Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6.git] / fs / f2fs / segment.h
blob269f690b4e2492c65bf1a59e9d10302d87725a4e
1 /*
2 * fs/f2fs/segment.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23 #define IS_DATASEG(t) \
24 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
25 (t == CURSEG_WARM_DATA))
27 #define IS_NODESEG(t) \
28 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
29 (t == CURSEG_WARM_NODE))
31 #define IS_CURSEG(sbi, seg) \
32 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
37 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39 #define IS_CURSEC(sbi, secno) \
40 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
47 sbi->segs_per_sec) || \
48 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
49 sbi->segs_per_sec) || \
50 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
51 sbi->segs_per_sec)) \
53 #define START_BLOCK(sbi, segno) \
54 (SM_I(sbi)->seg0_blkaddr + \
55 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
56 #define NEXT_FREE_BLKADDR(sbi, curseg) \
57 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
59 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
61 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
62 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
63 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
64 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
65 #define GET_SEGNO(sbi, blk_addr) \
66 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
67 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
68 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
69 #define GET_SECNO(sbi, segno) \
70 ((segno) / sbi->segs_per_sec)
71 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
72 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
74 #define GET_SUM_BLOCK(sbi, segno) \
75 ((sbi->sm_info->ssa_blkaddr) + segno)
77 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
78 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
80 #define SIT_ENTRY_OFFSET(sit_i, segno) \
81 (segno % sit_i->sents_per_block)
82 #define SIT_BLOCK_OFFSET(sit_i, segno) \
83 (segno / SIT_ENTRY_PER_BLOCK)
84 #define START_SEGNO(sit_i, segno) \
85 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr) \
87 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi) (sbi->total_sections)
91 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
92 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93 #define SECTOR_TO_BLOCK(sbi, sectors) \
94 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
95 #define MAX_BIO_BLOCKS(max_hw_blocks) \
96 (min((int)max_hw_blocks, BIO_MAX_PAGES))
98 /* during checkpoint, bio_private is used to synchronize the last bio */
99 struct bio_private {
100 struct f2fs_sb_info *sbi;
101 bool is_sync;
102 void *wait;
106 * indicate a block allocation direction: RIGHT and LEFT.
107 * RIGHT means allocating new sections towards the end of volume.
108 * LEFT means the opposite direction.
110 enum {
111 ALLOC_RIGHT = 0,
112 ALLOC_LEFT
116 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
117 * LFS writes data sequentially with cleaning operations.
118 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120 enum {
121 LFS = 0,
126 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
127 * GC_CB is based on cost-benefit algorithm.
128 * GC_GREEDY is based on greedy algorithm.
130 enum {
131 GC_CB = 0,
132 GC_GREEDY
136 * BG_GC means the background cleaning job.
137 * FG_GC means the on-demand cleaning job.
139 enum {
140 BG_GC = 0,
141 FG_GC
144 /* for a function parameter to select a victim segment */
145 struct victim_sel_policy {
146 int alloc_mode; /* LFS or SSR */
147 int gc_mode; /* GC_CB or GC_GREEDY */
148 unsigned long *dirty_segmap; /* dirty segment bitmap */
149 unsigned int max_search; /* maximum # of segments to search */
150 unsigned int offset; /* last scanned bitmap offset */
151 unsigned int ofs_unit; /* bitmap search unit */
152 unsigned int min_cost; /* minimum cost */
153 unsigned int min_segno; /* segment # having min. cost */
156 struct seg_entry {
157 unsigned short valid_blocks; /* # of valid blocks */
158 unsigned char *cur_valid_map; /* validity bitmap of blocks */
160 * # of valid blocks and the validity bitmap stored in the the last
161 * checkpoint pack. This information is used by the SSR mode.
