blkcg: make sure blkg_lookup() returns %NULL if @q is bypassing
[linux-2.6.git] / fs / splice.c
blob5f883de7ef3ad0bd8dfe9392356725660f9a69b3
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
43 struct page *page = buf->page;
44 struct address_space *mapping;
46 lock_page(page);
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
60 wait_on_page_writeback(page);
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
80 out_unlock:
81 unlock_page(page);
82 return 1;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
99 struct page *page = buf->page;
100 int err;
102 if (!PageUptodate(page)) {
103 lock_page(page);
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
115 * Uh oh, read-error from disk.
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
123 * Page is ok afterall, we are done.
125 unlock_page(page);
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
134 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
189 ret = 0;
190 do_wakeup = 0;
191 page_nr = 0;
193 pipe_lock(pipe);
195 for (;;) {
196 if (!pipe->readers) {
197 send_sig(SIGPIPE, current, 0);
198 if (!ret)
199 ret = -EPIPE;
200 break;
203 if (pipe->nrbufs < pipe->buffers) {
204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 struct pipe_buffer *buf = pipe->bufs + newbuf;
207 buf->page = spd->pages[page_nr];
208 buf->offset = spd->partial[page_nr].offset;
209 buf->len = spd->partial[page_nr].len;
210 buf->private = spd->partial[page_nr].private;
211 buf->ops = spd->ops;
212 if (spd->flags & SPLICE_F_GIFT)
213 buf->flags |= PIPE_BUF_FLAG_GIFT;
215 pipe->nrbufs++;
216 page_nr++;
217 ret += buf->len;
219 if (pipe->inode)
220 do_wakeup = 1;
222 if (!--spd->nr_pages)
223 break;
224 if (pipe->nrbufs < pipe->buffers)
225 continue;
227 break;
230 if (spd->flags & SPLICE_F_NONBLOCK) {
231 if (!ret)
232 ret = -EAGAIN;
233 break;
236 if (signal_pending(current)) {
237 if (!ret)
238 ret = -ERESTARTSYS;
239 break;
242 if (do_wakeup) {
243 smp_mb();
244 if (waitqueue_active(&pipe->wait))
245 wake_up_interruptible_sync(&pipe->wait);
246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 do_wakeup = 0;
250 pipe->waiting_writers++;
251 pipe_wait(pipe);
252 pipe->waiting_writers--;
255 pipe_unlock(pipe);
257 if (do_wakeup)
258 wakeup_pipe_readers(pipe);
260 while (page_nr < spd_pages)
261 spd->spd_release(spd, page_nr++);
263 return ret;
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
275 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 if (pipe->buffers <= PIPE_DEF_BUFFERS)
278 return 0;
280 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
281 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283 if (spd->pages && spd->partial)
284 return 0;
286 kfree(spd->pages);
287 kfree(spd->partial);
288 return -ENOMEM;
291 void splice_shrink_spd(struct pipe_inode_info *pipe,
292 struct splice_pipe_desc *spd)
294 if (pipe->buffers <= PIPE_DEF_BUFFERS)
295 return;
297 kfree(spd->pages);
298 kfree(spd->partial);
301 static int
302 __generic_file_splice_read(struct file *in, loff_t *ppos,
303 struct pipe_inode_info *pipe, size_t len,
304 unsigned int flags)
306 struct address_space *mapping = in->f_mapping;
307 unsigned int loff, nr_pages, req_pages;
308 struct page *pages[PIPE_DEF_BUFFERS];
309 struct partial_page partial[PIPE_DEF_BUFFERS];
310 struct page *page;
311 pgoff_t index, end_index;
312 loff_t isize;
313 int error, page_nr;
314 struct splice_pipe_desc spd = {
315 .pages = pages,
316 .partial = partial,
317 .flags = flags,
318 .ops = &page_cache_pipe_buf_ops,
319 .spd_release = spd_release_page,
322 if (splice_grow_spd(pipe, &spd))
323 return -ENOMEM;
325 index = *ppos >> PAGE_CACHE_SHIFT;
326 loff = *ppos & ~PAGE_CACHE_MASK;
327 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
328 nr_pages = min(req_pages, pipe->buffers);
331 * Lookup the (hopefully) full range of pages we need.
333 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
334 index += spd.nr_pages;
337 * If find_get_pages_contig() returned fewer pages than we needed,
338 * readahead/allocate the rest and fill in the holes.
340 if (spd.nr_pages < nr_pages)
341 page_cache_sync_readahead(mapping, &in->f_ra, in,
342 index, req_pages - spd.nr_pages);
344 error = 0;
345 while (spd.nr_pages < nr_pages) {
347 * Page could be there, find_get_pages_contig() breaks on
348 * the first hole.
350 page = find_get_page(mapping, index);
351 if (!page) {
353 * page didn't exist, allocate one.
355 page = page_cache_alloc_cold(mapping);
356 if (!page)
357 break;
359 error = add_to_page_cache_lru(page, mapping, index,
360 GFP_KERNEL);
361 if (unlikely(error)) {
362 page_cache_release(page);
363 if (error == -EEXIST)
364 continue;
365 break;
368 * add_to_page_cache() locks the page, unlock it
369 * to avoid convoluting the logic below even more.
371 unlock_page(page);
374 spd.pages[spd.nr_pages++] = page;
375 index++;
379 * Now loop over the map and see if we need to start IO on any
380 * pages, fill in the partial map, etc.
382 index = *ppos >> PAGE_CACHE_SHIFT;
383 nr_pages = spd.nr_pages;
384 spd.nr_pages = 0;
385 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
386 unsigned int this_len;
388 if (!len)
389 break;
392 * this_len is the max we'll use from this page
394 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
395 page = spd.pages[page_nr];
397 if (PageReadahead(page))
398 page_cache_async_readahead(mapping, &in->f_ra, in,
399 page, index, req_pages - page_nr);
402 * If the page isn't uptodate, we may need to start io on it
404 if (!PageUptodate(page)) {
405 lock_page(page);
408 * Page was truncated, or invalidated by the
409 * filesystem. Redo the find/create, but this time the
410 * page is kept locked, so there's no chance of another
411 * race with truncate/invalidate.
