAS_PCH_SPLIT(dev))
1707 status = ironlake_dp_detect(intel_dp);
1708 else
1709 status = g4x_dp_detect(intel_dp);
1711 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1712 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1713 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1714 intel_dp->dpcd[6], intel_dp->dpcd[7]);
1716 if (status != connector_status_connected)
1717 return status;
1719 if (intel_dp->force_audio) {
1720 intel_dp->has_audio = intel_dp->force_audio > 0;
1721 } else {
1722 edid = drm_get_edid(connector, &intel_dp->adapter);
1723 if (edid) {
1724 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1725 connector->display_info.raw_edid = NULL;
1726 kfree(edid);
1730 return connector_status_connected;
1733 static int intel_dp_get_modes(struct drm_connector *connector)
1735 struct intel_dp *intel_dp = intel_attached_dp(connector);
1736 struct drm_device *dev = intel_dp->base.base.dev;
1737 struct drm_i915_private *dev_priv = dev->dev_private;
1738 int ret;
1740 /* We should parse the EDID data and find out if it has an audio sink
1743 ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1744 if (ret) {
1745 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1746 struct drm_display_mode *newmode;
1747 list_for_each_entry(newmode, &connector->probed_modes,
1748 head) {
1749 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1750 dev_priv->panel_fixed_mode =
1751 drm_mode_duplicate(dev, newmode);
1752 break;
1757 return ret;
1760 /* if eDP has no EDID, try to use fixed panel mode from VBT */
1761 if (is_edp(intel_dp)) {
1762 if (dev_priv->panel_fixed_mode != NULL) {
1763 struct drm_display_mode *mode;
1764 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1765 drm_mode_probed_add(connector, mode);
1766 return 1;
1769 return 0;
1772 static bool
1773 intel_dp_detect_audio(struct drm_connector *connector)
1775 struct intel_dp *intel_dp = intel_attached_dp(connector);
1776 struct edid *edid;
1777 bool has_audio = false;
1779 edid = drm_get_edid(connector, &intel_dp->adapter);
1780 if (edid) {
1781 has_audio = drm_detect_monitor_audio(edid);
1783 connector->display_info.raw_edid = NULL;
1784 kfree(edid);
1787 return has_audio;
1790 static int
1791 intel_dp_set_property(struct drm_connector *connector,
1792 struct drm_property *property,
1793 uint64_t val)
1795 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1796 struct intel_dp *intel_dp = intel_attached_dp(connector);
1797 int ret;
1799 ret = drm_connector_property_set_value(connector, property, val);
1800 if (ret)
1801 return ret;
1803 if (property == dev_priv->force_audio_property) {
1804 int i = val;
1805 bool has_audio;
1807 if (i == intel_dp->force_audio)
1808 return 0;
1810 intel_dp->force_audio = i;
1812 if (i == 0)
1813 has_audio = intel_dp_detect_audio(connector);
1814 else
1815 has_audio = i > 0;
1817 if (has_audio == intel_dp->has_audio)
1818 return 0;
1820 intel_dp->has_audio = has_audio;
1821 goto done;
1824 if (property == dev_priv->broadcast_rgb_property) {
1825 if (val == !!intel_dp->color_range)
1826 return 0;
1828 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1829 goto done;
1832 return -EINVAL;
1834 done:
1835 if (intel_dp->base.base.crtc) {
1836 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1837 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1838 crtc->x, crtc->y,
1839 crtc->fb);
1842 return 0;
1845 static void
1846 intel_dp_destroy(struct drm_connector *connector)
1848 struct drm_device *dev = connector->dev;
1850 if (intel_dpd_is_edp(dev))
1851 intel_panel_destroy_backlight(dev);
1853 drm_sysfs_connector_remove(connector);
1854 drm_connector_cleanup(connector);
1855 kfree(connector);
1858 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1860 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1862 i2c_del_adapter(&intel_dp->adapter);
1863 drm_encoder_cleanup(encoder);
1864 kfree(intel_dp);
1867 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1868 .dpms = intel_dp_dpms,
1869 .mode_fixup = intel_dp_mode_fixup,
1870 .prepare = intel_dp_prepare,
1871 .mode_set = intel_dp_mode_set,
1872 .commit = intel_dp_commit,
1875 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1876 .dpms = drm_helper_connector_dpms,
1877 .detect = intel_dp_detect,
1878 .fill_modes = drm_helper_probe_single_connector_modes,
1879 .set_property = intel_dp_set_property,
1880 .destroy = intel_dp_destroy,
1883 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1884 .get_modes = intel_dp_get_modes,
1885 .mode_valid = intel_dp_mode_valid,
1886 .best_encoder = intel_best_encoder,
1889 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1890 .destroy = intel_dp_encoder_destroy,
1893 static void
1894 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1896 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1898 intel_dp_check_link_status(intel_dp);
1901 /* Return which DP Port should be selected for Transcoder DP control */
1903 intel_trans_dp_port_sel(struct drm_crtc *crtc)
1905 struct drm_device *dev = crtc->dev;
1906 struct drm_mode_config *mode_config = &dev->mode_config;
1907 struct drm_encoder *encoder;
1909 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1910 struct intel_dp *intel_dp;
1912 if (encoder->crtc != crtc)
1913 continue;
1915 intel_dp = enc_to_intel_dp(encoder);
1916 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1917 return intel_dp->output_reg;
