Merge branch 'core/types' into x86/x32
[linux-2.6.git] / mm / memcontrol.c
blob6728a7ae6f2d1eb42c8ac183ec69098aa80d2d6c
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account (0)
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
134 * per-zone information in memory controller.
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
204 struct mem_cgroup_threshold_ary *spare;
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
227 struct mem_cgroup {
228 struct cgroup_subsys_state css;
230 * the counter to account for memory usage
232 struct res_counter res;
234 * the counter to account for mem+swap usage.
236 struct res_counter memsw;
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
241 struct mem_cgroup_lru_info info;
242 int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
247 #endif
249 * Should the accounting and control be hierarchical, per subtree?
251 bool use_hierarchy;
253 bool oom_lock;
254 atomic_t under_oom;
256 atomic_t refcnt;
258 int swappiness;
259 /* OOM-Killer disable */
260 int oom_kill_disable;
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
281 unsigned long move_charge_at_immigrate;
283 * percpu counter.
285 struct mem_cgroup_stat_cpu *stat;
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
293 #ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295 #endif
298 /* Stuffs for move charges at task migration. */
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
303 enum move_type {
304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
306 NR_MOVE_TYPE,
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 spinlock_t lock; /* for from, to */
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
315 unsigned long moved_charge;
316 unsigned long moved_swap;
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319 } mc = {
320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
324 static bool move_anon(void)
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
330 static bool move_file(void)
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
343 enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
350 NR_CHARGE_TYPE,
353 /* for encoding cft->private value on file */
354 #define _MEM (0)
355 #define _MEMSWAP (1)
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
377 #include <net/ip.h>
379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380 void sock_update_memcg(struct sock *sk)
382 if (mem_cgroup_sockets_enabled) {
383 struct mem_cgroup *memcg;
385 BUG_ON(!sk->sk_prot->proto_cgroup);
387 /* Socket cloning can throw us here with sk_cgrp already
388 * filled. It won't however, necessarily happen from
389 * process context. So the test for root memcg given
390 * the current task's memcg won't help us in this case.
392 * Respecting the original socket's memcg is a better
393 * decision in this case.
395 if (sk->sk_cgrp) {
396 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 mem_cgroup_get(sk->sk_cgrp->memcg);
398 return;
401 rcu_read_lock();
402 memcg = mem_cgroup_from_task(current);
403 if (!mem_cgroup_is_root(memcg)) {
404 mem_cgroup_get(memcg);
405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 rcu_read_unlock();
410 EXPORT_SYMBOL(sock_update_memcg);
412 void sock_release_memcg(struct sock *sk)
414 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
415 struct mem_cgroup *memcg;
416 WARN_ON(!sk->sk_cgrp->memcg);
417 memcg = sk->sk_cgrp->memcg;
418 mem_cgroup_put(memcg);
422 #ifdef CONFIG_INET
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
428 return &memcg->tcp_mem.cg_proto;
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
444 return &memcg->css;
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
453 return mem_cgroup_zoneinfo(memcg, nid, zid);
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
481 if (mz->on_tree)
482 return;
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
521 spin_lock(&mctz->lock);
522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 spin_unlock(&mctz->lock);
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529 unsigned long long excess;
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
534 mctz = soft_limit_tree_from_page(page);
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
547 if (excess || mz->on_tree) {
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 spin_unlock(&mctz->lock);
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
568 for_each_node(node) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 mctz = soft_limit_tree_node_zone(node, zone);
572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
580 struct rb_node *rightmost = NULL;
581 struct mem_cgroup_per_zone *mz;
583 retry:
584 mz = NULL;
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599 done:
600 return mz;
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
606 struct mem_cgroup_per_zone *mz;
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
615 * Implementation Note: reading percpu statistics for memcg.
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 enum mem_cgroup_stat_index idx)
636 long val = 0;
637 int cpu;
639 get_online_cpus();
640 for_each_online_cpu(cpu)
641 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 put_online_cpus();
648 return val;
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 bool charge)
654 int val = (charge) ? 1 : -1;
655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 enum mem_cgroup_events_index idx)
661 unsigned long val = 0;
662 int cpu;
664 for_each_online_cpu(cpu)
665 val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671 return val;
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 bool file, int nr_pages)
677 preempt_disable();
679 if (file)
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
682 else
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689 else {
690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 nr_pages = -nr_pages; /* for event */
694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
696 preempt_enable();
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 unsigned int lru_mask)
703 struct mem_cgroup_per_zone *mz;
704 enum lru_list l;
705 unsigned long ret = 0;
707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
713 return ret;
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid, unsigned int lru_mask)
720 u64 total = 0;
721 int zid;
723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
727 return total;
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 unsigned int lru_mask)
733 int nid;
734 u64 total = 0;
736 for_each_node_state(nid, N_HIGH_MEMORY)
737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738 return total;
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
744 unsigned long val, next;
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
748 /* from time_after() in jiffies.h */
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
766 return false;
770 * Check events in order.
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
775 preempt_disable();
776 /* threshold event is triggered in finer grain than soft limit */
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit;
780 bool do_numainfo __maybe_unused;
782 do_softlimit = mem_cgroup_event_ratelimit(memcg,
783 MEM_CGROUP_TARGET_SOFTLIMIT);
784 #if MAX_NUMNODES > 1
785 do_numainfo = mem_cgroup_event_ratelimit(memcg,
786 MEM_CGROUP_TARGET_NUMAINFO);
787 #endif
788 preempt_enable();
790 mem_cgroup_threshold(memcg);
791 if (unlikely(do_softlimit))
792 mem_cgroup_update_tree(memcg, page);
793 #if MAX_NUMNODES > 1
794 if (unlikely(do_numainfo))
795 atomic_inc(&memcg->numainfo_events);
796 #endif
797 } else
798 preempt_enable();
801 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
803 return container_of(cgroup_subsys_state(cont,
804 mem_cgroup_subsys_id), struct mem_cgroup,
805 css);
808 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
811 * mm_update_next_owner() may clear mm->owner to NULL
812 * if it races with swapoff, page migration, etc.
813 * So this can be called with p == NULL.
815 if (unlikely(!p))
816 return NULL;
818 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
819 struct mem_cgroup, css);
822 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
824 struct mem_cgroup *memcg = NULL;
826 if (!mm)
827 return NULL;
829 * Because we have no locks, mm->owner's may be being moved to other
830 * cgroup. We use css_tryget() here even if this looks
831 * pessimistic (rather than adding locks here).
833 rcu_read_lock();
834 do {
835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 if (unlikely(!memcg))
837 break;
838 } while (!css_tryget(&memcg->css));
839 rcu_read_unlock();
840 return memcg;
844 * mem_cgroup_iter - iterate over memory cgroup hierarchy
845 * @root: hierarchy root
846 * @prev: previously returned memcg, NULL on first invocation
847 * @reclaim: cookie for shared reclaim walks, NULL for full walks
849 * Returns references to children of the hierarchy below @root, or
850 * @root itself, or %NULL after a full round-trip.
852 * Caller must pass the return value in @prev on subsequent
853 * invocations for reference counting, or use mem_cgroup_iter_break()
854 * to cancel a hierarchy walk before the round-trip is complete.
856 * Reclaimers can specify a zone and a priority level in @reclaim to
857 * divide up the memcgs in the hierarchy among all concurrent
858 * reclaimers operating on the same zone and priority.
860 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
861 struct mem_cgroup *prev,
862 struct mem_cgroup_reclaim_cookie *reclaim)
864 struct mem_cgroup *memcg = NULL;
865 int id = 0;
867 if (mem_cgroup_disabled())
868 return NULL;
870 if (!root)
871 root = root_mem_cgroup;
873 if (prev && !reclaim)
874 id = css_id(&prev->css);
876 if (prev && prev != root)
877 css_put(&prev->css);
879 if (!root->use_hierarchy && root != root_mem_cgroup) {
880 if (prev)
881 return NULL;
882 return root;
885 while (!memcg) {
886 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887 struct cgroup_subsys_state *css;
889 if (reclaim) {
890 int nid = zone_to_nid(reclaim->zone);
891 int zid = zone_idx(reclaim->zone);
892 struct mem_cgroup_per_zone *mz;
894 mz = mem_cgroup_zoneinfo(root, nid, zid);
895 iter = &mz->reclaim_iter[reclaim->priority];
896 if (prev && reclaim->generation != iter->generation)
897 return NULL;
898 id = iter->position;
901 rcu_read_lock();
902 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
903 if (css) {
904 if (css == &root->css || css_tryget(css))
905 memcg = container_of(css,
906 struct mem_cgroup, css);
907 } else
908 id = 0;
909 rcu_read_unlock();
911 if (reclaim) {
912 iter->position = id;
913 if (!css)
914 iter->generation++;
915 else if (!prev && memcg)
916 reclaim->generation = iter->generation;
919 if (prev && !css)
920 return NULL;
922 return memcg;
926 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
927 * @root: hierarchy root
928 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
930 void mem_cgroup_iter_break(struct mem_cgroup *root,
931 struct mem_cgroup *prev)
933 if (!root)
934 root = root_mem_cgroup;
935 if (prev && prev != root)
936 css_put(&prev->css);
940 * Iteration constructs for visiting all cgroups (under a tree). If
941 * loops are exited prematurely (break), mem_cgroup_iter_break() must
942 * be used for reference counting.
944 #define for_each_mem_cgroup_tree(iter, root) \
945 for (iter = mem_cgroup_iter(root, NULL, NULL); \
946 iter != NULL; \
947 iter = mem_cgroup_iter(root, iter, NULL))
949 #define for_each_mem_cgroup(iter) \
950 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
951 iter != NULL; \
952 iter = mem_cgroup_iter(NULL, iter, NULL))
954 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
956 return (memcg == root_mem_cgroup);
959 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
961 struct mem_cgroup *memcg;
963 if (!mm)
964 return;
966 rcu_read_lock();
967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 if (unlikely(!memcg))
969 goto out;
971 switch (idx) {
972 case PGFAULT:
973 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
974 break;
975 case PGMAJFAULT:
976 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
977 break;
978 default:
979 BUG();
981 out:
982 rcu_read_unlock();
984 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
987 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
988 * @zone: zone of the wanted lruvec
989 * @mem: memcg of the wanted lruvec
991 * Returns the lru list vector holding pages for the given @zone and
992 * @mem. This can be the global zone lruvec, if the memory controller
993 * is disabled.
995 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
996 struct mem_cgroup *memcg)
998 struct mem_cgroup_per_zone *mz;
1000 if (mem_cgroup_disabled())
1001 return &zone->lruvec;
1003 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1004 return &mz->lruvec;
1008 * Following LRU functions are allowed to be used without PCG_LOCK.
1009 * Operations are called by routine of global LRU independently from memcg.
1010 * What we have to take care of here is validness of pc->mem_cgroup.
1012 * Changes to pc->mem_cgroup happens when
1013 * 1. charge
1014 * 2. moving account
1015 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1016 * It is added to LRU before charge.
1017 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1018 * When moving account, the page is not on LRU. It's isolated.
1022 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1023 * @zone: zone of the page
1024 * @page: the page
1025 * @lru: current lru
1027 * This function accounts for @page being added to @lru, and returns
1028 * the lruvec for the given @zone and the memcg @page is charged to.
1030 * The callsite is then responsible for physically linking the page to
1031 * the returned lruvec->lists[@lru].
1033 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1034 enum lru_list lru)
1036 struct mem_cgroup_per_zone *mz;
1037 struct mem_cgroup *memcg;
1038 struct page_cgroup *pc;
1040 if (mem_cgroup_disabled())
1041 return &zone->lruvec;
1043 pc = lookup_page_cgroup(page);
1044 memcg = pc->mem_cgroup;
1045 mz = page_cgroup_zoneinfo(memcg, page);
1046 /* compound_order() is stabilized through lru_lock */
1047 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1048 return &mz->lruvec;
1052 * mem_cgroup_lru_del_list - account for removing an lru page
1053 * @page: the page
1054 * @lru: target lru
1056 * This function accounts for @page being removed from @lru.
1058 * The callsite is then responsible for physically unlinking
1059 * @page->lru.
1061 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1067 if (mem_cgroup_disabled())
1068 return;
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1072 VM_BUG_ON(!memcg);
1073 mz = page_cgroup_zoneinfo(memcg, page);
1074 /* huge page split is done under lru_lock. so, we have no races. */
1075 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1076 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1079 void mem_cgroup_lru_del(struct page *page)
1081 mem_cgroup_lru_del_list(page, page_lru(page));
1085 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1086 * @zone: zone of the page
1087 * @page: the page
1088 * @from: current lru
1089 * @to: target lru
1091 * This function accounts for @page being moved between the lrus @from
1092 * and @to, and returns the lruvec for the given @zone and the memcg
1093 * @page is charged to.
1095 * The callsite is then responsible for physically relinking
1096 * @page->lru to the returned lruvec->lists[@to].
1098 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1099 struct page *page,
1100 enum lru_list from,
1101 enum lru_list to)
1103 /* XXX: Optimize this, especially for @from == @to */
1104 mem_cgroup_lru_del_list(page, from);
1105 return mem_cgroup_lru_add_list(zone, page, to);
1109 * Checks whether given mem is same or in the root_mem_cgroup's
1110 * hierarchy subtree
1112 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1113 struct mem_cgroup *memcg)
1115 if (root_memcg != memcg) {
1116 return (root_memcg->use_hierarchy &&
1117 css_is_ancestor(&memcg->css, &root_memcg->css));
1120 return true;
1123 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1125 int ret;
1126 struct mem_cgroup *curr = NULL;
1127 struct task_struct *p;
1129 p = find_lock_task_mm(task);
1130 if (p) {
1131 curr = try_get_mem_cgroup_from_mm(p->mm);
1132 task_unlock(p);
1133 } else {
1135 * All threads may have already detached their mm's, but the oom
1136 * killer still needs to detect if they have already been oom
1137 * killed to prevent needlessly killing additional tasks.
1139 task_lock(task);
1140 curr = mem_cgroup_from_task(task);
1141 if (curr)
1142 css_get(&curr->css);
1143 task_unlock(task);
1145 if (!curr)
1146 return 0;
1148 * We should check use_hierarchy of "memcg" not "curr". Because checking
1149 * use_hierarchy of "curr" here make this function true if hierarchy is
1150 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1151 * hierarchy(even if use_hierarchy is disabled in "memcg").
1153 ret = mem_cgroup_same_or_subtree(memcg, curr);
1154 css_put(&curr->css);
1155 return ret;
1158 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1160 unsigned long inactive_ratio;
1161 int nid = zone_to_nid(zone);
1162 int zid = zone_idx(zone);
1163 unsigned long inactive;
1164 unsigned long active;
1165 unsigned long gb;
1167 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1168 BIT(LRU_INACTIVE_ANON));
1169 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1170 BIT(LRU_ACTIVE_ANON));
1172 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1173 if (gb)
1174 inactive_ratio = int_sqrt(10 * gb);
1175 else
1176 inactive_ratio = 1;
1178 return inactive * inactive_ratio < active;
1181 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1183 unsigned long active;
1184 unsigned long inactive;
1185 int zid = zone_idx(zone);
1186 int nid = zone_to_nid(zone);
1188 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1189 BIT(LRU_INACTIVE_FILE));
1190 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1191 BIT(LRU_ACTIVE_FILE));
1193 return (active > inactive);
1196 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1197 struct zone *zone)
1199 int nid = zone_to_nid(zone);
1200 int zid = zone_idx(zone);
1201 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1203 return &mz->reclaim_stat;
1206 struct zone_reclaim_stat *
1207 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1209 struct page_cgroup *pc;
1210 struct mem_cgroup_per_zone *mz;
1212 if (mem_cgroup_disabled())
1213 return NULL;
1215 pc = lookup_page_cgroup(page);
1216 if (!PageCgroupUsed(pc))
1217 return NULL;
1218 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1219 smp_rmb();
1220 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1221 return &mz->reclaim_stat;
1224 #define mem_cgroup_from_res_counter(counter, member) \
1225 container_of(counter, struct mem_cgroup, member)
1228 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1229 * @mem: the memory cgroup
1231 * Returns the maximum amount of memory @mem can be charged with, in
1232 * pages.