413 if (!page->mapping) {
414 unlock_page(page);
415 page = find_or_create_page(mapping, index,
416 mapping_gfp_mask(mapping));
418 if (!page) {
419 error = -ENOMEM;
420 break;
422 page_cache_release(spd.pages[page_nr]);
423 spd.pages[page_nr] = page;
426 * page was already under io and is now done, great
428 if (PageUptodate(page)) {
429 unlock_page(page);
430 goto fill_it;
434 * need to read in the page
436 error = mapping->a_ops->readpage(in, page);
437 if (unlikely(error)) {
439 * We really should re-lookup the page here,
440 * but it complicates things a lot. Instead
441 * lets just do what we already stored, and
442 * we'll get it the next time we are called.
444 if (error == AOP_TRUNCATED_PAGE)
445 error = 0;
447 break;
450 fill_it:
452 * i_size must be checked after PageUptodate.
454 isize = i_size_read(mapping->host);
455 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
456 if (unlikely(!isize || index > end_index))
457 break;
460 * if this is the last page, see if we need to shrink
461 * the length and stop
463 if (end_index == index) {
464 unsigned int plen;
467 * max good bytes in this page
469 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
470 if (plen <= loff)
471 break;
474 * force quit after adding this page
476 this_len = min(this_len, plen - loff);
477 len = this_len;
480 spd.partial[page_nr].offset = loff;
481 spd.partial[page_nr].len = this_len;
482 len -= this_len;
483 loff = 0;
484 spd.nr_pages++;
485 index++;
489 * Release any pages at the end, if we quit early. 'page_nr' is how far
490 * we got, 'nr_pages' is how many pages are in the map.
492 while (page_nr < nr_pages)
493 page_cache_release(spd.pages[page_nr++]);
494 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496 if (spd.nr_pages)
497 error = splice_to_pipe(pipe, &spd);
499 splice_shrink_spd(pipe, &spd);
500 return error;
504 * generic_file_splice_read - splice data from file to a pipe
505 * @in: file to splice from
506 * @ppos: position in @in
507 * @pipe: pipe to splice to
508 * @len: number of bytes to splice
509 * @flags: splice modifier flags
511 * Description:
512 * Will read pages from given file and fill them into a pipe. Can be
513 * used as long as the address_space operations for the source implements
514 * a readpage() hook.
517 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
518 struct pipe_inode_info *pipe, size_t len,
519 unsigned int flags)
521 loff_t isize, left;
522 int ret;
524 isize = i_size_read(in->f_mapping->host);
525 if (unlikely(*ppos >= isize))
526 return 0;
528 left = isize - *ppos;
529 if (unlikely(left < len))
530 len = left;
532 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
533 if (ret > 0) {
534 *ppos += ret;
535 file_accessed(in);
538 return ret;
540 EXPORT_SYMBOL(generic_file_splice_read);
542 static const struct pipe_buf_operations default_pipe_buf_ops = {
543 .can_merge = 0,
544 .map = generic_pipe_buf_map,
545 .unmap = generic_pipe_buf_unmap,
546 .confirm = generic_pipe_buf_confirm,
547 .release = generic_pipe_buf_release,
548 .steal = generic_pipe_buf_steal,
549 .get = generic_pipe_buf_get,
552 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
553 unsigned long vlen, loff_t offset)
555 mm_segment_t old_fs;
556 loff_t pos = offset;
557 ssize_t res;
559 old_fs = get_fs();
560 set_fs(get_ds());
561 /* The cast to a user pointer is valid due to the set_fs() */
562 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
563 set_fs(old_fs);
565 return res;
568 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
569 loff_t pos)
571 mm_segment_t old_fs;
572 ssize_t res;
574 old_fs = get_fs();
575 set_fs(get_ds());
576 /* The cast to a user pointer is valid due to the set_fs() */
577 res = vfs_write(file, (const char __user *)buf, count, &pos);
578 set_fs(old_fs);
580 return res;
583 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
584 struct pipe_inode_info *pipe, size_t len,
585 unsigned int flags)
587 unsigned int nr_pages;
588 unsigned int nr_freed;
589 size_t offset;
590 struct page *pages[PIPE_DEF_BUFFERS];
591 struct partial_page partial[PIPE_DEF_BUFFERS];
592 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
593 ssize_t res;
594 size_t this_len;
595 int error;
596 int i;
597 struct splice_pipe_desc spd = {
598 .pages = pages,
599 .partial = partial,
600 .flags = flags,
601 .ops = &default_pipe_buf_ops,
602 .spd_release = spd_release_page,
605 if (splice_grow_spd(pipe, &spd))
606 return -ENOMEM;
608 res = -ENOMEM;
609 vec = __vec;
610 if (pipe->buffers > PIPE_DEF_BUFFERS) {
611 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
612 if (!vec)
613 goto shrink_ret;
616 offset = *ppos & ~PAGE_CACHE_MASK;
617 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
620 struct page *page;
622 page = alloc_page(GFP_USER);
623 error = -ENOMEM;
624 if (!page)
625 goto err;
627 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
628 vec[i].iov_base = (void __user *) page_address(page);
629 vec[i].iov_len = this_len;
630 spd.pages[i] = page;
631 spd.nr_pages++;
632 len -= this_len;
633 offset = 0;
636 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
637 if (res < 0) {
638 error = res;
639 goto err;
642 error = 0;
643 if (!res)
644 goto err;
646 nr_freed = 0;
647 for (i = 0; i < spd.nr_pages; i++) {
648 this_len = min_t(size_t, vec[i].iov_len, res);
649 spd.partial[i].offset = 0;
650 spd.partial[i].len = this_len;
651 if (!this_len) {
652 __free_page(spd.pages[i]);
653 spd.pages[i] = NULL;
654 nr_freed++;
656 res -= this_len;
658 spd.nr_pages -= nr_freed;
660 res = splice_to_pipe(pipe, &spd);
661 if (res > 0)
662 *ppos += res;
664 shrink_ret:
665 if (vec != __vec)
666 kfree(vec);
667 splice_shrink_spd(pipe, &spd);
668 return res;
670 err:
671 for (i = 0; i < spd.nr_pages; i++)
672 __free_page(spd.pages[i]);
674 res = error;
675 goto shrink_ret;
677 EXPORT_SYMBOL(default_file_splice_read);
680 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
681 * using sendpage(). Return the number of bytes sent.