163 unsigned short ckpt_valid_blocks;
164 unsigned char *ckpt_valid_map;
165 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
166 unsigned long long mtime; /* modification time of the segment */
169 struct sec_entry {
170 unsigned int valid_blocks; /* # of valid blocks in a section */
173 struct segment_allocation {
174 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
177 struct sit_info {
178 const struct segment_allocation *s_ops;
180 block_t sit_base_addr; /* start block address of SIT area */
181 block_t sit_blocks; /* # of blocks used by SIT area */
182 block_t written_valid_blocks; /* # of valid blocks in main area */
183 char *sit_bitmap; /* SIT bitmap pointer */
184 unsigned int bitmap_size; /* SIT bitmap size */
186 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
187 unsigned int dirty_sentries; /* # of dirty sentries */
188 unsigned int sents_per_block; /* # of SIT entries per block */
189 struct mutex sentry_lock; /* to protect SIT cache */
190 struct seg_entry *sentries; /* SIT segment-level cache */
191 struct sec_entry *sec_entries; /* SIT section-level cache */
193 /* for cost-benefit algorithm in cleaning procedure */
194 unsigned long long elapsed_time; /* elapsed time after mount */
195 unsigned long long mounted_time; /* mount time */
196 unsigned long long min_mtime; /* min. modification time */
197 unsigned long long max_mtime; /* max. modification time */
200 struct free_segmap_info {
201 unsigned int start_segno; /* start segment number logically */
202 unsigned int free_segments; /* # of free segments */
203 unsigned int free_sections; /* # of free sections */
204 rwlock_t segmap_lock; /* free segmap lock */
205 unsigned long *free_segmap; /* free segment bitmap */
206 unsigned long *free_secmap; /* free section bitmap */
209 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
210 enum dirty_type {
211 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
212 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
213 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
214 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
215 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
216 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
217 DIRTY, /* to count # of dirty segments */
218 PRE, /* to count # of entirely obsolete segments */
219 NR_DIRTY_TYPE
222 struct dirty_seglist_info {
223 const struct victim_selection *v_ops; /* victim selction operation */
224 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
225 struct mutex seglist_lock; /* lock for segment bitmaps */
226 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
227 unsigned long *victim_secmap; /* background GC victims */
230 /* victim selection function for cleaning and SSR */
231 struct victim_selection {
232 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
233 int, int, char);
236 /* for active log information */
237 struct curseg_info {
238 struct mutex curseg_mutex; /* lock for consistency */
239 struct f2fs_summary_block *sum_blk; /* cached summary block */
240 unsigned char alloc_type; /* current allocation type */
241 unsigned int segno; /* current segment number */
242 unsigned short next_blkoff; /* next block offset to write */
243 unsigned int zone; /* current zone number */
244 unsigned int next_segno; /* preallocated segment */
248 * inline functions
250 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
252 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
255 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
256 unsigned int segno)
258 struct sit_info *sit_i = SIT_I(sbi);
259 return &sit_i->sentries[segno];
262 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
263 unsigned int segno)
265 struct sit_info *sit_i = SIT_I(sbi);
266 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
269 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
270 unsigned int segno, int section)
273 * In order to get # of valid blocks in a section instantly from many
274 * segments, f2fs manages two counting structures separately.