1234 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1236 unsigned long long margin;
1238 margin = res_counter_margin(&memcg->res);
1239 if (do_swap_account)
1240 margin = min(margin, res_counter_margin(&memcg->memsw));
1241 return margin >> PAGE_SHIFT;
1244 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1246 struct cgroup *cgrp = memcg->css.cgroup;
1248 /* root ? */
1249 if (cgrp->parent == NULL)
1250 return vm_swappiness;
1252 return memcg->swappiness;
1255 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1257 int cpu;
1259 get_online_cpus();
1260 spin_lock(&memcg->pcp_counter_lock);
1261 for_each_online_cpu(cpu)
1262 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1263 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1264 spin_unlock(&memcg->pcp_counter_lock);
1265 put_online_cpus();
1267 synchronize_rcu();
1270 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1272 int cpu;
1274 if (!memcg)
1275 return;
1276 get_online_cpus();
1277 spin_lock(&memcg->pcp_counter_lock);
1278 for_each_online_cpu(cpu)
1279 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1280 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1281 spin_unlock(&memcg->pcp_counter_lock);
1282 put_online_cpus();
1285 * 2 routines for checking "mem" is under move_account() or not.
1287 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1288 * for avoiding race in accounting. If true,
1289 * pc->mem_cgroup may be overwritten.
1291 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1292 * under hierarchy of moving cgroups. This is for
1293 * waiting at hith-memory prressure caused by "move".
1296 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1298 VM_BUG_ON(!rcu_read_lock_held());
1299 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1302 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1304 struct mem_cgroup *from;
1305 struct mem_cgroup *to;
1306 bool ret = false;
1308 * Unlike task_move routines, we access mc.to, mc.from not under
1309 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1311 spin_lock(&mc.lock);
1312 from = mc.from;
1313 to = mc.to;
1314 if (!from)
1315 goto unlock;
1317 ret = mem_cgroup_same_or_subtree(memcg, from)
1318 || mem_cgroup_same_or_subtree(memcg, to);
1319 unlock:
1320 spin_unlock(&mc.lock);
1321 return ret;
1324 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1326 if (mc.moving_task && current != mc.moving_task) {
1327 if (mem_cgroup_under_move(memcg)) {
1328 DEFINE_WAIT(wait);
1329 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1330 /* moving charge context might have finished. */
1331 if (mc.moving_task)
1332 schedule();
1333 finish_wait(&mc.waitq, &wait);
1334 return true;
1337 return false;
1341 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1342 * @memcg: The memory cgroup that went over limit
1343 * @p: Task that is going to be killed
1345 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1346 * enabled
1348 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1350 struct cgroup *task_cgrp;
1351 struct cgroup *mem_cgrp;
1353 * Need a buffer in BSS, can't rely on allocations. The code relies
1354 * on the assumption that OOM is serialized for memory controller.
1355 * If this assumption is broken, revisit this code.
1357 static char memcg_name[PATH_MAX];
1358 int ret;
1360 if (!memcg || !p)
1361 return;
1364 rcu_read_lock();
1366 mem_cgrp = memcg->css.cgroup;
1367 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1369 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1370 if (ret < 0) {
1372 * Unfortunately, we are unable to convert to a useful name
1373 * But we'll still print out the usage information
1375 rcu_read_unlock();
1376 goto done;
1378 rcu_read_unlock();
1380 printk(KERN_INFO "Task in %s killed", memcg_name);
1382 rcu_read_lock();
1383 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1384 if (ret < 0) {
1385 rcu_read_unlock();
1386 goto done;
1388 rcu_read_unlock();
1391 * Continues from above, so we don't need an KERN_ level
1393 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1394 done:
1396 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1397 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1398 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1399 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1400 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1401 "failcnt %llu\n",
1402 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1403 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1404 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1408 * This function returns the number of memcg under hierarchy tree. Returns
1409 * 1(self count) if no children.
1411 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1413 int num = 0;
1414 struct mem_cgroup *iter;
1416 for_each_mem_cgroup_tree(iter, memcg)
1417 num++;
1418 return num;
1422 * Return the memory (and swap, if configured) limit for a memcg.
1424 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1426 u64 limit;
1427 u64 memsw;
1429 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1430 limit += total_swap_pages << PAGE_SHIFT;
1432 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1434 * If memsw is finite and limits the amount of swap space available
1435 * to this memcg, return that limit.
1437 return min(limit, memsw);
1440 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1441 gfp_t gfp_mask,
1442 unsigned long flags)
1444 unsigned long total = 0;
1445 bool noswap = false;
1446 int loop;
1448 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1449 noswap = true;
1450 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1451 noswap = true;
1453 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1454 if (loop)
1455 drain_all_stock_async(memcg);
1456 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1458 * Allow limit shrinkers, which are triggered directly
1459 * by userspace, to catch signals and stop reclaim
1460 * after minimal progress, regardless of the margin.
1462 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1463 break;
1464 if (mem_cgroup_margin(memcg))
1465 break;
1467 * If nothing was reclaimed after two attempts, there
1468 * may be no reclaimable pages in this hierarchy.
1470 if (loop && !total)
1471 break;
1473 return total;
1477 * test_mem_cgroup_node_reclaimable
1478 * @mem: the target memcg
1479 * @nid: the node ID to be checked.
1480 * @noswap : specify true here if the user wants flle only information.
1482 * This function returns whether the specified memcg contains any
1483 * reclaimable pages on a node. Returns true if there are any reclaimable
1484 * pages in the node.
1486 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1487 int nid, bool noswap)
1489 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1490 return true;
1491 if (noswap || !total_swap_pages)
1492 return false;
1493 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1494 return true;
1495 return false;
1498 #if MAX_NUMNODES > 1
1501 * Always updating the nodemask is not very good - even if we have an empty
1502 * list or the wrong list here, we can start from some node and traverse all
1503 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1506 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1508 int nid;
1510 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1511 * pagein/pageout changes since the last update.
1513 if (!atomic_read(&memcg->numainfo_events))
1514 return;
1515 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1516 return;
1518 /* make a nodemask where this memcg uses memory from */
1519 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1521 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1523 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1524 node_clear(nid, memcg->scan_nodes);
1527 atomic_set(&memcg->numainfo_events, 0);
1528 atomic_set(&memcg->numainfo_updating, 0);
1532 * Selecting a node where we start reclaim from. Because what we need is just
1533 * reducing usage counter, start from anywhere is O,K. Considering
1534 * memory reclaim from current node, there are pros. and cons.
1536 * Freeing memory from current node means freeing memory from a node which
1537 * we'll use or we've used. So, it may make LRU bad. And if several threads
1538 * hit limits, it will see a contention on a node. But freeing from remote
1539 * node means more costs for memory reclaim because of memory latency.
1541 * Now, we use round-robin. Better algorithm is welcomed.
1543 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1545 int node;
1547 mem_cgroup_may_update_nodemask(memcg);
1548 node = memcg->last_scanned_node;
1550 node = next_node(node, memcg->scan_nodes);
1551 if (node == MAX_NUMNODES)
1552 node = first_node(memcg->scan_nodes);
1554 * We call this when we hit limit, not when pages are added to LRU.
1555 * No LRU may hold pages because all pages are UNEVICTABLE or
1556 * memcg is too small and all pages are not on LRU. In that case,
1557 * we use curret node.
1559 if (unlikely(node == MAX_NUMNODES))
1560 node = numa_node_id();
1562 memcg->last_scanned_node = node;
1563 return node;
1567 * Check all nodes whether it contains reclaimable pages or not.
1568 * For quick scan, we make use of scan_nodes. This will allow us to skip
1569 * unused nodes. But scan_nodes is lazily updated and may not cotain
1570 * enough new information. We need to do double check.
1572 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1574 int nid;
1577 * quick check...making use of scan_node.
1578 * We can skip unused nodes.
1580 if (!nodes_empty(memcg->scan_nodes)) {
1581 for (nid = first_node(memcg->scan_nodes);
1582 nid < MAX_NUMNODES;
1583 nid = next_node(nid, memcg->scan_nodes)) {
1585 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1586 return true;
1590 * Check rest of nodes.
1592 for_each_node_state(nid, N_HIGH_MEMORY) {
1593 if (node_isset(nid, memcg->scan_nodes))
1594 continue;
1595 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1596 return true;
1598 return false;
1601 #else
1602 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 return 0;
1607 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1609 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1611 #endif
1613 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1614 struct zone *zone,
1615 gfp_t gfp_mask,
1616 unsigned long *total_scanned)
1618 struct mem_cgroup *victim = NULL;
1619 int total = 0;
1620 int loop = 0;
1621 unsigned long excess;
1622 unsigned long nr_scanned;
1623 struct mem_cgroup_reclaim_cookie reclaim = {
1624 .zone = zone,
1625 .priority = 0,
1628 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1630 while (1) {
1631 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1632 if (!victim) {
1633 loop++;
1634 if (loop >= 2) {
1636 * If we have not been able to reclaim
1637 * anything, it might because there are
1638 * no reclaimable pages under this hierarchy
1640 if (!total)
1641 break;
1643 * We want to do more targeted reclaim.
1644 * excess >> 2 is not to excessive so as to
1645 * reclaim too much, nor too less that we keep
1646 * coming back to reclaim from this cgroup
1648 if (total >= (excess >> 2) ||
1649 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1650 break;
1652 continue;
1654 if (!mem_cgroup_reclaimable(victim, false))
1655 continue;
1656 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1657 zone, &nr_scanned);
1658 *total_scanned += nr_scanned;
1659 if (!res_counter_soft_limit_excess(&root_memcg->res))
1660 break;
1662 mem_cgroup_iter_break(root_memcg, victim);
1663 return total;
1667 * Check OOM-Killer is already running under our hierarchy.
1668 * If someone is running, return false.
1669 * Has to be called with memcg_oom_lock
1671 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1673 struct mem_cgroup *iter, *failed = NULL;
1675 for_each_mem_cgroup_tree(iter, memcg) {
1676 if (iter->oom_lock) {
1678 * this subtree of our hierarchy is already locked
1679 * so we cannot give a lock.
1681 failed = iter;
1682 mem_cgroup_iter_break(memcg, iter);
1683 break;
1684 } else
1685 iter->oom_lock = true;
1688 if (!failed)
1689 return true;
1692 * OK, we failed to lock the whole subtree so we have to clean up
1693 * what we set up to the failing subtree
1695 for_each_mem_cgroup_tree(iter, memcg) {
1696 if (iter == failed) {
1697 mem_cgroup_iter_break(memcg, iter);
1698 break;
1700 iter->oom_lock = false;
1702 return false;
1706 * Has to be called with memcg_oom_lock
1708 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1710 struct mem_cgroup *iter;
1712 for_each_mem_cgroup_tree(iter, memcg)
1713 iter->oom_lock = false;
1714 return 0;
1717 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1719 struct mem_cgroup *iter;
1721 for_each_mem_cgroup_tree(iter, memcg)
1722 atomic_inc(&iter->under_oom);
1725 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1727 struct mem_cgroup *iter;
1730 * When a new child is created while the hierarchy is under oom,
1731 * mem_cgroup_oom_lock() may not be called. We have to use
1732 * atomic_add_unless() here.
1734 for_each_mem_cgroup_tree(iter, memcg)
1735 atomic_add_unless(&iter->under_oom, -1, 0);
1738 static DEFINE_SPINLOCK(memcg_oom_lock);
1739 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1741 struct oom_wait_info {
1742 struct mem_cgroup *mem;
1743 wait_queue_t wait;
1746 static int memcg_oom_wake_function(wait_queue_t *wait,
1747 unsigned mode, int sync, void *arg)
1749 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1750 *oom_wait_memcg;
1751 struct oom_wait_info *oom_wait_info;
1753 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1754 oom_wait_memcg = oom_wait_info->mem;
1757 * Both of oom_wait_info->mem and wake_mem are stable under us.
1758 * Then we can use css_is_ancestor without taking care of RCU.
1760 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1761 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1762 return 0;
1763 return autoremove_wake_function(wait, mode, sync, arg);
1766 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1768 /* for filtering, pass "memcg" as argument. */
1769 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1772 static void memcg_oom_recover(struct mem_cgroup *memcg)
1774 if (memcg && atomic_read(&memcg->under_oom))
1775 memcg_wakeup_oom(memcg);
1779 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1781 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1783 struct oom_wait_info owait;
1784 bool locked, need_to_kill;
1786 owait.mem = memcg;
1787 owait.wait.flags = 0;
1788 owait.wait.func = memcg_oom_wake_function;
1789 owait.wait.private = current;
1790 INIT_LIST_HEAD(&owait.wait.task_list);
1791 need_to_kill = true;
1792 mem_cgroup_mark_under_oom(memcg);
1794 /* At first, try to OOM lock hierarchy under memcg.*/
1795 spin_lock(&memcg_oom_lock);
1796 locked = mem_cgroup_oom_lock(memcg);
1798 * Even if signal_pending(), we can't quit charge() loop without
1799 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1800 * under OOM is always welcomed, use TASK_KILLABLE here.
1802 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1803 if (!locked || memcg->oom_kill_disable)
1804 need_to_kill = false;
1805 if (locked)
1806 mem_cgroup_oom_notify(memcg);
1807 spin_unlock(&memcg_oom_lock);
1809 if (need_to_kill) {
1810 finish_wait(&memcg_oom_waitq, &owait.wait);
1811 mem_cgroup_out_of_memory(memcg, mask);
1812 } else {
1813 schedule();
1814 finish_wait(&memcg_oom_waitq, &owait.wait);
1816 spin_lock(&memcg_oom_lock);
1817 if (locked)
1818 mem_cgroup_oom_unlock(memcg);
1819 memcg_wakeup_oom(memcg);
1820 spin_unlock(&memcg_oom_lock);
1822 mem_cgroup_unmark_under_oom(memcg);
1824 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1825 return false;
1826 /* Give chance to dying process */
1827 schedule_timeout_uninterruptible(1);
1828 return true;
1832 * Currently used to update mapped file statistics, but the routine can be
1833 * generalized to update other statistics as well.
1835 * Notes: Race condition
1837 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1838 * it tends to be costly. But considering some conditions, we doesn't need
1839 * to do so _always_.
1841 * Considering "charge", lock_page_cgroup() is not required because all
1842 * file-stat operations happen after a page is attached to radix-tree. There
1843 * are no race with "charge".
1845 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1846 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1847 * if there are race with "uncharge". Statistics itself is properly handled
1848 * by flags.
1850 * Considering "move", this is an only case we see a race. To make the race
1851 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1852 * possibility of race condition. If there is, we take a lock.
1855 void mem_cgroup_update_page_stat(struct page *page,
1856 enum mem_cgroup_page_stat_item idx, int val)
1858 struct mem_cgroup *memcg;
1859 struct page_cgroup *pc = lookup_page_cgroup(page);
1860 bool need_unlock = false;
1861 unsigned long uninitialized_var(flags);
1863 if (mem_cgroup_disabled())
1864 return;
1866 rcu_read_lock();
1867 memcg = pc->mem_cgroup;
1868 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1869 goto out;
1870 /* pc->mem_cgroup is unstable ? */
1871 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1872 /* take a lock against to access pc->mem_cgroup */
1873 move_lock_page_cgroup(pc, &flags);
1874 need_unlock = true;
1875 memcg = pc->mem_cgroup;
1876 if (!memcg || !PageCgroupUsed(pc))
1877 goto out;
1880 switch (idx) {
1881 case MEMCG_NR_FILE_MAPPED:
1882 if (val > 0)
1883 SetPageCgroupFileMapped(pc);
1884 else if (!page_mapped(page))
1885 ClearPageCgroupFileMapped(pc);
1886 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1887 break;
1888 default:
1889 BUG();
1892 this_cpu_add(memcg->stat->count[idx], val);
1894 out:
1895 if (unlikely(need_unlock))
1896 move_unlock_page_cgroup(pc, &flags);
1897 rcu_read_unlock();
1898 return;
1900 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1903 * size of first charge trial. "32" comes from vmscan.c's magic value.
1904 * TODO: maybe necessary to use big numbers in big irons.