683 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
684 struct pipe_buffer *buf, struct splice_desc *sd)
686 struct file *file = sd->u.file;
687 loff_t pos = sd->pos;
688 int more;
690 if (!likely(file->f_op && file->f_op->sendpage))
691 return -EINVAL;
693 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
694 return file->f_op->sendpage(file, buf->page, buf->offset,
695 sd->len, &pos, more);
699 * This is a little more tricky than the file -> pipe splicing. There are
700 * basically three cases:
702 * - Destination page already exists in the address space and there
703 * are users of it. For that case we have no other option that
704 * copying the data. Tough luck.
705 * - Destination page already exists in the address space, but there
706 * are no users of it. Make sure it's uptodate, then drop it. Fall
707 * through to last case.
708 * - Destination page does not exist, we can add the pipe page to
709 * the page cache and avoid the copy.
711 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
712 * sd->flags), we attempt to migrate pages from the pipe to the output
713 * file address space page cache. This is possible if no one else has
714 * the pipe page referenced outside of the pipe and page cache. If
715 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
716 * a new page in the output file page cache and fill/dirty that.
718 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
719 struct splice_desc *sd)
721 struct file *file = sd->u.file;
722 struct address_space *mapping = file->f_mapping;
723 unsigned int offset, this_len;
724 struct page *page;
725 void *fsdata;
726 int ret;
728 offset = sd->pos & ~PAGE_CACHE_MASK;
730 this_len = sd->len;
731 if (this_len + offset > PAGE_CACHE_SIZE)
732 this_len = PAGE_CACHE_SIZE - offset;
734 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
735 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
736 if (unlikely(ret))
737 goto out;
739 if (buf->page != page) {
740 char *src = buf->ops->map(pipe, buf, 1);
741 char *dst = kmap_atomic(page);
743 memcpy(dst + offset, src + buf->offset, this_len);
744 flush_dcache_page(page);
745 kunmap_atomic(dst);
746 buf->ops->unmap(pipe, buf, src);
748 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
749 page, fsdata);
750 out:
751 return ret;
753 EXPORT_SYMBOL(pipe_to_file);
755 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
757 smp_mb();
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
764 * splice_from_pipe_feed - feed available data from a pipe to a file
765 * @pipe: pipe to splice from
766 * @sd: information to @actor
767 * @actor: handler that splices the data
769 * Description:
770 * This function loops over the pipe and calls @actor to do the
771 * actual moving of a single struct pipe_buffer to the desired
772 * destination. It returns when there's no more buffers left in
773 * the pipe or if the requested number of bytes (@sd->total_len)
774 * have been copied. It returns a positive number (one) if the
775 * pipe needs to be filled with more data, zero if the required
776 * number of bytes have been copied and -errno on error.
778 * This, together with splice_from_pipe_{begin,end,next}, may be
779 * used to implement the functionality of __splice_from_pipe() when
780 * locking is required around copying the pipe buffers to the
781 * destination.
783 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
784 splice_actor *actor)
786 int ret;
788 while (pipe->nrbufs) {
789 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
790 const struct pipe_buf_operations *ops = buf->ops;
792 sd->len = buf->len;
793 if (sd->len > sd->total_len)
794 sd->len = sd->total_len;
796 ret = buf->ops->confirm(pipe, buf);
797 if (unlikely(ret)) {
798 if (ret == -ENODATA)
799 ret = 0;
800 return ret;
803 ret = actor(pipe, buf, sd);
804 if (ret <= 0)
805 return ret;
807 buf->offset += ret;
808 buf->len -= ret;
810 sd->num_spliced += ret;
811 sd->len -= ret;
812 sd->pos += ret;
813 sd->total_len -= ret;
815 if (!buf->len) {
816 buf->ops = NULL;
817 ops->release(pipe, buf);
818 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
819 pipe->nrbufs--;
820 if (pipe->inode)
821 sd->need_wakeup = true;
824 if (!sd->total_len)
825 return 0;
828 return 1;
830 EXPORT_SYMBOL(splice_from_pipe_feed);
833 * splice_from_pipe_next - wait for some data to splice from
834 * @pipe: pipe to splice from
835 * @sd: information about the splice operation
837 * Description:
838 * This function will wait for some data and return a positive
839 * value (one) if pipe buffers are available. It will return zero
840 * or -errno if no more data needs to be spliced.
842 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
844 while (!pipe->nrbufs) {
845 if (!pipe->writers)
846 return 0;
848 if (!pipe->waiting_writers && sd->num_spliced)
849 return 0;
851 if (sd->flags & SPLICE_F_NONBLOCK)
852 return -EAGAIN;
854 if (signal_pending(current))
855 return -ERESTARTSYS;
857 if (sd->need_wakeup) {
858 wakeup_pipe_writers(pipe);
859 sd->need_wakeup = false;
862 pipe_wait(pipe);
865 return 1;
867 EXPORT_SYMBOL(splice_from_pipe_next);
870 * splice_from_pipe_begin - start splicing from pipe
871 * @sd: information about the splice operation
873 * Description:
874 * This function should be called before a loop containing
875 * splice_from_pipe_next() and splice_from_pipe_feed() to
876 * initialize the necessary fields of @sd.
