blkcg: make request_queue bypassing on allocation
[linux-2.6.git] / block / blk-core.c
blob3b02ba351f8cef5b93f12a06edcd174595e648a2
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
36 #include "blk.h"
37 #include "blk-cgroup.h"
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 DEFINE_IDA(blk_queue_ida);
46 * For the allocated request tables
48 static struct kmem_cache *request_cachep;
51 * For queue allocation
53 struct kmem_cache *blk_requestq_cachep;
56 * Controlling structure to kblockd
58 static struct workqueue_struct *kblockd_workqueue;
60 static void drive_stat_acct(struct request *rq, int new_io)
62 struct hd_struct *part;
63 int rw = rq_data_dir(rq);
64 int cpu;
66 if (!blk_do_io_stat(rq))
67 return;
69 cpu = part_stat_lock();
71 if (!new_io) {
72 part = rq->part;
73 part_stat_inc(cpu, part, merges[rw]);
74 } else {
75 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
76 if (!hd_struct_try_get(part)) {
78 * The partition is already being removed,
79 * the request will be accounted on the disk only
81 * We take a reference on disk->part0 although that
82 * partition will never be deleted, so we can treat
83 * it as any other partition.
85 part = &rq->rq_disk->part0;
86 hd_struct_get(part);
88 part_round_stats(cpu, part);
89 part_inc_in_flight(part, rw);
90 rq->part = part;
93 part_stat_unlock();
96 void blk_queue_congestion_threshold(struct request_queue *q)
98 int nr;
100 nr = q->nr_requests - (q->nr_requests / 8) + 1;
101 if (nr > q->nr_requests)
102 nr = q->nr_requests;
103 q->nr_congestion_on = nr;
105 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
106 if (nr < 1)
107 nr = 1;
108 q->nr_congestion_off = nr;
112 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * @bdev: device
115 * Locates the passed device's request queue and returns the address of its
116 * backing_dev_info
118 * Will return NULL if the request queue cannot be located.
120 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 struct backing_dev_info *ret = NULL;
123 struct request_queue *q = bdev_get_queue(bdev);
125 if (q)
126 ret = &q->backing_dev_info;
127 return ret;
129 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 void blk_rq_init(struct request_queue *q, struct request *rq)
133 memset(rq, 0, sizeof(*rq));
135 INIT_LIST_HEAD(&rq->queuelist);
136 INIT_LIST_HEAD(&rq->timeout_list);
137 rq->cpu = -1;
138 rq->q = q;
139 rq->__sector = (sector_t) -1;
140 INIT_HLIST_NODE(&rq->hash);
141 RB_CLEAR_NODE(&rq->rb_node);
142 rq->cmd = rq->__cmd;
143 rq->cmd_len = BLK_MAX_CDB;
144 rq->tag = -1;
145 rq->ref_count = 1;
146 rq->start_time = jiffies;
147 set_start_time_ns(rq);
148 rq->part = NULL;
150 EXPORT_SYMBOL(blk_rq_init);
152 static void req_bio_endio(struct request *rq, struct bio *bio,
153 unsigned int nbytes, int error)
155 if (error)
156 clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 error = -EIO;
160 if (unlikely(nbytes > bio->bi_size)) {
161 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 __func__, nbytes, bio->bi_size);
163 nbytes = bio->bi_size;
166 if (unlikely(rq->cmd_flags & REQ_QUIET))
167 set_bit(BIO_QUIET, &bio->bi_flags);
169 bio->bi_size -= nbytes;
170 bio->bi_sector += (nbytes >> 9);
172 if (bio_integrity(bio))
173 bio_integrity_advance(bio, nbytes);
175 /* don't actually finish bio if it's part of flush sequence */
176 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
177 bio_endio(bio, error);
180 void blk_dump_rq_flags(struct request *rq, char *msg)
182 int bit;
184 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
185 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
186 rq->cmd_flags);
188 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
189 (unsigned long long)blk_rq_pos(rq),
190 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
192 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
195 printk(KERN_INFO " cdb: ");
196 for (bit = 0; bit < BLK_MAX_CDB; bit++)
197 printk("%02x ", rq->cmd[bit]);
198 printk("\n");
201 EXPORT_SYMBOL(blk_dump_rq_flags);
203 static void blk_delay_work(struct work_struct *work)
205 struct request_queue *q;
207 q = container_of(work, struct request_queue, delay_work.work);
208 spin_lock_irq(q->queue_lock);
209 __blk_run_queue(q);
210 spin_unlock_irq(q->queue_lock);
214 * blk_delay_queue - restart queueing after defined interval
215 * @q: The &struct request_queue in question
216 * @msecs: Delay in msecs
218 * Description:
219 * Sometimes queueing needs to be postponed for a little while, to allow
220 * resources to come back. This function will make sure that queueing is
221 * restarted around the specified time.
223 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 queue_delayed_work(kblockd_workqueue, &q->delay_work,
226 msecs_to_jiffies(msecs));
228 EXPORT_SYMBOL(blk_delay_queue);
231 * blk_start_queue - restart a previously stopped queue
232 * @q: The &struct request_queue in question
234 * Description:
235 * blk_start_queue() will clear the stop flag on the queue, and call
236 * the request_fn for the queue if it was in a stopped state when
237 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 void blk_start_queue(struct request_queue *q)
241 WARN_ON(!irqs_disabled());
243 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
244 __blk_run_queue(q);
246 EXPORT_SYMBOL(blk_start_queue);
249 * blk_stop_queue - stop a queue
250 * @q: The &struct request_queue in question
252 * Description:
253 * The Linux block layer assumes that a block driver will consume all
254 * entries on the request queue when the request_fn strategy is called.
255 * Often this will not happen, because of hardware limitations (queue
256 * depth settings). If a device driver gets a 'queue full' response,
257 * or if it simply chooses not to queue more I/O at one point, it can
258 * call this function to prevent the request_fn from being called until
259 * the driver has signalled it's ready to go again. This happens by calling
260 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 void blk_stop_queue(struct request_queue *q)
264 __cancel_delayed_work(&q->delay_work);
265 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 EXPORT_SYMBOL(blk_stop_queue);
270 * blk_sync_queue - cancel any pending callbacks on a queue
271 * @q: the queue
273 * Description:
274 * The block layer may perform asynchronous callback activity
275 * on a queue, such as calling the unplug function after a timeout.
276 * A block device may call blk_sync_queue to ensure that any
277 * such activity is cancelled, thus allowing it to release resources
278 * that the callbacks might use. The caller must already have made sure
279 * that its ->make_request_fn will not re-add plugging prior to calling
280 * this function.
282 * This function does not cancel any asynchronous activity arising
283 * out of elevator or throttling code. That would require elevaotor_exit()
284 * and blkcg_exit_queue() to be called with queue lock initialized.
287 void blk_sync_queue(struct request_queue *q)
289 del_timer_sync(&q->timeout);
290 cancel_delayed_work_sync(&q->delay_work);
292 EXPORT_SYMBOL(blk_sync_queue);
295 * __blk_run_queue - run a single device queue
296 * @q: The queue to run
298 * Description:
299 * See @blk_run_queue. This variant must be called with the queue lock
300 * held and interrupts disabled.
302 void __blk_run_queue(struct request_queue *q)
304 if (unlikely(blk_queue_stopped(q)))
305 return;
307 q->request_fn(q);
309 EXPORT_SYMBOL(__blk_run_queue);
312 * blk_run_queue_async - run a single device queue in workqueue context
313 * @q: The queue to run
315 * Description:
316 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 * of us.
319 void blk_run_queue_async(struct request_queue *q)
321 if (likely(!blk_queue_stopped(q))) {
322 __cancel_delayed_work(&q->delay_work);
323 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
326 EXPORT_SYMBOL(blk_run_queue_async);
329 * blk_run_queue - run a single device queue
330 * @q: The queue to run
332 * Description:
333 * Invoke request handling on this queue, if it has pending work to do.
334 * May be used to restart queueing when a request has completed.
336 void blk_run_queue(struct request_queue *q)
338 unsigned long flags;
340 spin_lock_irqsave(q->queue_lock, flags);
341 __blk_run_queue(q);
342 spin_unlock_irqrestore(q->queue_lock, flags);
344 EXPORT_SYMBOL(blk_run_queue);
346 void blk_put_queue(struct request_queue *q)
348 kobject_put(&q->kobj);
350 EXPORT_SYMBOL(blk_put_queue);
353 * blk_drain_queue - drain requests from request_queue
354 * @q: queue to drain
355 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357 * Drain requests from @q. If @drain_all is set, all requests are drained.
358 * If not, only ELVPRIV requests are drained. The caller is responsible
359 * for ensuring that no new requests which need to be drained are queued.
361 void blk_drain_queue(struct request_queue *q, bool drain_all)
363 while (true) {
364 bool drain = false;
365 int i;
367 spin_lock_irq(q->queue_lock);
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
373 if (q->elevator)
374 elv_drain_elevator(q);
376 blkcg_drain_queue(q);
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
388 drain |= q->rq.elvpriv;
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->rq.count[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
404 spin_unlock_irq(q->queue_lock);
406 if (!drain)
407 break;
408 msleep(10);
413 * blk_queue_bypass_start - enter queue bypass mode
414 * @q: queue of interest
416 * In bypass mode, only the dispatch FIFO queue of @q is used. This
417 * function makes @q enter bypass mode and drains all requests which were
418 * throttled or issued before. On return, it's guaranteed that no request
419 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
420 * inside queue or RCU read lock.
422 void blk_queue_bypass_start(struct request_queue *q)
424 bool drain;
426 spin_lock_irq(q->queue_lock);
427 drain = !q->bypass_depth++;
428 queue_flag_set(QUEUE_FLAG_BYPASS, q);
429 spin_unlock_irq(q->queue_lock);
431 if (drain) {
432 blk_drain_queue(q, false);
433 /* ensure blk_queue_bypass() is %true inside RCU read lock */
434 synchronize_rcu();
437 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
440 * blk_queue_bypass_end - leave queue bypass mode
441 * @q: queue of interest
443 * Leave bypass mode and restore the normal queueing behavior.