1906 #define CHARGE_BATCH 32U
1907 struct memcg_stock_pcp {
1908 struct mem_cgroup *cached; /* this never be root cgroup */
1909 unsigned int nr_pages;
1910 struct work_struct work;
1911 unsigned long flags;
1912 #define FLUSHING_CACHED_CHARGE (0)
1914 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1915 static DEFINE_MUTEX(percpu_charge_mutex);
1918 * Try to consume stocked charge on this cpu. If success, one page is consumed
1919 * from local stock and true is returned. If the stock is 0 or charges from a
1920 * cgroup which is not current target, returns false. This stock will be
1921 * refilled.
1923 static bool consume_stock(struct mem_cgroup *memcg)
1925 struct memcg_stock_pcp *stock;
1926 bool ret = true;
1928 stock = &get_cpu_var(memcg_stock);
1929 if (memcg == stock->cached && stock->nr_pages)
1930 stock->nr_pages--;
1931 else /* need to call res_counter_charge */
1932 ret = false;
1933 put_cpu_var(memcg_stock);
1934 return ret;
1938 * Returns stocks cached in percpu to res_counter and reset cached information.
1940 static void drain_stock(struct memcg_stock_pcp *stock)
1942 struct mem_cgroup *old = stock->cached;
1944 if (stock->nr_pages) {
1945 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1947 res_counter_uncharge(&old->res, bytes);
1948 if (do_swap_account)
1949 res_counter_uncharge(&old->memsw, bytes);
1950 stock->nr_pages = 0;
1952 stock->cached = NULL;
1956 * This must be called under preempt disabled or must be called by
1957 * a thread which is pinned to local cpu.
1959 static void drain_local_stock(struct work_struct *dummy)
1961 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1962 drain_stock(stock);
1963 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1967 * Cache charges(val) which is from res_counter, to local per_cpu area.
1968 * This will be consumed by consume_stock() function, later.
1970 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1972 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1974 if (stock->cached != memcg) { /* reset if necessary */
1975 drain_stock(stock);
1976 stock->cached = memcg;
1978 stock->nr_pages += nr_pages;
1979 put_cpu_var(memcg_stock);
1983 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1984 * of the hierarchy under it. sync flag says whether we should block
1985 * until the work is done.
1987 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1989 int cpu, curcpu;
1991 /* Notify other cpus that system-wide "drain" is running */
1992 get_online_cpus();
1993 curcpu = get_cpu();
1994 for_each_online_cpu(cpu) {
1995 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1996 struct mem_cgroup *memcg;
1998 memcg = stock->cached;
1999 if (!memcg || !stock->nr_pages)
2000 continue;
2001 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2002 continue;
2003 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2004 if (cpu == curcpu)
2005 drain_local_stock(&stock->work);
2006 else
2007 schedule_work_on(cpu, &stock->work);
2010 put_cpu();
2012 if (!sync)
2013 goto out;
2015 for_each_online_cpu(cpu) {
2016 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2017 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2018 flush_work(&stock->work);
2020 out:
2021 put_online_cpus();
2025 * Tries to drain stocked charges in other cpus. This function is asynchronous
2026 * and just put a work per cpu for draining localy on each cpu. Caller can
2027 * expects some charges will be back to res_counter later but cannot wait for
2028 * it.
2030 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2033 * If someone calls draining, avoid adding more kworker runs.
2035 if (!mutex_trylock(&percpu_charge_mutex))
2036 return;
2037 drain_all_stock(root_memcg, false);
2038 mutex_unlock(&percpu_charge_mutex);
2041 /* This is a synchronous drain interface. */
2042 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2044 /* called when force_empty is called */
2045 mutex_lock(&percpu_charge_mutex);
2046 drain_all_stock(root_memcg, true);
2047 mutex_unlock(&percpu_charge_mutex);
2051 * This function drains percpu counter value from DEAD cpu and
2052 * move it to local cpu. Note that this function can be preempted.
2054 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2056 int i;
2058 spin_lock(&memcg->pcp_counter_lock);
2059 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2060 long x = per_cpu(memcg->stat->count[i], cpu);
2062 per_cpu(memcg->stat->count[i], cpu) = 0;
2063 memcg->nocpu_base.count[i] += x;
2065 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2066 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2068 per_cpu(memcg->stat->events[i], cpu) = 0;
2069 memcg->nocpu_base.events[i] += x;
2071 /* need to clear ON_MOVE value, works as a kind of lock. */
2072 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2073 spin_unlock(&memcg->pcp_counter_lock);
2076 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2078 int idx = MEM_CGROUP_ON_MOVE;
2080 spin_lock(&memcg->pcp_counter_lock);
2081 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2082 spin_unlock(&memcg->pcp_counter_lock);
2085 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2086 unsigned long action,
2087 void *hcpu)
2089 int cpu = (unsigned long)hcpu;
2090 struct memcg_stock_pcp *stock;
2091 struct mem_cgroup *iter;
2093 if ((action == CPU_ONLINE)) {
2094 for_each_mem_cgroup(iter)
2095 synchronize_mem_cgroup_on_move(iter, cpu);
2096 return NOTIFY_OK;
2099 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2100 return NOTIFY_OK;
2102 for_each_mem_cgroup(iter)
2103 mem_cgroup_drain_pcp_counter(iter, cpu);
2105 stock = &per_cpu(memcg_stock, cpu);
2106 drain_stock(stock);
2107 return NOTIFY_OK;
2111 /* See __mem_cgroup_try_charge() for details */
2112 enum {
2113 CHARGE_OK, /* success */
2114 CHARGE_RETRY, /* need to retry but retry is not bad */
2115 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2116 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2117 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2120 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2121 unsigned int nr_pages, bool oom_check)
2123 unsigned long csize = nr_pages * PAGE_SIZE;
2124 struct mem_cgroup *mem_over_limit;
2125 struct res_counter *fail_res;
2126 unsigned long flags = 0;
2127 int ret;
2129 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2131 if (likely(!ret)) {
2132 if (!do_swap_account)
2133 return CHARGE_OK;
2134 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2135 if (likely(!ret))
2136 return CHARGE_OK;
2138 res_counter_uncharge(&memcg->res, csize);
2139 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2140 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2141 } else
2142 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2144 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2145 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2147 * Never reclaim on behalf of optional batching, retry with a
2148 * single page instead.
2150 if (nr_pages == CHARGE_BATCH)
2151 return CHARGE_RETRY;
2153 if (!(gfp_mask & __GFP_WAIT))
2154 return CHARGE_WOULDBLOCK;
2156 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2157 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2158 return CHARGE_RETRY;
2160 * Even though the limit is exceeded at this point, reclaim
2161 * may have been able to free some pages. Retry the charge
2162 * before killing the task.
2164 * Only for regular pages, though: huge pages are rather
2165 * unlikely to succeed so close to the limit, and we fall back
2166 * to regular pages anyway in case of failure.
2168 if (nr_pages == 1 && ret)
2169 return CHARGE_RETRY;
2172 * At task move, charge accounts can be doubly counted. So, it's
2173 * better to wait until the end of task_move if something is going on.
2175 if (mem_cgroup_wait_acct_move(mem_over_limit))
2176 return CHARGE_RETRY;
2178 /* If we don't need to call oom-killer at el, return immediately */
2179 if (!oom_check)
2180 return CHARGE_NOMEM;
2181 /* check OOM */
2182 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2183 return CHARGE_OOM_DIE;
2185 return CHARGE_RETRY;
2189 * __mem_cgroup_try_charge() does
2190 * 1. detect memcg to be charged against from passed *mm and *ptr,
2191 * 2. update res_counter
2192 * 3. call memory reclaim if necessary.
2194 * In some special case, if the task is fatal, fatal_signal_pending() or
2195 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2196 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2197 * as possible without any hazards. 2: all pages should have a valid
2198 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2199 * pointer, that is treated as a charge to root_mem_cgroup.
2201 * So __mem_cgroup_try_charge() will return
2202 * 0 ... on success, filling *ptr with a valid memcg pointer.
2203 * -ENOMEM ... charge failure because of resource limits.
2204 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2206 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2207 * the oom-killer can be invoked.
2209 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2210 gfp_t gfp_mask,
2211 unsigned int nr_pages,
2212 struct mem_cgroup **ptr,
2213 bool oom)
2215 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2216 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2217 struct mem_cgroup *memcg = NULL;
2218 int ret;
2221 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2222 * in system level. So, allow to go ahead dying process in addition to
2223 * MEMDIE process.
2225 if (unlikely(test_thread_flag(TIF_MEMDIE)
2226 || fatal_signal_pending(current)))
2227 goto bypass;
2230 * We always charge the cgroup the mm_struct belongs to.
2231 * The mm_struct's mem_cgroup changes on task migration if the
2232 * thread group leader migrates. It's possible that mm is not
2233 * set, if so charge the init_mm (happens for pagecache usage).
2235 if (!*ptr && !mm)
2236 *ptr = root_mem_cgroup;
2237 again:
2238 if (*ptr) { /* css should be a valid one */
2239 memcg = *ptr;
2240 VM_BUG_ON(css_is_removed(&memcg->css));
2241 if (mem_cgroup_is_root(memcg))
2242 goto done;
2243 if (nr_pages == 1 && consume_stock(memcg))
2244 goto done;
2245 css_get(&memcg->css);
2246 } else {
2247 struct task_struct *p;
2249 rcu_read_lock();
2250 p = rcu_dereference(mm->owner);
2252 * Because we don't have task_lock(), "p" can exit.
2253 * In that case, "memcg" can point to root or p can be NULL with
2254 * race with swapoff. Then, we have small risk of mis-accouning.
2255 * But such kind of mis-account by race always happens because
2256 * we don't have cgroup_mutex(). It's overkill and we allo that
2257 * small race, here.
2258 * (*) swapoff at el will charge against mm-struct not against
2259 * task-struct. So, mm->owner can be NULL.
2261 memcg = mem_cgroup_from_task(p);
2262 if (!memcg)
2263 memcg = root_mem_cgroup;
2264 if (mem_cgroup_is_root(memcg)) {
2265 rcu_read_unlock();
2266 goto done;
2268 if (nr_pages == 1 && consume_stock(memcg)) {
2270 * It seems dagerous to access memcg without css_get().
2271 * But considering how consume_stok works, it's not
2272 * necessary. If consume_stock success, some charges
2273 * from this memcg are cached on this cpu. So, we
2274 * don't need to call css_get()/css_tryget() before
2275 * calling consume_stock().
2277 rcu_read_unlock();
2278 goto done;
2280 /* after here, we may be blocked. we need to get refcnt */
2281 if (!css_tryget(&memcg->css)) {
2282 rcu_read_unlock();
2283 goto again;
2285 rcu_read_unlock();
2288 do {
2289 bool oom_check;
2291 /* If killed, bypass charge */
2292 if (fatal_signal_pending(current)) {
2293 css_put(&memcg->css);
2294 goto bypass;
2297 oom_check = false;
2298 if (oom && !nr_oom_retries) {
2299 oom_check = true;
2300 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2303 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2304 switch (ret) {
2305 case CHARGE_OK:
2306 break;
2307 case CHARGE_RETRY: /* not in OOM situation but retry */
2308 batch = nr_pages;
2309 css_put(&memcg->css);
2310 memcg = NULL;
2311 goto again;
2312 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2313 css_put(&memcg->css);
2314 goto nomem;
2315 case CHARGE_NOMEM: /* OOM routine works */
2316 if (!oom) {
2317 css_put(&memcg->css);
2318 goto nomem;
2320 /* If oom, we never return -ENOMEM */
2321 nr_oom_retries--;
2322 break;
2323 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2324 css_put(&memcg->css);
2325 goto bypass;
2327 } while (ret != CHARGE_OK);
2329 if (batch > nr_pages)
2330 refill_stock(memcg, batch - nr_pages);
2331 css_put(&memcg->css);
2332 done:
2333 *ptr = memcg;
2334 return 0;
2335 nomem:
2336 *ptr = NULL;
2337 return -ENOMEM;
2338 bypass:
2339 *ptr = root_mem_cgroup;
2340 return -EINTR;
2344 * Somemtimes we have to undo a charge we got by try_charge().
2345 * This function is for that and do uncharge, put css's refcnt.
2346 * gotten by try_charge().
2348 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2349 unsigned int nr_pages)
2351 if (!mem_cgroup_is_root(memcg)) {
2352 unsigned long bytes = nr_pages * PAGE_SIZE;
2354 res_counter_uncharge(&memcg->res, bytes);
2355 if (do_swap_account)
2356 res_counter_uncharge(&memcg->memsw, bytes);
2361 * A helper function to get mem_cgroup from ID. must be called under
2362 * rcu_read_lock(). The caller must check css_is_removed() or some if
2363 * it's concern. (dropping refcnt from swap can be called against removed
2364 * memcg.)
2366 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2368 struct cgroup_subsys_state *css;
2370 /* ID 0 is unused ID */
2371 if (!id)
2372 return NULL;
2373 css = css_lookup(&mem_cgroup_subsys, id);
2374 if (!css)
2375 return NULL;
2376 return container_of(css, struct mem_cgroup, css);
2379 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2381 struct mem_cgroup *memcg = NULL;
2382 struct page_cgroup *pc;
2383 unsigned short id;
2384 swp_entry_t ent;
2386 VM_BUG_ON(!PageLocked(page));
2388 pc = lookup_page_cgroup(page);
2389 lock_page_cgroup(pc);
2390 if (PageCgroupUsed(pc)) {
2391 memcg = pc->mem_cgroup;
2392 if (memcg && !css_tryget(&memcg->css))
2393 memcg = NULL;
2394 } else if (PageSwapCache(page)) {
2395 ent.val = page_private(page);
2396 id = lookup_swap_cgroup_id(ent);
2397 rcu_read_lock();
2398 memcg = mem_cgroup_lookup(id);
2399 if (memcg && !css_tryget(&memcg->css))
2400 memcg = NULL;
2401 rcu_read_unlock();
2403 unlock_page_cgroup(pc);
2404 return memcg;
2407 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2408 struct page *page,
2409 unsigned int nr_pages,
2410 struct page_cgroup *pc,
2411 enum charge_type ctype)
2413 lock_page_cgroup(pc);
2414 if (unlikely(PageCgroupUsed(pc))) {
2415 unlock_page_cgroup(pc);
2416 __mem_cgroup_cancel_charge(memcg, nr_pages);
2417 return;
2420 * we don't need page_cgroup_lock about tail pages, becase they are not
2421 * accessed by any other context at this point.
2423 pc->mem_cgroup = memcg;
2425 * We access a page_cgroup asynchronously without lock_page_cgroup().
2426 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2427 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2428 * before USED bit, we need memory barrier here.
2429 * See mem_cgroup_add_lru_list(), etc.
2431 smp_wmb();
2432 switch (ctype) {
2433 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2434 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2435 SetPageCgroupCache(pc);
2436 SetPageCgroupUsed(pc);
2437 break;
2438 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2439 ClearPageCgroupCache(pc);
2440 SetPageCgroupUsed(pc);
2441 break;
2442 default:
2443 break;
2446 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2447 unlock_page_cgroup(pc);
2448 WARN_ON_ONCE(PageLRU(page));
2450 * "charge_statistics" updated event counter. Then, check it.
2451 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2452 * if they exceeds softlimit.
2454 memcg_check_events(memcg, page);
2457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2459 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2460 (1 << PCG_MIGRATION))
2462 * Because tail pages are not marked as "used", set it. We're under
2463 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2464 * charge/uncharge will be never happen and move_account() is done under
2465 * compound_lock(), so we don't have to take care of races.
2467 void mem_cgroup_split_huge_fixup(struct page *head)
2469 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2470 struct page_cgroup *pc;
2471 int i;
2473 if (mem_cgroup_disabled())
2474 return;
2475 for (i = 1; i < HPAGE_PMD_NR; i++) {
2476 pc = head_pc + i;
2477 pc->mem_cgroup = head_pc->mem_cgroup;
2478 smp_wmb();/* see __commit_charge() */
2479 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2482 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2485 * mem_cgroup_move_account - move account of the page
2486 * @page: the page
2487 * @nr_pages: number of regular pages (>1 for huge pages)
2488 * @pc: page_cgroup of the page.
2489 * @from: mem_cgroup which the page is moved from.
2490 * @to: mem_cgroup which the page is moved to. @from != @to.