878 void splice_from_pipe_begin(struct splice_desc *sd)
880 sd->num_spliced = 0;
881 sd->need_wakeup = false;
883 EXPORT_SYMBOL(splice_from_pipe_begin);
886 * splice_from_pipe_end - finish splicing from pipe
887 * @pipe: pipe to splice from
888 * @sd: information about the splice operation
890 * Description:
891 * This function will wake up pipe writers if necessary. It should
892 * be called after a loop containing splice_from_pipe_next() and
893 * splice_from_pipe_feed().
895 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
897 if (sd->need_wakeup)
898 wakeup_pipe_writers(pipe);
900 EXPORT_SYMBOL(splice_from_pipe_end);
903 * __splice_from_pipe - splice data from a pipe to given actor
904 * @pipe: pipe to splice from
905 * @sd: information to @actor
906 * @actor: handler that splices the data
908 * Description:
909 * This function does little more than loop over the pipe and call
910 * @actor to do the actual moving of a single struct pipe_buffer to
911 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
912 * pipe_to_user.
915 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
916 splice_actor *actor)
918 int ret;
920 splice_from_pipe_begin(sd);
921 do {
922 ret = splice_from_pipe_next(pipe, sd);
923 if (ret > 0)
924 ret = splice_from_pipe_feed(pipe, sd, actor);
925 } while (ret > 0);
926 splice_from_pipe_end(pipe, sd);
928 return sd->num_spliced ? sd->num_spliced : ret;
930 EXPORT_SYMBOL(__splice_from_pipe);
933 * splice_from_pipe - splice data from a pipe to a file
934 * @pipe: pipe to splice from
935 * @out: file to splice to
936 * @ppos: position in @out
937 * @len: how many bytes to splice
938 * @flags: splice modifier flags
939 * @actor: handler that splices the data
941 * Description:
942 * See __splice_from_pipe. This function locks the pipe inode,
943 * otherwise it's identical to __splice_from_pipe().
946 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
947 loff_t *ppos, size_t len, unsigned int flags,
948 splice_actor *actor)
950 ssize_t ret;
951 struct splice_desc sd = {
952 .total_len = len,
953 .flags = flags,
954 .pos = *ppos,
955 .u.file = out,
958 pipe_lock(pipe);
959 ret = __splice_from_pipe(pipe, &sd, actor);
960 pipe_unlock(pipe);
962 return ret;
966 * generic_file_splice_write - splice data from a pipe to a file
967 * @pipe: pipe info
968 * @out: file to write to
969 * @ppos: position in @out
970 * @len: number of bytes to splice
971 * @flags: splice modifier flags
973 * Description:
974 * Will either move or copy pages (determined by @flags options) from
975 * the given pipe inode to the given file.
978 ssize_t
979 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
980 loff_t *ppos, size_t len, unsigned int flags)
982 struct address_space *mapping = out->f_mapping;
983 struct inode *inode = mapping->host;
984 struct splice_desc sd = {
985 .total_len = len,
986 .flags = flags,
987 .pos = *ppos,
988 .u.file = out,
990 ssize_t ret;
992 pipe_lock(pipe);
994 splice_from_pipe_begin(&sd);
995 do {
996 ret = splice_from_pipe_next(pipe, &sd);
997 if (ret <= 0)
998 break;
1000 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1001 ret = file_remove_suid(out);
1002 if (!ret) {
1003 file_update_time(out);
1004 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1006 mutex_unlock(&inode->i_mutex);
1007 } while (ret > 0);
1008 splice_from_pipe_end(pipe, &sd);
1010 pipe_unlock(pipe);
1012 if (sd.num_spliced)
1013 ret = sd.num_spliced;
1015 if (ret > 0) {
1016 unsigned long nr_pages;
1017 int err;
1019 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1021 err = generic_write_sync(out, *ppos, ret);
1022 if (err)
1023 ret = err;
1024 else
1025 *ppos += ret;
1026 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1029 return ret;
1032 EXPORT_SYMBOL(generic_file_splice_write);
1034 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1035 struct splice_desc *sd)
1037 int ret;
1038 void *data;
1040 data = buf->ops->map(pipe, buf, 0);
1041 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1042 buf->ops->unmap(pipe, buf, data);
1044 return ret;
1047 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1048 struct file *out, loff_t *ppos,
1049 size_t len, unsigned int flags)
1051 ssize_t ret;
1053 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1054 if (ret > 0)
1055 *ppos += ret;
1057 return ret;
1061 * generic_splice_sendpage - splice data from a pipe to a socket
1062 * @pipe: pipe to splice from
1063 * @out: socket to write to
1064 * @ppos: position in @out
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1068 * Description:
1069 * Will send @len bytes from the pipe to a network socket. No data copying
1070 * is involved.
1073 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1074 loff_t *ppos, size_t len, unsigned int flags)
1076 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1079 EXPORT_SYMBOL(generic_splice_sendpage);
1082 * Attempt to initiate a splice from pipe to file.
1084 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1085 loff_t *ppos, size_t len, unsigned int flags)
1087 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1088 loff_t *, size_t, unsigned int);
1089 int ret;
1091 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1092 return -EBADF;
1094 if (unlikely(out->f_flags & O_APPEND))
1095 return -EINVAL;
1097 ret = rw_verify_area(WRITE, out, ppos, len);
1098 if (unlikely(ret < 0))
1099 return ret;
1101 if (out->f_op && out->f_op->splice_write)
1102 splice_write = out->f_op->splice_write;
1103 else
1104 splice_write = default_file_splice_write;
1106 return splice_write(pipe, out, ppos, len, flags);
1110 * Attempt to initiate a splice from a file to a pipe.
