blkcg: simplify blkg_conf_prep()
[linux-2.6.git] / block / cfq-iosched.c
blob8cca6161d0bc3bf09c4761bb1d14bf031da2eb5f
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
20 static struct blkio_policy_type blkio_policy_cfq;
23 * tunables
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const int cfq_slice_sync = HZ / 10;
33 static int cfq_slice_async = HZ / 25;
34 static const int cfq_slice_async_rq = 2;
35 static int cfq_slice_idle = HZ / 125;
36 static int cfq_group_idle = HZ / 125;
37 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
41 * offset from end of service tree
43 #define CFQ_IDLE_DELAY (HZ / 5)
46 * below this threshold, we consider thinktime immediate
48 #define CFQ_MIN_TT (2)
50 #define CFQ_SLICE_SCALE (5)
51 #define CFQ_HW_QUEUE_MIN (5)
52 #define CFQ_SERVICE_SHIFT 12
54 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
59 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
63 static struct kmem_cache *cfq_pool;
65 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69 #define sample_valid(samples) ((samples) > 80)
70 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
72 struct cfq_ttime {
73 unsigned long last_end_request;
75 unsigned long ttime_total;
76 unsigned long ttime_samples;
77 unsigned long ttime_mean;
81 * Most of our rbtree usage is for sorting with min extraction, so
82 * if we cache the leftmost node we don't have to walk down the tree
83 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
84 * move this into the elevator for the rq sorting as well.
86 struct cfq_rb_root {
87 struct rb_root rb;
88 struct rb_node *left;
89 unsigned count;
90 unsigned total_weight;
91 u64 min_vdisktime;
92 struct cfq_ttime ttime;
94 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
95 .ttime = {.last_end_request = jiffies,},}
98 * Per process-grouping structure
100 struct cfq_queue {
101 /* reference count */
102 int ref;
103 /* various state flags, see below */
104 unsigned int flags;
105 /* parent cfq_data */
106 struct cfq_data *cfqd;
107 /* service_tree member */
108 struct rb_node rb_node;
109 /* service_tree key */
110 unsigned long rb_key;
111 /* prio tree member */
112 struct rb_node p_node;
113 /* prio tree root we belong to, if any */
114 struct rb_root *p_root;
115 /* sorted list of pending requests */
116 struct rb_root sort_list;
117 /* if fifo isn't expired, next request to serve */
118 struct request *next_rq;
119 /* requests queued in sort_list */
120 int queued[2];
121 /* currently allocated requests */
122 int allocated[2];
123 /* fifo list of requests in sort_list */
124 struct list_head fifo;
126 /* time when queue got scheduled in to dispatch first request. */
127 unsigned long dispatch_start;
128 unsigned int allocated_slice;
129 unsigned int slice_dispatch;
130 /* time when first request from queue completed and slice started. */
131 unsigned long slice_start;
132 unsigned long slice_end;
133 long slice_resid;
135 /* pending priority requests */
136 int prio_pending;
137 /* number of requests that are on the dispatch list or inside driver */
138 int dispatched;
140 /* io prio of this group */
141 unsigned short ioprio, org_ioprio;
142 unsigned short ioprio_class;
144 pid_t pid;
146 u32 seek_history;
147 sector_t last_request_pos;
149 struct cfq_rb_root *service_tree;
150 struct cfq_queue *new_cfqq;
151 struct cfq_group *cfqg;
152 /* Number of sectors dispatched from queue in single dispatch round */
153 unsigned long nr_sectors;
157 * First index in the service_trees.
158 * IDLE is handled separately, so it has negative index
160 enum wl_prio_t {
161 BE_WORKLOAD = 0,
162 RT_WORKLOAD = 1,
163 IDLE_WORKLOAD = 2,
164 CFQ_PRIO_NR,
168 * Second index in the service_trees.
170 enum wl_type_t {
171 ASYNC_WORKLOAD = 0,
172 SYNC_NOIDLE_WORKLOAD = 1,
173 SYNC_WORKLOAD = 2
176 /* This is per cgroup per device grouping structure */
177 struct cfq_group {
178 /* group service_tree member */
179 struct rb_node rb_node;
181 /* group service_tree key */
182 u64 vdisktime;
183 unsigned int weight;
184 unsigned int new_weight;
185 bool needs_update;
187 /* number of cfqq currently on this group */
188 int nr_cfqq;
191 * Per group busy queues average. Useful for workload slice calc. We
192 * create the array for each prio class but at run time it is used
193 * only for RT and BE class and slot for IDLE class remains unused.
194 * This is primarily done to avoid confusion and a gcc warning.
196 unsigned int busy_queues_avg[CFQ_PRIO_NR];
198 * rr lists of queues with requests. We maintain service trees for
199 * RT and BE classes. These trees are subdivided in subclasses
200 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
201 * class there is no subclassification and all the cfq queues go on
202 * a single tree service_tree_idle.
203 * Counts are embedded in the cfq_rb_root
205 struct cfq_rb_root service_trees[2][3];
206 struct cfq_rb_root service_tree_idle;
208 unsigned long saved_workload_slice;
209 enum wl_type_t saved_workload;
210 enum wl_prio_t saved_serving_prio;
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214 struct cfq_ttime ttime;
217 struct cfq_io_cq {
218 struct io_cq icq; /* must be the first member */
219 struct cfq_queue *cfqq[2];
220 struct cfq_ttime ttime;
221 int ioprio; /* the current ioprio */
222 #ifdef CONFIG_CFQ_GROUP_IOSCHED
223 uint64_t blkcg_id; /* the current blkcg ID */
224 #endif
228 * Per block device queue structure
230 struct cfq_data {
231 struct request_queue *queue;
232 /* Root service tree for cfq_groups */
233 struct cfq_rb_root grp_service_tree;
234 struct cfq_group *root_group;
237 * The priority currently being served
239 enum wl_prio_t serving_prio;
240 enum wl_type_t serving_type;
241 unsigned long workload_expires;
242 struct cfq_group *serving_group;
245 * Each priority tree is sorted by next_request position. These
246 * trees are used when determining if two or more queues are
247 * interleaving requests (see cfq_close_cooperator).
249 struct rb_root prio_trees[CFQ_PRIO_LISTS];
251 unsigned int busy_queues;
252 unsigned int busy_sync_queues;
254 int rq_in_driver;
255 int rq_in_flight[2];
258 * queue-depth detection
260 int rq_queued;
261 int hw_tag;
263 * hw_tag can be
264 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
265 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
266 * 0 => no NCQ
268 int hw_tag_est_depth;
269 unsigned int hw_tag_samples;
272 * idle window management
274 struct timer_list idle_slice_timer;
275 struct work_struct unplug_work;
277 struct cfq_queue *active_queue;
278 struct cfq_io_cq *active_cic;
281 * async queue for each priority case
283 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
284 struct cfq_queue *async_idle_cfqq;
286 sector_t last_position;
289 * tunables, see top of file
291 unsigned int cfq_quantum;
292 unsigned int cfq_fifo_expire[2];
293 unsigned int cfq_back_penalty;
294 unsigned int cfq_back_max;
295 unsigned int cfq_slice[2];
296 unsigned int cfq_slice_async_rq;
297 unsigned int cfq_slice_idle;
298 unsigned int cfq_group_idle;
299 unsigned int cfq_latency;
302 * Fallback dummy cfqq for extreme OOM conditions
304 struct cfq_queue oom_cfqq;
306 unsigned long last_delayed_sync;
309 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
311 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
312 enum wl_prio_t prio,
313 enum wl_type_t type)
315 if (!cfqg)
316 return NULL;
318 if (prio == IDLE_WORKLOAD)
319 return &cfqg->service_tree_idle;
321 return &cfqg->service_trees[prio][type];
324 enum cfqq_state_flags {
325 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
326 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
327 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
328 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
329 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
330 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
331 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
332 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
333 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
334 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
335 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
336 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
337 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
340 #define CFQ_CFQQ_FNS(name) \
341 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
343 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
345 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
347 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
349 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
351 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
354 CFQ_CFQQ_FNS(on_rr);
355 CFQ_CFQQ_FNS(wait_request);
356 CFQ_CFQQ_FNS(must_dispatch);
357 CFQ_CFQQ_FNS(must_alloc_slice);
358 CFQ_CFQQ_FNS(fifo_expire);
359 CFQ_CFQQ_FNS(idle_window);
360 CFQ_CFQQ_FNS(prio_changed);
361 CFQ_CFQQ_FNS(slice_new);
362 CFQ_CFQQ_FNS(sync);
363 CFQ_CFQQ_FNS(coop);
364 CFQ_CFQQ_FNS(split_coop);
365 CFQ_CFQQ_FNS(deep);
366 CFQ_CFQQ_FNS(wait_busy);
367 #undef CFQ_CFQQ_FNS
369 #ifdef CONFIG_CFQ_GROUP_IOSCHED
370 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
372 return blkg_to_pdata(blkg, &blkio_policy_cfq);
375 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
377 return pdata_to_blkg(cfqg);
380 static inline void cfqg_get(struct cfq_group *cfqg)
382 return blkg_get(cfqg_to_blkg(cfqg));
385 static inline void cfqg_put(struct cfq_group *cfqg)
387 return blkg_put(cfqg_to_blkg(cfqg));
390 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
391 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
392 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
393 blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
395 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
396 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
397 blkg_path(cfqg_to_blkg((cfqg))), ##args) \
399 #else /* CONFIG_CFQ_GROUP_IOSCHED */
401 static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
402 static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
403 static inline void cfqg_get(struct cfq_group *cfqg) { }
404 static inline void cfqg_put(struct cfq_group *cfqg) { }
406 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
407 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
408 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
410 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
412 #define cfq_log(cfqd, fmt, args...) \
413 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
415 /* Traverses through cfq group service trees */
416 #define for_each_cfqg_st(cfqg, i, j, st) \
417 for (i = 0; i <= IDLE_WORKLOAD; i++) \
418 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
419 : &cfqg->service_tree_idle; \
420 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
421 (i == IDLE_WORKLOAD && j == 0); \
422 j++, st = i < IDLE_WORKLOAD ? \
423 &cfqg->service_trees[i][j]: NULL) \
425 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
426 struct cfq_ttime *ttime, bool group_idle)
428 unsigned long slice;
429 if (!sample_valid(ttime->ttime_samples))
430 return false;
431 if (group_idle)
432 slice = cfqd->cfq_group_idle;
433 else
434 slice = cfqd->cfq_slice_idle;
435 return ttime->ttime_mean > slice;
438 static inline bool iops_mode(struct cfq_data *cfqd)
441 * If we are not idling on queues and it is a NCQ drive, parallel
442 * execution of requests is on and measuring time is not possible
443 * in most of the cases until and unless we drive shallower queue
444 * depths and that becomes a performance bottleneck. In such cases
445 * switch to start providing fairness in terms of number of IOs.
447 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
448 return true;
449 else
450 return false;
453 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
455 if (cfq_class_idle(cfqq))
456 return IDLE_WORKLOAD;
457 if (cfq_class_rt(cfqq))
458 return RT_WORKLOAD;
459 return BE_WORKLOAD;
463 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
465 if (!cfq_cfqq_sync(cfqq))
466 return ASYNC_WORKLOAD;
467 if (!cfq_cfqq_idle_window(cfqq))
468 return SYNC_NOIDLE_WORKLOAD;
469 return SYNC_WORKLOAD;
472 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
473 struct cfq_data *cfqd,
474 struct cfq_group *cfqg)
476 if (wl == IDLE_WORKLOAD)
477 return cfqg->service_tree_idle.count;
479 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
480 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
481 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
484 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
485 struct cfq_group *cfqg)
487 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
488 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
491 static void cfq_dispatch_insert(struct request_queue *, struct request *);
492 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
493 struct cfq_io_cq *cic, struct bio *bio,
494 gfp_t gfp_mask);
496 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
498 /* cic->icq is the first member, %NULL will convert to %NULL */
499 return container_of(icq, struct cfq_io_cq, icq);
502 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
503 struct io_context *ioc)
505 if (ioc)
506 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
507 return NULL;
510 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
512 return cic->cfqq[is_sync];
515 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
516 bool is_sync)
518 cic->cfqq[is_sync] = cfqq;
521 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
523 return cic->icq.q->elevator->elevator_data;
527 * We regard a request as SYNC, if it's either a read or has the SYNC bit
528 * set (in which case it could also be direct WRITE).