2491 * @uncharge: whether we should call uncharge and css_put against @from.
2493 * The caller must confirm following.
2494 * - page is not on LRU (isolate_page() is useful.)
2495 * - compound_lock is held when nr_pages > 1
2497 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2498 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2499 * true, this function does "uncharge" from old cgroup, but it doesn't if
2500 * @uncharge is false, so a caller should do "uncharge".
2502 static int mem_cgroup_move_account(struct page *page,
2503 unsigned int nr_pages,
2504 struct page_cgroup *pc,
2505 struct mem_cgroup *from,
2506 struct mem_cgroup *to,
2507 bool uncharge)
2509 unsigned long flags;
2510 int ret;
2512 VM_BUG_ON(from == to);
2513 VM_BUG_ON(PageLRU(page));
2515 * The page is isolated from LRU. So, collapse function
2516 * will not handle this page. But page splitting can happen.
2517 * Do this check under compound_page_lock(). The caller should
2518 * hold it.
2520 ret = -EBUSY;
2521 if (nr_pages > 1 && !PageTransHuge(page))
2522 goto out;
2524 lock_page_cgroup(pc);
2526 ret = -EINVAL;
2527 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2528 goto unlock;
2530 move_lock_page_cgroup(pc, &flags);
2532 if (PageCgroupFileMapped(pc)) {
2533 /* Update mapped_file data for mem_cgroup */
2534 preempt_disable();
2535 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2537 preempt_enable();
2539 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2540 if (uncharge)
2541 /* This is not "cancel", but cancel_charge does all we need. */
2542 __mem_cgroup_cancel_charge(from, nr_pages);
2544 /* caller should have done css_get */
2545 pc->mem_cgroup = to;
2546 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2548 * We charges against "to" which may not have any tasks. Then, "to"
2549 * can be under rmdir(). But in current implementation, caller of
2550 * this function is just force_empty() and move charge, so it's
2551 * guaranteed that "to" is never removed. So, we don't check rmdir
2552 * status here.
2554 move_unlock_page_cgroup(pc, &flags);
2555 ret = 0;
2556 unlock:
2557 unlock_page_cgroup(pc);
2559 * check events
2561 memcg_check_events(to, page);
2562 memcg_check_events(from, page);
2563 out:
2564 return ret;
2568 * move charges to its parent.
2571 static int mem_cgroup_move_parent(struct page *page,
2572 struct page_cgroup *pc,
2573 struct mem_cgroup *child,
2574 gfp_t gfp_mask)
2576 struct cgroup *cg = child->css.cgroup;
2577 struct cgroup *pcg = cg->parent;
2578 struct mem_cgroup *parent;
2579 unsigned int nr_pages;
2580 unsigned long uninitialized_var(flags);
2581 int ret;
2583 /* Is ROOT ? */
2584 if (!pcg)
2585 return -EINVAL;
2587 ret = -EBUSY;
2588 if (!get_page_unless_zero(page))
2589 goto out;
2590 if (isolate_lru_page(page))
2591 goto put;
2593 nr_pages = hpage_nr_pages(page);
2595 parent = mem_cgroup_from_cont(pcg);
2596 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2597 if (ret)
2598 goto put_back;
2600 if (nr_pages > 1)
2601 flags = compound_lock_irqsave(page);
2603 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2604 if (ret)
2605 __mem_cgroup_cancel_charge(parent, nr_pages);
2607 if (nr_pages > 1)
2608 compound_unlock_irqrestore(page, flags);
2609 put_back:
2610 putback_lru_page(page);
2611 put:
2612 put_page(page);
2613 out:
2614 return ret;
2618 * Charge the memory controller for page usage.
2619 * Return
2620 * 0 if the charge was successful
2621 * < 0 if the cgroup is over its limit
2623 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2624 gfp_t gfp_mask, enum charge_type ctype)
2626 struct mem_cgroup *memcg = NULL;
2627 unsigned int nr_pages = 1;
2628 struct page_cgroup *pc;
2629 bool oom = true;
2630 int ret;
2632 if (PageTransHuge(page)) {
2633 nr_pages <<= compound_order(page);
2634 VM_BUG_ON(!PageTransHuge(page));
2636 * Never OOM-kill a process for a huge page. The
2637 * fault handler will fall back to regular pages.
2639 oom = false;
2642 pc = lookup_page_cgroup(page);
2643 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2644 if (ret == -ENOMEM)
2645 return ret;
2646 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2647 return 0;
2650 int mem_cgroup_newpage_charge(struct page *page,
2651 struct mm_struct *mm, gfp_t gfp_mask)
2653 if (mem_cgroup_disabled())
2654 return 0;
2655 VM_BUG_ON(page_mapped(page));
2656 VM_BUG_ON(page->mapping && !PageAnon(page));
2657 VM_BUG_ON(!mm);
2658 return mem_cgroup_charge_common(page, mm, gfp_mask,
2659 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2662 static void
2663 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 enum charge_type ctype);
2666 static void
2667 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2668 enum charge_type ctype)
2670 struct page_cgroup *pc = lookup_page_cgroup(page);
2671 struct zone *zone = page_zone(page);
2672 unsigned long flags;
2673 bool removed = false;
2676 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2677 * is already on LRU. It means the page may on some other page_cgroup's
2678 * LRU. Take care of it.
2680 spin_lock_irqsave(&zone->lru_lock, flags);
2681 if (PageLRU(page)) {
2682 del_page_from_lru_list(zone, page, page_lru(page));
2683 ClearPageLRU(page);
2684 removed = true;
2686 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2687 if (removed) {
2688 add_page_to_lru_list(zone, page, page_lru(page));
2689 SetPageLRU(page);
2691 spin_unlock_irqrestore(&zone->lru_lock, flags);
2692 return;
2695 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2696 gfp_t gfp_mask)
2698 struct mem_cgroup *memcg = NULL;
2699 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2700 int ret;
2702 if (mem_cgroup_disabled())
2703 return 0;
2704 if (PageCompound(page))
2705 return 0;
2707 if (unlikely(!mm))
2708 mm = &init_mm;
2709 if (!page_is_file_cache(page))
2710 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2712 if (!PageSwapCache(page))
2713 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2714 else { /* page is swapcache/shmem */
2715 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2716 if (!ret)
2717 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2719 return ret;
2723 * While swap-in, try_charge -> commit or cancel, the page is locked.
2724 * And when try_charge() successfully returns, one refcnt to memcg without
2725 * struct page_cgroup is acquired. This refcnt will be consumed by
2726 * "commit()" or removed by "cancel()"
2728 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2729 struct page *page,
2730 gfp_t mask, struct mem_cgroup **memcgp)
2732 struct mem_cgroup *memcg;
2733 int ret;
2735 *memcgp = NULL;
2737 if (mem_cgroup_disabled())
2738 return 0;
2740 if (!do_swap_account)
2741 goto charge_cur_mm;
2743 * A racing thread's fault, or swapoff, may have already updated
2744 * the pte, and even removed page from swap cache: in those cases
2745 * do_swap_page()'s pte_same() test will fail; but there's also a
2746 * KSM case which does need to charge the page.
2748 if (!PageSwapCache(page))
2749 goto charge_cur_mm;
2750 memcg = try_get_mem_cgroup_from_page(page);
2751 if (!memcg)
2752 goto charge_cur_mm;
2753 *memcgp = memcg;
2754 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2755 css_put(&memcg->css);
2756 if (ret == -EINTR)
2757 ret = 0;
2758 return ret;
2759 charge_cur_mm:
2760 if (unlikely(!mm))
2761 mm = &init_mm;
2762 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2763 if (ret == -EINTR)
2764 ret = 0;
2765 return ret;
2768 static void
2769 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2770 enum charge_type ctype)
2772 if (mem_cgroup_disabled())
2773 return;
2774 if (!memcg)
2775 return;
2776 cgroup_exclude_rmdir(&memcg->css);
2778 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2780 * Now swap is on-memory. This means this page may be
2781 * counted both as mem and swap....double count.
2782 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2783 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2784 * may call delete_from_swap_cache() before reach here.
2786 if (do_swap_account && PageSwapCache(page)) {
2787 swp_entry_t ent = {.val = page_private(page)};
2788 struct mem_cgroup *swap_memcg;
2789 unsigned short id;
2791 id = swap_cgroup_record(ent, 0);
2792 rcu_read_lock();
2793 swap_memcg = mem_cgroup_lookup(id);
2794 if (swap_memcg) {
2796 * This recorded memcg can be obsolete one. So, avoid
2797 * calling css_tryget
2799 if (!mem_cgroup_is_root(swap_memcg))
2800 res_counter_uncharge(&swap_memcg->memsw,
2801 PAGE_SIZE);
2802 mem_cgroup_swap_statistics(swap_memcg, false);
2803 mem_cgroup_put(swap_memcg);
2805 rcu_read_unlock();
2808 * At swapin, we may charge account against cgroup which has no tasks.
2809 * So, rmdir()->pre_destroy() can be called while we do this charge.
2810 * In that case, we need to call pre_destroy() again. check it here.
2812 cgroup_release_and_wakeup_rmdir(&memcg->css);
2815 void mem_cgroup_commit_charge_swapin(struct page *page,
2816 struct mem_cgroup *memcg)
2818 __mem_cgroup_commit_charge_swapin(page, memcg,
2819 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2822 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2824 if (mem_cgroup_disabled())
2825 return;
2826 if (!memcg)
2827 return;
2828 __mem_cgroup_cancel_charge(memcg, 1);
2831 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2832 unsigned int nr_pages,
2833 const enum charge_type ctype)
2835 struct memcg_batch_info *batch = NULL;
2836 bool uncharge_memsw = true;
2838 /* If swapout, usage of swap doesn't decrease */
2839 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2840 uncharge_memsw = false;
2842 batch = &current->memcg_batch;
2844 * In usual, we do css_get() when we remember memcg pointer.
2845 * But in this case, we keep res->usage until end of a series of
2846 * uncharges. Then, it's ok to ignore memcg's refcnt.
2848 if (!batch->memcg)
2849 batch->memcg = memcg;
2851 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2852 * In those cases, all pages freed continuously can be expected to be in
2853 * the same cgroup and we have chance to coalesce uncharges.
2854 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2855 * because we want to do uncharge as soon as possible.
2858 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2859 goto direct_uncharge;
2861 if (nr_pages > 1)
2862 goto direct_uncharge;
2865 * In typical case, batch->memcg == mem. This means we can
2866 * merge a series of uncharges to an uncharge of res_counter.
2867 * If not, we uncharge res_counter ony by one.
2869 if (batch->memcg != memcg)
2870 goto direct_uncharge;
2871 /* remember freed charge and uncharge it later */
2872 batch->nr_pages++;
2873 if (uncharge_memsw)
2874 batch->memsw_nr_pages++;
2875 return;
2876 direct_uncharge:
2877 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2878 if (uncharge_memsw)
2879 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2880 if (unlikely(batch->memcg != memcg))
2881 memcg_oom_recover(memcg);
2882 return;
2886 * uncharge if !page_mapped(page)
2888 static struct mem_cgroup *
2889 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2891 struct mem_cgroup *memcg = NULL;
2892 unsigned int nr_pages = 1;
2893 struct page_cgroup *pc;
2895 if (mem_cgroup_disabled())
2896 return NULL;
2898 if (PageSwapCache(page))
2899 return NULL;
2901 if (PageTransHuge(page)) {
2902 nr_pages <<= compound_order(page);
2903 VM_BUG_ON(!PageTransHuge(page));
2906 * Check if our page_cgroup is valid
2908 pc = lookup_page_cgroup(page);
2909 if (unlikely(!PageCgroupUsed(pc)))
2910 return NULL;
2912 lock_page_cgroup(pc);
2914 memcg = pc->mem_cgroup;
2916 if (!PageCgroupUsed(pc))
2917 goto unlock_out;
2919 switch (ctype) {
2920 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2921 case MEM_CGROUP_CHARGE_TYPE_DROP:
2922 /* See mem_cgroup_prepare_migration() */
2923 if (page_mapped(page) || PageCgroupMigration(pc))
2924 goto unlock_out;
2925 break;
2926 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2927 if (!PageAnon(page)) { /* Shared memory */
2928 if (page->mapping && !page_is_file_cache(page))
2929 goto unlock_out;
2930 } else if (page_mapped(page)) /* Anon */
2931 goto unlock_out;
2932 break;
2933 default:
2934 break;
2937 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2939 ClearPageCgroupUsed(pc);
2941 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2942 * freed from LRU. This is safe because uncharged page is expected not
2943 * to be reused (freed soon). Exception is SwapCache, it's handled by
2944 * special functions.
2947 unlock_page_cgroup(pc);
2949 * even after unlock, we have memcg->res.usage here and this memcg
2950 * will never be freed.
2952 memcg_check_events(memcg, page);
2953 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2954 mem_cgroup_swap_statistics(memcg, true);
2955 mem_cgroup_get(memcg);
2957 if (!mem_cgroup_is_root(memcg))
2958 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2960 return memcg;
2962 unlock_out:
2963 unlock_page_cgroup(pc);
2964 return NULL;
2967 void mem_cgroup_uncharge_page(struct page *page)
2969 /* early check. */
2970 if (page_mapped(page))
2971 return;
2972 VM_BUG_ON(page->mapping && !PageAnon(page));
2973 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2976 void mem_cgroup_uncharge_cache_page(struct page *page)
2978 VM_BUG_ON(page_mapped(page));
2979 VM_BUG_ON(page->mapping);
2980 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2984 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2985 * In that cases, pages are freed continuously and we can expect pages
2986 * are in the same memcg. All these calls itself limits the number of
2987 * pages freed at once, then uncharge_start/end() is called properly.
2988 * This may be called prural(2) times in a context,
2991 void mem_cgroup_uncharge_start(void)
2993 current->memcg_batch.do_batch++;
2994 /* We can do nest. */
2995 if (current->memcg_batch.do_batch == 1) {
2996 current->memcg_batch.memcg = NULL;
2997 current->memcg_batch.nr_pages = 0;
2998 current->memcg_batch.memsw_nr_pages = 0;
3002 void mem_cgroup_uncharge_end(void)
3004 struct memcg_batch_info *batch = &current->memcg_batch;
3006 if (!batch->do_batch)
3007 return;
3009 batch->do_batch--;
3010 if (batch->do_batch) /* If stacked, do nothing. */
3011 return;
3013 if (!batch->memcg)
3014 return;
3016 * This "batch->memcg" is valid without any css_get/put etc...
3017 * bacause we hide charges behind us.
3019 if (batch->nr_pages)
3020 res_counter_uncharge(&batch->memcg->res,
3021 batch->nr_pages * PAGE_SIZE);
3022 if (batch->memsw_nr_pages)
3023 res_counter_uncharge(&batch->memcg->memsw,
3024 batch->memsw_nr_pages * PAGE_SIZE);
3025 memcg_oom_recover(batch->memcg);
3026 /* forget this pointer (for sanity check) */
3027 batch->memcg = NULL;
3031 * A function for resetting pc->mem_cgroup for newly allocated pages.
3032 * This function should be called if the newpage will be added to LRU
3033 * before start accounting.
3035 void mem_cgroup_reset_owner(struct page *newpage)
3037 struct page_cgroup *pc;
3039 if (mem_cgroup_disabled())
3040 return;
3042 pc = lookup_page_cgroup(newpage);
3043 VM_BUG_ON(PageCgroupUsed(pc));
3044 pc->mem_cgroup = root_mem_cgroup;
3047 #ifdef CONFIG_SWAP
3049 * called after __delete_from_swap_cache() and drop "page" account.
3050 * memcg information is recorded to swap_cgroup of "ent"
3052 void
3053 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3055 struct mem_cgroup *memcg;
3056 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3058 if (!swapout) /* this was a swap cache but the swap is unused ! */
3059 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3061 memcg = __mem_cgroup_uncharge_common(page, ctype);
3064 * record memcg information, if swapout && memcg != NULL,
3065 * mem_cgroup_get() was called in uncharge().
3067 if (do_swap_account && swapout && memcg)
3068 swap_cgroup_record(ent, css_id(&memcg->css));
3070 #endif
3072 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3074 * called from swap_entry_free(). remove record in swap_cgroup and
3075 * uncharge "memsw" account.
