Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6.git] / fs / f2fs / node.h
blob3496bb3e15dc37b7b6806dffc08a00abf5921766
1 /*
2 * fs/f2fs/node.h
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
20 /* maximum # of free node ids to produce during build_free_nids */
21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
26 /* maximum cached nat entries to manage memory footprint */
27 #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
29 /* vector size for gang look-up from nat cache that consists of radix tree */
30 #define NATVEC_SIZE 64
32 /* return value for read_node_page */
33 #define LOCKED_PAGE 1
36 * For node information
38 struct node_info {
39 nid_t nid; /* node id */
40 nid_t ino; /* inode number of the node's owner */
41 block_t blk_addr; /* block address of the node */
42 unsigned char version; /* version of the node */
45 struct nat_entry {
46 struct list_head list; /* for clean or dirty nat list */
47 bool checkpointed; /* whether it is checkpointed or not */
48 struct node_info ni; /* in-memory node information */
51 #define nat_get_nid(nat) (nat->ni.nid)
52 #define nat_set_nid(nat, n) (nat->ni.nid = n)
53 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
54 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
55 #define nat_get_ino(nat) (nat->ni.ino)
56 #define nat_set_ino(nat, i) (nat->ni.ino = i)
57 #define nat_get_version(nat) (nat->ni.version)
58 #define nat_set_version(nat, v) (nat->ni.version = v)
60 #define __set_nat_cache_dirty(nm_i, ne) \
61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
62 #define __clear_nat_cache_dirty(nm_i, ne) \
63 list_move_tail(&ne->list, &nm_i->nat_entries);
64 #define inc_node_version(version) (++version)
66 static inline void node_info_from_raw_nat(struct node_info *ni,
67 struct f2fs_nat_entry *raw_ne)
69 ni->ino = le32_to_cpu(raw_ne->ino);
70 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
71 ni->version = raw_ne->version;
75 * For free nid mangement
77 enum nid_state {
78 NID_NEW, /* newly added to free nid list */
79 NID_ALLOC /* it is allocated */
82 struct free_nid {
83 struct list_head list; /* for free node id list */
84 nid_t nid; /* node id */
85 int state; /* in use or not: NID_NEW or NID_ALLOC */
88 static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct free_nid *fnid;
93 if (nm_i->fcnt <= 0)
94 return -1;
95 spin_lock(&nm_i->free_nid_list_lock);
96 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
97 *nid = fnid->nid;
98 spin_unlock(&nm_i->free_nid_list_lock);
99 return 0;
103 * inline functions
105 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
107 struct f2fs_nm_info *nm_i = NM_I(sbi);
108 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
111 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
113 struct f2fs_nm_info *nm_i = NM_I(sbi);
114 pgoff_t block_off;
115 pgoff_t block_addr;
116 int seg_off;
118 block_off = NAT_BLOCK_OFFSET(start);
119 seg_off = block_off >> sbi->log_blocks_per_seg;
121 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
122 (seg_off << sbi->log_blocks_per_seg << 1) +
123 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
125 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
126 block_addr += sbi->blocks_per_seg;
128 return block_addr;
131 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
132 pgoff_t block_addr)
134 struct f2fs_nm_info *nm_i = NM_I(sbi);
136 block_addr -= nm_i->nat_blkaddr;
137 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
138 block_addr -= sbi->blocks_per_seg;
139 else
140 block_addr += sbi->blocks_per_seg;
142 return block_addr + nm_i->nat_blkaddr;
145 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
147 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
149 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
150 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
151 else
152 f2fs_set_bit(block_off, nm_i->nat_bitmap);
155 static inline void fill_node_footer(struct page *page, nid_t nid,
156 nid_t ino, unsigned int ofs, bool reset)
158 struct f2fs_node *rn = F2FS_NODE(page);
159 if (reset)
160 memset(rn, 0, sizeof(*rn));
161 rn->footer.nid = cpu_to_le32(nid);
162 rn->footer.ino = cpu_to_le32(ino);
163 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
166 static inline void copy_node_footer(struct page *dst, struct page *src)
168 struct f2fs_node *src_rn = F2FS_NODE(src);
169 struct f2fs_node *dst_rn = F2FS_NODE(dst);
170 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
173 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
175 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
176 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
177 struct f2fs_node *rn = F2FS_NODE(page);
179 rn->footer.cp_ver = ckpt->checkpoint_ver;
180 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
183 static inline nid_t ino_of_node(struct page *node_page)
185 struct f2fs_node *rn = F2FS_NODE(node_page);
186 return le32_to_cpu(rn->footer.ino);
189 static inline nid_t nid_of_node(struct page *node_page)
191 struct f2fs_node *rn = F2FS_NODE(node_page);
192 return le32_to_cpu(rn->footer.nid);
195 static inline unsigned int ofs_of_node(struct page *node_page)
197 struct f2fs_node *rn = F2FS_NODE(node_page);
198 unsigned flag = le32_to_cpu(rn->footer.flag);
199 return flag >> OFFSET_BIT_SHIFT;
202 static inline unsigned long long cpver_of_node(struct page *node_page)
204 struct f2fs_node *rn = F2FS_NODE(node_page);
205 return le64_to_cpu(rn->footer.cp_ver);
208 static inline block_t next_blkaddr_of_node(struct page *node_page)
210 struct f2fs_node *rn = F2FS_NODE(node_page);
211 return le32_to_cpu(rn->footer.next_blkaddr);
215 * f2fs assigns the following node offsets described as (num).