530 static inline bool cfq_bio_sync(struct bio *bio)
532 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
536 * scheduler run of queue, if there are requests pending and no one in the
537 * driver that will restart queueing
539 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
541 if (cfqd->busy_queues) {
542 cfq_log(cfqd, "schedule dispatch");
543 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
548 * Scale schedule slice based on io priority. Use the sync time slice only
549 * if a queue is marked sync and has sync io queued. A sync queue with async
550 * io only, should not get full sync slice length.
552 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
553 unsigned short prio)
555 const int base_slice = cfqd->cfq_slice[sync];
557 WARN_ON(prio >= IOPRIO_BE_NR);
559 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
562 static inline int
563 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
565 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
568 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
570 u64 d = delta << CFQ_SERVICE_SHIFT;
572 d = d * BLKIO_WEIGHT_DEFAULT;
573 do_div(d, cfqg->weight);
574 return d;
577 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
579 s64 delta = (s64)(vdisktime - min_vdisktime);
580 if (delta > 0)
581 min_vdisktime = vdisktime;
583 return min_vdisktime;
586 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
588 s64 delta = (s64)(vdisktime - min_vdisktime);
589 if (delta < 0)
590 min_vdisktime = vdisktime;
592 return min_vdisktime;
595 static void update_min_vdisktime(struct cfq_rb_root *st)
597 struct cfq_group *cfqg;
599 if (st->left) {
600 cfqg = rb_entry_cfqg(st->left);
601 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
602 cfqg->vdisktime);
607 * get averaged number of queues of RT/BE priority.
608 * average is updated, with a formula that gives more weight to higher numbers,
609 * to quickly follows sudden increases and decrease slowly
612 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
613 struct cfq_group *cfqg, bool rt)
615 unsigned min_q, max_q;
616 unsigned mult = cfq_hist_divisor - 1;
617 unsigned round = cfq_hist_divisor / 2;
618 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
620 min_q = min(cfqg->busy_queues_avg[rt], busy);
621 max_q = max(cfqg->busy_queues_avg[rt], busy);
622 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
623 cfq_hist_divisor;
624 return cfqg->busy_queues_avg[rt];
627 static inline unsigned
628 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
630 struct cfq_rb_root *st = &cfqd->grp_service_tree;
632 return cfq_target_latency * cfqg->weight / st->total_weight;
635 static inline unsigned
636 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
638 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
639 if (cfqd->cfq_latency) {
641 * interested queues (we consider only the ones with the same
642 * priority class in the cfq group)
644 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
645 cfq_class_rt(cfqq));
646 unsigned sync_slice = cfqd->cfq_slice[1];
647 unsigned expect_latency = sync_slice * iq;
648 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
650 if (expect_latency > group_slice) {
651 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
652 /* scale low_slice according to IO priority
653 * and sync vs async */
654 unsigned low_slice =
655 min(slice, base_low_slice * slice / sync_slice);
656 /* the adapted slice value is scaled to fit all iqs
657 * into the target latency */
658 slice = max(slice * group_slice / expect_latency,
659 low_slice);
662 return slice;
665 static inline void
666 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
668 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
670 cfqq->slice_start = jiffies;
671 cfqq->slice_end = jiffies + slice;
672 cfqq->allocated_slice = slice;
673 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
677 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
678 * isn't valid until the first request from the dispatch is activated
679 * and the slice time set.
681 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
683 if (cfq_cfqq_slice_new(cfqq))
684 return false;
685 if (time_before(jiffies, cfqq->slice_end))
686 return false;
688 return true;
692 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
693 * We choose the request that is closest to the head right now. Distance
694 * behind the head is penalized and only allowed to a certain extent.
696 static struct request *
697 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
699 sector_t s1, s2, d1 = 0, d2 = 0;
700 unsigned long back_max;
701 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
702 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
703 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
705 if (rq1 == NULL || rq1 == rq2)
706 return rq2;
707 if (rq2 == NULL)
708 return rq1;
710 if (rq_is_sync(rq1) != rq_is_sync(rq2))
711 return rq_is_sync(rq1) ? rq1 : rq2;
713 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
714 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
716 s1 = blk_rq_pos(rq1);
717 s2 = blk_rq_pos(rq2);
720 * by definition, 1KiB is 2 sectors
722 back_max = cfqd->cfq_back_max * 2;
725 * Strict one way elevator _except_ in the case where we allow
726 * short backward seeks which are biased as twice the cost of a
727 * similar forward seek.
729 if (s1 >= last)
730 d1 = s1 - last;
731 else if (s1 + back_max >= last)
732 d1 = (last - s1) * cfqd->cfq_back_penalty;
733 else
734 wrap |= CFQ_RQ1_WRAP;
736 if (s2 >= last)
737 d2 = s2 - last;
738 else if (s2 + back_max >= last)
739 d2 = (last - s2) * cfqd->cfq_back_penalty;
740 else
741 wrap |= CFQ_RQ2_WRAP;
743 /* Found required data */
746 * By doing switch() on the bit mask "wrap" we avoid having to
747 * check two variables for all permutations: --> faster!
749 switch (wrap) {
750 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
751 if (d1 < d2)
752 return rq1;
753 else if (d2 < d1)
754 return rq2;
755 else {
756 if (s1 >= s2)
757 return rq1;
758 else
759 return rq2;
762 case CFQ_RQ2_WRAP:
763 return rq1;
764 case CFQ_RQ1_WRAP:
765 return rq2;
766 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
767 default:
769 * Since both rqs are wrapped,
770 * start with the one that's further behind head
771 * (--> only *one* back seek required),
772 * since back seek takes more time than forward.
774 if (s1 <= s2)
775 return rq1;
776 else
777 return rq2;
782 * The below is leftmost cache rbtree addon
784 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
786 /* Service tree is empty */
787 if (!root->count)
788 return NULL;
790 if (!root->left)
791 root->left = rb_first(&root->rb);
793 if (root->left)
794 return rb_entry(root->left, struct cfq_queue, rb_node);
796 return NULL;
799 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
801 if (!root->left)
802 root->left = rb_first(&root->rb);
804 if (root->left)
805 return rb_entry_cfqg(root->left);
807 return NULL;
810 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
812 rb_erase(n, root);
813 RB_CLEAR_NODE(n);
816 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
818 if (root->left == n)
819 root->left = NULL;
820 rb_erase_init(n, &root->rb);
821 --root->count;
825 * would be nice to take fifo expire time into account as well
827 static struct request *
828 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
829 struct request *last)
831 struct rb_node *rbnext = rb_next(&last->rb_node);
832 struct rb_node *rbprev = rb_prev(&last->rb_node);
833 struct request *next = NULL, *prev = NULL;
835 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
837 if (rbprev)
838 prev = rb_entry_rq(rbprev);
840 if (rbnext)
841 next = rb_entry_rq(rbnext);
842 else {
843 rbnext = rb_first(&cfqq->sort_list);
844 if (rbnext && rbnext != &last->rb_node)
845 next = rb_entry_rq(rbnext);
848 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
851 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
852 struct cfq_queue *cfqq)
855 * just an approximation, should be ok.
857 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
858 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
861 static inline s64
862 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
864 return cfqg->vdisktime - st->min_vdisktime;
867 static void
868 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
870 struct rb_node **node = &st->rb.rb_node;
871 struct rb_node *parent = NULL;
872 struct cfq_group *__cfqg;
873 s64 key = cfqg_key(st, cfqg);
874 int left = 1;
876 while (*node != NULL) {
877 parent = *node;
878 __cfqg = rb_entry_cfqg(parent);
880 if (key < cfqg_key(st, __cfqg))
881 node = &parent->rb_left;
882 else {
883 node = &parent->rb_right;
884 left = 0;
888 if (left)
889 st->left = &cfqg->rb_node;
891 rb_link_node(&cfqg->rb_node, parent, node);
892 rb_insert_color(&cfqg->rb_node, &st->rb);
895 static void
896 cfq_update_group_weight(struct cfq_group *cfqg)
898 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
899 if (cfqg->needs_update) {
900 cfqg->weight = cfqg->new_weight;
901 cfqg->needs_update = false;
905 static void
906 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
908 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
910 cfq_update_group_weight(cfqg);
911 __cfq_group_service_tree_add(st, cfqg);
912 st->total_weight += cfqg->weight;
915 static void
916 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
918 struct cfq_rb_root *st = &cfqd->grp_service_tree;
919 struct cfq_group *__cfqg;
920 struct rb_node *n;
922 cfqg->nr_cfqq++;
923 if (!RB_EMPTY_NODE(&cfqg->rb_node))
924 return;
927 * Currently put the group at the end. Later implement something
928 * so that groups get lesser vtime based on their weights, so that
929 * if group does not loose all if it was not continuously backlogged.
931 n = rb_last(&st->rb);
932 if (n) {
933 __cfqg = rb_entry_cfqg(n);
934 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
935 } else
936 cfqg->vdisktime = st->min_vdisktime;
937 cfq_group_service_tree_add(st, cfqg);
940 static void
941 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
943 st->total_weight -= cfqg->weight;
944 if (!RB_EMPTY_NODE(&cfqg->rb_node))
945 cfq_rb_erase(&cfqg->rb_node, st);
948 static void
949 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
951 struct cfq_rb_root *st = &cfqd->grp_service_tree;
953 BUG_ON(cfqg->nr_cfqq < 1);
954 cfqg->nr_cfqq--;
956 /* If there are other cfq queues under this group, don't delete it */
957 if (cfqg->nr_cfqq)
958 return;
960 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
961 cfq_group_service_tree_del(st, cfqg);
962 cfqg->saved_workload_slice = 0;
963 cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
964 &blkio_policy_cfq, 1);
967 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
968 unsigned int *unaccounted_time)
970 unsigned int slice_used;
973 * Queue got expired before even a single request completed or
974 * got expired immediately after first request completion.
976 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
978 * Also charge the seek time incurred to the group, otherwise
979 * if there are mutiple queues in the group, each can dispatch
980 * a single request on seeky media and cause lots of seek time
981 * and group will never know it.
983 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
985 } else {
986 slice_used = jiffies - cfqq->slice_start;
987 if (slice_used > cfqq->allocated_slice) {
988 *unaccounted_time = slice_used - cfqq->allocated_slice;
989 slice_used = cfqq->allocated_slice;
991 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
992 *unaccounted_time += cfqq->slice_start -
993 cfqq->dispatch_start;
996 return slice_used;
999 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1000 struct cfq_queue *cfqq)
1002 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1003 unsigned int used_sl, charge, unaccounted_sl = 0;
1004 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1005 - cfqg->service_tree_idle.count;
1007 BUG_ON(nr_sync < 0);
1008 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1010 if (iops_mode(cfqd))
1011 charge = cfqq->slice_dispatch;
1012 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1013 charge = cfqq->allocated_slice;
1015 /* Can't update vdisktime while group is on service tree */
1016 cfq_group_service_tree_del(st, cfqg);
1017 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1018 /* If a new weight was requested, update now, off tree */
1019 cfq_group_service_tree_add(st, cfqg);
1021 /* This group is being expired. Save the context */
1022 if (time_after(cfqd->workload_expires, jiffies)) {
1023 cfqg->saved_workload_slice = cfqd->workload_expires
1024 - jiffies;
1025 cfqg->saved_workload = cfqd->serving_type;
1026 cfqg->saved_serving_prio = cfqd->serving_prio;
1027 } else
1028 cfqg->saved_workload_slice = 0;
1030 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1031 st->min_vdisktime);
1032 cfq_log_cfqq(cfqq->cfqd, cfqq,
1033 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1034 used_sl, cfqq->slice_dispatch, charge,
1035 iops_mode(cfqd), cfqq->nr_sectors);
1036 cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
1037 used_sl, unaccounted_sl);
1038 cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
1042 * cfq_init_cfqg_base - initialize base part of a cfq_group
1043 * @cfqg: cfq_group to initialize
1045 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1046 * is enabled or not.
