cgroup: make css->refcnt clearing on cgroup removal optional
[linux-2.6.git] / kernel / cgroup.c
blob2905977e0f336ea20849565d29ee50e8bce8d097
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
64 #include <linux/atomic.h>
66 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
67 #define CSS_DEACT_BIAS INT_MIN
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
73 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75 * release_agent_path and so on. Modifying requires both cgroup_mutex and
76 * cgroup_root_mutex. Readers can acquire either of the two. This is to
77 * break the following locking order cycle.
79 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80 * B. namespace_sem -> cgroup_mutex
82 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 * breaks it.
85 static DEFINE_MUTEX(cgroup_mutex);
86 static DEFINE_MUTEX(cgroup_root_mutex);
89 * Generate an array of cgroup subsystem pointers. At boot time, this is
90 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
91 * registered after that. The mutable section of this array is protected by
92 * cgroup_mutex.
94 #define SUBSYS(_x) &_x ## _subsys,
95 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
96 #include <linux/cgroup_subsys.h>
99 #define MAX_CGROUP_ROOT_NAMELEN 64
102 * A cgroupfs_root represents the root of a cgroup hierarchy,
103 * and may be associated with a superblock to form an active
104 * hierarchy
106 struct cgroupfs_root {
107 struct super_block *sb;
110 * The bitmask of subsystems intended to be attached to this
111 * hierarchy
113 unsigned long subsys_bits;
115 /* Unique id for this hierarchy. */
116 int hierarchy_id;
118 /* The bitmask of subsystems currently attached to this hierarchy */
119 unsigned long actual_subsys_bits;
121 /* A list running through the attached subsystems */
122 struct list_head subsys_list;
124 /* The root cgroup for this hierarchy */
125 struct cgroup top_cgroup;
127 /* Tracks how many cgroups are currently defined in hierarchy.*/
128 int number_of_cgroups;
130 /* A list running through the active hierarchies */
131 struct list_head root_list;
133 /* All cgroups on this root, cgroup_mutex protected */
134 struct list_head allcg_list;
136 /* Hierarchy-specific flags */
137 unsigned long flags;
139 /* The path to use for release notifications. */
140 char release_agent_path[PATH_MAX];
142 /* The name for this hierarchy - may be empty */
143 char name[MAX_CGROUP_ROOT_NAMELEN];
147 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
148 * subsystems that are otherwise unattached - it never has more than a
149 * single cgroup, and all tasks are part of that cgroup.
151 static struct cgroupfs_root rootnode;
154 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
156 struct cfent {
157 struct list_head node;
158 struct dentry *dentry;
159 struct cftype *type;
163 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
164 * cgroup_subsys->use_id != 0.
166 #define CSS_ID_MAX (65535)
167 struct css_id {
169 * The css to which this ID points. This pointer is set to valid value
170 * after cgroup is populated. If cgroup is removed, this will be NULL.
171 * This pointer is expected to be RCU-safe because destroy()
172 * is called after synchronize_rcu(). But for safe use, css_is_removed()
173 * css_tryget() should be used for avoiding race.
175 struct cgroup_subsys_state __rcu *css;
177 * ID of this css.
179 unsigned short id;
181 * Depth in hierarchy which this ID belongs to.
183 unsigned short depth;
185 * ID is freed by RCU. (and lookup routine is RCU safe.)
187 struct rcu_head rcu_head;
189 * Hierarchy of CSS ID belongs to.
191 unsigned short stack[0]; /* Array of Length (depth+1) */
195 * cgroup_event represents events which userspace want to receive.
197 struct cgroup_event {
199 * Cgroup which the event belongs to.
201 struct cgroup *cgrp;
203 * Control file which the event associated.
205 struct cftype *cft;
207 * eventfd to signal userspace about the event.
209 struct eventfd_ctx *eventfd;
211 * Each of these stored in a list by the cgroup.
213 struct list_head list;
215 * All fields below needed to unregister event when
216 * userspace closes eventfd.
218 poll_table pt;
219 wait_queue_head_t *wqh;
220 wait_queue_t wait;
221 struct work_struct remove;
224 /* The list of hierarchy roots */
226 static LIST_HEAD(roots);
227 static int root_count;
229 static DEFINE_IDA(hierarchy_ida);
230 static int next_hierarchy_id;
231 static DEFINE_SPINLOCK(hierarchy_id_lock);
233 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
234 #define dummytop (&rootnode.top_cgroup)
236 /* This flag indicates whether tasks in the fork and exit paths should
237 * check for fork/exit handlers to call. This avoids us having to do
238 * extra work in the fork/exit path if none of the subsystems need to
239 * be called.