445 void blk_queue_bypass_end(struct request_queue *q)
447 spin_lock_irq(q->queue_lock);
448 if (!--q->bypass_depth)
449 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
450 WARN_ON_ONCE(q->bypass_depth < 0);
451 spin_unlock_irq(q->queue_lock);
453 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
456 * blk_cleanup_queue - shutdown a request queue
457 * @q: request queue to shutdown
459 * Mark @q DEAD, drain all pending requests, destroy and put it. All
460 * future requests will be failed immediately with -ENODEV.
462 void blk_cleanup_queue(struct request_queue *q)
464 spinlock_t *lock = q->queue_lock;
466 /* mark @q DEAD, no new request or merges will be allowed afterwards */
467 mutex_lock(&q->sysfs_lock);
468 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
470 spin_lock_irq(lock);
473 * Dead queue is permanently in bypass mode till released. Note
474 * that, unlike blk_queue_bypass_start(), we aren't performing
475 * synchronize_rcu() after entering bypass mode to avoid the delay
476 * as some drivers create and destroy a lot of queues while
477 * probing. This is still safe because blk_release_queue() will be
478 * called only after the queue refcnt drops to zero and nothing,
479 * RCU or not, would be traversing the queue by then.
481 q->bypass_depth++;
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
484 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
485 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
486 queue_flag_set(QUEUE_FLAG_DEAD, q);
488 if (q->queue_lock != &q->__queue_lock)
489 q->queue_lock = &q->__queue_lock;
491 spin_unlock_irq(lock);
492 mutex_unlock(&q->sysfs_lock);
494 /* drain all requests queued before DEAD marking */
495 blk_drain_queue(q, true);
497 /* @q won't process any more request, flush async actions */
498 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
499 blk_sync_queue(q);
501 /* @q is and will stay empty, shutdown and put */
502 blk_put_queue(q);
504 EXPORT_SYMBOL(blk_cleanup_queue);
506 static int blk_init_free_list(struct request_queue *q)
508 struct request_list *rl = &q->rq;
510 if (unlikely(rl->rq_pool))
511 return 0;
513 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
514 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
515 rl->elvpriv = 0;
516 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
517 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
519 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
520 mempool_free_slab, request_cachep, q->node);
522 if (!rl->rq_pool)
523 return -ENOMEM;
525 return 0;
528 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
530 return blk_alloc_queue_node(gfp_mask, -1);
532 EXPORT_SYMBOL(blk_alloc_queue);
534 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
536 struct request_queue *q;
537 int err;
539 q = kmem_cache_alloc_node(blk_requestq_cachep,
540 gfp_mask | __GFP_ZERO, node_id);
541 if (!q)
542 return NULL;
544 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
545 if (q->id < 0)
546 goto fail_q;
548 q->backing_dev_info.ra_pages =
549 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
550 q->backing_dev_info.state = 0;
551 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
552 q->backing_dev_info.name = "block";
553 q->node = node_id;
555 err = bdi_init(&q->backing_dev_info);
556 if (err)
557 goto fail_id;
559 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
560 laptop_mode_timer_fn, (unsigned long) q);
561 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
562 INIT_LIST_HEAD(&q->queue_head);
563 INIT_LIST_HEAD(&q->timeout_list);
564 INIT_LIST_HEAD(&q->icq_list);
565 #ifdef CONFIG_BLK_CGROUP
566 INIT_LIST_HEAD(&q->blkg_list);
567 #endif
568 INIT_LIST_HEAD(&q->flush_queue[0]);
569 INIT_LIST_HEAD(&q->flush_queue[1]);
570 INIT_LIST_HEAD(&q->flush_data_in_flight);
571 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
573 kobject_init(&q->kobj, &blk_queue_ktype);
575 mutex_init(&q->sysfs_lock);
576 spin_lock_init(&q->__queue_lock);
579 * By default initialize queue_lock to internal lock and driver can
580 * override it later if need be.
582 q->queue_lock = &q->__queue_lock;
585 * A queue starts its life with bypass turned on to avoid
586 * unnecessary bypass on/off overhead and nasty surprises during
587 * init. The initial bypass will be finished at the end of
588 * blk_init_allocated_queue().
590 q->bypass_depth = 1;
591 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
593 if (blkcg_init_queue(q))
594 goto fail_id;
596 return q;
598 fail_id:
599 ida_simple_remove(&blk_queue_ida, q->id);
600 fail_q:
601 kmem_cache_free(blk_requestq_cachep, q);
602 return NULL;
604 EXPORT_SYMBOL(blk_alloc_queue_node);
607 * blk_init_queue - prepare a request queue for use with a block device
608 * @rfn: The function to be called to process requests that have been
609 * placed on the queue.
610 * @lock: Request queue spin lock
612 * Description:
613 * If a block device wishes to use the standard request handling procedures,
614 * which sorts requests and coalesces adjacent requests, then it must
615 * call blk_init_queue(). The function @rfn will be called when there
616 * are requests on the queue that need to be processed. If the device
617 * supports plugging, then @rfn may not be called immediately when requests
618 * are available on the queue, but may be called at some time later instead.
619 * Plugged queues are generally unplugged when a buffer belonging to one
620 * of the requests on the queue is needed, or due to memory pressure.
622 * @rfn is not required, or even expected, to remove all requests off the
623 * queue, but only as many as it can handle at a time. If it does leave
624 * requests on the queue, it is responsible for arranging that the requests
625 * get dealt with eventually.
627 * The queue spin lock must be held while manipulating the requests on the
628 * request queue; this lock will be taken also from interrupt context, so irq
629 * disabling is needed for it.
631 * Function returns a pointer to the initialized request queue, or %NULL if
632 * it didn't succeed.
634 * Note:
635 * blk_init_queue() must be paired with a blk_cleanup_queue() call
636 * when the block device is deactivated (such as at module unload).
639 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
641 return blk_init_queue_node(rfn, lock, -1);
643 EXPORT_SYMBOL(blk_init_queue);
645 struct request_queue *
646 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
648 struct request_queue *uninit_q, *q;
650 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
651 if (!uninit_q)
652 return NULL;
654 q = blk_init_allocated_queue(uninit_q, rfn, lock);
655 if (!q)
656 blk_cleanup_queue(uninit_q);
658 return q;
660 EXPORT_SYMBOL(blk_init_queue_node);
662 struct request_queue *
663 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
664 spinlock_t *lock)
666 if (!q)
667 return NULL;
669 if (blk_init_free_list(q))
670 return NULL;
672 q->request_fn = rfn;
673 q->prep_rq_fn = NULL;
674 q->unprep_rq_fn = NULL;
675 q->queue_flags = QUEUE_FLAG_DEFAULT;
677 /* Override internal queue lock with supplied lock pointer */
678 if (lock)
679 q->queue_lock = lock;
682 * This also sets hw/phys segments, boundary and size
684 blk_queue_make_request(q, blk_queue_bio);
686 q->sg_reserved_size = INT_MAX;
688 /* init elevator */
689 if (elevator_init(q, NULL))
690 return NULL;
692 blk_queue_congestion_threshold(q);
694 /* all done, end the initial bypass */
695 blk_queue_bypass_end(q);
696 return q;
698 EXPORT_SYMBOL(blk_init_allocated_queue);
700 bool blk_get_queue(struct request_queue *q)
702 if (likely(!blk_queue_dead(q))) {
703 __blk_get_queue(q);
704 return true;
707 return false;
709 EXPORT_SYMBOL(blk_get_queue);
711 static inline void blk_free_request(struct request_queue *q, struct request *rq)
713 if (rq->cmd_flags & REQ_ELVPRIV) {
714 elv_put_request(q, rq);
715 if (rq->elv.icq)
716 put_io_context(rq->elv.icq->ioc);
719 mempool_free(rq, q->rq.rq_pool);
722 static struct request *
723 blk_alloc_request(struct request_queue *q, struct bio *bio, struct io_cq *icq,
724 unsigned int flags, gfp_t gfp_mask)
726 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
728 if (!rq)
729 return NULL;
731 blk_rq_init(q, rq);
733 rq->cmd_flags = flags | REQ_ALLOCED;
735 if (flags & REQ_ELVPRIV) {
736 rq->elv.icq = icq;
737 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
738 mempool_free(rq, q->rq.rq_pool);
739 return NULL;
741 /* @rq->elv.icq holds on to io_context until @rq is freed */
742 if (icq)
743 get_io_context(icq->ioc);
746 return rq;
750 * ioc_batching returns true if the ioc is a valid batching request and
751 * should be given priority access to a request.
753 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
755 if (!ioc)
756 return 0;
759 * Make sure the process is able to allocate at least 1 request
760 * even if the batch times out, otherwise we could theoretically
761 * lose wakeups.
763 return ioc->nr_batch_requests == q->nr_batching ||
764 (ioc->nr_batch_requests > 0
765 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
769 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
770 * will cause the process to be a "batcher" on all queues in the system. This
771 * is the behaviour we want though - once it gets a wakeup it should be given
772 * a nice run.
774 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
776 if (!ioc || ioc_batching(q, ioc))
777 return;
779 ioc->nr_batch_requests = q->nr_batching;
780 ioc->last_waited = jiffies;
783 static void __freed_request(struct request_queue *q, int sync)
785 struct request_list *rl = &q->rq;
787 if (rl->count[sync] < queue_congestion_off_threshold(q))
788 blk_clear_queue_congested(q, sync);
790 if (rl->count[sync] + 1 <= q->nr_requests) {
791 if (waitqueue_active(&rl->wait[sync]))
792 wake_up(&rl->wait[sync]);
794 blk_clear_queue_full(q, sync);
799 * A request has just been released. Account for it, update the full and
800 * congestion status, wake up any waiters. Called under q->queue_lock.