1048 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1050 struct cfq_rb_root *st;
1051 int i, j;
1053 for_each_cfqg_st(cfqg, i, j, st)
1054 *st = CFQ_RB_ROOT;
1055 RB_CLEAR_NODE(&cfqg->rb_node);
1057 cfqg->ttime.last_end_request = jiffies;
1060 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1061 static void cfq_update_blkio_group_weight(struct request_queue *q,
1062 struct blkio_group *blkg,
1063 unsigned int weight)
1065 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1067 cfqg->new_weight = weight;
1068 cfqg->needs_update = true;
1071 static void cfq_init_blkio_group(struct blkio_group *blkg)
1073 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1075 cfq_init_cfqg_base(cfqg);
1076 cfqg->weight = blkg->blkcg->weight;
1080 * Search for the cfq group current task belongs to. request_queue lock must
1081 * be held.
1083 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1084 struct blkio_cgroup *blkcg)
1086 struct request_queue *q = cfqd->queue;
1087 struct cfq_group *cfqg = NULL;
1089 /* avoid lookup for the common case where there's no blkio cgroup */
1090 if (blkcg == &blkio_root_cgroup) {
1091 cfqg = cfqd->root_group;
1092 } else {
1093 struct blkio_group *blkg;
1095 blkg = blkg_lookup_create(blkcg, q, false);
1096 if (!IS_ERR(blkg))
1097 cfqg = blkg_to_cfqg(blkg);
1100 return cfqg;
1103 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1105 /* Currently, all async queues are mapped to root group */
1106 if (!cfq_cfqq_sync(cfqq))
1107 cfqg = cfqq->cfqd->root_group;
1109 cfqq->cfqg = cfqg;
1110 /* cfqq reference on cfqg */
1111 cfqg_get(cfqg);
1114 #else /* GROUP_IOSCHED */
1115 static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1116 struct blkio_cgroup *blkcg)
1118 return cfqd->root_group;
1121 static inline void
1122 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1123 cfqq->cfqg = cfqg;
1126 #endif /* GROUP_IOSCHED */
1129 * The cfqd->service_trees holds all pending cfq_queue's that have
1130 * requests waiting to be processed. It is sorted in the order that
1131 * we will service the queues.
1133 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1134 bool add_front)
1136 struct rb_node **p, *parent;
1137 struct cfq_queue *__cfqq;
1138 unsigned long rb_key;
1139 struct cfq_rb_root *service_tree;
1140 int left;
1141 int new_cfqq = 1;
1143 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1144 cfqq_type(cfqq));
1145 if (cfq_class_idle(cfqq)) {
1146 rb_key = CFQ_IDLE_DELAY;
1147 parent = rb_last(&service_tree->rb);
1148 if (parent && parent != &cfqq->rb_node) {
1149 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1150 rb_key += __cfqq->rb_key;
1151 } else
1152 rb_key += jiffies;
1153 } else if (!add_front) {
1155 * Get our rb key offset. Subtract any residual slice
1156 * value carried from last service. A negative resid
1157 * count indicates slice overrun, and this should position
1158 * the next service time further away in the tree.
1160 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1161 rb_key -= cfqq->slice_resid;
1162 cfqq->slice_resid = 0;
1163 } else {
1164 rb_key = -HZ;
1165 __cfqq = cfq_rb_first(service_tree);
1166 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1169 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1170 new_cfqq = 0;
1172 * same position, nothing more to do
1174 if (rb_key == cfqq->rb_key &&
1175 cfqq->service_tree == service_tree)
1176 return;
1178 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1179 cfqq->service_tree = NULL;
1182 left = 1;
1183 parent = NULL;
1184 cfqq->service_tree = service_tree;
1185 p = &service_tree->rb.rb_node;
1186 while (*p) {
1187 struct rb_node **n;
1189 parent = *p;
1190 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1193 * sort by key, that represents service time.
1195 if (time_before(rb_key, __cfqq->rb_key))
1196 n = &(*p)->rb_left;
1197 else {
1198 n = &(*p)->rb_right;
1199 left = 0;
1202 p = n;
1205 if (left)
1206 service_tree->left = &cfqq->rb_node;
1208 cfqq->rb_key = rb_key;
1209 rb_link_node(&cfqq->rb_node, parent, p);
1210 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1211 service_tree->count++;
1212 if (add_front || !new_cfqq)
1213 return;
1214 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1217 static struct cfq_queue *
1218 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1219 sector_t sector, struct rb_node **ret_parent,
1220 struct rb_node ***rb_link)
1222 struct rb_node **p, *parent;
1223 struct cfq_queue *cfqq = NULL;
1225 parent = NULL;
1226 p = &root->rb_node;
1227 while (*p) {
1228 struct rb_node **n;
1230 parent = *p;
1231 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1234 * Sort strictly based on sector. Smallest to the left,
1235 * largest to the right.
1237 if (sector > blk_rq_pos(cfqq->next_rq))
1238 n = &(*p)->rb_right;
1239 else if (sector < blk_rq_pos(cfqq->next_rq))
1240 n = &(*p)->rb_left;
1241 else
1242 break;
1243 p = n;
1244 cfqq = NULL;
1247 *ret_parent = parent;
1248 if (rb_link)
1249 *rb_link = p;
1250 return cfqq;
1253 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1255 struct rb_node **p, *parent;
1256 struct cfq_queue *__cfqq;
1258 if (cfqq->p_root) {
1259 rb_erase(&cfqq->p_node, cfqq->p_root);
1260 cfqq->p_root = NULL;
1263 if (cfq_class_idle(cfqq))
1264 return;
1265 if (!cfqq->next_rq)
1266 return;
1268 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1269 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1270 blk_rq_pos(cfqq->next_rq), &parent, &p);
1271 if (!__cfqq) {
1272 rb_link_node(&cfqq->p_node, parent, p);
1273 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1274 } else
1275 cfqq->p_root = NULL;
1279 * Update cfqq's position in the service tree.
1281 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1284 * Resorting requires the cfqq to be on the RR list already.
1286 if (cfq_cfqq_on_rr(cfqq)) {
1287 cfq_service_tree_add(cfqd, cfqq, 0);
1288 cfq_prio_tree_add(cfqd, cfqq);
1293 * add to busy list of queues for service, trying to be fair in ordering
1294 * the pending list according to last request service
1296 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1298 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1299 BUG_ON(cfq_cfqq_on_rr(cfqq));
1300 cfq_mark_cfqq_on_rr(cfqq);
1301 cfqd->busy_queues++;
1302 if (cfq_cfqq_sync(cfqq))
1303 cfqd->busy_sync_queues++;
1305 cfq_resort_rr_list(cfqd, cfqq);
1309 * Called when the cfqq no longer has requests pending, remove it from
1310 * the service tree.
1312 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1314 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1315 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1316 cfq_clear_cfqq_on_rr(cfqq);
1318 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1319 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1320 cfqq->service_tree = NULL;
1322 if (cfqq->p_root) {
1323 rb_erase(&cfqq->p_node, cfqq->p_root);
1324 cfqq->p_root = NULL;
1327 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1328 BUG_ON(!cfqd->busy_queues);
1329 cfqd->busy_queues--;
1330 if (cfq_cfqq_sync(cfqq))
1331 cfqd->busy_sync_queues--;
1335 * rb tree support functions
1337 static void cfq_del_rq_rb(struct request *rq)
1339 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1340 const int sync = rq_is_sync(rq);
1342 BUG_ON(!cfqq->queued[sync]);
1343 cfqq->queued[sync]--;
1345 elv_rb_del(&cfqq->sort_list, rq);
1347 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1349 * Queue will be deleted from service tree when we actually
1350 * expire it later. Right now just remove it from prio tree
1351 * as it is empty.
1353 if (cfqq->p_root) {
1354 rb_erase(&cfqq->p_node, cfqq->p_root);
1355 cfqq->p_root = NULL;
1360 static void cfq_add_rq_rb(struct request *rq)
1362 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1363 struct cfq_data *cfqd = cfqq->cfqd;
1364 struct request *prev;
1366 cfqq->queued[rq_is_sync(rq)]++;
1368 elv_rb_add(&cfqq->sort_list, rq);
1370 if (!cfq_cfqq_on_rr(cfqq))
1371 cfq_add_cfqq_rr(cfqd, cfqq);
1374 * check if this request is a better next-serve candidate
1376 prev = cfqq->next_rq;
1377 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1380 * adjust priority tree position, if ->next_rq changes
1382 if (prev != cfqq->next_rq)
1383 cfq_prio_tree_add(cfqd, cfqq);
1385 BUG_ON(!cfqq->next_rq);
1388 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1390 elv_rb_del(&cfqq->sort_list, rq);
1391 cfqq->queued[rq_is_sync(rq)]--;
1392 cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1393 &blkio_policy_cfq, rq_data_dir(rq),
1394 rq_is_sync(rq));
1395 cfq_add_rq_rb(rq);
1396 cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1397 &blkio_policy_cfq,
1398 cfqg_to_blkg(cfqq->cfqd->serving_group),
1399 rq_data_dir(rq), rq_is_sync(rq));
1402 static struct request *
1403 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1405 struct task_struct *tsk = current;
1406 struct cfq_io_cq *cic;
1407 struct cfq_queue *cfqq;
1409 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1410 if (!cic)
1411 return NULL;
1413 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1414 if (cfqq) {
1415 sector_t sector = bio->bi_sector + bio_sectors(bio);
1417 return elv_rb_find(&cfqq->sort_list, sector);
1420 return NULL;
1423 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1425 struct cfq_data *cfqd = q->elevator->elevator_data;
1427 cfqd->rq_in_driver++;
1428 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1429 cfqd->rq_in_driver);
1431 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1434 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1436 struct cfq_data *cfqd = q->elevator->elevator_data;
1438 WARN_ON(!cfqd->rq_in_driver);
1439 cfqd->rq_in_driver--;
1440 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1441 cfqd->rq_in_driver);
1444 static void cfq_remove_request(struct request *rq)
1446 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1448 if (cfqq->next_rq == rq)
1449 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1451 list_del_init(&rq->queuelist);
1452 cfq_del_rq_rb(rq);
1454 cfqq->cfqd->rq_queued--;
1455 cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1456 &blkio_policy_cfq, rq_data_dir(rq),
1457 rq_is_sync(rq));
1458 if (rq->cmd_flags & REQ_PRIO) {
1459 WARN_ON(!cfqq->prio_pending);
1460 cfqq->prio_pending--;
1464 static int cfq_merge(struct request_queue *q, struct request **req,
1465 struct bio *bio)
1467 struct cfq_data *cfqd = q->elevator->elevator_data;
1468 struct request *__rq;
1470 __rq = cfq_find_rq_fmerge(cfqd, bio);
1471 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1472 *req = __rq;
1473 return ELEVATOR_FRONT_MERGE;
1476 return ELEVATOR_NO_MERGE;
1479 static void cfq_merged_request(struct request_queue *q, struct request *req,
1480 int type)
1482 if (type == ELEVATOR_FRONT_MERGE) {
1483 struct cfq_queue *cfqq = RQ_CFQQ(req);
1485 cfq_reposition_rq_rb(cfqq, req);
1489 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1490 struct bio *bio)
1492 cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
1493 &blkio_policy_cfq, bio_data_dir(bio),
1494 cfq_bio_sync(bio));
1497 static void
1498 cfq_merged_requests(struct request_queue *q, struct request *rq,
1499 struct request *next)
1501 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1502 struct cfq_data *cfqd = q->elevator->elevator_data;
1505 * reposition in fifo if next is older than rq
1507 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1508 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1509 list_move(&rq->queuelist, &next->queuelist);
1510 rq_set_fifo_time(rq, rq_fifo_time(next));
1513 if (cfqq->next_rq == next)
1514 cfqq->next_rq = rq;
1515 cfq_remove_request(next);
1516 cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
1517 &blkio_policy_cfq, rq_data_dir(next),
1518 rq_is_sync(next));
1520 cfqq = RQ_CFQQ(next);
1522 * all requests of this queue are merged to other queues, delete it
1523 * from the service tree. If it's the active_queue,
1524 * cfq_dispatch_requests() will choose to expire it or do idle
1526 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1527 cfqq != cfqd->active_queue)
1528 cfq_del_cfqq_rr(cfqd, cfqq);
1531 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1532 struct bio *bio)
1534 struct cfq_data *cfqd = q->elevator->elevator_data;
1535 struct cfq_io_cq *cic;
1536 struct cfq_queue *cfqq;
1539 * Disallow merge of a sync bio into an async request.