1112 static long do_splice_to(struct file *in, loff_t *ppos,
1113 struct pipe_inode_info *pipe, size_t len,
1114 unsigned int flags)
1116 ssize_t (*splice_read)(struct file *, loff_t *,
1117 struct pipe_inode_info *, size_t, unsigned int);
1118 int ret;
1120 if (unlikely(!(in->f_mode & FMODE_READ)))
1121 return -EBADF;
1123 ret = rw_verify_area(READ, in, ppos, len);
1124 if (unlikely(ret < 0))
1125 return ret;
1127 if (in->f_op && in->f_op->splice_read)
1128 splice_read = in->f_op->splice_read;
1129 else
1130 splice_read = default_file_splice_read;
1132 return splice_read(in, ppos, pipe, len, flags);
1136 * splice_direct_to_actor - splices data directly between two non-pipes
1137 * @in: file to splice from
1138 * @sd: actor information on where to splice to
1139 * @actor: handles the data splicing
1141 * Description:
1142 * This is a special case helper to splice directly between two
1143 * points, without requiring an explicit pipe. Internally an allocated
1144 * pipe is cached in the process, and reused during the lifetime of
1145 * that process.
1148 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1149 splice_direct_actor *actor)
1151 struct pipe_inode_info *pipe;
1152 long ret, bytes;
1153 umode_t i_mode;
1154 size_t len;
1155 int i, flags;
1158 * We require the input being a regular file, as we don't want to
1159 * randomly drop data for eg socket -> socket splicing. Use the
1160 * piped splicing for that!
1162 i_mode = in->f_path.dentry->d_inode->i_mode;
1163 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1164 return -EINVAL;
1167 * neither in nor out is a pipe, setup an internal pipe attached to
1168 * 'out' and transfer the wanted data from 'in' to 'out' through that
1170 pipe = current->splice_pipe;
1171 if (unlikely(!pipe)) {
1172 pipe = alloc_pipe_info(NULL);
1173 if (!pipe)
1174 return -ENOMEM;
1177 * We don't have an immediate reader, but we'll read the stuff
1178 * out of the pipe right after the splice_to_pipe(). So set
1179 * PIPE_READERS appropriately.
1181 pipe->readers = 1;
1183 current->splice_pipe = pipe;
1187 * Do the splice.
1189 ret = 0;
1190 bytes = 0;
1191 len = sd->total_len;
1192 flags = sd->flags;
1195 * Don't block on output, we have to drain the direct pipe.
1197 sd->flags &= ~SPLICE_F_NONBLOCK;
1199 while (len) {
1200 size_t read_len;
1201 loff_t pos = sd->pos, prev_pos = pos;
1203 ret = do_splice_to(in, &pos, pipe, len, flags);
1204 if (unlikely(ret <= 0))
1205 goto out_release;
1207 read_len = ret;
1208 sd->total_len = read_len;
1211 * NOTE: nonblocking mode only applies to the input. We
1212 * must not do the output in nonblocking mode as then we
1213 * could get stuck data in the internal pipe:
1215 ret = actor(pipe, sd);
1216 if (unlikely(ret <= 0)) {
1217 sd->pos = prev_pos;
1218 goto out_release;
1221 bytes += ret;
1222 len -= ret;
1223 sd->pos = pos;
1225 if (ret < read_len) {
1226 sd->pos = prev_pos + ret;
1227 goto out_release;
1231 done:
1232 pipe->nrbufs = pipe->curbuf = 0;
1233 file_accessed(in);
1234 return bytes;
1236 out_release:
1238 * If we did an incomplete transfer we must release
1239 * the pipe buffers in question:
1241 for (i = 0; i < pipe->buffers; i++) {
1242 struct pipe_buffer *buf = pipe->bufs + i;
1244 if (buf->ops) {
1245 buf->ops->release(pipe, buf);
1246 buf->ops = NULL;
1250 if (!bytes)
1251 bytes = ret;
1253 goto done;
1255 EXPORT_SYMBOL(splice_direct_to_actor);
1257 static int direct_splice_actor(struct pipe_inode_info *pipe,
1258 struct splice_desc *sd)
1260 struct file *file = sd->u.file;
1262 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1263 sd->flags);
1267 * do_splice_direct - splices data directly between two files
1268 * @in: file to splice from
1269 * @ppos: input file offset
1270 * @out: file to splice to
1271 * @len: number of bytes to splice
1272 * @flags: splice modifier flags
1274 * Description:
1275 * For use by do_sendfile(). splice can easily emulate sendfile, but
1276 * doing it in the application would incur an extra system call
1277 * (splice in + splice out, as compared to just sendfile()). So this helper
1278 * can splice directly through a process-private pipe.
1281 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1282 size_t len, unsigned int flags)
1284 struct splice_desc sd = {
1285 .len = len,
1286 .total_len = len,
1287 .flags = flags,
1288 .pos = *ppos,
1289 .u.file = out,
1291 long ret;
1293 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1294 if (ret > 0)
1295 *ppos = sd.pos;
1297 return ret;
1300 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1301 struct pipe_inode_info *opipe,
1302 size_t len, unsigned int flags);
1305 * Determine where to splice to/from.