802 static void freed_request(struct request_queue *q, unsigned int flags)
804 struct request_list *rl = &q->rq;
805 int sync = rw_is_sync(flags);
807 rl->count[sync]--;
808 if (flags & REQ_ELVPRIV)
809 rl->elvpriv--;
811 __freed_request(q, sync);
813 if (unlikely(rl->starved[sync ^ 1]))
814 __freed_request(q, sync ^ 1);
818 * Determine if elevator data should be initialized when allocating the
819 * request associated with @bio.
821 static bool blk_rq_should_init_elevator(struct bio *bio)
823 if (!bio)
824 return true;
827 * Flush requests do not use the elevator so skip initialization.
828 * This allows a request to share the flush and elevator data.
830 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
831 return false;
833 return true;
837 * rq_ioc - determine io_context for request allocation
838 * @bio: request being allocated is for this bio (can be %NULL)
840 * Determine io_context to use for request allocation for @bio. May return
841 * %NULL if %current->io_context doesn't exist.
843 static struct io_context *rq_ioc(struct bio *bio)
845 #ifdef CONFIG_BLK_CGROUP
846 if (bio && bio->bi_ioc)
847 return bio->bi_ioc;
848 #endif
849 return current->io_context;
853 * get_request - get a free request
854 * @q: request_queue to allocate request from
855 * @rw_flags: RW and SYNC flags
856 * @bio: bio to allocate request for (can be %NULL)
857 * @gfp_mask: allocation mask
859 * Get a free request from @q. This function may fail under memory
860 * pressure or if @q is dead.
862 * Must be callled with @q->queue_lock held and,
863 * Returns %NULL on failure, with @q->queue_lock held.
864 * Returns !%NULL on success, with @q->queue_lock *not held*.
866 static struct request *get_request(struct request_queue *q, int rw_flags,
867 struct bio *bio, gfp_t gfp_mask)
869 struct request *rq;
870 struct request_list *rl = &q->rq;
871 struct elevator_type *et;
872 struct io_context *ioc;
873 struct io_cq *icq = NULL;
874 const bool is_sync = rw_is_sync(rw_flags) != 0;
875 bool retried = false;
876 int may_queue;
877 retry:
878 et = q->elevator->type;
879 ioc = rq_ioc(bio);
881 if (unlikely(blk_queue_dead(q)))
882 return NULL;
884 may_queue = elv_may_queue(q, rw_flags);
885 if (may_queue == ELV_MQUEUE_NO)
886 goto rq_starved;
888 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
889 if (rl->count[is_sync]+1 >= q->nr_requests) {
891 * We want ioc to record batching state. If it's
892 * not already there, creating a new one requires
893 * dropping queue_lock, which in turn requires
894 * retesting conditions to avoid queue hang.
896 if (!ioc && !retried) {
897 spin_unlock_irq(q->queue_lock);
898 create_io_context(gfp_mask, q->node);
899 spin_lock_irq(q->queue_lock);
900 retried = true;
901 goto retry;
905 * The queue will fill after this allocation, so set
906 * it as full, and mark this process as "batching".
907 * This process will be allowed to complete a batch of
908 * requests, others will be blocked.
910 if (!blk_queue_full(q, is_sync)) {
911 ioc_set_batching(q, ioc);
912 blk_set_queue_full(q, is_sync);
913 } else {
914 if (may_queue != ELV_MQUEUE_MUST
915 && !ioc_batching(q, ioc)) {
917 * The queue is full and the allocating
918 * process is not a "batcher", and not
919 * exempted by the IO scheduler
921 return NULL;
925 blk_set_queue_congested(q, is_sync);
929 * Only allow batching queuers to allocate up to 50% over the defined
930 * limit of requests, otherwise we could have thousands of requests
931 * allocated with any setting of ->nr_requests
933 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
934 return NULL;
936 rl->count[is_sync]++;
937 rl->starved[is_sync] = 0;
940 * Decide whether the new request will be managed by elevator. If
941 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
942 * prevent the current elevator from being destroyed until the new
943 * request is freed. This guarantees icq's won't be destroyed and
944 * makes creating new ones safe.
946 * Also, lookup icq while holding queue_lock. If it doesn't exist,
947 * it will be created after releasing queue_lock.
949 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
950 rw_flags |= REQ_ELVPRIV;
951 rl->elvpriv++;
952 if (et->icq_cache && ioc)
953 icq = ioc_lookup_icq(ioc, q);
956 if (blk_queue_io_stat(q))
957 rw_flags |= REQ_IO_STAT;
958 spin_unlock_irq(q->queue_lock);
960 /* create icq if missing */
961 if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
962 create_io_context(gfp_mask, q->node);
963 ioc = rq_ioc(bio);
964 if (!ioc)
965 goto fail_alloc;
966 icq = ioc_create_icq(ioc, q, gfp_mask);
967 if (!icq)
968 goto fail_alloc;
971 rq = blk_alloc_request(q, bio, icq, rw_flags, gfp_mask);
972 if (unlikely(!rq))
973 goto fail_alloc;
976 * ioc may be NULL here, and ioc_batching will be false. That's
977 * OK, if the queue is under the request limit then requests need
978 * not count toward the nr_batch_requests limit. There will always
979 * be some limit enforced by BLK_BATCH_TIME.
981 if (ioc_batching(q, ioc))
982 ioc->nr_batch_requests--;
984 trace_block_getrq(q, bio, rw_flags & 1);
985 return rq;
987 fail_alloc:
989 * Allocation failed presumably due to memory. Undo anything we
990 * might have messed up.
992 * Allocating task should really be put onto the front of the wait
993 * queue, but this is pretty rare.
995 spin_lock_irq(q->queue_lock);
996 freed_request(q, rw_flags);
999 * in the very unlikely event that allocation failed and no
1000 * requests for this direction was pending, mark us starved so that
1001 * freeing of a request in the other direction will notice
1002 * us. another possible fix would be to split the rq mempool into
1003 * READ and WRITE
1005 rq_starved:
1006 if (unlikely(rl->count[is_sync] == 0))
1007 rl->starved[is_sync] = 1;
1008 return NULL;
1012 * get_request_wait - get a free request with retry
1013 * @q: request_queue to allocate request from
1014 * @rw_flags: RW and SYNC flags
1015 * @bio: bio to allocate request for (can be %NULL)
1017 * Get a free request from @q. This function keeps retrying under memory
1018 * pressure and fails iff @q is dead.
1020 * Must be callled with @q->queue_lock held and,
1021 * Returns %NULL on failure, with @q->queue_lock held.
1022 * Returns !%NULL on success, with @q->queue_lock *not held*.
1024 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
1025 struct bio *bio)
1027 const bool is_sync = rw_is_sync(rw_flags) != 0;
1028 struct request *rq;
1030 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1031 while (!rq) {
1032 DEFINE_WAIT(wait);
1033 struct request_list *rl = &q->rq;
1035 if (unlikely(blk_queue_dead(q)))
1036 return NULL;
1038 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1039 TASK_UNINTERRUPTIBLE);
1041 trace_block_sleeprq(q, bio, rw_flags & 1);
1043 spin_unlock_irq(q->queue_lock);
1044 io_schedule();
1047 * After sleeping, we become a "batching" process and
1048 * will be able to allocate at least one request, and
1049 * up to a big batch of them for a small period time.
1050 * See ioc_batching, ioc_set_batching
1052 create_io_context(GFP_NOIO, q->node);
1053 ioc_set_batching(q, current->io_context);
1055 spin_lock_irq(q->queue_lock);
1056 finish_wait(&rl->wait[is_sync], &wait);
1058 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1061 return rq;
1064 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1066 struct request *rq;
1068 BUG_ON(rw != READ && rw != WRITE);
1070 spin_lock_irq(q->queue_lock);
1071 if (gfp_mask & __GFP_WAIT)
1072 rq = get_request_wait(q, rw, NULL);
1073 else
1074 rq = get_request(q, rw, NULL, gfp_mask);
1075 if (!rq)
1076 spin_unlock_irq(q->queue_lock);
1077 /* q->queue_lock is unlocked at this point */
1079 return rq;
1081 EXPORT_SYMBOL(blk_get_request);
1084 * blk_make_request - given a bio, allocate a corresponding struct request.
1085 * @q: target request queue
1086 * @bio: The bio describing the memory mappings that will be submitted for IO.
1087 * It may be a chained-bio properly constructed by block/bio layer.
1088 * @gfp_mask: gfp flags to be used for memory allocation
1090 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1091 * type commands. Where the struct request needs to be farther initialized by
1092 * the caller. It is passed a &struct bio, which describes the memory info of
1093 * the I/O transfer.
1095 * The caller of blk_make_request must make sure that bi_io_vec
1096 * are set to describe the memory buffers. That bio_data_dir() will return
1097 * the needed direction of the request. (And all bio's in the passed bio-chain
1098 * are properly set accordingly)
1100 * If called under none-sleepable conditions, mapped bio buffers must not
1101 * need bouncing, by calling the appropriate masked or flagged allocator,
1102 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1103 * BUG.
1105 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1106 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1107 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1108 * completion of a bio that hasn't been submitted yet, thus resulting in a
1109 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1110 * of bio_alloc(), as that avoids the mempool deadlock.
1111 * If possible a big IO should be split into smaller parts when allocation
1112 * fails. Partial allocation should not be an error, or you risk a live-lock.
1114 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1115 gfp_t gfp_mask)
1117 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1119 if (unlikely(!rq))
1120 return ERR_PTR(-ENOMEM);
1122 for_each_bio(bio) {
1123 struct bio *bounce_bio = bio;
1124 int ret;
1126 blk_queue_bounce(q, &bounce_bio);
1127 ret = blk_rq_append_bio(q, rq, bounce_bio);
1128 if (unlikely(ret)) {
1129 blk_put_request(rq);
1130 return ERR_PTR(ret);
1134 return rq;
1136 EXPORT_SYMBOL(blk_make_request);
1139 * blk_requeue_request - put a request back on queue
1140 * @q: request queue where request should be inserted
1141 * @rq: request to be inserted
1143 * Description:
1144 * Drivers often keep queueing requests until the hardware cannot accept
1145 * more, when that condition happens we need to put the request back
1146 * on the queue. Must be called with queue lock held.