1541 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1542 return false;
1545 * Lookup the cfqq that this bio will be queued with and allow
1546 * merge only if rq is queued there.
1548 cic = cfq_cic_lookup(cfqd, current->io_context);
1549 if (!cic)
1550 return false;
1552 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1553 return cfqq == RQ_CFQQ(rq);
1556 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1558 del_timer(&cfqd->idle_slice_timer);
1559 cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
1560 &blkio_policy_cfq);
1563 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1564 struct cfq_queue *cfqq)
1566 if (cfqq) {
1567 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1568 cfqd->serving_prio, cfqd->serving_type);
1569 cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
1570 &blkio_policy_cfq);
1571 cfqq->slice_start = 0;
1572 cfqq->dispatch_start = jiffies;
1573 cfqq->allocated_slice = 0;
1574 cfqq->slice_end = 0;
1575 cfqq->slice_dispatch = 0;
1576 cfqq->nr_sectors = 0;
1578 cfq_clear_cfqq_wait_request(cfqq);
1579 cfq_clear_cfqq_must_dispatch(cfqq);
1580 cfq_clear_cfqq_must_alloc_slice(cfqq);
1581 cfq_clear_cfqq_fifo_expire(cfqq);
1582 cfq_mark_cfqq_slice_new(cfqq);
1584 cfq_del_timer(cfqd, cfqq);
1587 cfqd->active_queue = cfqq;
1591 * current cfqq expired its slice (or was too idle), select new one
1593 static void
1594 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1595 bool timed_out)
1597 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1599 if (cfq_cfqq_wait_request(cfqq))
1600 cfq_del_timer(cfqd, cfqq);
1602 cfq_clear_cfqq_wait_request(cfqq);
1603 cfq_clear_cfqq_wait_busy(cfqq);
1606 * If this cfqq is shared between multiple processes, check to
1607 * make sure that those processes are still issuing I/Os within
1608 * the mean seek distance. If not, it may be time to break the
1609 * queues apart again.
1611 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1612 cfq_mark_cfqq_split_coop(cfqq);
1615 * store what was left of this slice, if the queue idled/timed out
1617 if (timed_out) {
1618 if (cfq_cfqq_slice_new(cfqq))
1619 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1620 else
1621 cfqq->slice_resid = cfqq->slice_end - jiffies;
1622 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1625 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1627 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1628 cfq_del_cfqq_rr(cfqd, cfqq);
1630 cfq_resort_rr_list(cfqd, cfqq);
1632 if (cfqq == cfqd->active_queue)
1633 cfqd->active_queue = NULL;
1635 if (cfqd->active_cic) {
1636 put_io_context(cfqd->active_cic->icq.ioc);
1637 cfqd->active_cic = NULL;
1641 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1643 struct cfq_queue *cfqq = cfqd->active_queue;
1645 if (cfqq)
1646 __cfq_slice_expired(cfqd, cfqq, timed_out);
1650 * Get next queue for service. Unless we have a queue preemption,
1651 * we'll simply select the first cfqq in the service tree.
1653 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1655 struct cfq_rb_root *service_tree =
1656 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1657 cfqd->serving_type);
1659 if (!cfqd->rq_queued)
1660 return NULL;
1662 /* There is nothing to dispatch */
1663 if (!service_tree)
1664 return NULL;
1665 if (RB_EMPTY_ROOT(&service_tree->rb))
1666 return NULL;
1667 return cfq_rb_first(service_tree);
1670 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1672 struct cfq_group *cfqg;
1673 struct cfq_queue *cfqq;
1674 int i, j;
1675 struct cfq_rb_root *st;
1677 if (!cfqd->rq_queued)
1678 return NULL;
1680 cfqg = cfq_get_next_cfqg(cfqd);
1681 if (!cfqg)
1682 return NULL;
1684 for_each_cfqg_st(cfqg, i, j, st)
1685 if ((cfqq = cfq_rb_first(st)) != NULL)
1686 return cfqq;
1687 return NULL;
1691 * Get and set a new active queue for service.
1693 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1694 struct cfq_queue *cfqq)
1696 if (!cfqq)
1697 cfqq = cfq_get_next_queue(cfqd);
1699 __cfq_set_active_queue(cfqd, cfqq);
1700 return cfqq;
1703 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1704 struct request *rq)
1706 if (blk_rq_pos(rq) >= cfqd->last_position)
1707 return blk_rq_pos(rq) - cfqd->last_position;
1708 else
1709 return cfqd->last_position - blk_rq_pos(rq);
1712 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1713 struct request *rq)
1715 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1718 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1719 struct cfq_queue *cur_cfqq)
1721 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1722 struct rb_node *parent, *node;
1723 struct cfq_queue *__cfqq;
1724 sector_t sector = cfqd->last_position;
1726 if (RB_EMPTY_ROOT(root))
1727 return NULL;
1730 * First, if we find a request starting at the end of the last
1731 * request, choose it.
1733 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1734 if (__cfqq)
1735 return __cfqq;
1738 * If the exact sector wasn't found, the parent of the NULL leaf
1739 * will contain the closest sector.
1741 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1742 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1743 return __cfqq;
1745 if (blk_rq_pos(__cfqq->next_rq) < sector)
1746 node = rb_next(&__cfqq->p_node);
1747 else
1748 node = rb_prev(&__cfqq->p_node);
1749 if (!node)
1750 return NULL;
1752 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1753 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1754 return __cfqq;
1756 return NULL;
1760 * cfqd - obvious
1761 * cur_cfqq - passed in so that we don't decide that the current queue is
1762 * closely cooperating with itself.
1764 * So, basically we're assuming that that cur_cfqq has dispatched at least
1765 * one request, and that cfqd->last_position reflects a position on the disk
1766 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1767 * assumption.
1769 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1770 struct cfq_queue *cur_cfqq)
1772 struct cfq_queue *cfqq;
1774 if (cfq_class_idle(cur_cfqq))
1775 return NULL;
1776 if (!cfq_cfqq_sync(cur_cfqq))
1777 return NULL;
1778 if (CFQQ_SEEKY(cur_cfqq))
1779 return NULL;
1782 * Don't search priority tree if it's the only queue in the group.
1784 if (cur_cfqq->cfqg->nr_cfqq == 1)
1785 return NULL;
1788 * We should notice if some of the queues are cooperating, eg
1789 * working closely on the same area of the disk. In that case,
1790 * we can group them together and don't waste time idling.
1792 cfqq = cfqq_close(cfqd, cur_cfqq);
1793 if (!cfqq)
1794 return NULL;
1796 /* If new queue belongs to different cfq_group, don't choose it */
1797 if (cur_cfqq->cfqg != cfqq->cfqg)
1798 return NULL;
1801 * It only makes sense to merge sync queues.
1803 if (!cfq_cfqq_sync(cfqq))
1804 return NULL;
1805 if (CFQQ_SEEKY(cfqq))
1806 return NULL;
1809 * Do not merge queues of different priority classes
1811 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1812 return NULL;
1814 return cfqq;
1818 * Determine whether we should enforce idle window for this queue.
1821 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1823 enum wl_prio_t prio = cfqq_prio(cfqq);
1824 struct cfq_rb_root *service_tree = cfqq->service_tree;
1826 BUG_ON(!service_tree);
1827 BUG_ON(!service_tree->count);
1829 if (!cfqd->cfq_slice_idle)
1830 return false;
1832 /* We never do for idle class queues. */
1833 if (prio == IDLE_WORKLOAD)
1834 return false;
1836 /* We do for queues that were marked with idle window flag. */
1837 if (cfq_cfqq_idle_window(cfqq) &&
1838 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1839 return true;
1842 * Otherwise, we do only if they are the last ones
1843 * in their service tree.
1845 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1846 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1847 return true;
1848 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1849 service_tree->count);
1850 return false;
1853 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1855 struct cfq_queue *cfqq = cfqd->active_queue;
1856 struct cfq_io_cq *cic;
1857 unsigned long sl, group_idle = 0;
1860 * SSD device without seek penalty, disable idling. But only do so
1861 * for devices that support queuing, otherwise we still have a problem
1862 * with sync vs async workloads.
1864 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1865 return;
1867 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1868 WARN_ON(cfq_cfqq_slice_new(cfqq));
1871 * idle is disabled, either manually or by past process history
1873 if (!cfq_should_idle(cfqd, cfqq)) {
1874 /* no queue idling. Check for group idling */
1875 if (cfqd->cfq_group_idle)
1876 group_idle = cfqd->cfq_group_idle;
1877 else
1878 return;
1882 * still active requests from this queue, don't idle
1884 if (cfqq->dispatched)
1885 return;
1888 * task has exited, don't wait
1890 cic = cfqd->active_cic;
1891 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
1892 return;
1895 * If our average think time is larger than the remaining time
1896 * slice, then don't idle. This avoids overrunning the allotted
1897 * time slice.
1899 if (sample_valid(cic->ttime.ttime_samples) &&
1900 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
1901 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
1902 cic->ttime.ttime_mean);
1903 return;
1906 /* There are other queues in the group, don't do group idle */
1907 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1908 return;
1910 cfq_mark_cfqq_wait_request(cfqq);
1912 if (group_idle)
1913 sl = cfqd->cfq_group_idle;
1914 else
1915 sl = cfqd->cfq_slice_idle;
1917 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1918 cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
1919 &blkio_policy_cfq);
1920 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1921 group_idle ? 1 : 0);
1925 * Move request from internal lists to the request queue dispatch list.
1927 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1929 struct cfq_data *cfqd = q->elevator->elevator_data;
1930 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1932 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1934 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1935 cfq_remove_request(rq);
1936 cfqq->dispatched++;
1937 (RQ_CFQG(rq))->dispatched++;
1938 elv_dispatch_sort(q, rq);
1940 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1941 cfqq->nr_sectors += blk_rq_sectors(rq);
1942 cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
1943 &blkio_policy_cfq, blk_rq_bytes(rq),
1944 rq_data_dir(rq), rq_is_sync(rq));
1948 * return expired entry, or NULL to just start from scratch in rbtree
1950 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1952 struct request *rq = NULL;
1954 if (cfq_cfqq_fifo_expire(cfqq))
1955 return NULL;
1957 cfq_mark_cfqq_fifo_expire(cfqq);
1959 if (list_empty(&cfqq->fifo))
1960 return NULL;
1962 rq = rq_entry_fifo(cfqq->fifo.next);
1963 if (time_before(jiffies, rq_fifo_time(rq)))
1964 rq = NULL;
1966 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1967 return rq;
1970 static inline int
1971 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1973 const int base_rq = cfqd->cfq_slice_async_rq;
1975 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1977 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1981 * Must be called with the queue_lock held.