1307 static long do_splice(struct file *in, loff_t __user *off_in,
1308 struct file *out, loff_t __user *off_out,
1309 size_t len, unsigned int flags)
1311 struct pipe_inode_info *ipipe;
1312 struct pipe_inode_info *opipe;
1313 loff_t offset, *off;
1314 long ret;
1316 ipipe = get_pipe_info(in);
1317 opipe = get_pipe_info(out);
1319 if (ipipe && opipe) {
1320 if (off_in || off_out)
1321 return -ESPIPE;
1323 if (!(in->f_mode & FMODE_READ))
1324 return -EBADF;
1326 if (!(out->f_mode & FMODE_WRITE))
1327 return -EBADF;
1329 /* Splicing to self would be fun, but... */
1330 if (ipipe == opipe)
1331 return -EINVAL;
1333 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1336 if (ipipe) {
1337 if (off_in)
1338 return -ESPIPE;
1339 if (off_out) {
1340 if (!(out->f_mode & FMODE_PWRITE))
1341 return -EINVAL;
1342 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1343 return -EFAULT;
1344 off = &offset;
1345 } else
1346 off = &out->f_pos;
1348 ret = do_splice_from(ipipe, out, off, len, flags);
1350 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1351 ret = -EFAULT;
1353 return ret;
1356 if (opipe) {
1357 if (off_out)
1358 return -ESPIPE;
1359 if (off_in) {
1360 if (!(in->f_mode & FMODE_PREAD))
1361 return -EINVAL;
1362 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1363 return -EFAULT;
1364 off = &offset;
1365 } else
1366 off = &in->f_pos;
1368 ret = do_splice_to(in, off, opipe, len, flags);
1370 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1371 ret = -EFAULT;
1373 return ret;
1376 return -EINVAL;
1380 * Map an iov into an array of pages and offset/length tupples. With the
1381 * partial_page structure, we can map several non-contiguous ranges into
1382 * our ones pages[] map instead of splitting that operation into pieces.
1383 * Could easily be exported as a generic helper for other users, in which
1384 * case one would probably want to add a 'max_nr_pages' parameter as well.
1386 static int get_iovec_page_array(const struct iovec __user *iov,
1387 unsigned int nr_vecs, struct page **pages,
1388 struct partial_page *partial, int aligned,
1389 unsigned int pipe_buffers)
1391 int buffers = 0, error = 0;
1393 while (nr_vecs) {
1394 unsigned long off, npages;
1395 struct iovec entry;
1396 void __user *base;
1397 size_t len;
1398 int i;
1400 error = -EFAULT;
1401 if (copy_from_user(&entry, iov, sizeof(entry)))
1402 break;
1404 base = entry.iov_base;
1405 len = entry.iov_len;
1408 * Sanity check this iovec. 0 read succeeds.
1410 error = 0;
1411 if (unlikely(!len))
1412 break;
1413 error = -EFAULT;
1414 if (!access_ok(VERIFY_READ, base, len))
1415 break;
1418 * Get this base offset and number of pages, then map
1419 * in the user pages.
1421 off = (unsigned long) base & ~PAGE_MASK;
1424 * If asked for alignment, the offset must be zero and the
1425 * length a multiple of the PAGE_SIZE.
1427 error = -EINVAL;
1428 if (aligned && (off || len & ~PAGE_MASK))
1429 break;
1431 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1432 if (npages > pipe_buffers - buffers)
1433 npages = pipe_buffers - buffers;
1435 error = get_user_pages_fast((unsigned long)base, npages,
1436 0, &pages[buffers]);
1438 if (unlikely(error <= 0))
1439 break;
1442 * Fill this contiguous range into the partial page map.
1444 for (i = 0; i < error; i++) {
1445 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1447 partial[buffers].offset = off;
1448 partial[buffers].len = plen;
1450 off = 0;
1451 len -= plen;
1452 buffers++;
1456 * We didn't complete this iov, stop here since it probably
1457 * means we have to move some of this into a pipe to
1458 * be able to continue.
1460 if (len)
1461 break;
1464 * Don't continue if we mapped fewer pages than we asked for,
1465 * or if we mapped the max number of pages that we have
1466 * room for.
1468 if (error < npages || buffers == pipe_buffers)
1469 break;
1471 nr_vecs--;
1472 iov++;
1475 if (buffers)
1476 return buffers;
1478 return error;
1481 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1482 struct splice_desc *sd)
1484 char *src;
1485 int ret;
1488 * See if we can use the atomic maps, by prefaulting in the
1489 * pages and doing an atomic copy
1491 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1492 src = buf->ops->map(pipe, buf, 1);
1493 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1494 sd->len);
1495 buf->ops->unmap(pipe, buf, src);
1496 if (!ret) {
1497 ret = sd->len;
1498 goto out;
1503 * No dice, use slow non-atomic map and copy
1505 src = buf->ops->map(pipe, buf, 0);
1507 ret = sd->len;
1508 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1509 ret = -EFAULT;
1511 buf->ops->unmap(pipe, buf, src);
1512 out:
1513 if (ret > 0)
1514 sd->u.userptr += ret;
1515 return ret;
1519 * For lack of a better implementation, implement vmsplice() to userspace
1520 * as a simple copy of the pipes pages to the user iov.
1522 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1523 unsigned long nr_segs, unsigned int flags)
1525 struct pipe_inode_info *pipe;
1526 struct splice_desc sd;
1527 ssize_t size;
1528 int error;
1529 long ret;
1531 pipe = get_pipe_info(file);
1532 if (!pipe)
1533 return -EBADF;
1535 pipe_lock(pipe);
1537 error = ret = 0;
1538 while (nr_segs) {
1539 void __user *base;
1540 size_t len;
1543 * Get user address base and length for this iovec.
1545 error = get_user(base, &iov->iov_base);
1546 if (unlikely(error))
1547 break;
1548 error = get_user(len, &iov->iov_len);
1549 if (unlikely(error))
1550 break;
1553 * Sanity check this iovec. 0 read succeeds.