241 static int need_forkexit_callback __read_mostly;
243 #ifdef CONFIG_PROVE_LOCKING
244 int cgroup_lock_is_held(void)
246 return lockdep_is_held(&cgroup_mutex);
248 #else /* #ifdef CONFIG_PROVE_LOCKING */
249 int cgroup_lock_is_held(void)
251 return mutex_is_locked(&cgroup_mutex);
253 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
255 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
257 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
258 static int css_refcnt(struct cgroup_subsys_state *css)
260 int v = atomic_read(&css->refcnt);
262 return v >= 0 ? v : v - CSS_DEACT_BIAS;
265 /* convenient tests for these bits */
266 inline int cgroup_is_removed(const struct cgroup *cgrp)
268 return test_bit(CGRP_REMOVED, &cgrp->flags);
271 /* bits in struct cgroupfs_root flags field */
272 enum {
273 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
276 static int cgroup_is_releasable(const struct cgroup *cgrp)
278 const int bits =
279 (1 << CGRP_RELEASABLE) |
280 (1 << CGRP_NOTIFY_ON_RELEASE);
281 return (cgrp->flags & bits) == bits;
284 static int notify_on_release(const struct cgroup *cgrp)
286 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
289 static int clone_children(const struct cgroup *cgrp)
291 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
295 * for_each_subsys() allows you to iterate on each subsystem attached to
296 * an active hierarchy
298 #define for_each_subsys(_root, _ss) \
299 list_for_each_entry(_ss, &_root->subsys_list, sibling)
301 /* for_each_active_root() allows you to iterate across the active hierarchies */
302 #define for_each_active_root(_root) \
303 list_for_each_entry(_root, &roots, root_list)
305 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
307 return dentry->d_fsdata;
310 static inline struct cfent *__d_cfe(struct dentry *dentry)
312 return dentry->d_fsdata;
315 static inline struct cftype *__d_cft(struct dentry *dentry)
317 return __d_cfe(dentry)->type;
320 /* the list of cgroups eligible for automatic release. Protected by
321 * release_list_lock */
322 static LIST_HEAD(release_list);
323 static DEFINE_RAW_SPINLOCK(release_list_lock);
324 static void cgroup_release_agent(struct work_struct *work);
325 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
326 static void check_for_release(struct cgroup *cgrp);
328 /* Link structure for associating css_set objects with cgroups */
329 struct cg_cgroup_link {
331 * List running through cg_cgroup_links associated with a
332 * cgroup, anchored on cgroup->css_sets
334 struct list_head cgrp_link_list;
335 struct cgroup *cgrp;
337 * List running through cg_cgroup_links pointing at a
338 * single css_set object, anchored on css_set->cg_links
340 struct list_head cg_link_list;
341 struct css_set *cg;
344 /* The default css_set - used by init and its children prior to any
345 * hierarchies being mounted. It contains a pointer to the root state
346 * for each subsystem. Also used to anchor the list of css_sets. Not
347 * reference-counted, to improve performance when child cgroups
348 * haven't been created.
351 static struct css_set init_css_set;
352 static struct cg_cgroup_link init_css_set_link;
354 static int cgroup_init_idr(struct cgroup_subsys *ss,
355 struct cgroup_subsys_state *css);
357 /* css_set_lock protects the list of css_set objects, and the
358 * chain of tasks off each css_set. Nests outside task->alloc_lock
359 * due to cgroup_iter_start() */
360 static DEFINE_RWLOCK(css_set_lock);
361 static int css_set_count;
364 * hash table for cgroup groups. This improves the performance to find
365 * an existing css_set. This hash doesn't (currently) take into
366 * account cgroups in empty hierarchies.