1920 return -1;
1923 /* check the VBT to see whether the eDP is on DP-D port */
1924 bool intel_dpd_is_edp(struct drm_device *dev)
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927 struct child_device_config *p_child;
1928 int i;
1930 if (!dev_priv->child_dev_num)
1931 return false;
1933 for (i = 0; i < dev_priv->child_dev_num; i++) {
1934 p_child = dev_priv->child_dev + i;
1936 if (p_child->dvo_port == PORT_IDPD &&
1937 p_child->device_type == DEVICE_TYPE_eDP)
1938 return true;
1940 return false;
1943 static void
1944 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1946 intel_attach_force_audio_property(connector);
1947 intel_attach_broadcast_rgb_property(connector);
1950 void
1951 intel_dp_init(struct drm_device *dev, int output_reg)
1953 struct drm_i915_private *dev_priv = dev->dev_private;
1954 struct drm_connector *connector;
1955 struct intel_dp *intel_dp;
1956 struct intel_encoder *intel_encoder;
1957 struct intel_connector *intel_connector;
1958 const char *name = NULL;
1959 int type;
1961 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1962 if (!intel_dp)
1963 return;
1965 intel_dp->output_reg = output_reg;
1966 intel_dp->dpms_mode = -1;
1968 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1969 if (!intel_connector) {
1970 kfree(intel_dp);
1971 return;
1973 intel_encoder = &intel_dp->base;
1975 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1976 if (intel_dpd_is_edp(dev))
1977 intel_dp->is_pch_edp = true;
1979 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1980 type = DRM_MODE_CONNECTOR_eDP;
1981 intel_encoder->type = INTEL_OUTPUT_EDP;
1982 } else {
1983 type = DRM_MODE_CONNECTOR_DisplayPort;
1984 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1987 connector = &intel_connector->base;
1988 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1989 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1991 connector->polled = DRM_CONNECTOR_POLL_HPD;
1993 if (output_reg == DP_B || output_reg == PCH_DP_B)
1994 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1995 else if (output_reg == DP_C || output_reg == PCH_DP_C)
1996 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1997 else if (output_reg == DP_D || output_reg == PCH_DP_D)
1998 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2000 if (is_edp(intel_dp))
2001 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2003 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2004 connector->interlace_allowed = true;
2005 connector->doublescan_allowed = 0;
2007 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2008 DRM_MODE_ENCODER_TMDS);
2009 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2011 intel_connector_attach_encoder(intel_connector, intel_encoder);
2012 drm_sysfs_connector_add(connector);
2014 /* Set up the DDC bus. */
2015 switch (output_reg) {
2016 case DP_A:
2017 name = "DPDDC-A";
2018 break;
2019 case DP_B:
2020 case PCH_DP_B:
2021 dev_priv->hotplug_supported_mask |=
2022 HDMIB_HOTPLUG_INT_STATUS;
2023 name = "DPDDC-B";
2024 break;
2025 case DP_C:
2026 case PCH_DP_C:
2027 dev_priv->hotplug_supported_mask |=
2028 HDMIC_HOTPLUG_INT_STATUS;
2029 name = "DPDDC-C";
2030 break;
2031 case DP_D:
2032 case PCH_DP_D:
2033 dev_priv->hotplug_supported_mask |=
2034 HDMID_HOTPLUG_INT_STATUS;
2035 name = "DPDDC-D";
2036 break;
2039 intel_dp_i2c_init(intel_dp, intel_connector, name);
2041 /* Cache some DPCD data in the eDP case */
2042 if (is_edp(intel_dp)) {
2043 bool ret;
2044 u32 pp_on, pp_div;
2046 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2047 pp_div = I915_READ(PCH_PP_DIVISOR);
2049 /* Get T3 & T12 values (note: VESA not bspec terminology) */
2050 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2051 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2052 dev_priv->panel_t12 = pp_div & 0xf;
2053 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2055 ironlake_edp_panel_vdd_on(intel_dp);
2056 ret = intel_dp_get_dpcd(intel_dp);
2057 ironlake_edp_panel_vdd_off(intel_dp);
2058 if (ret) {
2059 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2060 dev_priv->no_aux_handshake =
2061 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2062 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2063 } else {
2064 /* if this fails, presume the device is a ghost */
2065 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2066 intel_dp_encoder_destroy(&intel_dp->base.base);
2067 intel_dp_destroy(&intel_connector->base);
2068 return;
2072 intel_encoder->hot_plug = intel_dp_hot_plug;
2074 if (is_edp(intel_dp)) {
2075 /* initialize panel mode from VBT if available for eDP */
2076 if (dev_priv->lfp_lvds_vbt_mode) {
2077 dev_priv->panel_fixed_mode =
2078 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2079 if (dev_priv->panel_fixed_mode) {
2080 dev_priv->panel_fixed_mode->type |=
2081 DRM_MODE_TYPE_PREFERRED;
2084 dev_priv->int_edp_connector = connector;
2085 intel_panel_setup_backlight(dev);
2088 intel_dp_add_properties(intel_dp, connector);
2090 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2091 * 0xd. Failure to do so will result in spurious interrupts being
2092 * generated on the port when a cable is not attached.
2094 if (IS_G4X(dev) && !IS_GM45(dev)) {
2095 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2096 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);