3077 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3079 struct mem_cgroup *memcg;
3080 unsigned short id;
3082 if (!do_swap_account)
3083 return;
3085 id = swap_cgroup_record(ent, 0);
3086 rcu_read_lock();
3087 memcg = mem_cgroup_lookup(id);
3088 if (memcg) {
3090 * We uncharge this because swap is freed.
3091 * This memcg can be obsolete one. We avoid calling css_tryget
3093 if (!mem_cgroup_is_root(memcg))
3094 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3095 mem_cgroup_swap_statistics(memcg, false);
3096 mem_cgroup_put(memcg);
3098 rcu_read_unlock();
3102 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3103 * @entry: swap entry to be moved
3104 * @from: mem_cgroup which the entry is moved from
3105 * @to: mem_cgroup which the entry is moved to
3106 * @need_fixup: whether we should fixup res_counters and refcounts.
3108 * It succeeds only when the swap_cgroup's record for this entry is the same
3109 * as the mem_cgroup's id of @from.
3111 * Returns 0 on success, -EINVAL on failure.
3113 * The caller must have charged to @to, IOW, called res_counter_charge() about
3114 * both res and memsw, and called css_get().
3116 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3117 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3119 unsigned short old_id, new_id;
3121 old_id = css_id(&from->css);
3122 new_id = css_id(&to->css);
3124 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3125 mem_cgroup_swap_statistics(from, false);
3126 mem_cgroup_swap_statistics(to, true);
3128 * This function is only called from task migration context now.
3129 * It postpones res_counter and refcount handling till the end
3130 * of task migration(mem_cgroup_clear_mc()) for performance
3131 * improvement. But we cannot postpone mem_cgroup_get(to)
3132 * because if the process that has been moved to @to does
3133 * swap-in, the refcount of @to might be decreased to 0.
3135 mem_cgroup_get(to);
3136 if (need_fixup) {
3137 if (!mem_cgroup_is_root(from))
3138 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3139 mem_cgroup_put(from);
3141 * we charged both to->res and to->memsw, so we should
3142 * uncharge to->res.
3144 if (!mem_cgroup_is_root(to))
3145 res_counter_uncharge(&to->res, PAGE_SIZE);
3147 return 0;
3149 return -EINVAL;
3151 #else
3152 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3153 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3155 return -EINVAL;
3157 #endif
3160 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3161 * page belongs to.
3163 int mem_cgroup_prepare_migration(struct page *page,
3164 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3166 struct mem_cgroup *memcg = NULL;
3167 struct page_cgroup *pc;
3168 enum charge_type ctype;
3169 int ret = 0;
3171 *memcgp = NULL;
3173 VM_BUG_ON(PageTransHuge(page));
3174 if (mem_cgroup_disabled())
3175 return 0;
3177 pc = lookup_page_cgroup(page);
3178 lock_page_cgroup(pc);
3179 if (PageCgroupUsed(pc)) {
3180 memcg = pc->mem_cgroup;
3181 css_get(&memcg->css);
3183 * At migrating an anonymous page, its mapcount goes down
3184 * to 0 and uncharge() will be called. But, even if it's fully
3185 * unmapped, migration may fail and this page has to be
3186 * charged again. We set MIGRATION flag here and delay uncharge
3187 * until end_migration() is called
3189 * Corner Case Thinking
3190 * A)
3191 * When the old page was mapped as Anon and it's unmap-and-freed
3192 * while migration was ongoing.
3193 * If unmap finds the old page, uncharge() of it will be delayed
3194 * until end_migration(). If unmap finds a new page, it's
3195 * uncharged when it make mapcount to be 1->0. If unmap code
3196 * finds swap_migration_entry, the new page will not be mapped
3197 * and end_migration() will find it(mapcount==0).
3199 * B)
3200 * When the old page was mapped but migraion fails, the kernel
3201 * remaps it. A charge for it is kept by MIGRATION flag even
3202 * if mapcount goes down to 0. We can do remap successfully
3203 * without charging it again.
3205 * C)
3206 * The "old" page is under lock_page() until the end of
3207 * migration, so, the old page itself will not be swapped-out.
3208 * If the new page is swapped out before end_migraton, our
3209 * hook to usual swap-out path will catch the event.
3211 if (PageAnon(page))
3212 SetPageCgroupMigration(pc);
3214 unlock_page_cgroup(pc);
3216 * If the page is not charged at this point,
3217 * we return here.
3219 if (!memcg)
3220 return 0;
3222 *memcgp = memcg;
3223 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3224 css_put(&memcg->css);/* drop extra refcnt */
3225 if (ret) {
3226 if (PageAnon(page)) {
3227 lock_page_cgroup(pc);
3228 ClearPageCgroupMigration(pc);
3229 unlock_page_cgroup(pc);
3231 * The old page may be fully unmapped while we kept it.
3233 mem_cgroup_uncharge_page(page);
3235 /* we'll need to revisit this error code (we have -EINTR) */
3236 return -ENOMEM;
3239 * We charge new page before it's used/mapped. So, even if unlock_page()
3240 * is called before end_migration, we can catch all events on this new
3241 * page. In the case new page is migrated but not remapped, new page's
3242 * mapcount will be finally 0 and we call uncharge in end_migration().
3244 pc = lookup_page_cgroup(newpage);
3245 if (PageAnon(page))
3246 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3247 else if (page_is_file_cache(page))
3248 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3249 else
3250 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3251 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype);
3252 return ret;
3255 /* remove redundant charge if migration failed*/
3256 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3257 struct page *oldpage, struct page *newpage, bool migration_ok)
3259 struct page *used, *unused;
3260 struct page_cgroup *pc;
3262 if (!memcg)
3263 return;
3264 /* blocks rmdir() */
3265 cgroup_exclude_rmdir(&memcg->css);
3266 if (!migration_ok) {
3267 used = oldpage;
3268 unused = newpage;
3269 } else {
3270 used = newpage;
3271 unused = oldpage;
3274 * We disallowed uncharge of pages under migration because mapcount
3275 * of the page goes down to zero, temporarly.
3276 * Clear the flag and check the page should be charged.
3278 pc = lookup_page_cgroup(oldpage);
3279 lock_page_cgroup(pc);
3280 ClearPageCgroupMigration(pc);
3281 unlock_page_cgroup(pc);
3283 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3286 * If a page is a file cache, radix-tree replacement is very atomic
3287 * and we can skip this check. When it was an Anon page, its mapcount
3288 * goes down to 0. But because we added MIGRATION flage, it's not
3289 * uncharged yet. There are several case but page->mapcount check
3290 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3291 * check. (see prepare_charge() also)
3293 if (PageAnon(used))
3294 mem_cgroup_uncharge_page(used);
3296 * At migration, we may charge account against cgroup which has no
3297 * tasks.
3298 * So, rmdir()->pre_destroy() can be called while we do this charge.
3299 * In that case, we need to call pre_destroy() again. check it here.
3301 cgroup_release_and_wakeup_rmdir(&memcg->css);
3305 * At replace page cache, newpage is not under any memcg but it's on
3306 * LRU. So, this function doesn't touch res_counter but handles LRU
3307 * in correct way. Both pages are locked so we cannot race with uncharge.
3309 void mem_cgroup_replace_page_cache(struct page *oldpage,
3310 struct page *newpage)
3312 struct mem_cgroup *memcg;
3313 struct page_cgroup *pc;
3314 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3316 if (mem_cgroup_disabled())
3317 return;
3319 pc = lookup_page_cgroup(oldpage);
3320 /* fix accounting on old pages */
3321 lock_page_cgroup(pc);
3322 memcg = pc->mem_cgroup;
3323 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3324 ClearPageCgroupUsed(pc);
3325 unlock_page_cgroup(pc);
3327 if (PageSwapBacked(oldpage))
3328 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3331 * Even if newpage->mapping was NULL before starting replacement,
3332 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3333 * LRU while we overwrite pc->mem_cgroup.
3335 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3338 #ifdef CONFIG_DEBUG_VM
3339 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3341 struct page_cgroup *pc;
3343 pc = lookup_page_cgroup(page);
3345 * Can be NULL while feeding pages into the page allocator for
3346 * the first time, i.e. during boot or memory hotplug;
3347 * or when mem_cgroup_disabled().
3349 if (likely(pc) && PageCgroupUsed(pc))
3350 return pc;
3351 return NULL;
3354 bool mem_cgroup_bad_page_check(struct page *page)
3356 if (mem_cgroup_disabled())
3357 return false;
3359 return lookup_page_cgroup_used(page) != NULL;
3362 void mem_cgroup_print_bad_page(struct page *page)
3364 struct page_cgroup *pc;
3366 pc = lookup_page_cgroup_used(page);
3367 if (pc) {
3368 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3369 pc, pc->flags, pc->mem_cgroup);
3372 #endif
3374 static DEFINE_MUTEX(set_limit_mutex);
3376 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3377 unsigned long long val)
3379 int retry_count;
3380 u64 memswlimit, memlimit;
3381 int ret = 0;
3382 int children = mem_cgroup_count_children(memcg);
3383 u64 curusage, oldusage;
3384 int enlarge;
3387 * For keeping hierarchical_reclaim simple, how long we should retry
3388 * is depends on callers. We set our retry-count to be function
3389 * of # of children which we should visit in this loop.
3391 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3393 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3395 enlarge = 0;
3396 while (retry_count) {
3397 if (signal_pending(current)) {
3398 ret = -EINTR;
3399 break;
3402 * Rather than hide all in some function, I do this in
3403 * open coded manner. You see what this really does.
3404 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3406 mutex_lock(&set_limit_mutex);
3407 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3408 if (memswlimit < val) {
3409 ret = -EINVAL;
3410 mutex_unlock(&set_limit_mutex);
3411 break;
3414 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3415 if (memlimit < val)
3416 enlarge = 1;
3418 ret = res_counter_set_limit(&memcg->res, val);
3419 if (!ret) {
3420 if (memswlimit == val)
3421 memcg->memsw_is_minimum = true;
3422 else
3423 memcg->memsw_is_minimum = false;
3425 mutex_unlock(&set_limit_mutex);
3427 if (!ret)
3428 break;
3430 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3431 MEM_CGROUP_RECLAIM_SHRINK);
3432 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3433 /* Usage is reduced ? */
3434 if (curusage >= oldusage)
3435 retry_count--;
3436 else
3437 oldusage = curusage;
3439 if (!ret && enlarge)
3440 memcg_oom_recover(memcg);
3442 return ret;
3445 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3446 unsigned long long val)
3448 int retry_count;
3449 u64 memlimit, memswlimit, oldusage, curusage;
3450 int children = mem_cgroup_count_children(memcg);
3451 int ret = -EBUSY;
3452 int enlarge = 0;
3454 /* see mem_cgroup_resize_res_limit */
3455 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3456 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3457 while (retry_count) {
3458 if (signal_pending(current)) {
3459 ret = -EINTR;
3460 break;
3463 * Rather than hide all in some function, I do this in
3464 * open coded manner. You see what this really does.
3465 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3467 mutex_lock(&set_limit_mutex);
3468 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3469 if (memlimit > val) {
3470 ret = -EINVAL;
3471 mutex_unlock(&set_limit_mutex);
3472 break;
3474 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3475 if (memswlimit < val)
3476 enlarge = 1;
3477 ret = res_counter_set_limit(&memcg->memsw, val);
3478 if (!ret) {
3479 if (memlimit == val)
3480 memcg->memsw_is_minimum = true;
3481 else
3482 memcg->memsw_is_minimum = false;
3484 mutex_unlock(&set_limit_mutex);
3486 if (!ret)
3487 break;
3489 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3490 MEM_CGROUP_RECLAIM_NOSWAP |
3491 MEM_CGROUP_RECLAIM_SHRINK);
3492 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3493 /* Usage is reduced ? */
3494 if (curusage >= oldusage)
3495 retry_count--;
3496 else
3497 oldusage = curusage;
3499 if (!ret && enlarge)
3500 memcg_oom_recover(memcg);
3501 return ret;
3504 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3505 gfp_t gfp_mask,
3506 unsigned long *total_scanned)
3508 unsigned long nr_reclaimed = 0;
3509 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3510 unsigned long reclaimed;
3511 int loop = 0;
3512 struct mem_cgroup_tree_per_zone *mctz;
3513 unsigned long long excess;
3514 unsigned long nr_scanned;
3516 if (order > 0)
3517 return 0;
3519 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3521 * This loop can run a while, specially if mem_cgroup's continuously
3522 * keep exceeding their soft limit and putting the system under
3523 * pressure
3525 do {
3526 if (next_mz)
3527 mz = next_mz;
3528 else
3529 mz = mem_cgroup_largest_soft_limit_node(mctz);
3530 if (!mz)
3531 break;
3533 nr_scanned = 0;
3534 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3535 gfp_mask, &nr_scanned);
3536 nr_reclaimed += reclaimed;
3537 *total_scanned += nr_scanned;
3538 spin_lock(&mctz->lock);
3541 * If we failed to reclaim anything from this memory cgroup
3542 * it is time to move on to the next cgroup
3544 next_mz = NULL;
3545 if (!reclaimed) {
3546 do {
3548 * Loop until we find yet another one.
3550 * By the time we get the soft_limit lock
3551 * again, someone might have aded the
3552 * group back on the RB tree. Iterate to
3553 * make sure we get a different mem.
3554 * mem_cgroup_largest_soft_limit_node returns
3555 * NULL if no other cgroup is present on
3556 * the tree
3558 next_mz =
3559 __mem_cgroup_largest_soft_limit_node(mctz);
3560 if (next_mz == mz)
3561 css_put(&next_mz->mem->css);
3562 else /* next_mz == NULL or other memcg */
3563 break;
3564 } while (1);
3566 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3567 excess = res_counter_soft_limit_excess(&mz->mem->res);
3569 * One school of thought says that we should not add
3570 * back the node to the tree if reclaim returns 0.
3571 * But our reclaim could return 0, simply because due
3572 * to priority we are exposing a smaller subset of
3573 * memory to reclaim from. Consider this as a longer
3574 * term TODO.
3576 /* If excess == 0, no tree ops */
3577 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3578 spin_unlock(&mctz->lock);
3579 css_put(&mz->mem->css);
3580 loop++;
3582 * Could not reclaim anything and there are no more
3583 * mem cgroups to try or we seem to be looping without
3584 * reclaiming anything.
3586 if (!nr_reclaimed &&
3587 (next_mz == NULL ||
3588 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3589 break;
3590 } while (!nr_reclaimed);
3591 if (next_mz)
3592 css_put(&next_mz->mem->css);
3593 return nr_reclaimed;
3597 * This routine traverse page_cgroup in given list and drop them all.
3598 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3600 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3601 int node, int zid, enum lru_list lru)
3603 struct mem_cgroup_per_zone *mz;
3604 unsigned long flags, loop;
3605 struct list_head *list;
3606 struct page *busy;
3607 struct zone *zone;
3608 int ret = 0;
3610 zone = &NODE_DATA(node)->node_zones[zid];
3611 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3612 list = &mz->lruvec.lists[lru];
3614 loop = MEM_CGROUP_ZSTAT(mz, lru);
3615 /* give some margin against EBUSY etc...*/
3616 loop += 256;
3617 busy = NULL;
3618 while (loop--) {
3619 struct page_cgroup *pc;
3620 struct page *page;
3622 ret = 0;
3623 spin_lock_irqsave(&zone->lru_lock, flags);
3624 if (list_empty(list)) {
3625 spin_unlock_irqrestore(&zone->lru_lock, flags);
3626 break;
3628 page = list_entry(list->prev, struct page, lru);
3629 if (busy == page) {
3630 list_move(&page->lru, list);
3631 busy = NULL;
3632 spin_unlock_irqrestore(&zone->lru_lock, flags);
3633 continue;
3635 spin_unlock_irqrestore(&zone->lru_lock, flags);
3637 pc = lookup_page_cgroup(page);
3639 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3640 if (ret == -ENOMEM || ret == -EINTR)
3641 break;
3643 if (ret == -EBUSY || ret == -EINVAL) {
3644 /* found lock contention or "pc" is obsolete. */
3645 busy = page;
3646 cond_resched();
3647 } else
3648 busy = NULL;
3651 if (!ret && !list_empty(list))
3652 return -EBUSY;
3653 return ret;
3657 * make mem_cgroup's charge to be 0 if there is no task.