368 #define CSS_SET_HASH_BITS 7
369 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
370 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
372 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
374 int i;
375 int index;
376 unsigned long tmp = 0UL;
378 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
379 tmp += (unsigned long)css[i];
380 tmp = (tmp >> 16) ^ tmp;
382 index = hash_long(tmp, CSS_SET_HASH_BITS);
384 return &css_set_table[index];
387 /* We don't maintain the lists running through each css_set to its
388 * task until after the first call to cgroup_iter_start(). This
389 * reduces the fork()/exit() overhead for people who have cgroups
390 * compiled into their kernel but not actually in use */
391 static int use_task_css_set_links __read_mostly;
393 static void __put_css_set(struct css_set *cg, int taskexit)
395 struct cg_cgroup_link *link;
396 struct cg_cgroup_link *saved_link;
398 * Ensure that the refcount doesn't hit zero while any readers
399 * can see it. Similar to atomic_dec_and_lock(), but for an
400 * rwlock
402 if (atomic_add_unless(&cg->refcount, -1, 1))
403 return;
404 write_lock(&css_set_lock);
405 if (!atomic_dec_and_test(&cg->refcount)) {
406 write_unlock(&css_set_lock);
407 return;
410 /* This css_set is dead. unlink it and release cgroup refcounts */
411 hlist_del(&cg->hlist);
412 css_set_count--;
414 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
415 cg_link_list) {
416 struct cgroup *cgrp = link->cgrp;
417 list_del(&link->cg_link_list);
418 list_del(&link->cgrp_link_list);
419 if (atomic_dec_and_test(&cgrp->count) &&
420 notify_on_release(cgrp)) {
421 if (taskexit)
422 set_bit(CGRP_RELEASABLE, &cgrp->flags);
423 check_for_release(cgrp);
426 kfree(link);
429 write_unlock(&css_set_lock);
430 kfree_rcu(cg, rcu_head);
434 * refcounted get/put for css_set objects
436 static inline void get_css_set(struct css_set *cg)
438 atomic_inc(&cg->refcount);
441 static inline void put_css_set(struct css_set *cg)
443 __put_css_set(cg, 0);
446 static inline void put_css_set_taskexit(struct css_set *cg)
448 __put_css_set(cg, 1);
452 * compare_css_sets - helper function for find_existing_css_set().
453 * @cg: candidate css_set being tested
454 * @old_cg: existing css_set for a task
455 * @new_cgrp: cgroup that's being entered by the task
456 * @template: desired set of css pointers in css_set (pre-calculated)
458 * Returns true if "cg" matches "old_cg" except for the hierarchy
459 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
461 static bool compare_css_sets(struct css_set *cg,
462 struct css_set *old_cg,
463 struct cgroup *new_cgrp,
464 struct cgroup_subsys_state *template[])
466 struct list_head *l1, *l2;
468 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
469 /* Not all subsystems matched */
470 return false;
474 * Compare cgroup pointers in order to distinguish between
475 * different cgroups in heirarchies with no subsystems. We
476 * could get by with just this check alone (and skip the
477 * memcmp above) but on most setups the memcmp check will
478 * avoid the need for this more expensive check on almost all
479 * candidates.
482 l1 = &cg->cg_links;
483 l2 = &old_cg->cg_links;
484 while (1) {
485 struct cg_cgroup_link *cgl1, *cgl2;
486 struct cgroup *cg1, *cg2;
488 l1 = l1->next;
489 l2 = l2->next;
490 /* See if we reached the end - both lists are equal length. */
491 if (l1 == &cg->cg_links) {
492 BUG_ON(l2 != &old_cg->cg_links);
493 break;
494 } else {
495 BUG_ON(l2 == &old_cg->cg_links);
497 /* Locate the cgroups associated with these links. */
498 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
499 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
500 cg1 = cgl1->cgrp;
501 cg2 = cgl2->cgrp;
502 /* Hierarchies should be linked in the same order. */
503 BUG_ON(cg1->root != cg2->root);
506 * If this hierarchy is the hierarchy of the cgroup
507 * that's changing, then we need to check that this
508 * css_set points to the new cgroup; if it's any other
509 * hierarchy, then this css_set should point to the
510 * same cgroup as the old css_set.
512 if (cg1->root == new_cgrp->root) {
513 if (cg1 != new_cgrp)
514 return false;
515 } else {
516 if (cg1 != cg2)
517 return false;
520 return true;
524 * find_existing_css_set() is a helper for
525 * find_css_set(), and checks to see whether an existing
526 * css_set is suitable.
528 * oldcg: the cgroup group that we're using before the cgroup
529 * transition
531 * cgrp: the cgroup that we're moving into
533 * template: location in which to build the desired set of subsystem
534 * state objects for the new cgroup group
536 static struct css_set *find_existing_css_set(
537 struct css_set *oldcg,
538 struct cgroup *cgrp,
539 struct cgroup_subsys_state *template[])
541 int i;
542 struct cgroupfs_root *root = cgrp->root;
543 struct hlist_head *hhead;
544 struct hlist_node *node;
545 struct css_set *cg;
548 * Build the set of subsystem state objects that we want to see in the
549 * new css_set. while subsystems can change globally, the entries here
550 * won't change, so no need for locking.