1983 static int cfqq_process_refs(struct cfq_queue *cfqq)
1985 int process_refs, io_refs;
1987 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1988 process_refs = cfqq->ref - io_refs;
1989 BUG_ON(process_refs < 0);
1990 return process_refs;
1993 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1995 int process_refs, new_process_refs;
1996 struct cfq_queue *__cfqq;
1999 * If there are no process references on the new_cfqq, then it is
2000 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2001 * chain may have dropped their last reference (not just their
2002 * last process reference).
2004 if (!cfqq_process_refs(new_cfqq))
2005 return;
2007 /* Avoid a circular list and skip interim queue merges */
2008 while ((__cfqq = new_cfqq->new_cfqq)) {
2009 if (__cfqq == cfqq)
2010 return;
2011 new_cfqq = __cfqq;
2014 process_refs = cfqq_process_refs(cfqq);
2015 new_process_refs = cfqq_process_refs(new_cfqq);
2017 * If the process for the cfqq has gone away, there is no
2018 * sense in merging the queues.
2020 if (process_refs == 0 || new_process_refs == 0)
2021 return;
2024 * Merge in the direction of the lesser amount of work.
2026 if (new_process_refs >= process_refs) {
2027 cfqq->new_cfqq = new_cfqq;
2028 new_cfqq->ref += process_refs;
2029 } else {
2030 new_cfqq->new_cfqq = cfqq;
2031 cfqq->ref += new_process_refs;
2035 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2036 struct cfq_group *cfqg, enum wl_prio_t prio)
2038 struct cfq_queue *queue;
2039 int i;
2040 bool key_valid = false;
2041 unsigned long lowest_key = 0;
2042 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2044 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2045 /* select the one with lowest rb_key */
2046 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2047 if (queue &&
2048 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2049 lowest_key = queue->rb_key;
2050 cur_best = i;
2051 key_valid = true;
2055 return cur_best;
2058 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2060 unsigned slice;
2061 unsigned count;
2062 struct cfq_rb_root *st;
2063 unsigned group_slice;
2064 enum wl_prio_t original_prio = cfqd->serving_prio;
2066 /* Choose next priority. RT > BE > IDLE */
2067 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2068 cfqd->serving_prio = RT_WORKLOAD;
2069 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2070 cfqd->serving_prio = BE_WORKLOAD;
2071 else {
2072 cfqd->serving_prio = IDLE_WORKLOAD;
2073 cfqd->workload_expires = jiffies + 1;
2074 return;
2077 if (original_prio != cfqd->serving_prio)
2078 goto new_workload;
2081 * For RT and BE, we have to choose also the type
2082 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2083 * expiration time
2085 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2086 count = st->count;
2089 * check workload expiration, and that we still have other queues ready
2091 if (count && !time_after(jiffies, cfqd->workload_expires))
2092 return;
2094 new_workload:
2095 /* otherwise select new workload type */
2096 cfqd->serving_type =
2097 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2098 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2099 count = st->count;
2102 * the workload slice is computed as a fraction of target latency
2103 * proportional to the number of queues in that workload, over
2104 * all the queues in the same priority class
2106 group_slice = cfq_group_slice(cfqd, cfqg);
2108 slice = group_slice * count /
2109 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2110 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2112 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2113 unsigned int tmp;
2116 * Async queues are currently system wide. Just taking
2117 * proportion of queues with-in same group will lead to higher
2118 * async ratio system wide as generally root group is going
2119 * to have higher weight. A more accurate thing would be to
2120 * calculate system wide asnc/sync ratio.
2122 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2123 tmp = tmp/cfqd->busy_queues;
2124 slice = min_t(unsigned, slice, tmp);
2126 /* async workload slice is scaled down according to
2127 * the sync/async slice ratio. */
2128 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2129 } else
2130 /* sync workload slice is at least 2 * cfq_slice_idle */
2131 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2133 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2134 cfq_log(cfqd, "workload slice:%d", slice);
2135 cfqd->workload_expires = jiffies + slice;
2138 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2140 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2141 struct cfq_group *cfqg;
2143 if (RB_EMPTY_ROOT(&st->rb))
2144 return NULL;
2145 cfqg = cfq_rb_first_group(st);
2146 update_min_vdisktime(st);
2147 return cfqg;
2150 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2152 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2154 cfqd->serving_group = cfqg;
2156 /* Restore the workload type data */
2157 if (cfqg->saved_workload_slice) {
2158 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2159 cfqd->serving_type = cfqg->saved_workload;
2160 cfqd->serving_prio = cfqg->saved_serving_prio;
2161 } else
2162 cfqd->workload_expires = jiffies - 1;
2164 choose_service_tree(cfqd, cfqg);
2168 * Select a queue for service. If we have a current active queue,
2169 * check whether to continue servicing it, or retrieve and set a new one.
2171 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2173 struct cfq_queue *cfqq, *new_cfqq = NULL;
2175 cfqq = cfqd->active_queue;
2176 if (!cfqq)
2177 goto new_queue;
2179 if (!cfqd->rq_queued)
2180 return NULL;
2183 * We were waiting for group to get backlogged. Expire the queue
2185 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2186 goto expire;
2189 * The active queue has run out of time, expire it and select new.
2191 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2193 * If slice had not expired at the completion of last request
2194 * we might not have turned on wait_busy flag. Don't expire
2195 * the queue yet. Allow the group to get backlogged.
2197 * The very fact that we have used the slice, that means we
2198 * have been idling all along on this queue and it should be
2199 * ok to wait for this request to complete.
2201 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2202 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2203 cfqq = NULL;
2204 goto keep_queue;
2205 } else
2206 goto check_group_idle;
2210 * The active queue has requests and isn't expired, allow it to
2211 * dispatch.
2213 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2214 goto keep_queue;
2217 * If another queue has a request waiting within our mean seek
2218 * distance, let it run. The expire code will check for close
2219 * cooperators and put the close queue at the front of the service
2220 * tree. If possible, merge the expiring queue with the new cfqq.
2222 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2223 if (new_cfqq) {
2224 if (!cfqq->new_cfqq)
2225 cfq_setup_merge(cfqq, new_cfqq);
2226 goto expire;
2230 * No requests pending. If the active queue still has requests in
2231 * flight or is idling for a new request, allow either of these
2232 * conditions to happen (or time out) before selecting a new queue.
2234 if (timer_pending(&cfqd->idle_slice_timer)) {
2235 cfqq = NULL;
2236 goto keep_queue;
2240 * This is a deep seek queue, but the device is much faster than
2241 * the queue can deliver, don't idle
2243 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2244 (cfq_cfqq_slice_new(cfqq) ||
2245 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2246 cfq_clear_cfqq_deep(cfqq);
2247 cfq_clear_cfqq_idle_window(cfqq);
2250 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2251 cfqq = NULL;
2252 goto keep_queue;
2256 * If group idle is enabled and there are requests dispatched from
2257 * this group, wait for requests to complete.
2259 check_group_idle:
2260 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2261 cfqq->cfqg->dispatched &&
2262 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2263 cfqq = NULL;
2264 goto keep_queue;
2267 expire:
2268 cfq_slice_expired(cfqd, 0);
2269 new_queue:
2271 * Current queue expired. Check if we have to switch to a new
2272 * service tree
2274 if (!new_cfqq)
2275 cfq_choose_cfqg(cfqd);
2277 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2278 keep_queue:
2279 return cfqq;
2282 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2284 int dispatched = 0;
2286 while (cfqq->next_rq) {
2287 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2288 dispatched++;
2291 BUG_ON(!list_empty(&cfqq->fifo));
2293 /* By default cfqq is not expired if it is empty. Do it explicitly */
2294 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2295 return dispatched;
2299 * Drain our current requests. Used for barriers and when switching
2300 * io schedulers on-the-fly.
2302 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2304 struct cfq_queue *cfqq;
2305 int dispatched = 0;
2307 /* Expire the timeslice of the current active queue first */
2308 cfq_slice_expired(cfqd, 0);
2309 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2310 __cfq_set_active_queue(cfqd, cfqq);
2311 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2314 BUG_ON(cfqd->busy_queues);
2316 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2317 return dispatched;
2320 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2321 struct cfq_queue *cfqq)
2323 /* the queue hasn't finished any request, can't estimate */
2324 if (cfq_cfqq_slice_new(cfqq))
2325 return true;
2326 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2327 cfqq->slice_end))
2328 return true;
2330 return false;
2333 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2335 unsigned int max_dispatch;
2338 * Drain async requests before we start sync IO
2340 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2341 return false;
2344 * If this is an async queue and we have sync IO in flight, let it wait
2346 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2347 return false;
2349 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2350 if (cfq_class_idle(cfqq))
2351 max_dispatch = 1;
2354 * Does this cfqq already have too much IO in flight?
2356 if (cfqq->dispatched >= max_dispatch) {
2357 bool promote_sync = false;
2359 * idle queue must always only have a single IO in flight
2361 if (cfq_class_idle(cfqq))
2362 return false;
2365 * If there is only one sync queue
2366 * we can ignore async queue here and give the sync
2367 * queue no dispatch limit. The reason is a sync queue can
2368 * preempt async queue, limiting the sync queue doesn't make
2369 * sense. This is useful for aiostress test.
2371 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2372 promote_sync = true;
2375 * We have other queues, don't allow more IO from this one
2377 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2378 !promote_sync)
2379 return false;
2382 * Sole queue user, no limit
2384 if (cfqd->busy_queues == 1 || promote_sync)
2385 max_dispatch = -1;
2386 else
2388 * Normally we start throttling cfqq when cfq_quantum/2
2389 * requests have been dispatched. But we can drive
2390 * deeper queue depths at the beginning of slice
2391 * subjected to upper limit of cfq_quantum.
2392 * */
2393 max_dispatch = cfqd->cfq_quantum;
2397 * Async queues must wait a bit before being allowed dispatch.
2398 * We also ramp up the dispatch depth gradually for async IO,
2399 * based on the last sync IO we serviced
2401 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2402 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2403 unsigned int depth;
2405 depth = last_sync / cfqd->cfq_slice[1];
2406 if (!depth && !cfqq->dispatched)
2407 depth = 1;
2408 if (depth < max_dispatch)
2409 max_dispatch = depth;
2413 * If we're below the current max, allow a dispatch
2415 return cfqq->dispatched < max_dispatch;
2419 * Dispatch a request from cfqq, moving them to the request queue
2420 * dispatch list.
2422 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2424 struct request *rq;
2426 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2428 if (!cfq_may_dispatch(cfqd, cfqq))
2429 return false;
2432 * follow expired path, else get first next available
2434 rq = cfq_check_fifo(cfqq);
2435 if (!rq)
2436 rq = cfqq->next_rq;
2439 * insert request into driver dispatch list
2441 cfq_dispatch_insert(cfqd->queue, rq);
2443 if (!cfqd->active_cic) {
2444 struct cfq_io_cq *cic = RQ_CIC(rq);
2446 atomic_long_inc(&cic->icq.ioc->refcount);
2447 cfqd->active_cic = cic;
2450 return true;
2454 * Find the cfqq that we need to service and move a request from that to the
2455 * dispatch list
2457 static int cfq_dispatch_requests(struct request_queue *q, int force)
2459 struct cfq_data *cfqd = q->elevator->elevator_data;
2460 struct cfq_queue *cfqq;
2462 if (!cfqd->busy_queues)
2463 return 0;
2465 if (unlikely(force))
2466 return cfq_forced_dispatch(cfqd);
2468 cfqq = cfq_select_queue(cfqd);
2469 if (!cfqq)
2470 return 0;
2473 * Dispatch a request from this cfqq, if it is allowed
2475 if (!cfq_dispatch_request(cfqd, cfqq))
2476 return 0;
2478 cfqq->slice_dispatch++;
2479 cfq_clear_cfqq_must_dispatch(cfqq);
2482 * expire an async queue immediately if it has used up its slice. idle
2483 * queue always expire after 1 dispatch round.