276 if (section > 1)
277 return get_sec_entry(sbi, segno)->valid_blocks;
278 else
279 return get_seg_entry(sbi, segno)->valid_blocks;
282 static inline void seg_info_from_raw_sit(struct seg_entry *se,
283 struct f2fs_sit_entry *rs)
285 se->valid_blocks = GET_SIT_VBLOCKS(rs);
286 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
287 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
288 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
289 se->type = GET_SIT_TYPE(rs);
290 se->mtime = le64_to_cpu(rs->mtime);
293 static inline void seg_info_to_raw_sit(struct seg_entry *se,
294 struct f2fs_sit_entry *rs)
296 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
297 se->valid_blocks;
298 rs->vblocks = cpu_to_le16(raw_vblocks);
299 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
300 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 se->ckpt_valid_blocks = se->valid_blocks;
302 rs->mtime = cpu_to_le64(se->mtime);
305 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
306 unsigned int max, unsigned int segno)
308 unsigned int ret;
309 read_lock(&free_i->segmap_lock);
310 ret = find_next_bit(free_i->free_segmap, max, segno);
311 read_unlock(&free_i->segmap_lock);
312 return ret;
315 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
317 struct free_segmap_info *free_i = FREE_I(sbi);
318 unsigned int secno = segno / sbi->segs_per_sec;
319 unsigned int start_segno = secno * sbi->segs_per_sec;
320 unsigned int next;
322 write_lock(&free_i->segmap_lock);
323 clear_bit(segno, free_i->free_segmap);
324 free_i->free_segments++;
326 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
327 if (next >= start_segno + sbi->segs_per_sec) {
328 clear_bit(secno, free_i->free_secmap);
329 free_i->free_sections++;
331 write_unlock(&free_i->segmap_lock);
334 static inline void __set_inuse(struct f2fs_sb_info *sbi,
335 unsigned int segno)
337 struct free_segmap_info *free_i = FREE_I(sbi);
338 unsigned int secno = segno / sbi->segs_per_sec;
339 set_bit(segno, free_i->free_segmap);
340 free_i->free_segments--;
341 if (!test_and_set_bit(secno, free_i->free_secmap))
342 free_i->free_sections--;
345 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
346 unsigned int segno)
348 struct free_segmap_info *free_i = FREE_I(sbi);
349 unsigned int secno = segno / sbi->segs_per_sec;
350 unsigned int start_segno = secno * sbi->segs_per_sec;
351 unsigned int next;
353 write_lock(&free_i->segmap_lock);
354 if (test_and_clear_bit(segno, free_i->free_segmap)) {
355 free_i->free_segments++;
357 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
358 start_segno);
359 if (next >= start_segno + sbi->segs_per_sec) {
360 if (test_and_clear_bit(secno, free_i->free_secmap))
361 free_i->free_sections++;
364 write_unlock(&free_i->segmap_lock);
367 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
368 unsigned int segno)
370 struct free_segmap_info *free_i = FREE_I(sbi);
371 unsigned int secno = segno / sbi->segs_per_sec;
372 write_lock(&free_i->segmap_lock);
373 if (!test_and_set_bit(segno, free_i->free_segmap)) {
374 free_i->free_segments--;
375 if (!test_and_set_bit(secno, free_i->free_secmap))
376 free_i->free_sections--;
378 write_unlock(&free_i->segmap_lock);
381 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
382 void *dst_addr)
384 struct sit_info *sit_i = SIT_I(sbi);
385 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
388 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
390 struct sit_info *sit_i = SIT_I(sbi);
391 block_t vblocks;
393 mutex_lock(&sit_i->sentry_lock);
394 vblocks = sit_i->written_valid_blocks;
395 mutex_unlock(&sit_i->sentry_lock);
397 return vblocks;
400 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
402 struct free_segmap_info *free_i = FREE_I(sbi);
403 unsigned int free_segs;
405 read_lock(&free_i->segmap_lock);
406 free_segs = free_i->free_segments;
407 read_unlock(&free_i->segmap_lock);
409 return free_segs;
412 static inline int reserved_segments(struct f2fs_sb_info *sbi)
414 return SM_I(sbi)->reserved_segments;
417 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
419 struct free_segmap_info *free_i = FREE_I(sbi);
420 unsigned int free_secs;
422 read_lock(&free_i->segmap_lock);
423 free_secs = free_i->free_sections;
424 read_unlock(&free_i->segmap_lock);
426 return free_secs;
429 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
431 return DIRTY_I(sbi)->nr_dirty[PRE];
434 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
436 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
437 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
438 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
439 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
440 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
441 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
444 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
446 return SM_I(sbi)->ovp_segments;
449 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
451 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
454 static inline int reserved_sections(struct f2fs_sb_info *sbi)
456 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
459 static inline bool need_SSR(struct f2fs_sb_info *sbi)
461 return ((prefree_segments(sbi) / sbi->segs_per_sec)
462 + free_sections(sbi) < overprovision_sections(sbi));
465 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
467 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
468 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
470 if (sbi->por_doing)
471 return false;
473 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
474 reserved_sections(sbi)));
477 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
479 return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
482 static inline int utilization(struct f2fs_sb_info *sbi)
484 return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
488 * Sometimes f2fs may be better to drop out-of-place update policy.