552 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
553 if (root->subsys_bits & (1UL << i)) {
554 /* Subsystem is in this hierarchy. So we want
555 * the subsystem state from the new
556 * cgroup */
557 template[i] = cgrp->subsys[i];
558 } else {
559 /* Subsystem is not in this hierarchy, so we
560 * don't want to change the subsystem state */
561 template[i] = oldcg->subsys[i];
565 hhead = css_set_hash(template);
566 hlist_for_each_entry(cg, node, hhead, hlist) {
567 if (!compare_css_sets(cg, oldcg, cgrp, template))
568 continue;
570 /* This css_set matches what we need */
571 return cg;
574 /* No existing cgroup group matched */
575 return NULL;
578 static void free_cg_links(struct list_head *tmp)
580 struct cg_cgroup_link *link;
581 struct cg_cgroup_link *saved_link;
583 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
584 list_del(&link->cgrp_link_list);
585 kfree(link);
590 * allocate_cg_links() allocates "count" cg_cgroup_link structures
591 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
592 * success or a negative error
594 static int allocate_cg_links(int count, struct list_head *tmp)
596 struct cg_cgroup_link *link;
597 int i;
598 INIT_LIST_HEAD(tmp);
599 for (i = 0; i < count; i++) {
600 link = kmalloc(sizeof(*link), GFP_KERNEL);
601 if (!link) {
602 free_cg_links(tmp);
603 return -ENOMEM;
605 list_add(&link->cgrp_link_list, tmp);
607 return 0;
611 * link_css_set - a helper function to link a css_set to a cgroup
612 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
613 * @cg: the css_set to be linked
614 * @cgrp: the destination cgroup
616 static void link_css_set(struct list_head *tmp_cg_links,
617 struct css_set *cg, struct cgroup *cgrp)
619 struct cg_cgroup_link *link;
621 BUG_ON(list_empty(tmp_cg_links));
622 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
623 cgrp_link_list);
624 link->cg = cg;
625 link->cgrp = cgrp;
626 atomic_inc(&cgrp->count);
627 list_move(&link->cgrp_link_list, &cgrp->css_sets);
629 * Always add links to the tail of the list so that the list
630 * is sorted by order of hierarchy creation
632 list_add_tail(&link->cg_link_list, &cg->cg_links);
636 * find_css_set() takes an existing cgroup group and a
637 * cgroup object, and returns a css_set object that's
638 * equivalent to the old group, but with the given cgroup
639 * substituted into the appropriate hierarchy. Must be called with
640 * cgroup_mutex held
642 static struct css_set *find_css_set(
643 struct css_set *oldcg, struct cgroup *cgrp)
645 struct css_set *res;
646 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
648 struct list_head tmp_cg_links;
650 struct hlist_head *hhead;
651 struct cg_cgroup_link *link;
653 /* First see if we already have a cgroup group that matches
654 * the desired set */
655 read_lock(&css_set_lock);
656 res = find_existing_css_set(oldcg, cgrp, template);
657 if (res)
658 get_css_set(res);
659 read_unlock(&css_set_lock);
661 if (res)
662 return res;
664 res = kmalloc(sizeof(*res), GFP_KERNEL);
665 if (!res)
666 return NULL;
668 /* Allocate all the cg_cgroup_link objects that we'll need */
669 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
670 kfree(res);
671 return NULL;
674 atomic_set(&res->refcount, 1);
675 INIT_LIST_HEAD(&res->cg_links);
676 INIT_LIST_HEAD(&res->tasks);
677 INIT_HLIST_NODE(&res->hlist);
679 /* Copy the set of subsystem state objects generated in
680 * find_existing_css_set() */
681 memcpy(res->subsys, template, sizeof(res->subsys));
683 write_lock(&css_set_lock);
684 /* Add reference counts and links from the new css_set. */
685 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
686 struct cgroup *c = link->cgrp;
687 if (c->root == cgrp->root)
688 c = cgrp;
689 link_css_set(&tmp_cg_links, res, c);
692 BUG_ON(!list_empty(&tmp_cg_links));
694 css_set_count++;
696 /* Add this cgroup group to the hash table */
697 hhead = css_set_hash(res->subsys);
698 hlist_add_head(&res->hlist, hhead);
700 write_unlock(&css_set_lock);
702 return res;
706 * Return the cgroup for "task" from the given hierarchy. Must be
707 * called with cgroup_mutex held.