2485 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2486 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2487 cfq_class_idle(cfqq))) {
2488 cfqq->slice_end = jiffies + 1;
2489 cfq_slice_expired(cfqd, 0);
2492 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2493 return 1;
2497 * task holds one reference to the queue, dropped when task exits. each rq
2498 * in-flight on this queue also holds a reference, dropped when rq is freed.
2500 * Each cfq queue took a reference on the parent group. Drop it now.
2501 * queue lock must be held here.
2503 static void cfq_put_queue(struct cfq_queue *cfqq)
2505 struct cfq_data *cfqd = cfqq->cfqd;
2506 struct cfq_group *cfqg;
2508 BUG_ON(cfqq->ref <= 0);
2510 cfqq->ref--;
2511 if (cfqq->ref)
2512 return;
2514 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2515 BUG_ON(rb_first(&cfqq->sort_list));
2516 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2517 cfqg = cfqq->cfqg;
2519 if (unlikely(cfqd->active_queue == cfqq)) {
2520 __cfq_slice_expired(cfqd, cfqq, 0);
2521 cfq_schedule_dispatch(cfqd);
2524 BUG_ON(cfq_cfqq_on_rr(cfqq));
2525 kmem_cache_free(cfq_pool, cfqq);
2526 cfqg_put(cfqg);
2529 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2531 struct cfq_queue *__cfqq, *next;
2534 * If this queue was scheduled to merge with another queue, be
2535 * sure to drop the reference taken on that queue (and others in
2536 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2538 __cfqq = cfqq->new_cfqq;
2539 while (__cfqq) {
2540 if (__cfqq == cfqq) {
2541 WARN(1, "cfqq->new_cfqq loop detected\n");
2542 break;
2544 next = __cfqq->new_cfqq;
2545 cfq_put_queue(__cfqq);
2546 __cfqq = next;
2550 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2552 if (unlikely(cfqq == cfqd->active_queue)) {
2553 __cfq_slice_expired(cfqd, cfqq, 0);
2554 cfq_schedule_dispatch(cfqd);
2557 cfq_put_cooperator(cfqq);
2559 cfq_put_queue(cfqq);
2562 static void cfq_init_icq(struct io_cq *icq)
2564 struct cfq_io_cq *cic = icq_to_cic(icq);
2566 cic->ttime.last_end_request = jiffies;
2569 static void cfq_exit_icq(struct io_cq *icq)
2571 struct cfq_io_cq *cic = icq_to_cic(icq);
2572 struct cfq_data *cfqd = cic_to_cfqd(cic);
2574 if (cic->cfqq[BLK_RW_ASYNC]) {
2575 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2576 cic->cfqq[BLK_RW_ASYNC] = NULL;
2579 if (cic->cfqq[BLK_RW_SYNC]) {
2580 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2581 cic->cfqq[BLK_RW_SYNC] = NULL;
2585 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
2587 struct task_struct *tsk = current;
2588 int ioprio_class;
2590 if (!cfq_cfqq_prio_changed(cfqq))
2591 return;
2593 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
2594 switch (ioprio_class) {
2595 default:
2596 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2597 case IOPRIO_CLASS_NONE:
2599 * no prio set, inherit CPU scheduling settings
2601 cfqq->ioprio = task_nice_ioprio(tsk);
2602 cfqq->ioprio_class = task_nice_ioclass(tsk);
2603 break;
2604 case IOPRIO_CLASS_RT:
2605 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
2606 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2607 break;
2608 case IOPRIO_CLASS_BE:
2609 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
2610 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2611 break;
2612 case IOPRIO_CLASS_IDLE:
2613 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2614 cfqq->ioprio = 7;
2615 cfq_clear_cfqq_idle_window(cfqq);
2616 break;
2620 * keep track of original prio settings in case we have to temporarily
2621 * elevate the priority of this queue
2623 cfqq->org_ioprio = cfqq->ioprio;
2624 cfq_clear_cfqq_prio_changed(cfqq);
2627 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
2629 int ioprio = cic->icq.ioc->ioprio;
2630 struct cfq_data *cfqd = cic_to_cfqd(cic);
2631 struct cfq_queue *cfqq;
2634 * Check whether ioprio has changed. The condition may trigger
2635 * spuriously on a newly created cic but there's no harm.
2637 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
2638 return;
2640 cfqq = cic->cfqq[BLK_RW_ASYNC];
2641 if (cfqq) {
2642 struct cfq_queue *new_cfqq;
2643 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
2644 GFP_ATOMIC);
2645 if (new_cfqq) {
2646 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2647 cfq_put_queue(cfqq);
2651 cfqq = cic->cfqq[BLK_RW_SYNC];
2652 if (cfqq)
2653 cfq_mark_cfqq_prio_changed(cfqq);
2655 cic->ioprio = ioprio;
2658 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2659 pid_t pid, bool is_sync)
2661 RB_CLEAR_NODE(&cfqq->rb_node);
2662 RB_CLEAR_NODE(&cfqq->p_node);
2663 INIT_LIST_HEAD(&cfqq->fifo);
2665 cfqq->ref = 0;
2666 cfqq->cfqd = cfqd;
2668 cfq_mark_cfqq_prio_changed(cfqq);
2670 if (is_sync) {
2671 if (!cfq_class_idle(cfqq))
2672 cfq_mark_cfqq_idle_window(cfqq);
2673 cfq_mark_cfqq_sync(cfqq);
2675 cfqq->pid = pid;
2678 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2679 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
2681 struct cfq_data *cfqd = cic_to_cfqd(cic);
2682 struct cfq_queue *sync_cfqq;
2683 uint64_t id;
2685 rcu_read_lock();
2686 id = bio_blkio_cgroup(bio)->id;
2687 rcu_read_unlock();
2690 * Check whether blkcg has changed. The condition may trigger
2691 * spuriously on a newly created cic but there's no harm.
2693 if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
2694 return;
2696 sync_cfqq = cic_to_cfqq(cic, 1);
2697 if (sync_cfqq) {
2699 * Drop reference to sync queue. A new sync queue will be
2700 * assigned in new group upon arrival of a fresh request.
2702 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2703 cic_set_cfqq(cic, NULL, 1);
2704 cfq_put_queue(sync_cfqq);
2707 cic->blkcg_id = id;
2709 #else
2710 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
2711 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2713 static struct cfq_queue *
2714 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
2715 struct bio *bio, gfp_t gfp_mask)
2717 struct blkio_cgroup *blkcg;
2718 struct cfq_queue *cfqq, *new_cfqq = NULL;
2719 struct cfq_group *cfqg;
2721 retry:
2722 rcu_read_lock();
2724 blkcg = bio_blkio_cgroup(bio);
2725 cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
2726 cfqq = cic_to_cfqq(cic, is_sync);
2729 * Always try a new alloc if we fell back to the OOM cfqq
2730 * originally, since it should just be a temporary situation.
2732 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2733 cfqq = NULL;
2734 if (new_cfqq) {
2735 cfqq = new_cfqq;
2736 new_cfqq = NULL;
2737 } else if (gfp_mask & __GFP_WAIT) {
2738 rcu_read_unlock();
2739 spin_unlock_irq(cfqd->queue->queue_lock);
2740 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2741 gfp_mask | __GFP_ZERO,
2742 cfqd->queue->node);
2743 spin_lock_irq(cfqd->queue->queue_lock);
2744 if (new_cfqq)
2745 goto retry;
2746 } else {
2747 cfqq = kmem_cache_alloc_node(cfq_pool,
2748 gfp_mask | __GFP_ZERO,
2749 cfqd->queue->node);
2752 if (cfqq) {
2753 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2754 cfq_init_prio_data(cfqq, cic);
2755 cfq_link_cfqq_cfqg(cfqq, cfqg);
2756 cfq_log_cfqq(cfqd, cfqq, "alloced");
2757 } else
2758 cfqq = &cfqd->oom_cfqq;
2761 if (new_cfqq)
2762 kmem_cache_free(cfq_pool, new_cfqq);
2764 rcu_read_unlock();
2765 return cfqq;
2768 static struct cfq_queue **
2769 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2771 switch (ioprio_class) {
2772 case IOPRIO_CLASS_RT:
2773 return &cfqd->async_cfqq[0][ioprio];
2774 case IOPRIO_CLASS_NONE:
2775 ioprio = IOPRIO_NORM;
2776 /* fall through */
2777 case IOPRIO_CLASS_BE:
2778 return &cfqd->async_cfqq[1][ioprio];
2779 case IOPRIO_CLASS_IDLE:
2780 return &cfqd->async_idle_cfqq;
2781 default:
2782 BUG();
2786 static struct cfq_queue *
2787 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
2788 struct bio *bio, gfp_t gfp_mask)
2790 const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
2791 const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
2792 struct cfq_queue **async_cfqq = NULL;
2793 struct cfq_queue *cfqq = NULL;
2795 if (!is_sync) {
2796 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2797 cfqq = *async_cfqq;
2800 if (!cfqq)
2801 cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
2804 * pin the queue now that it's allocated, scheduler exit will prune it
2806 if (!is_sync && !(*async_cfqq)) {
2807 cfqq->ref++;
2808 *async_cfqq = cfqq;
2811 cfqq->ref++;
2812 return cfqq;
2815 static void
2816 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2818 unsigned long elapsed = jiffies - ttime->last_end_request;
2819 elapsed = min(elapsed, 2UL * slice_idle);
2821 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2822 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2823 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2826 static void
2827 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2828 struct cfq_io_cq *cic)
2830 if (cfq_cfqq_sync(cfqq)) {
2831 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2832 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2833 cfqd->cfq_slice_idle);
2835 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2836 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2837 #endif
2840 static void
2841 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2842 struct request *rq)
2844 sector_t sdist = 0;
2845 sector_t n_sec = blk_rq_sectors(rq);
2846 if (cfqq->last_request_pos) {
2847 if (cfqq->last_request_pos < blk_rq_pos(rq))
2848 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2849 else
2850 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2853 cfqq->seek_history <<= 1;
2854 if (blk_queue_nonrot(cfqd->queue))
2855 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2856 else
2857 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2861 * Disable idle window if the process thinks too long or seeks so much that
2862 * it doesn't matter
2864 static void
2865 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2866 struct cfq_io_cq *cic)
2868 int old_idle, enable_idle;
2871 * Don't idle for async or idle io prio class
2873 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2874 return;
2876 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2878 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2879 cfq_mark_cfqq_deep(cfqq);
2881 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
2882 enable_idle = 0;
2883 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
2884 !cfqd->cfq_slice_idle ||
2885 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
2886 enable_idle = 0;
2887 else if (sample_valid(cic->ttime.ttime_samples)) {
2888 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
2889 enable_idle = 0;
2890 else
2891 enable_idle = 1;
2894 if (old_idle != enable_idle) {
2895 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2896 if (enable_idle)
2897 cfq_mark_cfqq_idle_window(cfqq);
2898 else
2899 cfq_clear_cfqq_idle_window(cfqq);
2904 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2905 * no or if we aren't sure, a 1 will cause a preempt.