1148 void blk_requeue_request(struct request_queue *q, struct request *rq)
1150 blk_delete_timer(rq);
1151 blk_clear_rq_complete(rq);
1152 trace_block_rq_requeue(q, rq);
1154 if (blk_rq_tagged(rq))
1155 blk_queue_end_tag(q, rq);
1157 BUG_ON(blk_queued_rq(rq));
1159 elv_requeue_request(q, rq);
1161 EXPORT_SYMBOL(blk_requeue_request);
1163 static void add_acct_request(struct request_queue *q, struct request *rq,
1164 int where)
1166 drive_stat_acct(rq, 1);
1167 __elv_add_request(q, rq, where);
1170 static void part_round_stats_single(int cpu, struct hd_struct *part,
1171 unsigned long now)
1173 if (now == part->stamp)
1174 return;
1176 if (part_in_flight(part)) {
1177 __part_stat_add(cpu, part, time_in_queue,
1178 part_in_flight(part) * (now - part->stamp));
1179 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1181 part->stamp = now;
1185 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1186 * @cpu: cpu number for stats access
1187 * @part: target partition
1189 * The average IO queue length and utilisation statistics are maintained
1190 * by observing the current state of the queue length and the amount of
1191 * time it has been in this state for.
1193 * Normally, that accounting is done on IO completion, but that can result
1194 * in more than a second's worth of IO being accounted for within any one
1195 * second, leading to >100% utilisation. To deal with that, we call this
1196 * function to do a round-off before returning the results when reading
1197 * /proc/diskstats. This accounts immediately for all queue usage up to
1198 * the current jiffies and restarts the counters again.
1200 void part_round_stats(int cpu, struct hd_struct *part)
1202 unsigned long now = jiffies;
1204 if (part->partno)
1205 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1206 part_round_stats_single(cpu, part, now);
1208 EXPORT_SYMBOL_GPL(part_round_stats);
1211 * queue lock must be held
1213 void __blk_put_request(struct request_queue *q, struct request *req)
1215 if (unlikely(!q))
1216 return;
1217 if (unlikely(--req->ref_count))
1218 return;
1220 elv_completed_request(q, req);
1222 /* this is a bio leak */
1223 WARN_ON(req->bio != NULL);
1226 * Request may not have originated from ll_rw_blk. if not,
1227 * it didn't come out of our reserved rq pools
1229 if (req->cmd_flags & REQ_ALLOCED) {
1230 unsigned int flags = req->cmd_flags;
1232 BUG_ON(!list_empty(&req->queuelist));
1233 BUG_ON(!hlist_unhashed(&req->hash));
1235 blk_free_request(q, req);
1236 freed_request(q, flags);
1239 EXPORT_SYMBOL_GPL(__blk_put_request);
1241 void blk_put_request(struct request *req)
1243 unsigned long flags;
1244 struct request_queue *q = req->q;
1246 spin_lock_irqsave(q->queue_lock, flags);
1247 __blk_put_request(q, req);
1248 spin_unlock_irqrestore(q->queue_lock, flags);
1250 EXPORT_SYMBOL(blk_put_request);
1253 * blk_add_request_payload - add a payload to a request
1254 * @rq: request to update
1255 * @page: page backing the payload
1256 * @len: length of the payload.
1258 * This allows to later add a payload to an already submitted request by
1259 * a block driver. The driver needs to take care of freeing the payload
1260 * itself.
1262 * Note that this is a quite horrible hack and nothing but handling of
1263 * discard requests should ever use it.
1265 void blk_add_request_payload(struct request *rq, struct page *page,
1266 unsigned int len)
1268 struct bio *bio = rq->bio;
1270 bio->bi_io_vec->bv_page = page;
1271 bio->bi_io_vec->bv_offset = 0;
1272 bio->bi_io_vec->bv_len = len;
1274 bio->bi_size = len;
1275 bio->bi_vcnt = 1;
1276 bio->bi_phys_segments = 1;
1278 rq->__data_len = rq->resid_len = len;
1279 rq->nr_phys_segments = 1;
1280 rq->buffer = bio_data(bio);
1282 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1284 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1285 struct bio *bio)
1287 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1289 if (!ll_back_merge_fn(q, req, bio))
1290 return false;
1292 trace_block_bio_backmerge(q, bio);
1294 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1295 blk_rq_set_mixed_merge(req);
1297 req->biotail->bi_next = bio;
1298 req->biotail = bio;
1299 req->__data_len += bio->bi_size;
1300 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1302 drive_stat_acct(req, 0);
1303 return true;
1306 static bool bio_attempt_front_merge(struct request_queue *q,
1307 struct request *req, struct bio *bio)
1309 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1311 if (!ll_front_merge_fn(q, req, bio))
1312 return false;
1314 trace_block_bio_frontmerge(q, bio);
1316 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1317 blk_rq_set_mixed_merge(req);
1319 bio->bi_next = req->bio;
1320 req->bio = bio;
1323 * may not be valid. if the low level driver said
1324 * it didn't need a bounce buffer then it better
1325 * not touch req->buffer either...
1327 req->buffer = bio_data(bio);
1328 req->__sector = bio->bi_sector;
1329 req->__data_len += bio->bi_size;
1330 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1332 drive_stat_acct(req, 0);
1333 return true;
1337 * attempt_plug_merge - try to merge with %current's plugged list
1338 * @q: request_queue new bio is being queued at
1339 * @bio: new bio being queued
1340 * @request_count: out parameter for number of traversed plugged requests
1342 * Determine whether @bio being queued on @q can be merged with a request
1343 * on %current's plugged list. Returns %true if merge was successful,
1344 * otherwise %false.
1346 * Plugging coalesces IOs from the same issuer for the same purpose without
1347 * going through @q->queue_lock. As such it's more of an issuing mechanism
1348 * than scheduling, and the request, while may have elvpriv data, is not
1349 * added on the elevator at this point. In addition, we don't have
1350 * reliable access to the elevator outside queue lock. Only check basic
1351 * merging parameters without querying the elevator.
1353 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1354 unsigned int *request_count)
1356 struct blk_plug *plug;
1357 struct request *rq;
1358 bool ret = false;
1360 plug = current->plug;
1361 if (!plug)
1362 goto out;
1363 *request_count = 0;
1365 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1366 int el_ret;
1368 (*request_count)++;
1370 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1371 continue;
1373 el_ret = blk_try_merge(rq, bio);
1374 if (el_ret == ELEVATOR_BACK_MERGE) {
1375 ret = bio_attempt_back_merge(q, rq, bio);
1376 if (ret)
1377 break;
1378 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1379 ret = bio_attempt_front_merge(q, rq, bio);
1380 if (ret)
1381 break;
1384 out:
1385 return ret;
1388 void init_request_from_bio(struct request *req, struct bio *bio)
1390 req->cmd_type = REQ_TYPE_FS;
1392 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1393 if (bio->bi_rw & REQ_RAHEAD)
1394 req->cmd_flags |= REQ_FAILFAST_MASK;
1396 req->errors = 0;
1397 req->__sector = bio->bi_sector;
1398 req->ioprio = bio_prio(bio);
1399 blk_rq_bio_prep(req->q, req, bio);
1402 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1404 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1405 struct blk_plug *plug;
1406 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1407 struct request *req;
1408 unsigned int request_count = 0;
1411 * low level driver can indicate that it wants pages above a
1412 * certain limit bounced to low memory (ie for highmem, or even
1413 * ISA dma in theory)
1415 blk_queue_bounce(q, &bio);
1417 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1418 spin_lock_irq(q->queue_lock);
1419 where = ELEVATOR_INSERT_FLUSH;
1420 goto get_rq;
1424 * Check if we can merge with the plugged list before grabbing
1425 * any locks.
1427 if (attempt_plug_merge(q, bio, &request_count))
1428 return;
1430 spin_lock_irq(q->queue_lock);
1432 el_ret = elv_merge(q, &req, bio);
1433 if (el_ret == ELEVATOR_BACK_MERGE) {
1434 if (bio_attempt_back_merge(q, req, bio)) {
1435 elv_bio_merged(q, req, bio);
1436 if (!attempt_back_merge(q, req))
1437 elv_merged_request(q, req, el_ret);
1438 goto out_unlock;
1440 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1441 if (bio_attempt_front_merge(q, req, bio)) {
1442 elv_bio_merged(q, req, bio);
1443 if (!attempt_front_merge(q, req))
1444 elv_merged_request(q, req, el_ret);
1445 goto out_unlock;
1449 get_rq:
1451 * This sync check and mask will be re-done in init_request_from_bio(),
1452 * but we need to set it earlier to expose the sync flag to the
1453 * rq allocator and io schedulers.
1455 rw_flags = bio_data_dir(bio);
1456 if (sync)
1457 rw_flags |= REQ_SYNC;
1460 * Grab a free request. This is might sleep but can not fail.
1461 * Returns with the queue unlocked.
1463 req = get_request_wait(q, rw_flags, bio);
1464 if (unlikely(!req)) {
1465 bio_endio(bio, -ENODEV); /* @q is dead */
1466 goto out_unlock;
1470 * After dropping the lock and possibly sleeping here, our request
1471 * may now be mergeable after it had proven unmergeable (above).
1472 * We don't worry about that case for efficiency. It won't happen
1473 * often, and the elevators are able to handle it.
1475 init_request_from_bio(req, bio);
1477 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1478 req->cpu = raw_smp_processor_id();
1480 plug = current->plug;
1481 if (plug) {
1483 * If this is the first request added after a plug, fire
1484 * of a plug trace. If others have been added before, check
1485 * if we have multiple devices in this plug. If so, make a
1486 * note to sort the list before dispatch.