709 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
710 struct cgroupfs_root *root)
712 struct css_set *css;
713 struct cgroup *res = NULL;
715 BUG_ON(!mutex_is_locked(&cgroup_mutex));
716 read_lock(&css_set_lock);
718 * No need to lock the task - since we hold cgroup_mutex the
719 * task can't change groups, so the only thing that can happen
720 * is that it exits and its css is set back to init_css_set.
722 css = task->cgroups;
723 if (css == &init_css_set) {
724 res = &root->top_cgroup;
725 } else {
726 struct cg_cgroup_link *link;
727 list_for_each_entry(link, &css->cg_links, cg_link_list) {
728 struct cgroup *c = link->cgrp;
729 if (c->root == root) {
730 res = c;
731 break;
735 read_unlock(&css_set_lock);
736 BUG_ON(!res);
737 return res;
741 * There is one global cgroup mutex. We also require taking
742 * task_lock() when dereferencing a task's cgroup subsys pointers.
743 * See "The task_lock() exception", at the end of this comment.
745 * A task must hold cgroup_mutex to modify cgroups.
747 * Any task can increment and decrement the count field without lock.
748 * So in general, code holding cgroup_mutex can't rely on the count
749 * field not changing. However, if the count goes to zero, then only
750 * cgroup_attach_task() can increment it again. Because a count of zero
751 * means that no tasks are currently attached, therefore there is no
752 * way a task attached to that cgroup can fork (the other way to
753 * increment the count). So code holding cgroup_mutex can safely
754 * assume that if the count is zero, it will stay zero. Similarly, if
755 * a task holds cgroup_mutex on a cgroup with zero count, it
756 * knows that the cgroup won't be removed, as cgroup_rmdir()
757 * needs that mutex.
759 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
760 * (usually) take cgroup_mutex. These are the two most performance
761 * critical pieces of code here. The exception occurs on cgroup_exit(),
762 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
763 * is taken, and if the cgroup count is zero, a usermode call made
764 * to the release agent with the name of the cgroup (path relative to
765 * the root of cgroup file system) as the argument.
767 * A cgroup can only be deleted if both its 'count' of using tasks
768 * is zero, and its list of 'children' cgroups is empty. Since all
769 * tasks in the system use _some_ cgroup, and since there is always at
770 * least one task in the system (init, pid == 1), therefore, top_cgroup
771 * always has either children cgroups and/or using tasks. So we don't
772 * need a special hack to ensure that top_cgroup cannot be deleted.
774 * The task_lock() exception
776 * The need for this exception arises from the action of
777 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
778 * another. It does so using cgroup_mutex, however there are
779 * several performance critical places that need to reference
780 * task->cgroup without the expense of grabbing a system global
781 * mutex. Therefore except as noted below, when dereferencing or, as
782 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
783 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
784 * the task_struct routinely used for such matters.
786 * P.S. One more locking exception. RCU is used to guard the
787 * update of a tasks cgroup pointer by cgroup_attach_task()
791 * cgroup_lock - lock out any changes to cgroup structures
794 void cgroup_lock(void)
796 mutex_lock(&cgroup_mutex);
798 EXPORT_SYMBOL_GPL(cgroup_lock);
801 * cgroup_unlock - release lock on cgroup changes
803 * Undo the lock taken in a previous cgroup_lock() call.
805 void cgroup_unlock(void)
807 mutex_unlock(&cgroup_mutex);
809 EXPORT_SYMBOL_GPL(cgroup_unlock);
812 * A couple of forward declarations required, due to cyclic reference loop:
813 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
814 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
815 * -> cgroup_mkdir.
818 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
819 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
820 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
821 static int cgroup_populate_dir(struct cgroup *cgrp);
822 static const struct inode_operations cgroup_dir_inode_operations;
823 static const struct file_operations proc_cgroupstats_operations;
825 static struct backing_dev_info cgroup_backing_dev_info = {
826 .name = "cgroup",
827 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
830 static int alloc_css_id(struct cgroup_subsys *ss,
831 struct cgroup *parent, struct cgroup *child);
833 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
835 struct inode *inode = new_inode(sb);
837 if (inode) {
838 inode->i_ino = get_next_ino();
839 inode->i_mode = mode;
840 inode->i_uid = current_fsuid();
841 inode->i_gid = current_fsgid();
842 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
843 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
845 return inode;
849 * Call subsys's pre_destroy handler.
850 * This is called before css refcnt check.