2907 static bool
2908 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2909 struct request *rq)
2911 struct cfq_queue *cfqq;
2913 cfqq = cfqd->active_queue;
2914 if (!cfqq)
2915 return false;
2917 if (cfq_class_idle(new_cfqq))
2918 return false;
2920 if (cfq_class_idle(cfqq))
2921 return true;
2924 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
2926 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
2927 return false;
2930 * if the new request is sync, but the currently running queue is
2931 * not, let the sync request have priority.
2933 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2934 return true;
2936 if (new_cfqq->cfqg != cfqq->cfqg)
2937 return false;
2939 if (cfq_slice_used(cfqq))
2940 return true;
2942 /* Allow preemption only if we are idling on sync-noidle tree */
2943 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2944 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2945 new_cfqq->service_tree->count == 2 &&
2946 RB_EMPTY_ROOT(&cfqq->sort_list))
2947 return true;
2950 * So both queues are sync. Let the new request get disk time if
2951 * it's a metadata request and the current queue is doing regular IO.
2953 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
2954 return true;
2957 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2959 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2960 return true;
2962 /* An idle queue should not be idle now for some reason */
2963 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
2964 return true;
2966 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2967 return false;
2970 * if this request is as-good as one we would expect from the
2971 * current cfqq, let it preempt
2973 if (cfq_rq_close(cfqd, cfqq, rq))
2974 return true;
2976 return false;
2980 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2981 * let it have half of its nominal slice.
2983 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2985 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
2987 cfq_log_cfqq(cfqd, cfqq, "preempt");
2988 cfq_slice_expired(cfqd, 1);
2991 * workload type is changed, don't save slice, otherwise preempt
2992 * doesn't happen
2994 if (old_type != cfqq_type(cfqq))
2995 cfqq->cfqg->saved_workload_slice = 0;
2998 * Put the new queue at the front of the of the current list,
2999 * so we know that it will be selected next.
3001 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3003 cfq_service_tree_add(cfqd, cfqq, 1);
3005 cfqq->slice_end = 0;
3006 cfq_mark_cfqq_slice_new(cfqq);
3010 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3011 * something we should do about it
3013 static void
3014 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3015 struct request *rq)
3017 struct cfq_io_cq *cic = RQ_CIC(rq);
3019 cfqd->rq_queued++;
3020 if (rq->cmd_flags & REQ_PRIO)
3021 cfqq->prio_pending++;
3023 cfq_update_io_thinktime(cfqd, cfqq, cic);
3024 cfq_update_io_seektime(cfqd, cfqq, rq);
3025 cfq_update_idle_window(cfqd, cfqq, cic);
3027 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3029 if (cfqq == cfqd->active_queue) {
3031 * Remember that we saw a request from this process, but
3032 * don't start queuing just yet. Otherwise we risk seeing lots
3033 * of tiny requests, because we disrupt the normal plugging
3034 * and merging. If the request is already larger than a single
3035 * page, let it rip immediately. For that case we assume that
3036 * merging is already done. Ditto for a busy system that
3037 * has other work pending, don't risk delaying until the
3038 * idle timer unplug to continue working.
3040 if (cfq_cfqq_wait_request(cfqq)) {
3041 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3042 cfqd->busy_queues > 1) {
3043 cfq_del_timer(cfqd, cfqq);
3044 cfq_clear_cfqq_wait_request(cfqq);
3045 __blk_run_queue(cfqd->queue);
3046 } else {
3047 cfq_blkiocg_update_idle_time_stats(
3048 cfqg_to_blkg(cfqq->cfqg),
3049 &blkio_policy_cfq);
3050 cfq_mark_cfqq_must_dispatch(cfqq);
3053 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3055 * not the active queue - expire current slice if it is
3056 * idle and has expired it's mean thinktime or this new queue
3057 * has some old slice time left and is of higher priority or
3058 * this new queue is RT and the current one is BE
3060 cfq_preempt_queue(cfqd, cfqq);
3061 __blk_run_queue(cfqd->queue);
3065 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3067 struct cfq_data *cfqd = q->elevator->elevator_data;
3068 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3070 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3071 cfq_init_prio_data(cfqq, RQ_CIC(rq));
3073 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3074 list_add_tail(&rq->queuelist, &cfqq->fifo);
3075 cfq_add_rq_rb(rq);
3076 cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
3077 &blkio_policy_cfq,
3078 cfqg_to_blkg(cfqd->serving_group),
3079 rq_data_dir(rq), rq_is_sync(rq));
3080 cfq_rq_enqueued(cfqd, cfqq, rq);
3084 * Update hw_tag based on peak queue depth over 50 samples under
3085 * sufficient load.
3087 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3089 struct cfq_queue *cfqq = cfqd->active_queue;
3091 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3092 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3094 if (cfqd->hw_tag == 1)
3095 return;
3097 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3098 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3099 return;
3102 * If active queue hasn't enough requests and can idle, cfq might not
3103 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3104 * case
3106 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3107 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3108 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3109 return;
3111 if (cfqd->hw_tag_samples++ < 50)
3112 return;
3114 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3115 cfqd->hw_tag = 1;
3116 else
3117 cfqd->hw_tag = 0;
3120 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3122 struct cfq_io_cq *cic = cfqd->active_cic;
3124 /* If the queue already has requests, don't wait */
3125 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3126 return false;
3128 /* If there are other queues in the group, don't wait */
3129 if (cfqq->cfqg->nr_cfqq > 1)
3130 return false;
3132 /* the only queue in the group, but think time is big */
3133 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3134 return false;
3136 if (cfq_slice_used(cfqq))
3137 return true;
3139 /* if slice left is less than think time, wait busy */
3140 if (cic && sample_valid(cic->ttime.ttime_samples)
3141 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3142 return true;
3145 * If think times is less than a jiffy than ttime_mean=0 and above
3146 * will not be true. It might happen that slice has not expired yet
3147 * but will expire soon (4-5 ns) during select_queue(). To cover the
3148 * case where think time is less than a jiffy, mark the queue wait
3149 * busy if only 1 jiffy is left in the slice.
3151 if (cfqq->slice_end - jiffies == 1)
3152 return true;
3154 return false;
3157 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3159 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3160 struct cfq_data *cfqd = cfqq->cfqd;
3161 const int sync = rq_is_sync(rq);
3162 unsigned long now;
3164 now = jiffies;
3165 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3166 !!(rq->cmd_flags & REQ_NOIDLE));
3168 cfq_update_hw_tag(cfqd);
3170 WARN_ON(!cfqd->rq_in_driver);
3171 WARN_ON(!cfqq->dispatched);
3172 cfqd->rq_in_driver--;
3173 cfqq->dispatched--;
3174 (RQ_CFQG(rq))->dispatched--;
3175 cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
3176 &blkio_policy_cfq, rq_start_time_ns(rq),
3177 rq_io_start_time_ns(rq), rq_data_dir(rq),
3178 rq_is_sync(rq));
3180 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3182 if (sync) {
3183 struct cfq_rb_root *service_tree;
3185 RQ_CIC(rq)->ttime.last_end_request = now;
3187 if (cfq_cfqq_on_rr(cfqq))
3188 service_tree = cfqq->service_tree;
3189 else
3190 service_tree = service_tree_for(cfqq->cfqg,
3191 cfqq_prio(cfqq), cfqq_type(cfqq));
3192 service_tree->ttime.last_end_request = now;
3193 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3194 cfqd->last_delayed_sync = now;
3197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3198 cfqq->cfqg->ttime.last_end_request = now;
3199 #endif
3202 * If this is the active queue, check if it needs to be expired,
3203 * or if we want to idle in case it has no pending requests.
3205 if (cfqd->active_queue == cfqq) {
3206 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3208 if (cfq_cfqq_slice_new(cfqq)) {
3209 cfq_set_prio_slice(cfqd, cfqq);
3210 cfq_clear_cfqq_slice_new(cfqq);
3214 * Should we wait for next request to come in before we expire
3215 * the queue.
3217 if (cfq_should_wait_busy(cfqd, cfqq)) {
3218 unsigned long extend_sl = cfqd->cfq_slice_idle;
3219 if (!cfqd->cfq_slice_idle)
3220 extend_sl = cfqd->cfq_group_idle;
3221 cfqq->slice_end = jiffies + extend_sl;
3222 cfq_mark_cfqq_wait_busy(cfqq);
3223 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3227 * Idling is not enabled on:
3228 * - expired queues
3229 * - idle-priority queues
3230 * - async queues
3231 * - queues with still some requests queued
3232 * - when there is a close cooperator
3234 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3235 cfq_slice_expired(cfqd, 1);
3236 else if (sync && cfqq_empty &&
3237 !cfq_close_cooperator(cfqd, cfqq)) {
3238 cfq_arm_slice_timer(cfqd);
3242 if (!cfqd->rq_in_driver)
3243 cfq_schedule_dispatch(cfqd);
3246 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3248 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3249 cfq_mark_cfqq_must_alloc_slice(cfqq);
3250 return ELV_MQUEUE_MUST;
3253 return ELV_MQUEUE_MAY;
3256 static int cfq_may_queue(struct request_queue *q, int rw)
3258 struct cfq_data *cfqd = q->elevator->elevator_data;
3259 struct task_struct *tsk = current;
3260 struct cfq_io_cq *cic;
3261 struct cfq_queue *cfqq;
3264 * don't force setup of a queue from here, as a call to may_queue
3265 * does not necessarily imply that a request actually will be queued.
3266 * so just lookup a possibly existing queue, or return 'may queue'
3267 * if that fails
3269 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3270 if (!cic)
3271 return ELV_MQUEUE_MAY;
3273 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3274 if (cfqq) {
3275 cfq_init_prio_data(cfqq, cic);
3277 return __cfq_may_queue(cfqq);
3280 return ELV_MQUEUE_MAY;
3284 * queue lock held here
3286 static void cfq_put_request(struct request *rq)
3288 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3290 if (cfqq) {
3291 const int rw = rq_data_dir(rq);
3293 BUG_ON(!cfqq->allocated[rw]);
3294 cfqq->allocated[rw]--;
3296 /* Put down rq reference on cfqg */
3297 cfqg_put(RQ_CFQG(rq));
3298 rq->elv.priv[0] = NULL;
3299 rq->elv.priv[1] = NULL;
3301 cfq_put_queue(cfqq);
3305 static struct cfq_queue *
3306 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3307 struct cfq_queue *cfqq)
3309 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3310 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3311 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3312 cfq_put_queue(cfqq);
3313 return cic_to_cfqq(cic, 1);
3317 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3318 * was the last process referring to said cfqq.
3320 static struct cfq_queue *
3321 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3323 if (cfqq_process_refs(cfqq) == 1) {
3324 cfqq->pid = current->pid;
3325 cfq_clear_cfqq_coop(cfqq);
3326 cfq_clear_cfqq_split_coop(cfqq);
3327 return cfqq;
3330 cic_set_cfqq(cic, NULL, 1);
3332 cfq_put_cooperator(cfqq);
3334 cfq_put_queue(cfqq);
3335 return NULL;
3338 * Allocate cfq data structures associated with this request.
3340 static int
3341 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3342 gfp_t gfp_mask)
3344 struct cfq_data *cfqd = q->elevator->elevator_data;
3345 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3346 const int rw = rq_data_dir(rq);
3347 const bool is_sync = rq_is_sync(rq);
3348 struct cfq_queue *cfqq;
3350 might_sleep_if(gfp_mask & __GFP_WAIT);
3352 spin_lock_irq(q->queue_lock);
3354 check_ioprio_changed(cic, bio);
3355 check_blkcg_changed(cic, bio);
3356 new_queue:
3357 cfqq = cic_to_cfqq(cic, is_sync);
3358 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3359 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3360 cic_set_cfqq(cic, cfqq, is_sync);
3361 } else {
3363 * If the queue was seeky for too long, break it apart.