1555 if (unlikely(!len))
1556 break;
1557 if (unlikely(!base)) {
1558 error = -EFAULT;
1559 break;
1562 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1563 error = -EFAULT;
1564 break;
1567 sd.len = 0;
1568 sd.total_len = len;
1569 sd.flags = flags;
1570 sd.u.userptr = base;
1571 sd.pos = 0;
1573 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1574 if (size < 0) {
1575 if (!ret)
1576 ret = size;
1578 break;
1581 ret += size;
1583 if (size < len)
1584 break;
1586 nr_segs--;
1587 iov++;
1590 pipe_unlock(pipe);
1592 if (!ret)
1593 ret = error;
1595 return ret;
1599 * vmsplice splices a user address range into a pipe. It can be thought of
1600 * as splice-from-memory, where the regular splice is splice-from-file (or
1601 * to file). In both cases the output is a pipe, naturally.
1603 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1604 unsigned long nr_segs, unsigned int flags)
1606 struct pipe_inode_info *pipe;
1607 struct page *pages[PIPE_DEF_BUFFERS];
1608 struct partial_page partial[PIPE_DEF_BUFFERS];
1609 struct splice_pipe_desc spd = {
1610 .pages = pages,
1611 .partial = partial,
1612 .flags = flags,
1613 .ops = &user_page_pipe_buf_ops,
1614 .spd_release = spd_release_page,
1616 long ret;
1618 pipe = get_pipe_info(file);
1619 if (!pipe)
1620 return -EBADF;
1622 if (splice_grow_spd(pipe, &spd))
1623 return -ENOMEM;
1625 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1626 spd.partial, flags & SPLICE_F_GIFT,
1627 pipe->buffers);
1628 if (spd.nr_pages <= 0)
1629 ret = spd.nr_pages;
1630 else
1631 ret = splice_to_pipe(pipe, &spd);
1633 splice_shrink_spd(pipe, &spd);
1634 return ret;
1638 * Note that vmsplice only really supports true splicing _from_ user memory
1639 * to a pipe, not the other way around. Splicing from user memory is a simple
1640 * operation that can be supported without any funky alignment restrictions
1641 * or nasty vm tricks. We simply map in the user memory and fill them into
1642 * a pipe. The reverse isn't quite as easy, though. There are two possible
1643 * solutions for that:
1645 * - memcpy() the data internally, at which point we might as well just
1646 * do a regular read() on the buffer anyway.
1647 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1648 * has restriction limitations on both ends of the pipe).
1650 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1653 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1654 unsigned long, nr_segs, unsigned int, flags)
1656 struct file *file;
1657 long error;
1658 int fput;
1660 if (unlikely(nr_segs > UIO_MAXIOV))
1661 return -EINVAL;
1662 else if (unlikely(!nr_segs))
1663 return 0;
1665 error = -EBADF;
1666 file = fget_light(fd, &fput);
1667 if (file) {
1668 if (file->f_mode & FMODE_WRITE)
1669 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1670 else if (file->f_mode & FMODE_READ)
1671 error = vmsplice_to_user(file, iov, nr_segs, flags);
1673 fput_light(file, fput);
1676 return error;
1679 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1680 int, fd_out, loff_t __user *, off_out,
1681 size_t, len, unsigned int, flags)
1683 long error;
1684 struct file *in, *out;
1685 int fput_in, fput_out;
1687 if (unlikely(!len))
1688 return 0;
1690 error = -EBADF;
1691 in = fget_light(fd_in, &fput_in);
1692 if (in) {
1693 if (in->f_mode & FMODE_READ) {
1694 out = fget_light(fd_out, &fput_out);
1695 if (out) {
1696 if (out->f_mode & FMODE_WRITE)
1697 error = do_splice(in, off_in,
1698 out, off_out,
1699 len, flags);
1700 fput_light(out, fput_out);
1704 fput_light(in, fput_in);
1707 return error;
1711 * Make sure there's data to read. Wait for input if we can, otherwise
1712 * return an appropriate error.
1714 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1716 int ret;
1719 * Check ->nrbufs without the inode lock first. This function
1720 * is speculative anyways, so missing one is ok.
1722 if (pipe->nrbufs)
1723 return 0;
1725 ret = 0;
1726 pipe_lock(pipe);
1728 while (!pipe->nrbufs) {
1729 if (signal_pending(current)) {
1730 ret = -ERESTARTSYS;
1731 break;
1733 if (!pipe->writers)
1734 break;
1735 if (!pipe->waiting_writers) {
1736 if (flags & SPLICE_F_NONBLOCK) {
1737 ret = -EAGAIN;
1738 break;
1741 pipe_wait(pipe);
1744 pipe_unlock(pipe);
1745 return ret;
1749 * Make sure there's writeable room. Wait for room if we can, otherwise
1750 * return an appropriate error.
1752 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1754 int ret;
1757 * Check ->nrbufs without the inode lock first. This function
1758 * is speculative anyways, so missing one is ok.
1760 if (pipe->nrbufs < pipe->buffers)
1761 return 0;
1763 ret = 0;
1764 pipe_lock(pipe);
1766 while (pipe->nrbufs >= pipe->buffers) {
1767 if (!pipe->readers) {
1768 send_sig(SIGPIPE, current, 0);
1769 ret = -EPIPE;
1770 break;
1772 if (flags & SPLICE_F_NONBLOCK) {
1773 ret = -EAGAIN;
1774 break;
1776 if (signal_pending(current)) {
1777 ret = -ERESTARTSYS;
1778 break;
1780 pipe->waiting_writers++;
1781 pipe_wait(pipe);
1782 pipe->waiting_writers--;
1785 pipe_unlock(pipe);
1786 return ret;
1790 * Splice contents of ipipe to opipe.
1792 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1793 struct pipe_inode_info *opipe,
1794 size_t len, unsigned int flags)
1796 struct pipe_buffer *ibuf, *obuf;
1797 int ret = 0, nbuf;
1798 bool input_wakeup = false;
1801 retry:
1802 ret = ipipe_prep(ipipe, flags);
1803 if (ret)
1804 return ret;
1806 ret = opipe_prep(opipe, flags);
1807 if (ret)
1808 return ret;
1811 * Potential ABBA deadlock, work around it by ordering lock
1812 * grabbing by pipe info address. Otherwise two different processes
1813 * could deadlock (one doing tee from A -> B, the other from B -> A).