3658 * This enables deleting this mem_cgroup.
3660 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3662 int ret;
3663 int node, zid, shrink;
3664 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3665 struct cgroup *cgrp = memcg->css.cgroup;
3667 css_get(&memcg->css);
3669 shrink = 0;
3670 /* should free all ? */
3671 if (free_all)
3672 goto try_to_free;
3673 move_account:
3674 do {
3675 ret = -EBUSY;
3676 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3677 goto out;
3678 ret = -EINTR;
3679 if (signal_pending(current))
3680 goto out;
3681 /* This is for making all *used* pages to be on LRU. */
3682 lru_add_drain_all();
3683 drain_all_stock_sync(memcg);
3684 ret = 0;
3685 mem_cgroup_start_move(memcg);
3686 for_each_node_state(node, N_HIGH_MEMORY) {
3687 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3688 enum lru_list l;
3689 for_each_lru(l) {
3690 ret = mem_cgroup_force_empty_list(memcg,
3691 node, zid, l);
3692 if (ret)
3693 break;
3696 if (ret)
3697 break;
3699 mem_cgroup_end_move(memcg);
3700 memcg_oom_recover(memcg);
3701 /* it seems parent cgroup doesn't have enough mem */
3702 if (ret == -ENOMEM)
3703 goto try_to_free;
3704 cond_resched();
3705 /* "ret" should also be checked to ensure all lists are empty. */
3706 } while (memcg->res.usage > 0 || ret);
3707 out:
3708 css_put(&memcg->css);
3709 return ret;
3711 try_to_free:
3712 /* returns EBUSY if there is a task or if we come here twice. */
3713 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3714 ret = -EBUSY;
3715 goto out;
3717 /* we call try-to-free pages for make this cgroup empty */
3718 lru_add_drain_all();
3719 /* try to free all pages in this cgroup */
3720 shrink = 1;
3721 while (nr_retries && memcg->res.usage > 0) {
3722 int progress;
3724 if (signal_pending(current)) {
3725 ret = -EINTR;
3726 goto out;
3728 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3729 false);
3730 if (!progress) {
3731 nr_retries--;
3732 /* maybe some writeback is necessary */
3733 congestion_wait(BLK_RW_ASYNC, HZ/10);
3737 lru_add_drain();
3738 /* try move_account...there may be some *locked* pages. */
3739 goto move_account;
3742 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3744 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3748 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3750 return mem_cgroup_from_cont(cont)->use_hierarchy;
3753 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3754 u64 val)
3756 int retval = 0;
3757 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3758 struct cgroup *parent = cont->parent;
3759 struct mem_cgroup *parent_memcg = NULL;
3761 if (parent)
3762 parent_memcg = mem_cgroup_from_cont(parent);
3764 cgroup_lock();
3766 * If parent's use_hierarchy is set, we can't make any modifications
3767 * in the child subtrees. If it is unset, then the change can
3768 * occur, provided the current cgroup has no children.
3770 * For the root cgroup, parent_mem is NULL, we allow value to be
3771 * set if there are no children.
3773 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3774 (val == 1 || val == 0)) {
3775 if (list_empty(&cont->children))
3776 memcg->use_hierarchy = val;
3777 else
3778 retval = -EBUSY;
3779 } else
3780 retval = -EINVAL;
3781 cgroup_unlock();
3783 return retval;
3787 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3788 enum mem_cgroup_stat_index idx)
3790 struct mem_cgroup *iter;
3791 long val = 0;
3793 /* Per-cpu values can be negative, use a signed accumulator */
3794 for_each_mem_cgroup_tree(iter, memcg)
3795 val += mem_cgroup_read_stat(iter, idx);
3797 if (val < 0) /* race ? */
3798 val = 0;
3799 return val;
3802 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3804 u64 val;
3806 if (!mem_cgroup_is_root(memcg)) {
3807 if (!swap)
3808 return res_counter_read_u64(&memcg->res, RES_USAGE);
3809 else
3810 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3813 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3814 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3816 if (swap)
3817 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3819 return val << PAGE_SHIFT;
3822 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3824 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3825 u64 val;
3826 int type, name;
3828 type = MEMFILE_TYPE(cft->private);
3829 name = MEMFILE_ATTR(cft->private);
3830 switch (type) {
3831 case _MEM:
3832 if (name == RES_USAGE)
3833 val = mem_cgroup_usage(memcg, false);
3834 else
3835 val = res_counter_read_u64(&memcg->res, name);
3836 break;
3837 case _MEMSWAP:
3838 if (name == RES_USAGE)
3839 val = mem_cgroup_usage(memcg, true);
3840 else
3841 val = res_counter_read_u64(&memcg->memsw, name);
3842 break;
3843 default:
3844 BUG();
3845 break;
3847 return val;
3850 * The user of this function is...
3851 * RES_LIMIT.
3853 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3854 const char *buffer)
3856 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857 int type, name;
3858 unsigned long long val;
3859 int ret;
3861 type = MEMFILE_TYPE(cft->private);
3862 name = MEMFILE_ATTR(cft->private);
3863 switch (name) {
3864 case RES_LIMIT:
3865 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3866 ret = -EINVAL;
3867 break;
3869 /* This function does all necessary parse...reuse it */
3870 ret = res_counter_memparse_write_strategy(buffer, &val);
3871 if (ret)
3872 break;
3873 if (type == _MEM)
3874 ret = mem_cgroup_resize_limit(memcg, val);
3875 else
3876 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3877 break;
3878 case RES_SOFT_LIMIT:
3879 ret = res_counter_memparse_write_strategy(buffer, &val);
3880 if (ret)
3881 break;
3883 * For memsw, soft limits are hard to implement in terms
3884 * of semantics, for now, we support soft limits for
3885 * control without swap
3887 if (type == _MEM)
3888 ret = res_counter_set_soft_limit(&memcg->res, val);
3889 else
3890 ret = -EINVAL;
3891 break;
3892 default:
3893 ret = -EINVAL; /* should be BUG() ? */
3894 break;
3896 return ret;
3899 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3900 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3902 struct cgroup *cgroup;
3903 unsigned long long min_limit, min_memsw_limit, tmp;
3905 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3906 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3907 cgroup = memcg->css.cgroup;
3908 if (!memcg->use_hierarchy)
3909 goto out;
3911 while (cgroup->parent) {
3912 cgroup = cgroup->parent;
3913 memcg = mem_cgroup_from_cont(cgroup);
3914 if (!memcg->use_hierarchy)
3915 break;
3916 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3917 min_limit = min(min_limit, tmp);
3918 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3919 min_memsw_limit = min(min_memsw_limit, tmp);
3921 out:
3922 *mem_limit = min_limit;
3923 *memsw_limit = min_memsw_limit;
3924 return;
3927 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3929 struct mem_cgroup *memcg;
3930 int type, name;
3932 memcg = mem_cgroup_from_cont(cont);
3933 type = MEMFILE_TYPE(event);
3934 name = MEMFILE_ATTR(event);
3935 switch (name) {
3936 case RES_MAX_USAGE:
3937 if (type == _MEM)
3938 res_counter_reset_max(&memcg->res);
3939 else
3940 res_counter_reset_max(&memcg->memsw);
3941 break;
3942 case RES_FAILCNT:
3943 if (type == _MEM)
3944 res_counter_reset_failcnt(&memcg->res);
3945 else
3946 res_counter_reset_failcnt(&memcg->memsw);
3947 break;
3950 return 0;
3953 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3954 struct cftype *cft)
3956 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3959 #ifdef CONFIG_MMU
3960 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3961 struct cftype *cft, u64 val)
3963 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3965 if (val >= (1 << NR_MOVE_TYPE))
3966 return -EINVAL;
3968 * We check this value several times in both in can_attach() and
3969 * attach(), so we need cgroup lock to prevent this value from being
3970 * inconsistent.
3972 cgroup_lock();
3973 memcg->move_charge_at_immigrate = val;
3974 cgroup_unlock();
3976 return 0;
3978 #else
3979 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3980 struct cftype *cft, u64 val)
3982 return -ENOSYS;
3984 #endif
3987 /* For read statistics */
3988 enum {
3989 MCS_CACHE,
3990 MCS_RSS,
3991 MCS_FILE_MAPPED,
3992 MCS_PGPGIN,
3993 MCS_PGPGOUT,
3994 MCS_SWAP,
3995 MCS_PGFAULT,
3996 MCS_PGMAJFAULT,
3997 MCS_INACTIVE_ANON,
3998 MCS_ACTIVE_ANON,
3999 MCS_INACTIVE_FILE,
4000 MCS_ACTIVE_FILE,
4001 MCS_UNEVICTABLE,
4002 NR_MCS_STAT,
4005 struct mcs_total_stat {
4006 s64 stat[NR_MCS_STAT];
4009 struct {
4010 char *local_name;
4011 char *total_name;
4012 } memcg_stat_strings[NR_MCS_STAT] = {
4013 {"cache", "total_cache"},
4014 {"rss", "total_rss"},
4015 {"mapped_file", "total_mapped_file"},
4016 {"pgpgin", "total_pgpgin"},
4017 {"pgpgout", "total_pgpgout"},
4018 {"swap", "total_swap"},
4019 {"pgfault", "total_pgfault"},
4020 {"pgmajfault", "total_pgmajfault"},
4021 {"inactive_anon", "total_inactive_anon"},
4022 {"active_anon", "total_active_anon"},
4023 {"inactive_file", "total_inactive_file"},
4024 {"active_file", "total_active_file"},
4025 {"unevictable", "total_unevictable"}
4029 static void
4030 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4032 s64 val;
4034 /* per cpu stat */
4035 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4036 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4037 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4038 s->stat[MCS_RSS] += val * PAGE_SIZE;
4039 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4040 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4041 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4042 s->stat[MCS_PGPGIN] += val;
4043 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4044 s->stat[MCS_PGPGOUT] += val;
4045 if (do_swap_account) {
4046 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4047 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4049 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4050 s->stat[MCS_PGFAULT] += val;
4051 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4052 s->stat[MCS_PGMAJFAULT] += val;
4054 /* per zone stat */
4055 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4056 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4057 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4058 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4059 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4060 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4061 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4062 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4063 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4064 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4067 static void
4068 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4070 struct mem_cgroup *iter;
4072 for_each_mem_cgroup_tree(iter, memcg)
4073 mem_cgroup_get_local_stat(iter, s);
4076 #ifdef CONFIG_NUMA
4077 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4079 int nid;
4080 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4081 unsigned long node_nr;
4082 struct cgroup *cont = m->private;
4083 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4085 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4086 seq_printf(m, "total=%lu", total_nr);
4087 for_each_node_state(nid, N_HIGH_MEMORY) {
4088 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4089 seq_printf(m, " N%d=%lu", nid, node_nr);
4091 seq_putc(m, '\n');
4093 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4094 seq_printf(m, "file=%lu", file_nr);
4095 for_each_node_state(nid, N_HIGH_MEMORY) {
4096 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4097 LRU_ALL_FILE);
4098 seq_printf(m, " N%d=%lu", nid, node_nr);
4100 seq_putc(m, '\n');
4102 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4103 seq_printf(m, "anon=%lu", anon_nr);
4104 for_each_node_state(nid, N_HIGH_MEMORY) {
4105 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4106 LRU_ALL_ANON);
4107 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 seq_putc(m, '\n');
4111 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4112 seq_printf(m, "unevictable=%lu", unevictable_nr);
4113 for_each_node_state(nid, N_HIGH_MEMORY) {
4114 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4115 BIT(LRU_UNEVICTABLE));
4116 seq_printf(m, " N%d=%lu", nid, node_nr);
4118 seq_putc(m, '\n');
4119 return 0;
4121 #endif /* CONFIG_NUMA */
4123 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4124 struct cgroup_map_cb *cb)
4126 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4127 struct mcs_total_stat mystat;
4128 int i;
4130 memset(&mystat, 0, sizeof(mystat));
4131 mem_cgroup_get_local_stat(mem_cont, &mystat);
4134 for (i = 0; i < NR_MCS_STAT; i++) {
4135 if (i == MCS_SWAP && !do_swap_account)
4136 continue;
4137 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4140 /* Hierarchical information */
4142 unsigned long long limit, memsw_limit;
4143 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4144 cb->fill(cb, "hierarchical_memory_limit", limit);
4145 if (do_swap_account)
4146 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4149 memset(&mystat, 0, sizeof(mystat));
4150 mem_cgroup_get_total_stat(mem_cont, &mystat);
4151 for (i = 0; i < NR_MCS_STAT; i++) {
4152 if (i == MCS_SWAP && !do_swap_account)
4153 continue;
4154 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4157 #ifdef CONFIG_DEBUG_VM
4159 int nid, zid;
4160 struct mem_cgroup_per_zone *mz;
4161 unsigned long recent_rotated[2] = {0, 0};
4162 unsigned long recent_scanned[2] = {0, 0};
4164 for_each_online_node(nid)
4165 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4166 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4168 recent_rotated[0] +=
4169 mz->reclaim_stat.recent_rotated[0];
4170 recent_rotated[1] +=
4171 mz->reclaim_stat.recent_rotated[1];
4172 recent_scanned[0] +=
4173 mz->reclaim_stat.recent_scanned[0];
4174 recent_scanned[1] +=
4175 mz->reclaim_stat.recent_scanned[1];
4177 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4178 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4179 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4180 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4182 #endif
4184 return 0;
4187 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4191 return mem_cgroup_swappiness(memcg);
4194 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4195 u64 val)
4197 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4198 struct mem_cgroup *parent;
4200 if (val > 100)
4201 return -EINVAL;
4203 if (cgrp->parent == NULL)
4204 return -EINVAL;
4206 parent = mem_cgroup_from_cont(cgrp->parent);
4208 cgroup_lock();
4210 /* If under hierarchy, only empty-root can set this value */
4211 if ((parent->use_hierarchy) ||
4212 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4213 cgroup_unlock();
4214 return -EINVAL;
4217 memcg->swappiness = val;
4219 cgroup_unlock();
4221 return 0;
4224 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4226 struct mem_cgroup_threshold_ary *t;
4227 u64 usage;
4228 int i;
4230 rcu_read_lock();
4231 if (!swap)
4232 t = rcu_dereference(memcg->thresholds.primary);
4233 else
4234 t = rcu_dereference(memcg->memsw_thresholds.primary);
4236 if (!t)
4237 goto unlock;
4239 usage = mem_cgroup_usage(memcg, swap);
4242 * current_threshold points to threshold just below usage.
4243 * If it's not true, a threshold was crossed after last
4244 * call of __mem_cgroup_threshold().
4246 i = t->current_threshold;
4249 * Iterate backward over array of thresholds starting from
4250 * current_threshold and check if a threshold is crossed.
4251 * If none of thresholds below usage is crossed, we read
4252 * only one element of the array here.
4254 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4255 eventfd_signal(t->entries[i].eventfd, 1);
4257 /* i = current_threshold + 1 */
4258 i++;
4261 * Iterate forward over array of thresholds starting from
4262 * current_threshold+1 and check if a threshold is crossed.
4263 * If none of thresholds above usage is crossed, we read
4264 * only one element of the array here.