3365 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3366 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3367 cfqq = split_cfqq(cic, cfqq);
3368 if (!cfqq)
3369 goto new_queue;
3373 * Check to see if this queue is scheduled to merge with
3374 * another, closely cooperating queue. The merging of
3375 * queues happens here as it must be done in process context.
3376 * The reference on new_cfqq was taken in merge_cfqqs.
3378 if (cfqq->new_cfqq)
3379 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3382 cfqq->allocated[rw]++;
3384 cfqq->ref++;
3385 cfqg_get(cfqq->cfqg);
3386 rq->elv.priv[0] = cfqq;
3387 rq->elv.priv[1] = cfqq->cfqg;
3388 spin_unlock_irq(q->queue_lock);
3389 return 0;
3392 static void cfq_kick_queue(struct work_struct *work)
3394 struct cfq_data *cfqd =
3395 container_of(work, struct cfq_data, unplug_work);
3396 struct request_queue *q = cfqd->queue;
3398 spin_lock_irq(q->queue_lock);
3399 __blk_run_queue(cfqd->queue);
3400 spin_unlock_irq(q->queue_lock);
3404 * Timer running if the active_queue is currently idling inside its time slice
3406 static void cfq_idle_slice_timer(unsigned long data)
3408 struct cfq_data *cfqd = (struct cfq_data *) data;
3409 struct cfq_queue *cfqq;
3410 unsigned long flags;
3411 int timed_out = 1;
3413 cfq_log(cfqd, "idle timer fired");
3415 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3417 cfqq = cfqd->active_queue;
3418 if (cfqq) {
3419 timed_out = 0;
3422 * We saw a request before the queue expired, let it through
3424 if (cfq_cfqq_must_dispatch(cfqq))
3425 goto out_kick;
3428 * expired
3430 if (cfq_slice_used(cfqq))
3431 goto expire;
3434 * only expire and reinvoke request handler, if there are
3435 * other queues with pending requests
3437 if (!cfqd->busy_queues)
3438 goto out_cont;
3441 * not expired and it has a request pending, let it dispatch
3443 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3444 goto out_kick;
3447 * Queue depth flag is reset only when the idle didn't succeed
3449 cfq_clear_cfqq_deep(cfqq);
3451 expire:
3452 cfq_slice_expired(cfqd, timed_out);
3453 out_kick:
3454 cfq_schedule_dispatch(cfqd);
3455 out_cont:
3456 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3459 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3461 del_timer_sync(&cfqd->idle_slice_timer);
3462 cancel_work_sync(&cfqd->unplug_work);
3465 static void cfq_put_async_queues(struct cfq_data *cfqd)
3467 int i;
3469 for (i = 0; i < IOPRIO_BE_NR; i++) {
3470 if (cfqd->async_cfqq[0][i])
3471 cfq_put_queue(cfqd->async_cfqq[0][i]);
3472 if (cfqd->async_cfqq[1][i])
3473 cfq_put_queue(cfqd->async_cfqq[1][i]);
3476 if (cfqd->async_idle_cfqq)
3477 cfq_put_queue(cfqd->async_idle_cfqq);
3480 static void cfq_exit_queue(struct elevator_queue *e)
3482 struct cfq_data *cfqd = e->elevator_data;
3483 struct request_queue *q = cfqd->queue;
3485 cfq_shutdown_timer_wq(cfqd);
3487 spin_lock_irq(q->queue_lock);
3489 if (cfqd->active_queue)
3490 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3492 cfq_put_async_queues(cfqd);
3494 spin_unlock_irq(q->queue_lock);
3496 cfq_shutdown_timer_wq(cfqd);
3498 #ifndef CONFIG_CFQ_GROUP_IOSCHED
3499 kfree(cfqd->root_group);
3500 #endif
3501 update_root_blkg_pd(q, BLKIO_POLICY_PROP);
3502 kfree(cfqd);
3505 static int cfq_init_queue(struct request_queue *q)
3507 struct cfq_data *cfqd;
3508 struct blkio_group *blkg __maybe_unused;
3509 int i;
3511 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3512 if (!cfqd)
3513 return -ENOMEM;
3515 cfqd->queue = q;
3516 q->elevator->elevator_data = cfqd;
3518 /* Init root service tree */
3519 cfqd->grp_service_tree = CFQ_RB_ROOT;
3521 /* Init root group and prefer root group over other groups by default */
3522 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3523 rcu_read_lock();
3524 spin_lock_irq(q->queue_lock);
3526 blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
3527 if (!IS_ERR(blkg))
3528 cfqd->root_group = blkg_to_cfqg(blkg);
3530 spin_unlock_irq(q->queue_lock);
3531 rcu_read_unlock();
3532 #else
3533 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3534 GFP_KERNEL, cfqd->queue->node);
3535 if (cfqd->root_group)
3536 cfq_init_cfqg_base(cfqd->root_group);
3537 #endif
3538 if (!cfqd->root_group) {
3539 kfree(cfqd);
3540 return -ENOMEM;
3543 cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
3546 * Not strictly needed (since RB_ROOT just clears the node and we
3547 * zeroed cfqd on alloc), but better be safe in case someone decides
3548 * to add magic to the rb code
3550 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3551 cfqd->prio_trees[i] = RB_ROOT;
3554 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3555 * Grab a permanent reference to it, so that the normal code flow
3556 * will not attempt to free it. oom_cfqq is linked to root_group
3557 * but shouldn't hold a reference as it'll never be unlinked. Lose
3558 * the reference from linking right away.
3560 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3561 cfqd->oom_cfqq.ref++;
3563 spin_lock_irq(q->queue_lock);
3564 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
3565 cfqg_put(cfqd->root_group);
3566 spin_unlock_irq(q->queue_lock);
3568 init_timer(&cfqd->idle_slice_timer);
3569 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3570 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3572 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3574 cfqd->cfq_quantum = cfq_quantum;
3575 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3576 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3577 cfqd->cfq_back_max = cfq_back_max;
3578 cfqd->cfq_back_penalty = cfq_back_penalty;
3579 cfqd->cfq_slice[0] = cfq_slice_async;
3580 cfqd->cfq_slice[1] = cfq_slice_sync;
3581 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3582 cfqd->cfq_slice_idle = cfq_slice_idle;
3583 cfqd->cfq_group_idle = cfq_group_idle;
3584 cfqd->cfq_latency = 1;
3585 cfqd->hw_tag = -1;
3587 * we optimistically start assuming sync ops weren't delayed in last
3588 * second, in order to have larger depth for async operations.
3590 cfqd->last_delayed_sync = jiffies - HZ;
3591 return 0;
3595 * sysfs parts below -->
3597 static ssize_t
3598 cfq_var_show(unsigned int var, char *page)
3600 return sprintf(page, "%d\n", var);
3603 static ssize_t
3604 cfq_var_store(unsigned int *var, const char *page, size_t count)
3606 char *p = (char *) page;
3608 *var = simple_strtoul(p, &p, 10);
3609 return count;
3612 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3613 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3615 struct cfq_data *cfqd = e->elevator_data; \
3616 unsigned int __data = __VAR; \
3617 if (__CONV) \
3618 __data = jiffies_to_msecs(__data); \
3619 return cfq_var_show(__data, (page)); \
3621 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3622 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3623 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3624 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3625 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3626 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3627 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3628 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3629 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3630 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3631 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3632 #undef SHOW_FUNCTION
3634 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3635 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3637 struct cfq_data *cfqd = e->elevator_data; \
3638 unsigned int __data; \
3639 int ret = cfq_var_store(&__data, (page), count); \
3640 if (__data < (MIN)) \
3641 __data = (MIN); \
3642 else if (__data > (MAX)) \
3643 __data = (MAX); \
3644 if (__CONV) \
3645 *(__PTR) = msecs_to_jiffies(__data); \
3646 else \
3647 *(__PTR) = __data; \
3648 return ret; \
3650 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3651 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3652 UINT_MAX, 1);
3653 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3654 UINT_MAX, 1);
3655 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3656 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3657 UINT_MAX, 0);
3658 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3659 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3660 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3661 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3662 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3663 UINT_MAX, 0);
3664 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3665 #undef STORE_FUNCTION
3667 #define CFQ_ATTR(name) \
3668 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3670 static struct elv_fs_entry cfq_attrs[] = {
3671 CFQ_ATTR(quantum),
3672 CFQ_ATTR(fifo_expire_sync),
3673 CFQ_ATTR(fifo_expire_async),
3674 CFQ_ATTR(back_seek_max),
3675 CFQ_ATTR(back_seek_penalty),
3676 CFQ_ATTR(slice_sync),
3677 CFQ_ATTR(slice_async),
3678 CFQ_ATTR(slice_async_rq),
3679 CFQ_ATTR(slice_idle),
3680 CFQ_ATTR(group_idle),
3681 CFQ_ATTR(low_latency),
3682 __ATTR_NULL
3685 static struct elevator_type iosched_cfq = {
3686 .ops = {
3687 .elevator_merge_fn = cfq_merge,
3688 .elevator_merged_fn = cfq_merged_request,
3689 .elevator_merge_req_fn = cfq_merged_requests,
3690 .elevator_allow_merge_fn = cfq_allow_merge,
3691 .elevator_bio_merged_fn = cfq_bio_merged,
3692 .elevator_dispatch_fn = cfq_dispatch_requests,
3693 .elevator_add_req_fn = cfq_insert_request,
3694 .elevator_activate_req_fn = cfq_activate_request,
3695 .elevator_deactivate_req_fn = cfq_deactivate_request,
3696 .elevator_completed_req_fn = cfq_completed_request,
3697 .elevator_former_req_fn = elv_rb_former_request,
3698 .elevator_latter_req_fn = elv_rb_latter_request,
3699 .elevator_init_icq_fn = cfq_init_icq,
3700 .elevator_exit_icq_fn = cfq_exit_icq,
3701 .elevator_set_req_fn = cfq_set_request,
3702 .elevator_put_req_fn = cfq_put_request,
3703 .elevator_may_queue_fn = cfq_may_queue,
3704 .elevator_init_fn = cfq_init_queue,
3705 .elevator_exit_fn = cfq_exit_queue,
3707 .icq_size = sizeof(struct cfq_io_cq),
3708 .icq_align = __alignof__(struct cfq_io_cq),
3709 .elevator_attrs = cfq_attrs,
3710 .elevator_name = "cfq",
3711 .elevator_owner = THIS_MODULE,
3714 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3715 static struct blkio_policy_type blkio_policy_cfq = {
3716 .ops = {
3717 .blkio_init_group_fn = cfq_init_blkio_group,
3718 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3720 .plid = BLKIO_POLICY_PROP,
3721 .pdata_size = sizeof(struct cfq_group),
3723 #endif
3725 static int __init cfq_init(void)
3727 int ret;
3730 * could be 0 on HZ < 1000 setups
3732 if (!cfq_slice_async)
3733 cfq_slice_async = 1;
3734 if (!cfq_slice_idle)
3735 cfq_slice_idle = 1;
3737 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3738 if (!cfq_group_idle)
3739 cfq_group_idle = 1;
3740 #else
3741 cfq_group_idle = 0;
3742 #endif
3743 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3744 if (!cfq_pool)
3745 return -ENOMEM;
3747 ret = elv_register(&iosched_cfq);
3748 if (ret) {
3749 kmem_cache_destroy(cfq_pool);
3750 return ret;
3753 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3754 blkio_policy_register(&blkio_policy_cfq);
3755 #endif
3756 return 0;
3759 static void __exit cfq_exit(void)
3761 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3762 blkio_policy_unregister(&blkio_policy_cfq);
3763 #endif
3764 elv_unregister(&iosched_cfq);
3765 kmem_cache_destroy(cfq_pool);
3768 module_init(cfq_init);
3769 module_exit(cfq_exit);
3771 MODULE_AUTHOR("Jens Axboe");
3772 MODULE_LICENSE("GPL");
3773 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");