1815 pipe_double_lock(ipipe, opipe);
1817 do {
1818 if (!opipe->readers) {
1819 send_sig(SIGPIPE, current, 0);
1820 if (!ret)
1821 ret = -EPIPE;
1822 break;
1825 if (!ipipe->nrbufs && !ipipe->writers)
1826 break;
1829 * Cannot make any progress, because either the input
1830 * pipe is empty or the output pipe is full.
1832 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1833 /* Already processed some buffers, break */
1834 if (ret)
1835 break;
1837 if (flags & SPLICE_F_NONBLOCK) {
1838 ret = -EAGAIN;
1839 break;
1843 * We raced with another reader/writer and haven't
1844 * managed to process any buffers. A zero return
1845 * value means EOF, so retry instead.
1847 pipe_unlock(ipipe);
1848 pipe_unlock(opipe);
1849 goto retry;
1852 ibuf = ipipe->bufs + ipipe->curbuf;
1853 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1854 obuf = opipe->bufs + nbuf;
1856 if (len >= ibuf->len) {
1858 * Simply move the whole buffer from ipipe to opipe
1860 *obuf = *ibuf;
1861 ibuf->ops = NULL;
1862 opipe->nrbufs++;
1863 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1864 ipipe->nrbufs--;
1865 input_wakeup = true;
1866 } else {
1868 * Get a reference to this pipe buffer,
1869 * so we can copy the contents over.
1871 ibuf->ops->get(ipipe, ibuf);
1872 *obuf = *ibuf;
1875 * Don't inherit the gift flag, we need to
1876 * prevent multiple steals of this page.
1878 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1880 obuf->len = len;
1881 opipe->nrbufs++;
1882 ibuf->offset += obuf->len;
1883 ibuf->len -= obuf->len;
1885 ret += obuf->len;
1886 len -= obuf->len;
1887 } while (len);
1889 pipe_unlock(ipipe);
1890 pipe_unlock(opipe);
1893 * If we put data in the output pipe, wakeup any potential readers.
1895 if (ret > 0)
1896 wakeup_pipe_readers(opipe);
1898 if (input_wakeup)
1899 wakeup_pipe_writers(ipipe);
1901 return ret;
1905 * Link contents of ipipe to opipe.
1907 static int link_pipe(struct pipe_inode_info *ipipe,
1908 struct pipe_inode_info *opipe,
1909 size_t len, unsigned int flags)
1911 struct pipe_buffer *ibuf, *obuf;
1912 int ret = 0, i = 0, nbuf;
1915 * Potential ABBA deadlock, work around it by ordering lock
1916 * grabbing by pipe info address. Otherwise two different processes
1917 * could deadlock (one doing tee from A -> B, the other from B -> A).
1919 pipe_double_lock(ipipe, opipe);
1921 do {
1922 if (!opipe->readers) {
1923 send_sig(SIGPIPE, current, 0);
1924 if (!ret)
1925 ret = -EPIPE;
1926 break;
1930 * If we have iterated all input buffers or ran out of
1931 * output room, break.
1933 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1934 break;
1936 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1937 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1940 * Get a reference to this pipe buffer,
1941 * so we can copy the contents over.
1943 ibuf->ops->get(ipipe, ibuf);
1945 obuf = opipe->bufs + nbuf;
1946 *obuf = *ibuf;
1949 * Don't inherit the gift flag, we need to
1950 * prevent multiple steals of this page.
1952 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1954 if (obuf->len > len)
1955 obuf->len = len;
1957 opipe->nrbufs++;
1958 ret += obuf->len;
1959 len -= obuf->len;
1960 i++;
1961 } while (len);
1964 * return EAGAIN if we have the potential of some data in the
1965 * future, otherwise just return 0
1967 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1968 ret = -EAGAIN;
1970 pipe_unlock(ipipe);
1971 pipe_unlock(opipe);
1974 * If we put data in the output pipe, wakeup any potential readers.
1976 if (ret > 0)
1977 wakeup_pipe_readers(opipe);
1979 return ret;
1983 * This is a tee(1) implementation that works on pipes. It doesn't copy
1984 * any data, it simply references the 'in' pages on the 'out' pipe.
1985 * The 'flags' used are the SPLICE_F_* variants, currently the only
1986 * applicable one is SPLICE_F_NONBLOCK.
1988 static long do_tee(struct file *in, struct file *out, size_t len,
1989 unsigned int flags)
1991 struct pipe_inode_info *ipipe = get_pipe_info(in);
1992 struct pipe_inode_info *opipe = get_pipe_info(out);
1993 int ret = -EINVAL;
1996 * Duplicate the contents of ipipe to opipe without actually
1997 * copying the data.
1999 if (ipipe && opipe && ipipe != opipe) {
2001 * Keep going, unless we encounter an error. The ipipe/opipe
2002 * ordering doesn't really matter.
2004 ret = ipipe_prep(ipipe, flags);
2005 if (!ret) {
2006 ret = opipe_prep(opipe, flags);
2007 if (!ret)
2008 ret = link_pipe(ipipe, opipe, len, flags);
2012 return ret;
2015 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2017 struct file *in;
2018 int error, fput_in;
2020 if (unlikely(!len))
2021 return 0;
2023 error = -EBADF;
2024 in = fget_light(fdin, &fput_in);
2025 if (in) {
2026 if (in->f_mode & FMODE_READ) {
2027 int fput_out;
2028 struct file *out = fget_light(fdout, &fput_out);
2030 if (out) {
2031 if (out->f_mode & FMODE_WRITE)
2032 error = do_tee(in, out, len, flags);
2033 fput_light(out, fput_out);
2036 fput_light(in, fput_in);
2039 return error;