1488 if (list_empty(&plug->list))
1489 trace_block_plug(q);
1490 else {
1491 if (!plug->should_sort) {
1492 struct request *__rq;
1494 __rq = list_entry_rq(plug->list.prev);
1495 if (__rq->q != q)
1496 plug->should_sort = 1;
1498 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1499 blk_flush_plug_list(plug, false);
1500 trace_block_plug(q);
1503 list_add_tail(&req->queuelist, &plug->list);
1504 drive_stat_acct(req, 1);
1505 } else {
1506 spin_lock_irq(q->queue_lock);
1507 add_acct_request(q, req, where);
1508 __blk_run_queue(q);
1509 out_unlock:
1510 spin_unlock_irq(q->queue_lock);
1513 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1516 * If bio->bi_dev is a partition, remap the location
1518 static inline void blk_partition_remap(struct bio *bio)
1520 struct block_device *bdev = bio->bi_bdev;
1522 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1523 struct hd_struct *p = bdev->bd_part;
1525 bio->bi_sector += p->start_sect;
1526 bio->bi_bdev = bdev->bd_contains;
1528 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1529 bdev->bd_dev,
1530 bio->bi_sector - p->start_sect);
1534 static void handle_bad_sector(struct bio *bio)
1536 char b[BDEVNAME_SIZE];
1538 printk(KERN_INFO "attempt to access beyond end of device\n");
1539 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1540 bdevname(bio->bi_bdev, b),
1541 bio->bi_rw,
1542 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1543 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1545 set_bit(BIO_EOF, &bio->bi_flags);
1548 #ifdef CONFIG_FAIL_MAKE_REQUEST
1550 static DECLARE_FAULT_ATTR(fail_make_request);
1552 static int __init setup_fail_make_request(char *str)
1554 return setup_fault_attr(&fail_make_request, str);
1556 __setup("fail_make_request=", setup_fail_make_request);
1558 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1560 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1563 static int __init fail_make_request_debugfs(void)
1565 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1566 NULL, &fail_make_request);
1568 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1571 late_initcall(fail_make_request_debugfs);
1573 #else /* CONFIG_FAIL_MAKE_REQUEST */
1575 static inline bool should_fail_request(struct hd_struct *part,
1576 unsigned int bytes)
1578 return false;
1581 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1584 * Check whether this bio extends beyond the end of the device.
1586 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1588 sector_t maxsector;
1590 if (!nr_sectors)
1591 return 0;
1593 /* Test device or partition size, when known. */
1594 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1595 if (maxsector) {
1596 sector_t sector = bio->bi_sector;
1598 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1600 * This may well happen - the kernel calls bread()
1601 * without checking the size of the device, e.g., when
1602 * mounting a device.
1604 handle_bad_sector(bio);
1605 return 1;
1609 return 0;
1612 static noinline_for_stack bool
1613 generic_make_request_checks(struct bio *bio)
1615 struct request_queue *q;
1616 int nr_sectors = bio_sectors(bio);
1617 int err = -EIO;
1618 char b[BDEVNAME_SIZE];
1619 struct hd_struct *part;
1621 might_sleep();
1623 if (bio_check_eod(bio, nr_sectors))
1624 goto end_io;
1626 q = bdev_get_queue(bio->bi_bdev);
1627 if (unlikely(!q)) {
1628 printk(KERN_ERR
1629 "generic_make_request: Trying to access "
1630 "nonexistent block-device %s (%Lu)\n",
1631 bdevname(bio->bi_bdev, b),
1632 (long long) bio->bi_sector);
1633 goto end_io;
1636 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1637 nr_sectors > queue_max_hw_sectors(q))) {
1638 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1639 bdevname(bio->bi_bdev, b),
1640 bio_sectors(bio),
1641 queue_max_hw_sectors(q));
1642 goto end_io;
1645 part = bio->bi_bdev->bd_part;
1646 if (should_fail_request(part, bio->bi_size) ||
1647 should_fail_request(&part_to_disk(part)->part0,
1648 bio->bi_size))
1649 goto end_io;
1652 * If this device has partitions, remap block n
1653 * of partition p to block n+start(p) of the disk.
1655 blk_partition_remap(bio);
1657 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1658 goto end_io;
1660 if (bio_check_eod(bio, nr_sectors))
1661 goto end_io;
1664 * Filter flush bio's early so that make_request based
1665 * drivers without flush support don't have to worry
1666 * about them.
1668 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1669 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1670 if (!nr_sectors) {
1671 err = 0;
1672 goto end_io;
1676 if ((bio->bi_rw & REQ_DISCARD) &&
1677 (!blk_queue_discard(q) ||
1678 ((bio->bi_rw & REQ_SECURE) &&
1679 !blk_queue_secdiscard(q)))) {
1680 err = -EOPNOTSUPP;
1681 goto end_io;
1684 if (blk_throtl_bio(q, bio))
1685 return false; /* throttled, will be resubmitted later */
1687 trace_block_bio_queue(q, bio);
1688 return true;
1690 end_io:
1691 bio_endio(bio, err);
1692 return false;
1696 * generic_make_request - hand a buffer to its device driver for I/O
1697 * @bio: The bio describing the location in memory and on the device.
1699 * generic_make_request() is used to make I/O requests of block
1700 * devices. It is passed a &struct bio, which describes the I/O that needs
1701 * to be done.
1703 * generic_make_request() does not return any status. The
1704 * success/failure status of the request, along with notification of
1705 * completion, is delivered asynchronously through the bio->bi_end_io
1706 * function described (one day) else where.
1708 * The caller of generic_make_request must make sure that bi_io_vec
1709 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1710 * set to describe the device address, and the
1711 * bi_end_io and optionally bi_private are set to describe how
1712 * completion notification should be signaled.
1714 * generic_make_request and the drivers it calls may use bi_next if this
1715 * bio happens to be merged with someone else, and may resubmit the bio to
1716 * a lower device by calling into generic_make_request recursively, which
1717 * means the bio should NOT be touched after the call to ->make_request_fn.
1719 void generic_make_request(struct bio *bio)
1721 struct bio_list bio_list_on_stack;
1723 if (!generic_make_request_checks(bio))
1724 return;
1727 * We only want one ->make_request_fn to be active at a time, else
1728 * stack usage with stacked devices could be a problem. So use
1729 * current->bio_list to keep a list of requests submited by a
1730 * make_request_fn function. current->bio_list is also used as a
1731 * flag to say if generic_make_request is currently active in this
1732 * task or not. If it is NULL, then no make_request is active. If
1733 * it is non-NULL, then a make_request is active, and new requests
1734 * should be added at the tail
1736 if (current->bio_list) {
1737 bio_list_add(current->bio_list, bio);
1738 return;
1741 /* following loop may be a bit non-obvious, and so deserves some
1742 * explanation.
1743 * Before entering the loop, bio->bi_next is NULL (as all callers
1744 * ensure that) so we have a list with a single bio.
1745 * We pretend that we have just taken it off a longer list, so
1746 * we assign bio_list to a pointer to the bio_list_on_stack,
1747 * thus initialising the bio_list of new bios to be
1748 * added. ->make_request() may indeed add some more bios
1749 * through a recursive call to generic_make_request. If it
1750 * did, we find a non-NULL value in bio_list and re-enter the loop
1751 * from the top. In this case we really did just take the bio
1752 * of the top of the list (no pretending) and so remove it from
1753 * bio_list, and call into ->make_request() again.
1755 BUG_ON(bio->bi_next);
1756 bio_list_init(&bio_list_on_stack);
1757 current->bio_list = &bio_list_on_stack;
1758 do {
1759 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1761 q->make_request_fn(q, bio);
1763 bio = bio_list_pop(current->bio_list);
1764 } while (bio);
1765 current->bio_list = NULL; /* deactivate */
1767 EXPORT_SYMBOL(generic_make_request);
1770 * submit_bio - submit a bio to the block device layer for I/O
1771 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1772 * @bio: The &struct bio which describes the I/O
1774 * submit_bio() is very similar in purpose to generic_make_request(), and
1775 * uses that function to do most of the work. Both are fairly rough
1776 * interfaces; @bio must be presetup and ready for I/O.
1779 void submit_bio(int rw, struct bio *bio)
1781 int count = bio_sectors(bio);
1783 bio->bi_rw |= rw;
1786 * If it's a regular read/write or a barrier with data attached,
1787 * go through the normal accounting stuff before submission.
1789 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1790 if (rw & WRITE) {
1791 count_vm_events(PGPGOUT, count);
1792 } else {
1793 task_io_account_read(bio->bi_size);
1794 count_vm_events(PGPGIN, count);
1797 if (unlikely(block_dump)) {
1798 char b[BDEVNAME_SIZE];
1799 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1800 current->comm, task_pid_nr(current),
1801 (rw & WRITE) ? "WRITE" : "READ",
1802 (unsigned long long)bio->bi_sector,
1803 bdevname(bio->bi_bdev, b),
1804 count);
1808 generic_make_request(bio);
1810 EXPORT_SYMBOL(submit_bio);
1813 * blk_rq_check_limits - Helper function to check a request for the queue limit
1814 * @q: the queue
1815 * @rq: the request being checked
1817 * Description:
1818 * @rq may have been made based on weaker limitations of upper-level queues
1819 * in request stacking drivers, and it may violate the limitation of @q.
1820 * Since the block layer and the underlying device driver trust @rq
1821 * after it is inserted to @q, it should be checked against @q before
1822 * the insertion using this generic function.
1824 * This function should also be useful for request stacking drivers
1825 * in some cases below, so export this function.
1826 * Request stacking drivers like request-based dm may change the queue
1827 * limits while requests are in the queue (e.g. dm's table swapping).
1828 * Such request stacking drivers should check those requests agaist
1829 * the new queue limits again when they dispatch those requests,
1830 * although such checkings are also done against the old queue limits
1831 * when submitting requests.
1833 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1835 if (rq->cmd_flags & REQ_DISCARD)
1836 return 0;
1838 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1839 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1840 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1841 return -EIO;
1845 * queue's settings related to segment counting like q->bounce_pfn
1846 * may differ from that of other stacking queues.