489 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
490 * data in the original place likewise other traditional file systems.
491 * But, currently set 100 in percentage, which means it is disabled.
492 * See below need_inplace_update().
494 #define MIN_IPU_UTIL 100
495 static inline bool need_inplace_update(struct inode *inode)
497 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
498 if (S_ISDIR(inode->i_mode))
499 return false;
500 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
501 return true;
502 return false;
505 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
506 int type)
508 struct curseg_info *curseg = CURSEG_I(sbi, type);
509 return curseg->segno;
512 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
513 int type)
515 struct curseg_info *curseg = CURSEG_I(sbi, type);
516 return curseg->alloc_type;
519 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
521 struct curseg_info *curseg = CURSEG_I(sbi, type);
522 return curseg->next_blkoff;
525 #ifdef CONFIG_F2FS_CHECK_FS
526 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
528 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
529 BUG_ON(segno > end_segno);
532 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
534 struct f2fs_sm_info *sm_info = SM_I(sbi);
535 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
536 block_t start_addr = sm_info->seg0_blkaddr;
537 block_t end_addr = start_addr + total_blks - 1;
538 BUG_ON(blk_addr < start_addr);
539 BUG_ON(blk_addr > end_addr);
543 * Summary block is always treated as invalid block
545 static inline void check_block_count(struct f2fs_sb_info *sbi,
546 int segno, struct f2fs_sit_entry *raw_sit)
548 struct f2fs_sm_info *sm_info = SM_I(sbi);
549 unsigned int end_segno = sm_info->segment_count - 1;
550 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
551 int valid_blocks = 0;
552 int cur_pos = 0, next_pos;
554 /* check segment usage */
555 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
557 /* check boundary of a given segment number */
558 BUG_ON(segno > end_segno);
560 /* check bitmap with valid block count */
561 do {
562 if (is_valid) {
563 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
564 sbi->blocks_per_seg,
565 cur_pos);
566 valid_blocks += next_pos - cur_pos;
567 } else
568 next_pos = find_next_bit_le(&raw_sit->valid_map,
569 sbi->blocks_per_seg,
570 cur_pos);
571 cur_pos = next_pos;
572 is_valid = !is_valid;
573 } while (cur_pos < sbi->blocks_per_seg);
574 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
576 #else
577 #define check_seg_range(sbi, segno)
578 #define verify_block_addr(sbi, blk_addr)
579 #define check_block_count(sbi, segno, raw_sit)
580 #endif
582 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
583 unsigned int start)
585 struct sit_info *sit_i = SIT_I(sbi);
586 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
587 block_t blk_addr = sit_i->sit_base_addr + offset;
589 check_seg_range(sbi, start);
591 /* calculate sit block address */
592 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
593 blk_addr += sit_i->sit_blocks;
595 return blk_addr;
598 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
599 pgoff_t block_addr)
601 struct sit_info *sit_i = SIT_I(sbi);
602 block_addr -= sit_i->sit_base_addr;
603 if (block_addr < sit_i->sit_blocks)
604 block_addr += sit_i->sit_blocks;
605 else
606 block_addr -= sit_i->sit_blocks;
608 return block_addr + sit_i->sit_base_addr;
611 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
613 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
615 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
616 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
617 else
618 f2fs_set_bit(block_off, sit_i->sit_bitmap);
621 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
623 struct sit_info *sit_i = SIT_I(sbi);
624 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
625 sit_i->mounted_time;
628 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
629 unsigned int ofs_in_node, unsigned char version)
631 sum->nid = cpu_to_le32(nid);
632 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
633 sum->version = version;
636 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
638 return __start_cp_addr(sbi) +
639 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
642 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
644 return __start_cp_addr(sbi) +
645 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
646 - (base + 1) + type;
649 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
651 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
652 return true;
653 return false;
656 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
658 struct block_device *bdev = sbi->sb->s_bdev;
659 struct request_queue *q = bdev_get_queue(bdev);
660 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));