4266 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4267 eventfd_signal(t->entries[i].eventfd, 1);
4269 /* Update current_threshold */
4270 t->current_threshold = i - 1;
4271 unlock:
4272 rcu_read_unlock();
4275 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4277 while (memcg) {
4278 __mem_cgroup_threshold(memcg, false);
4279 if (do_swap_account)
4280 __mem_cgroup_threshold(memcg, true);
4282 memcg = parent_mem_cgroup(memcg);
4286 static int compare_thresholds(const void *a, const void *b)
4288 const struct mem_cgroup_threshold *_a = a;
4289 const struct mem_cgroup_threshold *_b = b;
4291 return _a->threshold - _b->threshold;
4294 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4296 struct mem_cgroup_eventfd_list *ev;
4298 list_for_each_entry(ev, &memcg->oom_notify, list)
4299 eventfd_signal(ev->eventfd, 1);
4300 return 0;
4303 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4305 struct mem_cgroup *iter;
4307 for_each_mem_cgroup_tree(iter, memcg)
4308 mem_cgroup_oom_notify_cb(iter);
4311 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4312 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4314 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4315 struct mem_cgroup_thresholds *thresholds;
4316 struct mem_cgroup_threshold_ary *new;
4317 int type = MEMFILE_TYPE(cft->private);
4318 u64 threshold, usage;
4319 int i, size, ret;
4321 ret = res_counter_memparse_write_strategy(args, &threshold);
4322 if (ret)
4323 return ret;
4325 mutex_lock(&memcg->thresholds_lock);
4327 if (type == _MEM)
4328 thresholds = &memcg->thresholds;
4329 else if (type == _MEMSWAP)
4330 thresholds = &memcg->memsw_thresholds;
4331 else
4332 BUG();
4334 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4336 /* Check if a threshold crossed before adding a new one */
4337 if (thresholds->primary)
4338 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4340 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4342 /* Allocate memory for new array of thresholds */
4343 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4344 GFP_KERNEL);
4345 if (!new) {
4346 ret = -ENOMEM;
4347 goto unlock;
4349 new->size = size;
4351 /* Copy thresholds (if any) to new array */
4352 if (thresholds->primary) {
4353 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4354 sizeof(struct mem_cgroup_threshold));
4357 /* Add new threshold */
4358 new->entries[size - 1].eventfd = eventfd;
4359 new->entries[size - 1].threshold = threshold;
4361 /* Sort thresholds. Registering of new threshold isn't time-critical */
4362 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4363 compare_thresholds, NULL);
4365 /* Find current threshold */
4366 new->current_threshold = -1;
4367 for (i = 0; i < size; i++) {
4368 if (new->entries[i].threshold < usage) {
4370 * new->current_threshold will not be used until
4371 * rcu_assign_pointer(), so it's safe to increment
4372 * it here.
4374 ++new->current_threshold;
4378 /* Free old spare buffer and save old primary buffer as spare */
4379 kfree(thresholds->spare);
4380 thresholds->spare = thresholds->primary;
4382 rcu_assign_pointer(thresholds->primary, new);
4384 /* To be sure that nobody uses thresholds */
4385 synchronize_rcu();
4387 unlock:
4388 mutex_unlock(&memcg->thresholds_lock);
4390 return ret;
4393 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4394 struct cftype *cft, struct eventfd_ctx *eventfd)
4396 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4397 struct mem_cgroup_thresholds *thresholds;
4398 struct mem_cgroup_threshold_ary *new;
4399 int type = MEMFILE_TYPE(cft->private);
4400 u64 usage;
4401 int i, j, size;
4403 mutex_lock(&memcg->thresholds_lock);
4404 if (type == _MEM)
4405 thresholds = &memcg->thresholds;
4406 else if (type == _MEMSWAP)
4407 thresholds = &memcg->memsw_thresholds;
4408 else
4409 BUG();
4412 * Something went wrong if we trying to unregister a threshold
4413 * if we don't have thresholds
4415 BUG_ON(!thresholds);
4417 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4419 /* Check if a threshold crossed before removing */
4420 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4422 /* Calculate new number of threshold */
4423 size = 0;
4424 for (i = 0; i < thresholds->primary->size; i++) {
4425 if (thresholds->primary->entries[i].eventfd != eventfd)
4426 size++;
4429 new = thresholds->spare;
4431 /* Set thresholds array to NULL if we don't have thresholds */
4432 if (!size) {
4433 kfree(new);
4434 new = NULL;
4435 goto swap_buffers;
4438 new->size = size;
4440 /* Copy thresholds and find current threshold */
4441 new->current_threshold = -1;
4442 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4443 if (thresholds->primary->entries[i].eventfd == eventfd)
4444 continue;
4446 new->entries[j] = thresholds->primary->entries[i];
4447 if (new->entries[j].threshold < usage) {
4449 * new->current_threshold will not be used
4450 * until rcu_assign_pointer(), so it's safe to increment
4451 * it here.
4453 ++new->current_threshold;
4455 j++;
4458 swap_buffers:
4459 /* Swap primary and spare array */
4460 thresholds->spare = thresholds->primary;
4461 rcu_assign_pointer(thresholds->primary, new);
4463 /* To be sure that nobody uses thresholds */
4464 synchronize_rcu();
4466 mutex_unlock(&memcg->thresholds_lock);
4469 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4470 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4472 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4473 struct mem_cgroup_eventfd_list *event;
4474 int type = MEMFILE_TYPE(cft->private);
4476 BUG_ON(type != _OOM_TYPE);
4477 event = kmalloc(sizeof(*event), GFP_KERNEL);
4478 if (!event)
4479 return -ENOMEM;
4481 spin_lock(&memcg_oom_lock);
4483 event->eventfd = eventfd;
4484 list_add(&event->list, &memcg->oom_notify);
4486 /* already in OOM ? */
4487 if (atomic_read(&memcg->under_oom))
4488 eventfd_signal(eventfd, 1);
4489 spin_unlock(&memcg_oom_lock);
4491 return 0;
4494 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4495 struct cftype *cft, struct eventfd_ctx *eventfd)
4497 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4498 struct mem_cgroup_eventfd_list *ev, *tmp;
4499 int type = MEMFILE_TYPE(cft->private);
4501 BUG_ON(type != _OOM_TYPE);
4503 spin_lock(&memcg_oom_lock);
4505 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4506 if (ev->eventfd == eventfd) {
4507 list_del(&ev->list);
4508 kfree(ev);
4512 spin_unlock(&memcg_oom_lock);
4515 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4516 struct cftype *cft, struct cgroup_map_cb *cb)
4518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4520 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4522 if (atomic_read(&memcg->under_oom))
4523 cb->fill(cb, "under_oom", 1);
4524 else
4525 cb->fill(cb, "under_oom", 0);
4526 return 0;
4529 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4530 struct cftype *cft, u64 val)
4532 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4533 struct mem_cgroup *parent;
4535 /* cannot set to root cgroup and only 0 and 1 are allowed */
4536 if (!cgrp->parent || !((val == 0) || (val == 1)))
4537 return -EINVAL;
4539 parent = mem_cgroup_from_cont(cgrp->parent);
4541 cgroup_lock();
4542 /* oom-kill-disable is a flag for subhierarchy. */
4543 if ((parent->use_hierarchy) ||
4544 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4545 cgroup_unlock();
4546 return -EINVAL;
4548 memcg->oom_kill_disable = val;
4549 if (!val)
4550 memcg_oom_recover(memcg);
4551 cgroup_unlock();
4552 return 0;
4555 #ifdef CONFIG_NUMA
4556 static const struct file_operations mem_control_numa_stat_file_operations = {
4557 .read = seq_read,
4558 .llseek = seq_lseek,
4559 .release = single_release,
4562 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4564 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4566 file->f_op = &mem_control_numa_stat_file_operations;
4567 return single_open(file, mem_control_numa_stat_show, cont);
4569 #endif /* CONFIG_NUMA */
4571 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4572 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4575 * Part of this would be better living in a separate allocation
4576 * function, leaving us with just the cgroup tree population work.
4577 * We, however, depend on state such as network's proto_list that
4578 * is only initialized after cgroup creation. I found the less
4579 * cumbersome way to deal with it to defer it all to populate time
4581 return mem_cgroup_sockets_init(cont, ss);
4584 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4585 struct cgroup *cont)
4587 mem_cgroup_sockets_destroy(cont, ss);
4589 #else
4590 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4592 return 0;
4595 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4596 struct cgroup *cont)
4599 #endif
4601 static struct cftype mem_cgroup_files[] = {
4603 .name = "usage_in_bytes",
4604 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4605 .read_u64 = mem_cgroup_read,
4606 .register_event = mem_cgroup_usage_register_event,
4607 .unregister_event = mem_cgroup_usage_unregister_event,
4610 .name = "max_usage_in_bytes",
4611 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4612 .trigger = mem_cgroup_reset,
4613 .read_u64 = mem_cgroup_read,
4616 .name = "limit_in_bytes",
4617 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4618 .write_string = mem_cgroup_write,
4619 .read_u64 = mem_cgroup_read,
4622 .name = "soft_limit_in_bytes",
4623 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4624 .write_string = mem_cgroup_write,
4625 .read_u64 = mem_cgroup_read,
4628 .name = "failcnt",
4629 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4630 .trigger = mem_cgroup_reset,
4631 .read_u64 = mem_cgroup_read,
4634 .name = "stat",
4635 .read_map = mem_control_stat_show,
4638 .name = "force_empty",
4639 .trigger = mem_cgroup_force_empty_write,
4642 .name = "use_hierarchy",
4643 .write_u64 = mem_cgroup_hierarchy_write,
4644 .read_u64 = mem_cgroup_hierarchy_read,
4647 .name = "swappiness",
4648 .read_u64 = mem_cgroup_swappiness_read,
4649 .write_u64 = mem_cgroup_swappiness_write,
4652 .name = "move_charge_at_immigrate",
4653 .read_u64 = mem_cgroup_move_charge_read,
4654 .write_u64 = mem_cgroup_move_charge_write,
4657 .name = "oom_control",
4658 .read_map = mem_cgroup_oom_control_read,
4659 .write_u64 = mem_cgroup_oom_control_write,
4660 .register_event = mem_cgroup_oom_register_event,
4661 .unregister_event = mem_cgroup_oom_unregister_event,
4662 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4664 #ifdef CONFIG_NUMA
4666 .name = "numa_stat",
4667 .open = mem_control_numa_stat_open,
4668 .mode = S_IRUGO,
4670 #endif
4673 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4674 static struct cftype memsw_cgroup_files[] = {
4676 .name = "memsw.usage_in_bytes",
4677 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4678 .read_u64 = mem_cgroup_read,
4679 .register_event = mem_cgroup_usage_register_event,
4680 .unregister_event = mem_cgroup_usage_unregister_event,
4683 .name = "memsw.max_usage_in_bytes",
4684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4685 .trigger = mem_cgroup_reset,
4686 .read_u64 = mem_cgroup_read,
4689 .name = "memsw.limit_in_bytes",
4690 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4691 .write_string = mem_cgroup_write,
4692 .read_u64 = mem_cgroup_read,
4695 .name = "memsw.failcnt",
4696 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4697 .trigger = mem_cgroup_reset,
4698 .read_u64 = mem_cgroup_read,
4702 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4704 if (!do_swap_account)
4705 return 0;
4706 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4707 ARRAY_SIZE(memsw_cgroup_files));
4709 #else
4710 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4712 return 0;
4714 #endif
4716 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4718 struct mem_cgroup_per_node *pn;
4719 struct mem_cgroup_per_zone *mz;
4720 enum lru_list l;
4721 int zone, tmp = node;
4723 * This routine is called against possible nodes.
4724 * But it's BUG to call kmalloc() against offline node.
4726 * TODO: this routine can waste much memory for nodes which will
4727 * never be onlined. It's better to use memory hotplug callback
4728 * function.
4730 if (!node_state(node, N_NORMAL_MEMORY))
4731 tmp = -1;
4732 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4733 if (!pn)
4734 return 1;
4736 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4737 mz = &pn->zoneinfo[zone];
4738 for_each_lru(l)
4739 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4740 mz->usage_in_excess = 0;
4741 mz->on_tree = false;
4742 mz->mem = memcg;
4744 memcg->info.nodeinfo[node] = pn;
4745 return 0;
4748 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750 kfree(memcg->info.nodeinfo[node]);
4753 static struct mem_cgroup *mem_cgroup_alloc(void)
4755 struct mem_cgroup *mem;
4756 int size = sizeof(struct mem_cgroup);
4758 /* Can be very big if MAX_NUMNODES is very big */
4759 if (size < PAGE_SIZE)
4760 mem = kzalloc(size, GFP_KERNEL);
4761 else
4762 mem = vzalloc(size);
4764 if (!mem)
4765 return NULL;
4767 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4768 if (!mem->stat)
4769 goto out_free;
4770 spin_lock_init(&mem->pcp_counter_lock);
4771 return mem;
4773 out_free:
4774 if (size < PAGE_SIZE)
4775 kfree(mem);
4776 else
4777 vfree(mem);
4778 return NULL;
4782 * At destroying mem_cgroup, references from swap_cgroup can remain.
4783 * (scanning all at force_empty is too costly...)
4785 * Instead of clearing all references at force_empty, we remember
4786 * the number of reference from swap_cgroup and free mem_cgroup when
4787 * it goes down to 0.
4789 * Removal of cgroup itself succeeds regardless of refs from swap.
4792 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4794 int node;
4796 mem_cgroup_remove_from_trees(memcg);
4797 free_css_id(&mem_cgroup_subsys, &memcg->css);
4799 for_each_node(node)
4800 free_mem_cgroup_per_zone_info(memcg, node);
4802 free_percpu(memcg->stat);
4803 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4804 kfree(memcg);
4805 else
4806 vfree(memcg);
4809 static void mem_cgroup_get(struct mem_cgroup *memcg)
4811 atomic_inc(&memcg->refcnt);
4814 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4816 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4817 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4818 __mem_cgroup_free(memcg);
4819 if (parent)
4820 mem_cgroup_put(parent);
4824 static void mem_cgroup_put(struct mem_cgroup *memcg)
4826 __mem_cgroup_put(memcg, 1);
4830 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4832 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4834 if (!memcg->res.parent)
4835 return NULL;
4836 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4838 EXPORT_SYMBOL(parent_mem_cgroup);
4840 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4841 static void __init enable_swap_cgroup(void)
4843 if (!mem_cgroup_disabled() && really_do_swap_account)
4844 do_swap_account = 1;
4846 #else
4847 static void __init enable_swap_cgroup(void)
4850 #endif
4852 static int mem_cgroup_soft_limit_tree_init(void)
4854 struct mem_cgroup_tree_per_node *rtpn;
4855 struct mem_cgroup_tree_per_zone *rtpz;
4856 int tmp, node, zone;
4858 for_each_node(node) {
4859 tmp = node;
4860 if (!node_state(node, N_NORMAL_MEMORY))
4861 tmp = -1;
4862 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4863 if (!rtpn)
4864 goto err_cleanup;
4866 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4868 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4869 rtpz = &rtpn->rb_tree_per_zone[zone];
4870 rtpz->rb_root = RB_ROOT;
4871 spin_lock_init(&rtpz->lock);
4874 return 0;
4876 err_cleanup:
4877 for_each_node(node) {
4878 if (!soft_limit_tree.rb_tree_per_node[node])
4879 break;
4880 kfree(soft_limit_tree.rb_tree_per_node[node]);
4881 soft_limit_tree.rb_tree_per_node[node] = NULL;
4883 return 1;
4887 static struct cgroup_subsys_state * __ref
4888 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4890 struct mem_cgroup *memcg, *parent;
4891 long error = -ENOMEM;
4892 int node;
4894 memcg = mem_cgroup_alloc();
4895 if (!memcg)
4896 return ERR_PTR(error);
4898 for_each_node(node)
4899 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4900 goto free_out;
4902 /* root ? */
4903 if (cont->parent == NULL) {
4904 int cpu;
4905 enable_swap_cgroup();
4906 parent = NULL;
4907 if (mem_cgroup_soft_limit_tree_init())
4908 goto free_out;
4909 root_mem_cgroup = memcg;
4910 for_each_possible_cpu(cpu) {
4911 struct memcg_stock_pcp *stock =
4912 &per_cpu(memcg_stock, cpu);
4913 INIT_WORK(&stock->work, drain_local_stock);
4915 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4916 } else {
4917 parent = mem_cgroup_from_cont(cont->parent);
4918 memcg->use_hierarchy = parent->use_hierarchy;
4919 memcg->oom_kill_disable = parent->oom_kill_disable;
4922 if (parent && parent->use_hierarchy) {
4923 res_counter_init(&memcg->res, &parent->res);
4924 res_counter_init(&memcg->memsw, &parent->memsw);
4926 * We increment refcnt of the parent to ensure that we can
4927 * safely access it on res_counter_charge/uncharge.
4928 * This refcnt will be decremented when freeing this
4929 * mem_cgroup(see mem_cgroup_put).