1847 * Recalculate it to check the request correctly on this queue's
1848 * limitation.
1850 blk_recalc_rq_segments(rq);
1851 if (rq->nr_phys_segments > queue_max_segments(q)) {
1852 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1853 return -EIO;
1856 return 0;
1858 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1861 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1862 * @q: the queue to submit the request
1863 * @rq: the request being queued
1865 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1867 unsigned long flags;
1868 int where = ELEVATOR_INSERT_BACK;
1870 if (blk_rq_check_limits(q, rq))
1871 return -EIO;
1873 if (rq->rq_disk &&
1874 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1875 return -EIO;
1877 spin_lock_irqsave(q->queue_lock, flags);
1878 if (unlikely(blk_queue_dead(q))) {
1879 spin_unlock_irqrestore(q->queue_lock, flags);
1880 return -ENODEV;
1884 * Submitting request must be dequeued before calling this function
1885 * because it will be linked to another request_queue
1887 BUG_ON(blk_queued_rq(rq));
1889 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1890 where = ELEVATOR_INSERT_FLUSH;
1892 add_acct_request(q, rq, where);
1893 if (where == ELEVATOR_INSERT_FLUSH)
1894 __blk_run_queue(q);
1895 spin_unlock_irqrestore(q->queue_lock, flags);
1897 return 0;
1899 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1902 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1903 * @rq: request to examine
1905 * Description:
1906 * A request could be merge of IOs which require different failure
1907 * handling. This function determines the number of bytes which
1908 * can be failed from the beginning of the request without
1909 * crossing into area which need to be retried further.
1911 * Return:
1912 * The number of bytes to fail.
1914 * Context:
1915 * queue_lock must be held.
1917 unsigned int blk_rq_err_bytes(const struct request *rq)
1919 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1920 unsigned int bytes = 0;
1921 struct bio *bio;
1923 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1924 return blk_rq_bytes(rq);
1927 * Currently the only 'mixing' which can happen is between
1928 * different fastfail types. We can safely fail portions
1929 * which have all the failfast bits that the first one has -
1930 * the ones which are at least as eager to fail as the first
1931 * one.
1933 for (bio = rq->bio; bio; bio = bio->bi_next) {
1934 if ((bio->bi_rw & ff) != ff)
1935 break;
1936 bytes += bio->bi_size;
1939 /* this could lead to infinite loop */
1940 BUG_ON(blk_rq_bytes(rq) && !bytes);
1941 return bytes;
1943 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1945 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1947 if (blk_do_io_stat(req)) {
1948 const int rw = rq_data_dir(req);
1949 struct hd_struct *part;
1950 int cpu;
1952 cpu = part_stat_lock();
1953 part = req->part;
1954 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1955 part_stat_unlock();
1959 static void blk_account_io_done(struct request *req)
1962 * Account IO completion. flush_rq isn't accounted as a
1963 * normal IO on queueing nor completion. Accounting the
1964 * containing request is enough.
1966 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1967 unsigned long duration = jiffies - req->start_time;
1968 const int rw = rq_data_dir(req);
1969 struct hd_struct *part;
1970 int cpu;
1972 cpu = part_stat_lock();
1973 part = req->part;
1975 part_stat_inc(cpu, part, ios[rw]);
1976 part_stat_add(cpu, part, ticks[rw], duration);
1977 part_round_stats(cpu, part);
1978 part_dec_in_flight(part, rw);
1980 hd_struct_put(part);
1981 part_stat_unlock();
1986 * blk_peek_request - peek at the top of a request queue
1987 * @q: request queue to peek at
1989 * Description:
1990 * Return the request at the top of @q. The returned request
1991 * should be started using blk_start_request() before LLD starts
1992 * processing it.
1994 * Return:
1995 * Pointer to the request at the top of @q if available. Null
1996 * otherwise.
1998 * Context:
1999 * queue_lock must be held.
2001 struct request *blk_peek_request(struct request_queue *q)
2003 struct request *rq;
2004 int ret;
2006 while ((rq = __elv_next_request(q)) != NULL) {
2007 if (!(rq->cmd_flags & REQ_STARTED)) {
2009 * This is the first time the device driver
2010 * sees this request (possibly after
2011 * requeueing). Notify IO scheduler.
2013 if (rq->cmd_flags & REQ_SORTED)
2014 elv_activate_rq(q, rq);
2017 * just mark as started even if we don't start
2018 * it, a request that has been delayed should
2019 * not be passed by new incoming requests
2021 rq->cmd_flags |= REQ_STARTED;
2022 trace_block_rq_issue(q, rq);
2025 if (!q->boundary_rq || q->boundary_rq == rq) {
2026 q->end_sector = rq_end_sector(rq);
2027 q->boundary_rq = NULL;
2030 if (rq->cmd_flags & REQ_DONTPREP)
2031 break;
2033 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2035 * make sure space for the drain appears we
2036 * know we can do this because max_hw_segments
2037 * has been adjusted to be one fewer than the
2038 * device can handle
2040 rq->nr_phys_segments++;
2043 if (!q->prep_rq_fn)
2044 break;
2046 ret = q->prep_rq_fn(q, rq);
2047 if (ret == BLKPREP_OK) {
2048 break;
2049 } else if (ret == BLKPREP_DEFER) {
2051 * the request may have been (partially) prepped.
2052 * we need to keep this request in the front to
2053 * avoid resource deadlock. REQ_STARTED will
2054 * prevent other fs requests from passing this one.
2056 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2057 !(rq->cmd_flags & REQ_DONTPREP)) {
2059 * remove the space for the drain we added
2060 * so that we don't add it again
2062 --rq->nr_phys_segments;
2065 rq = NULL;
2066 break;
2067 } else if (ret == BLKPREP_KILL) {
2068 rq->cmd_flags |= REQ_QUIET;
2070 * Mark this request as started so we don't trigger
2071 * any debug logic in the end I/O path.
2073 blk_start_request(rq);
2074 __blk_end_request_all(rq, -EIO);
2075 } else {
2076 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2077 break;
2081 return rq;
2083 EXPORT_SYMBOL(blk_peek_request);
2085 void blk_dequeue_request(struct request *rq)
2087 struct request_queue *q = rq->q;
2089 BUG_ON(list_empty(&rq->queuelist));
2090 BUG_ON(ELV_ON_HASH(rq));
2092 list_del_init(&rq->queuelist);
2095 * the time frame between a request being removed from the lists
2096 * and to it is freed is accounted as io that is in progress at
2097 * the driver side.
2099 if (blk_account_rq(rq)) {
2100 q->in_flight[rq_is_sync(rq)]++;
2101 set_io_start_time_ns(rq);
2106 * blk_start_request - start request processing on the driver
2107 * @req: request to dequeue
2109 * Description:
2110 * Dequeue @req and start timeout timer on it. This hands off the
2111 * request to the driver.
2113 * Block internal functions which don't want to start timer should
2114 * call blk_dequeue_request().
2116 * Context:
2117 * queue_lock must be held.
2119 void blk_start_request(struct request *req)
2121 blk_dequeue_request(req);
2124 * We are now handing the request to the hardware, initialize
2125 * resid_len to full count and add the timeout handler.
2127 req->resid_len = blk_rq_bytes(req);
2128 if (unlikely(blk_bidi_rq(req)))
2129 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2131 blk_add_timer(req);
2133 EXPORT_SYMBOL(blk_start_request);
2136 * blk_fetch_request - fetch a request from a request queue
2137 * @q: request queue to fetch a request from
2139 * Description:
2140 * Return the request at the top of @q. The request is started on
2141 * return and LLD can start processing it immediately.
2143 * Return:
2144 * Pointer to the request at the top of @q if available. Null
2145 * otherwise.
2147 * Context:
2148 * queue_lock must be held.
2150 struct request *blk_fetch_request(struct request_queue *q)
2152 struct request *rq;
2154 rq = blk_peek_request(q);
2155 if (rq)
2156 blk_start_request(rq);
2157 return rq;
2159 EXPORT_SYMBOL(blk_fetch_request);
2162 * blk_update_request - Special helper function for request stacking drivers
2163 * @req: the request being processed
2164 * @error: %0 for success, < %0 for error
2165 * @nr_bytes: number of bytes to complete @req
2167 * Description:
2168 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2169 * the request structure even if @req doesn't have leftover.
2170 * If @req has leftover, sets it up for the next range of segments.
2172 * This special helper function is only for request stacking drivers
2173 * (e.g. request-based dm) so that they can handle partial completion.
2174 * Actual device drivers should use blk_end_request instead.
2176 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2177 * %false return from this function.
2179 * Return:
2180 * %false - this request doesn't have any more data
2181 * %true - this request has more data
2183 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2185 int total_bytes, bio_nbytes, next_idx = 0;
2186 struct bio *bio;
2188 if (!req->bio)
2189 return false;
2191 trace_block_rq_complete(req->q, req);
2194 * For fs requests, rq is just carrier of independent bio's
2195 * and each partial completion should be handled separately.
2196 * Reset per-request error on each partial completion.
2198 * TODO: tj: This is too subtle. It would be better to let
2199 * low level drivers do what they see fit.