216 * N = NIDS_PER_BLOCK
218 * Inode block (0)
219 * |- direct node (1)
220 * |- direct node (2)
221 * |- indirect node (3)
222 * | `- direct node (4 => 4 + N - 1)
223 * |- indirect node (4 + N)
224 * | `- direct node (5 + N => 5 + 2N - 1)
225 * `- double indirect node (5 + 2N)
226 * `- indirect node (6 + 2N)
227 * `- direct node (x(N + 1))
229 static inline bool IS_DNODE(struct page *node_page)
231 unsigned int ofs = ofs_of_node(node_page);
233 if (ofs == XATTR_NODE_OFFSET)
234 return false;
236 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
237 ofs == 5 + 2 * NIDS_PER_BLOCK)
238 return false;
239 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
240 ofs -= 6 + 2 * NIDS_PER_BLOCK;
241 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
242 return false;
244 return true;
247 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
249 struct f2fs_node *rn = F2FS_NODE(p);
251 wait_on_page_writeback(p);
253 if (i)
254 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
255 else
256 rn->in.nid[off] = cpu_to_le32(nid);
257 set_page_dirty(p);
260 static inline nid_t get_nid(struct page *p, int off, bool i)
262 struct f2fs_node *rn = F2FS_NODE(p);
264 if (i)
265 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
266 return le32_to_cpu(rn->in.nid[off]);
270 * Coldness identification:
271 * - Mark cold files in f2fs_inode_info
272 * - Mark cold node blocks in their node footer
273 * - Mark cold data pages in page cache
275 static inline int is_file(struct inode *inode, int type)
277 return F2FS_I(inode)->i_advise & type;
280 static inline void set_file(struct inode *inode, int type)
282 F2FS_I(inode)->i_advise |= type;
285 static inline void clear_file(struct inode *inode, int type)
287 F2FS_I(inode)->i_advise &= ~type;
290 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
291 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
292 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
293 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
294 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
295 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
297 static inline int is_cold_data(struct page *page)
299 return PageChecked(page);
302 static inline void set_cold_data(struct page *page)
304 SetPageChecked(page);
307 static inline void clear_cold_data(struct page *page)
309 ClearPageChecked(page);
312 static inline int is_node(struct page *page, int type)
314 struct f2fs_node *rn = F2FS_NODE(page);
315 return le32_to_cpu(rn->footer.flag) & (1 << type);
318 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
319 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
320 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
322 static inline void set_cold_node(struct inode *inode, struct page *page)
324 struct f2fs_node *rn = F2FS_NODE(page);
325 unsigned int flag = le32_to_cpu(rn->footer.flag);
327 if (S_ISDIR(inode->i_mode))
328 flag &= ~(0x1 << COLD_BIT_SHIFT);
329 else
330 flag |= (0x1 << COLD_BIT_SHIFT);
331 rn->footer.flag = cpu_to_le32(flag);
334 static inline void set_mark(struct page *page, int mark, int type)
336 struct f2fs_node *rn = F2FS_NODE(page);
337 unsigned int flag = le32_to_cpu(rn->footer.flag);
338 if (mark)
339 flag |= (0x1 << type);
340 else
341 flag &= ~(0x1 << type);
342 rn->footer.flag = cpu_to_le32(flag);
344 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
345 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)