4931 mem_cgroup_get(parent);
4932 } else {
4933 res_counter_init(&memcg->res, NULL);
4934 res_counter_init(&memcg->memsw, NULL);
4936 memcg->last_scanned_node = MAX_NUMNODES;
4937 INIT_LIST_HEAD(&memcg->oom_notify);
4939 if (parent)
4940 memcg->swappiness = mem_cgroup_swappiness(parent);
4941 atomic_set(&memcg->refcnt, 1);
4942 memcg->move_charge_at_immigrate = 0;
4943 mutex_init(&memcg->thresholds_lock);
4944 return &memcg->css;
4945 free_out:
4946 __mem_cgroup_free(memcg);
4947 return ERR_PTR(error);
4950 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4951 struct cgroup *cont)
4953 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4955 return mem_cgroup_force_empty(memcg, false);
4958 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4959 struct cgroup *cont)
4961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4963 kmem_cgroup_destroy(ss, cont);
4965 mem_cgroup_put(memcg);
4968 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4969 struct cgroup *cont)
4971 int ret;
4973 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4974 ARRAY_SIZE(mem_cgroup_files));
4976 if (!ret)
4977 ret = register_memsw_files(cont, ss);
4979 if (!ret)
4980 ret = register_kmem_files(cont, ss);
4982 return ret;
4985 #ifdef CONFIG_MMU
4986 /* Handlers for move charge at task migration. */
4987 #define PRECHARGE_COUNT_AT_ONCE 256
4988 static int mem_cgroup_do_precharge(unsigned long count)
4990 int ret = 0;
4991 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4992 struct mem_cgroup *memcg = mc.to;
4994 if (mem_cgroup_is_root(memcg)) {
4995 mc.precharge += count;
4996 /* we don't need css_get for root */
4997 return ret;
4999 /* try to charge at once */
5000 if (count > 1) {
5001 struct res_counter *dummy;
5003 * "memcg" cannot be under rmdir() because we've already checked
5004 * by cgroup_lock_live_cgroup() that it is not removed and we
5005 * are still under the same cgroup_mutex. So we can postpone
5006 * css_get().
5008 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5009 goto one_by_one;
5010 if (do_swap_account && res_counter_charge(&memcg->memsw,
5011 PAGE_SIZE * count, &dummy)) {
5012 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5013 goto one_by_one;
5015 mc.precharge += count;
5016 return ret;
5018 one_by_one:
5019 /* fall back to one by one charge */
5020 while (count--) {
5021 if (signal_pending(current)) {
5022 ret = -EINTR;
5023 break;
5025 if (!batch_count--) {
5026 batch_count = PRECHARGE_COUNT_AT_ONCE;
5027 cond_resched();
5029 ret = __mem_cgroup_try_charge(NULL,
5030 GFP_KERNEL, 1, &memcg, false);
5031 if (ret)
5032 /* mem_cgroup_clear_mc() will do uncharge later */
5033 return ret;
5034 mc.precharge++;
5036 return ret;
5040 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5041 * @vma: the vma the pte to be checked belongs
5042 * @addr: the address corresponding to the pte to be checked
5043 * @ptent: the pte to be checked
5044 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046 * Returns
5047 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5048 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5049 * move charge. if @target is not NULL, the page is stored in target->page
5050 * with extra refcnt got(Callers should handle it).
5051 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5052 * target for charge migration. if @target is not NULL, the entry is stored
5053 * in target->ent.
5055 * Called with pte lock held.
5057 union mc_target {
5058 struct page *page;
5059 swp_entry_t ent;
5062 enum mc_target_type {
5063 MC_TARGET_NONE, /* not used */
5064 MC_TARGET_PAGE,
5065 MC_TARGET_SWAP,
5068 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5069 unsigned long addr, pte_t ptent)
5071 struct page *page = vm_normal_page(vma, addr, ptent);
5073 if (!page || !page_mapped(page))
5074 return NULL;
5075 if (PageAnon(page)) {
5076 /* we don't move shared anon */
5077 if (!move_anon() || page_mapcount(page) > 2)
5078 return NULL;
5079 } else if (!move_file())
5080 /* we ignore mapcount for file pages */
5081 return NULL;
5082 if (!get_page_unless_zero(page))
5083 return NULL;
5085 return page;
5088 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5089 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5091 int usage_count;
5092 struct page *page = NULL;
5093 swp_entry_t ent = pte_to_swp_entry(ptent);
5095 if (!move_anon() || non_swap_entry(ent))
5096 return NULL;
5097 usage_count = mem_cgroup_count_swap_user(ent, &page);
5098 if (usage_count > 1) { /* we don't move shared anon */
5099 if (page)
5100 put_page(page);
5101 return NULL;
5103 if (do_swap_account)
5104 entry->val = ent.val;
5106 return page;
5109 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5110 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5112 struct page *page = NULL;
5113 struct inode *inode;
5114 struct address_space *mapping;
5115 pgoff_t pgoff;
5117 if (!vma->vm_file) /* anonymous vma */
5118 return NULL;
5119 if (!move_file())
5120 return NULL;
5122 inode = vma->vm_file->f_path.dentry->d_inode;
5123 mapping = vma->vm_file->f_mapping;
5124 if (pte_none(ptent))
5125 pgoff = linear_page_index(vma, addr);
5126 else /* pte_file(ptent) is true */
5127 pgoff = pte_to_pgoff(ptent);
5129 /* page is moved even if it's not RSS of this task(page-faulted). */
5130 page = find_get_page(mapping, pgoff);
5132 #ifdef CONFIG_SWAP
5133 /* shmem/tmpfs may report page out on swap: account for that too. */
5134 if (radix_tree_exceptional_entry(page)) {
5135 swp_entry_t swap = radix_to_swp_entry(page);
5136 if (do_swap_account)
5137 *entry = swap;
5138 page = find_get_page(&swapper_space, swap.val);
5140 #endif
5141 return page;
5144 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5145 unsigned long addr, pte_t ptent, union mc_target *target)
5147 struct page *page = NULL;
5148 struct page_cgroup *pc;
5149 int ret = 0;
5150 swp_entry_t ent = { .val = 0 };
5152 if (pte_present(ptent))
5153 page = mc_handle_present_pte(vma, addr, ptent);
5154 else if (is_swap_pte(ptent))
5155 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5156 else if (pte_none(ptent) || pte_file(ptent))
5157 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5159 if (!page && !ent.val)
5160 return 0;
5161 if (page) {
5162 pc = lookup_page_cgroup(page);
5164 * Do only loose check w/o page_cgroup lock.
5165 * mem_cgroup_move_account() checks the pc is valid or not under
5166 * the lock.
5168 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5169 ret = MC_TARGET_PAGE;
5170 if (target)
5171 target->page = page;
5173 if (!ret || !target)
5174 put_page(page);
5176 /* There is a swap entry and a page doesn't exist or isn't charged */
5177 if (ent.val && !ret &&
5178 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5179 ret = MC_TARGET_SWAP;
5180 if (target)
5181 target->ent = ent;
5183 return ret;
5186 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5187 unsigned long addr, unsigned long end,
5188 struct mm_walk *walk)
5190 struct vm_area_struct *vma = walk->private;
5191 pte_t *pte;
5192 spinlock_t *ptl;
5194 split_huge_page_pmd(walk->mm, pmd);
5196 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5197 for (; addr != end; pte++, addr += PAGE_SIZE)
5198 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5199 mc.precharge++; /* increment precharge temporarily */
5200 pte_unmap_unlock(pte - 1, ptl);
5201 cond_resched();
5203 return 0;
5206 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5208 unsigned long precharge;
5209 struct vm_area_struct *vma;
5211 down_read(&mm->mmap_sem);
5212 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5213 struct mm_walk mem_cgroup_count_precharge_walk = {
5214 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5215 .mm = mm,
5216 .private = vma,
5218 if (is_vm_hugetlb_page(vma))
5219 continue;
5220 walk_page_range(vma->vm_start, vma->vm_end,
5221 &mem_cgroup_count_precharge_walk);
5223 up_read(&mm->mmap_sem);
5225 precharge = mc.precharge;
5226 mc.precharge = 0;
5228 return precharge;
5231 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5233 unsigned long precharge = mem_cgroup_count_precharge(mm);
5235 VM_BUG_ON(mc.moving_task);
5236 mc.moving_task = current;
5237 return mem_cgroup_do_precharge(precharge);
5240 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5241 static void __mem_cgroup_clear_mc(void)
5243 struct mem_cgroup *from = mc.from;
5244 struct mem_cgroup *to = mc.to;
5246 /* we must uncharge all the leftover precharges from mc.to */
5247 if (mc.precharge) {
5248 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5249 mc.precharge = 0;
5252 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5253 * we must uncharge here.
5255 if (mc.moved_charge) {
5256 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5257 mc.moved_charge = 0;
5259 /* we must fixup refcnts and charges */
5260 if (mc.moved_swap) {
5261 /* uncharge swap account from the old cgroup */
5262 if (!mem_cgroup_is_root(mc.from))
5263 res_counter_uncharge(&mc.from->memsw,
5264 PAGE_SIZE * mc.moved_swap);
5265 __mem_cgroup_put(mc.from, mc.moved_swap);
5267 if (!mem_cgroup_is_root(mc.to)) {
5269 * we charged both to->res and to->memsw, so we should
5270 * uncharge to->res.
5272 res_counter_uncharge(&mc.to->res,
5273 PAGE_SIZE * mc.moved_swap);
5275 /* we've already done mem_cgroup_get(mc.to) */
5276 mc.moved_swap = 0;
5278 memcg_oom_recover(from);
5279 memcg_oom_recover(to);
5280 wake_up_all(&mc.waitq);
5283 static void mem_cgroup_clear_mc(void)
5285 struct mem_cgroup *from = mc.from;
5288 * we must clear moving_task before waking up waiters at the end of
5289 * task migration.
5291 mc.moving_task = NULL;
5292 __mem_cgroup_clear_mc();
5293 spin_lock(&mc.lock);
5294 mc.from = NULL;
5295 mc.to = NULL;
5296 spin_unlock(&mc.lock);
5297 mem_cgroup_end_move(from);
5300 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5301 struct cgroup *cgroup,
5302 struct cgroup_taskset *tset)
5304 struct task_struct *p = cgroup_taskset_first(tset);
5305 int ret = 0;
5306 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5308 if (memcg->move_charge_at_immigrate) {
5309 struct mm_struct *mm;
5310 struct mem_cgroup *from = mem_cgroup_from_task(p);
5312 VM_BUG_ON(from == memcg);
5314 mm = get_task_mm(p);
5315 if (!mm)
5316 return 0;
5317 /* We move charges only when we move a owner of the mm */
5318 if (mm->owner == p) {
5319 VM_BUG_ON(mc.from);
5320 VM_BUG_ON(mc.to);
5321 VM_BUG_ON(mc.precharge);
5322 VM_BUG_ON(mc.moved_charge);
5323 VM_BUG_ON(mc.moved_swap);
5324 mem_cgroup_start_move(from);
5325 spin_lock(&mc.lock);
5326 mc.from = from;
5327 mc.to = memcg;
5328 spin_unlock(&mc.lock);
5329 /* We set mc.moving_task later */
5331 ret = mem_cgroup_precharge_mc(mm);
5332 if (ret)
5333 mem_cgroup_clear_mc();
5335 mmput(mm);
5337 return ret;
5340 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5341 struct cgroup *cgroup,
5342 struct cgroup_taskset *tset)
5344 mem_cgroup_clear_mc();
5347 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5348 unsigned long addr, unsigned long end,
5349 struct mm_walk *walk)
5351 int ret = 0;
5352 struct vm_area_struct *vma = walk->private;
5353 pte_t *pte;
5354 spinlock_t *ptl;
5356 split_huge_page_pmd(walk->mm, pmd);
5357 retry:
5358 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5359 for (; addr != end; addr += PAGE_SIZE) {
5360 pte_t ptent = *(pte++);
5361 union mc_target target;
5362 int type;
5363 struct page *page;
5364 struct page_cgroup *pc;
5365 swp_entry_t ent;
5367 if (!mc.precharge)
5368 break;
5370 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5371 switch (type) {
5372 case MC_TARGET_PAGE:
5373 page = target.page;
5374 if (isolate_lru_page(page))
5375 goto put;
5376 pc = lookup_page_cgroup(page);
5377 if (!mem_cgroup_move_account(page, 1, pc,
5378 mc.from, mc.to, false)) {
5379 mc.precharge--;
5380 /* we uncharge from mc.from later. */
5381 mc.moved_charge++;
5383 putback_lru_page(page);
5384 put: /* is_target_pte_for_mc() gets the page */
5385 put_page(page);
5386 break;
5387 case MC_TARGET_SWAP:
5388 ent = target.ent;
5389 if (!mem_cgroup_move_swap_account(ent,
5390 mc.from, mc.to, false)) {
5391 mc.precharge--;
5392 /* we fixup refcnts and charges later. */
5393 mc.moved_swap++;
5395 break;
5396 default:
5397 break;
5400 pte_unmap_unlock(pte - 1, ptl);
5401 cond_resched();
5403 if (addr != end) {
5405 * We have consumed all precharges we got in can_attach().
5406 * We try charge one by one, but don't do any additional
5407 * charges to mc.to if we have failed in charge once in attach()
5408 * phase.
5410 ret = mem_cgroup_do_precharge(1);
5411 if (!ret)
5412 goto retry;
5415 return ret;
5418 static void mem_cgroup_move_charge(struct mm_struct *mm)
5420 struct vm_area_struct *vma;
5422 lru_add_drain_all();
5423 retry:
5424 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5426 * Someone who are holding the mmap_sem might be waiting in
5427 * waitq. So we cancel all extra charges, wake up all waiters,
5428 * and retry. Because we cancel precharges, we might not be able
5429 * to move enough charges, but moving charge is a best-effort
5430 * feature anyway, so it wouldn't be a big problem.
5432 __mem_cgroup_clear_mc();
5433 cond_resched();
5434 goto retry;
5436 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5437 int ret;
5438 struct mm_walk mem_cgroup_move_charge_walk = {
5439 .pmd_entry = mem_cgroup_move_charge_pte_range,
5440 .mm = mm,
5441 .private = vma,
5443 if (is_vm_hugetlb_page(vma))
5444 continue;
5445 ret = walk_page_range(vma->vm_start, vma->vm_end,
5446 &mem_cgroup_move_charge_walk);
5447 if (ret)
5449 * means we have consumed all precharges and failed in
5450 * doing additional charge. Just abandon here.
5452 break;
5454 up_read(&mm->mmap_sem);
5457 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5458 struct cgroup *cont,
5459 struct cgroup_taskset *tset)
5461 struct task_struct *p = cgroup_taskset_first(tset);
5462 struct mm_struct *mm = get_task_mm(p);
5464 if (mm) {
5465 if (mc.to)
5466 mem_cgroup_move_charge(mm);
5467 put_swap_token(mm);
5468 mmput(mm);
5470 if (mc.to)
5471 mem_cgroup_clear_mc();
5473 #else /* !CONFIG_MMU */
5474 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5475 struct cgroup *cgroup,
5476 struct cgroup_taskset *tset)
5478 return 0;
5480 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5481 struct cgroup *cgroup,
5482 struct cgroup_taskset *tset)
5485 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5486 struct cgroup *cont,
5487 struct cgroup_taskset *tset)
5490 #endif
5492 struct cgroup_subsys mem_cgroup_subsys = {
5493 .name = "memory",
5494 .subsys_id = mem_cgroup_subsys_id,
5495 .create = mem_cgroup_create,
5496 .pre_destroy = mem_cgroup_pre_destroy,
5497 .destroy = mem_cgroup_destroy,
5498 .populate = mem_cgroup_populate,
5499 .can_attach = mem_cgroup_can_attach,
5500 .cancel_attach = mem_cgroup_cancel_attach,
5501 .attach = mem_cgroup_move_task,
5502 .early_init = 0,
5503 .use_id = 1,
5506 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5507 static int __init enable_swap_account(char *s)
5509 /* consider enabled if no parameter or 1 is given */
5510 if (!strcmp(s, "1"))
5511 really_do_swap_account = 1;
5512 else if (!strcmp(s, "0"))
5513 really_do_swap_account = 0;
5514 return 1;
5516 __setup("swapaccount=", enable_swap_account);
5518 #endif