2201 if (req->cmd_type == REQ_TYPE_FS)
2202 req->errors = 0;
2204 if (error && req->cmd_type == REQ_TYPE_FS &&
2205 !(req->cmd_flags & REQ_QUIET)) {
2206 char *error_type;
2208 switch (error) {
2209 case -ENOLINK:
2210 error_type = "recoverable transport";
2211 break;
2212 case -EREMOTEIO:
2213 error_type = "critical target";
2214 break;
2215 case -EBADE:
2216 error_type = "critical nexus";
2217 break;
2218 case -EIO:
2219 default:
2220 error_type = "I/O";
2221 break;
2223 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2224 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2225 (unsigned long long)blk_rq_pos(req));
2228 blk_account_io_completion(req, nr_bytes);
2230 total_bytes = bio_nbytes = 0;
2231 while ((bio = req->bio) != NULL) {
2232 int nbytes;
2234 if (nr_bytes >= bio->bi_size) {
2235 req->bio = bio->bi_next;
2236 nbytes = bio->bi_size;
2237 req_bio_endio(req, bio, nbytes, error);
2238 next_idx = 0;
2239 bio_nbytes = 0;
2240 } else {
2241 int idx = bio->bi_idx + next_idx;
2243 if (unlikely(idx >= bio->bi_vcnt)) {
2244 blk_dump_rq_flags(req, "__end_that");
2245 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2246 __func__, idx, bio->bi_vcnt);
2247 break;
2250 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2251 BIO_BUG_ON(nbytes > bio->bi_size);
2254 * not a complete bvec done
2256 if (unlikely(nbytes > nr_bytes)) {
2257 bio_nbytes += nr_bytes;
2258 total_bytes += nr_bytes;
2259 break;
2263 * advance to the next vector
2265 next_idx++;
2266 bio_nbytes += nbytes;
2269 total_bytes += nbytes;
2270 nr_bytes -= nbytes;
2272 bio = req->bio;
2273 if (bio) {
2275 * end more in this run, or just return 'not-done'
2277 if (unlikely(nr_bytes <= 0))
2278 break;
2283 * completely done
2285 if (!req->bio) {
2287 * Reset counters so that the request stacking driver
2288 * can find how many bytes remain in the request
2289 * later.
2291 req->__data_len = 0;
2292 return false;
2296 * if the request wasn't completed, update state
2298 if (bio_nbytes) {
2299 req_bio_endio(req, bio, bio_nbytes, error);
2300 bio->bi_idx += next_idx;
2301 bio_iovec(bio)->bv_offset += nr_bytes;
2302 bio_iovec(bio)->bv_len -= nr_bytes;
2305 req->__data_len -= total_bytes;
2306 req->buffer = bio_data(req->bio);
2308 /* update sector only for requests with clear definition of sector */
2309 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2310 req->__sector += total_bytes >> 9;
2312 /* mixed attributes always follow the first bio */
2313 if (req->cmd_flags & REQ_MIXED_MERGE) {
2314 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2315 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2319 * If total number of sectors is less than the first segment
2320 * size, something has gone terribly wrong.
2322 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2323 blk_dump_rq_flags(req, "request botched");
2324 req->__data_len = blk_rq_cur_bytes(req);
2327 /* recalculate the number of segments */
2328 blk_recalc_rq_segments(req);
2330 return true;
2332 EXPORT_SYMBOL_GPL(blk_update_request);
2334 static bool blk_update_bidi_request(struct request *rq, int error,
2335 unsigned int nr_bytes,
2336 unsigned int bidi_bytes)
2338 if (blk_update_request(rq, error, nr_bytes))
2339 return true;
2341 /* Bidi request must be completed as a whole */
2342 if (unlikely(blk_bidi_rq(rq)) &&
2343 blk_update_request(rq->next_rq, error, bidi_bytes))
2344 return true;
2346 if (blk_queue_add_random(rq->q))
2347 add_disk_randomness(rq->rq_disk);
2349 return false;
2353 * blk_unprep_request - unprepare a request
2354 * @req: the request
2356 * This function makes a request ready for complete resubmission (or
2357 * completion). It happens only after all error handling is complete,
2358 * so represents the appropriate moment to deallocate any resources
2359 * that were allocated to the request in the prep_rq_fn. The queue
2360 * lock is held when calling this.
2362 void blk_unprep_request(struct request *req)
2364 struct request_queue *q = req->q;
2366 req->cmd_flags &= ~REQ_DONTPREP;
2367 if (q->unprep_rq_fn)
2368 q->unprep_rq_fn(q, req);
2370 EXPORT_SYMBOL_GPL(blk_unprep_request);
2373 * queue lock must be held
2375 static void blk_finish_request(struct request *req, int error)
2377 if (blk_rq_tagged(req))
2378 blk_queue_end_tag(req->q, req);
2380 BUG_ON(blk_queued_rq(req));
2382 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2383 laptop_io_completion(&req->q->backing_dev_info);
2385 blk_delete_timer(req);
2387 if (req->cmd_flags & REQ_DONTPREP)
2388 blk_unprep_request(req);
2391 blk_account_io_done(req);
2393 if (req->end_io)
2394 req->end_io(req, error);
2395 else {
2396 if (blk_bidi_rq(req))
2397 __blk_put_request(req->next_rq->q, req->next_rq);
2399 __blk_put_request(req->q, req);
2404 * blk_end_bidi_request - Complete a bidi request
2405 * @rq: the request to complete
2406 * @error: %0 for success, < %0 for error
2407 * @nr_bytes: number of bytes to complete @rq
2408 * @bidi_bytes: number of bytes to complete @rq->next_rq
2410 * Description:
2411 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2412 * Drivers that supports bidi can safely call this member for any
2413 * type of request, bidi or uni. In the later case @bidi_bytes is
2414 * just ignored.
2416 * Return:
2417 * %false - we are done with this request
2418 * %true - still buffers pending for this request
2420 static bool blk_end_bidi_request(struct request *rq, int error,
2421 unsigned int nr_bytes, unsigned int bidi_bytes)
2423 struct request_queue *q = rq->q;
2424 unsigned long flags;
2426 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2427 return true;
2429 spin_lock_irqsave(q->queue_lock, flags);
2430 blk_finish_request(rq, error);
2431 spin_unlock_irqrestore(q->queue_lock, flags);
2433 return false;
2437 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2438 * @rq: the request to complete
2439 * @error: %0 for success, < %0 for error
2440 * @nr_bytes: number of bytes to complete @rq
2441 * @bidi_bytes: number of bytes to complete @rq->next_rq
2443 * Description:
2444 * Identical to blk_end_bidi_request() except that queue lock is
2445 * assumed to be locked on entry and remains so on return.
2447 * Return:
2448 * %false - we are done with this request
2449 * %true - still buffers pending for this request
2451 bool __blk_end_bidi_request(struct request *rq, int error,
2452 unsigned int nr_bytes, unsigned int bidi_bytes)
2454 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2455 return true;
2457 blk_finish_request(rq, error);
2459 return false;
2463 * blk_end_request - Helper function for drivers to complete the request.
2464 * @rq: the request being processed
2465 * @error: %0 for success, < %0 for error
2466 * @nr_bytes: number of bytes to complete
2468 * Description:
2469 * Ends I/O on a number of bytes attached to @rq.
2470 * If @rq has leftover, sets it up for the next range of segments.
2472 * Return:
2473 * %false - we are done with this request
2474 * %true - still buffers pending for this request
2476 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2478 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2480 EXPORT_SYMBOL(blk_end_request);
2483 * blk_end_request_all - Helper function for drives to finish the request.
2484 * @rq: the request to finish
2485 * @error: %0 for success, < %0 for error
2487 * Description:
2488 * Completely finish @rq.
2490 void blk_end_request_all(struct request *rq, int error)
2492 bool pending;
2493 unsigned int bidi_bytes = 0;
2495 if (unlikely(blk_bidi_rq(rq)))
2496 bidi_bytes = blk_rq_bytes(rq->next_rq);
2498 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2499 BUG_ON(pending);
2501 EXPORT_SYMBOL(blk_end_request_all);
2504 * blk_end_request_cur - Helper function to finish the current request chunk.
2505 * @rq: the request to finish the current chunk for
2506 * @error: %0 for success, < %0 for error
2508 * Description:
2509 * Complete the current consecutively mapped chunk from @rq.
2511 * Return:
2512 * %false - we are done with this request
2513 * %true - still buffers pending for this request
2515 bool blk_end_request_cur(struct request *rq, int error)
2517 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2519 EXPORT_SYMBOL(blk_end_request_cur);
2522 * blk_end_request_err - Finish a request till the next failure boundary.
2523 * @rq: the request to finish till the next failure boundary for
2524 * @error: must be negative errno
2526 * Description:
2527 * Complete @rq till the next failure boundary.
2529 * Return:
2530 * %false - we are done with this request
2531 * %true - still buffers pending for this request
2533 bool blk_end_request_err(struct request *rq, int error)
2535 WARN_ON(error >= 0);
2536 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2538 EXPORT_SYMBOL_GPL(blk_end_request_err);
2541 * __blk_end_request - Helper function for drivers to complete the request.
2542 * @rq: the request being processed
2543 * @error: %0 for success, < %0 for error
2544 * @nr_bytes: number of bytes to complete
2546 * Description:
2547 * Must be called with queue lock held unlike blk_end_request().
2549 * Return:
2550 * %false - we are done with this request
2551 * %true - still buffers pending for this request
2553 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2555 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2557 EXPORT_SYMBOL(__blk_end_request);
2560 * __blk_end_request_all - Helper function for drives to finish the request.
2561 * @rq: the request to finish
2562 * @error: %0 for success, < %0 for error
2564 * Description:
2565 * Completely finish @rq. Must be called with queue lock held.
2567 void __blk_end_request_all(struct request *rq, int error)
2569 bool pending;
2570 unsigned int bidi_bytes = 0;
2572 if (unlikely(blk_bidi_rq(rq)))
2573 bidi_bytes = blk_rq_bytes(rq->next_rq);
2575 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2576 BUG_ON(pending);
2578 EXPORT_SYMBOL(__blk_end_request_all);
2581 * __blk_end_request_cur - Helper function to finish the current request chunk.
2582 * @rq: the request to finish the current chunk for
2583 * @error: %0 for success, < %0 for error
2585 * Description:
2586 * Complete the current consecutively mapped chunk from @rq. Must
2587 * be called with queue lock held.
2589 * Return:
2590 * %false - we are done with this request
2591 * %true - still buffers pending for this request
2593 bool __blk_end_request_cur(struct request *rq, int error)
2595 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2597 EXPORT_SYMBOL(__blk_end_request_cur);
2600 * __blk_end_request_err - Finish a request till the next failure boundary.
2601 * @rq: the request to finish till the next failure boundary for
2602 * @error: must be negative errno
2604 * Description:
2605 * Complete @rq till the next failure boundary. Must be called
2606 * with queue lock held.
2608 * Return:
2609 * %false - we are done with this request
2610 * %true - still buffers pending for this request
2612 bool __blk_end_request_err(struct request *rq, int error)
2614 WARN_ON(error >= 0);
2615 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2617 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2619 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2620 struct bio *bio)
2622 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2623 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2625 if (bio_has_data(bio)) {
2626 rq->nr_phys_segments = bio_phys_segments(q, bio);
2627 rq->buffer = bio_data(bio);
2629 rq->__data_len = bio->bi_size;
2630 rq->bio = rq->biotail = bio;
2632 if (bio->bi_bdev)
2633 rq->rq_disk = bio->bi_bdev->bd_disk;
2636 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2638 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2639 * @rq: the request to be flushed
2641 * Description:
2642 * Flush all pages in @rq.
2644 void rq_flush_dcache_pages(struct request *rq)
2646 struct req_iterator iter;
2647 struct bio_vec *bvec;
2649 rq_for_each_segment(bvec, rq, iter)
2650 flush_dcache_page(bvec->bv_page);
2652 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2653 #endif
2656 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2657 * @q : the queue of the device being checked
2659 * Description:
2660 * Check if underlying low-level drivers of a device are busy.
2661 * If the drivers want to export their busy state, they must set own
2662 * exporting function using blk_queue_lld_busy() first.
2664 * Basically, this function is used only by request stacking drivers
2665 * to stop dispatching requests to underlying devices when underlying
2666 * devices are busy. This behavior helps more I/O merging on the queue
2667 * of the request stacking driver and prevents I/O throughput regression
2668 * on burst I/O load.
2670 * Return:
2671 * 0 - Not busy (The request stacking driver should dispatch request)
2672 * 1 - Busy (The request stacking driver should stop dispatching request)
2674 int blk_lld_busy(struct request_queue *q)
2676 if (q->lld_busy_fn)
2677 return q->lld_busy_fn(q);
2679 return 0;
2681 EXPORT_SYMBOL_GPL(blk_lld_busy);
2684 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2685 * @rq: the clone request to be cleaned up
2687 * Description:
2688 * Free all bios in @rq for a cloned request.
2690 void blk_rq_unprep_clone(struct request *rq)
2692 struct bio *bio;
2694 while ((bio = rq->bio) != NULL) {
2695 rq->bio = bio->bi_next;
2697 bio_put(bio);
2700 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2703 * Copy attributes of the original request to the clone request.
2704 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2706 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2708 dst->cpu = src->cpu;
2709 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2710 dst->cmd_type = src->cmd_type;
2711 dst->__sector = blk_rq_pos(src);
2712 dst->__data_len = blk_rq_bytes(src);
2713 dst->nr_phys_segments = src->nr_phys_segments;
2714 dst->ioprio = src->ioprio;
2715 dst->extra_len = src->extra_len;
2719 * blk_rq_prep_clone - Helper function to setup clone request
2720 * @rq: the request to be setup
2721 * @rq_src: original request to be cloned
2722 * @bs: bio_set that bios for clone are allocated from
2723 * @gfp_mask: memory allocation mask for bio
2724 * @bio_ctr: setup function to be called for each clone bio.
2725 * Returns %0 for success, non %0 for failure.
2726 * @data: private data to be passed to @bio_ctr
2728 * Description:
2729 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2730 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2731 * are not copied, and copying such parts is the caller's responsibility.
2732 * Also, pages which the original bios are pointing to are not copied
2733 * and the cloned bios just point same pages.
2734 * So cloned bios must be completed before original bios, which means
2735 * the caller must complete @rq before @rq_src.
2737 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2738 struct bio_set *bs, gfp_t gfp_mask,
2739 int (*bio_ctr)(struct bio *, struct bio *, void *),
2740 void *data)
2742 struct bio *bio, *bio_src;
2744 if (!bs)
2745 bs = fs_bio_set;
2747 blk_rq_init(NULL, rq);
2749 __rq_for_each_bio(bio_src, rq_src) {
2750 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2751 if (!bio)
2752 goto free_and_out;
2754 __bio_clone(bio, bio_src);
2756 if (bio_integrity(bio_src) &&
2757 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2758 goto free_and_out;
2760 if (bio_ctr && bio_ctr(bio, bio_src, data))
2761 goto free_and_out;
2763 if (rq->bio) {
2764 rq->biotail->bi_next = bio;
2765 rq->biotail = bio;
2766 } else
2767 rq->bio = rq->biotail = bio;
2770 __blk_rq_prep_clone(rq, rq_src);
2772 return 0;
2774 free_and_out:
2775 if (bio)
2776 bio_free(bio, bs);
2777 blk_rq_unprep_clone(rq);
2779 return -ENOMEM;
2781 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2783 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2785 return queue_work(kblockd_workqueue, work);
2787 EXPORT_SYMBOL(kblockd_schedule_work);
2789 int kblockd_schedule_delayed_work(struct request_queue *q,
2790 struct delayed_work *dwork, unsigned long delay)
2792 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2794 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2796 #define PLUG_MAGIC 0x91827364
2799 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2800 * @plug: The &struct blk_plug that needs to be initialized
2802 * Description:
2803 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2804 * pending I/O should the task end up blocking between blk_start_plug() and
2805 * blk_finish_plug(). This is important from a performance perspective, but
2806 * also ensures that we don't deadlock. For instance, if the task is blocking
2807 * for a memory allocation, memory reclaim could end up wanting to free a
2808 * page belonging to that request that is currently residing in our private
2809 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2810 * this kind of deadlock.
2812 void blk_start_plug(struct blk_plug *plug)
2814 struct task_struct *tsk = current;
2816 plug->magic = PLUG_MAGIC;
2817 INIT_LIST_HEAD(&plug->list);
2818 INIT_LIST_HEAD(&plug->cb_list);
2819 plug->should_sort = 0;
2822 * If this is a nested plug, don't actually assign it. It will be
2823 * flushed on its own.
2825 if (!tsk->plug) {
2827 * Store ordering should not be needed here, since a potential
2828 * preempt will imply a full memory barrier
2830 tsk->plug = plug;
2833 EXPORT_SYMBOL(blk_start_plug);
2835 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2837 struct request *rqa = container_of(a, struct request, queuelist);
2838 struct request *rqb = container_of(b, struct request, queuelist);
2840 return !(rqa->q <= rqb->q);
2844 * If 'from_schedule' is true, then postpone the dispatch of requests
2845 * until a safe kblockd context. We due this to avoid accidental big
2846 * additional stack usage in driver dispatch, in places where the originally
2847 * plugger did not intend it.
2849 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2850 bool from_schedule)
2851 __releases(q->queue_lock)
2853 trace_block_unplug(q, depth, !from_schedule);
2856 * Don't mess with dead queue.
2858 if (unlikely(blk_queue_dead(q))) {
2859 spin_unlock(q->queue_lock);
2860 return;
2864 * If we are punting this to kblockd, then we can safely drop
2865 * the queue_lock before waking kblockd (which needs to take
2866 * this lock).
2868 if (from_schedule) {
2869 spin_unlock(q->queue_lock);
2870 blk_run_queue_async(q);
2871 } else {
2872 __blk_run_queue(q);
2873 spin_unlock(q->queue_lock);
2878 static void flush_plug_callbacks(struct blk_plug *plug)
2880 LIST_HEAD(callbacks);
2882 if (list_empty(&plug->cb_list))
2883 return;
2885 list_splice_init(&plug->cb_list, &callbacks);
2887 while (!list_empty(&callbacks)) {
2888 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2889 struct blk_plug_cb,
2890 list);
2891 list_del(&cb->list);
2892 cb->callback(cb);
2896 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2898 struct request_queue *q;
2899 unsigned long flags;
2900 struct request *rq;
2901 LIST_HEAD(list);
2902 unsigned int depth;
2904 BUG_ON(plug->magic != PLUG_MAGIC);
2906 flush_plug_callbacks(plug);
2907 if (list_empty(&plug->list))
2908 return;
2910 list_splice_init(&plug->list, &list);
2912 if (plug->should_sort) {
2913 list_sort(NULL, &list, plug_rq_cmp);
2914 plug->should_sort = 0;
2917 q = NULL;
2918 depth = 0;
2921 * Save and disable interrupts here, to avoid doing it for every
2922 * queue lock we have to take.
2924 local_irq_save(flags);
2925 while (!list_empty(&list)) {
2926 rq = list_entry_rq(list.next);
2927 list_del_init(&rq->queuelist);
2928 BUG_ON(!rq->q);
2929 if (rq->q != q) {
2931 * This drops the queue lock
2933 if (q)
2934 queue_unplugged(q, depth, from_schedule);
2935 q = rq->q;
2936 depth = 0;
2937 spin_lock(q->queue_lock);
2941 * Short-circuit if @q is dead
2943 if (unlikely(blk_queue_dead(q))) {
2944 __blk_end_request_all(rq, -ENODEV);
2945 continue;
2949 * rq is already accounted, so use raw insert
2951 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2952 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2953 else
2954 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2956 depth++;
2960 * This drops the queue lock
2962 if (q)
2963 queue_unplugged(q, depth, from_schedule);
2965 local_irq_restore(flags);
2968 void blk_finish_plug(struct blk_plug *plug)
2970 blk_flush_plug_list(plug, false);
2972 if (plug == current->plug)
2973 current->plug = NULL;
2975 EXPORT_SYMBOL(blk_finish_plug);
2977 int __init blk_dev_init(void)
2979 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2980 sizeof(((struct request *)0)->cmd_flags));
2982 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2983 kblockd_workqueue = alloc_workqueue("kblockd",
2984 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2985 if (!kblockd_workqueue)
2986 panic("Failed to create kblockd\n");
2988 request_cachep = kmem_cache_create("blkdev_requests",
2989 sizeof(struct request), 0, SLAB_PANIC, NULL);
2991 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2992 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2994 return 0;