852 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
854 struct cgroup_subsys *ss;
855 int ret = 0;
857 for_each_subsys(cgrp->root, ss) {
858 if (!ss->pre_destroy)
859 continue;
861 ret = ss->pre_destroy(cgrp);
862 if (ret) {
863 /* ->pre_destroy() failure is being deprecated */
864 WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
865 break;
869 return ret;
872 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
874 /* is dentry a directory ? if so, kfree() associated cgroup */
875 if (S_ISDIR(inode->i_mode)) {
876 struct cgroup *cgrp = dentry->d_fsdata;
877 struct cgroup_subsys *ss;
878 BUG_ON(!(cgroup_is_removed(cgrp)));
879 /* It's possible for external users to be holding css
880 * reference counts on a cgroup; css_put() needs to
881 * be able to access the cgroup after decrementing
882 * the reference count in order to know if it needs to
883 * queue the cgroup to be handled by the release
884 * agent */
885 synchronize_rcu();
887 mutex_lock(&cgroup_mutex);
889 * Release the subsystem state objects.
891 for_each_subsys(cgrp->root, ss)
892 ss->destroy(cgrp);
894 cgrp->root->number_of_cgroups--;
895 mutex_unlock(&cgroup_mutex);
898 * Drop the active superblock reference that we took when we
899 * created the cgroup
901 deactivate_super(cgrp->root->sb);
904 * if we're getting rid of the cgroup, refcount should ensure
905 * that there are no pidlists left.
907 BUG_ON(!list_empty(&cgrp->pidlists));
909 kfree_rcu(cgrp, rcu_head);
910 } else {
911 struct cfent *cfe = __d_cfe(dentry);
912 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
914 WARN_ONCE(!list_empty(&cfe->node) &&
915 cgrp != &cgrp->root->top_cgroup,
916 "cfe still linked for %s\n", cfe->type->name);
917 kfree(cfe);
919 iput(inode);
922 static int cgroup_delete(const struct dentry *d)
924 return 1;
927 static void remove_dir(struct dentry *d)
929 struct dentry *parent = dget(d->d_parent);
931 d_delete(d);
932 simple_rmdir(parent->d_inode, d);
933 dput(parent);
936 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
938 struct cfent *cfe;
940 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
941 lockdep_assert_held(&cgroup_mutex);
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
946 if (cft && cfe->type != cft)
947 continue;
949 dget(d);
950 d_delete(d);
951 simple_unlink(d->d_inode, d);
952 list_del_init(&cfe->node);
953 dput(d);
955 return 0;
957 return -ENOENT;
960 static void cgroup_clear_directory(struct dentry *dir)
962 struct cgroup *cgrp = __d_cgrp(dir);
964 while (!list_empty(&cgrp->files))
965 cgroup_rm_file(cgrp, NULL);
969 * NOTE : the dentry must have been dget()'ed
971 static void cgroup_d_remove_dir(struct dentry *dentry)
973 struct dentry *parent;
975 cgroup_clear_directory(dentry);
977 parent = dentry->d_parent;
978 spin_lock(&parent->d_lock);
979 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
980 list_del_init(&dentry->d_u.d_child);
981 spin_unlock(&dentry->d_lock);
982 spin_unlock(&parent->d_lock);
983 remove_dir(dentry);
987 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
988 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
989 * reference to css->refcnt. In general, this refcnt is expected to goes down
990 * to zero, soon.
992 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
994 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
996 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
998 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
999 wake_up_all(&cgroup_rmdir_waitq);
1002 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1004 css_get(css);
1007 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1009 cgroup_wakeup_rmdir_waiter(css->cgroup);
1010 css_put(css);
1014 * Call with cgroup_mutex held. Drops reference counts on modules, including
1015 * any duplicate ones that parse_cgroupfs_options took. If this function
1016 * returns an error, no reference counts are touched.
1018 static int rebind_subsystems(struct cgroupfs_root *root,
1019 unsigned long final_bits)
1021 unsigned long added_bits, removed_bits;
1022 struct cgroup *cgrp = &root->top_cgroup;
1023 int i;
1025 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1026 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1028 removed_bits = root->actual_subsys_bits & ~final_bits;
1029 added_bits = final_bits & ~root->actual_subsys_bits;
1030 /* Check that any added subsystems are currently free */
1031 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1032 unsigned long bit = 1UL << i;
1033 struct cgroup_subsys *ss = subsys[i];
1034 if (!(bit & added_bits))
1035 continue;
1037 * Nobody should tell us to do a subsys that doesn't exist:
1038 * parse_cgroupfs_options should catch that case and refcounts
1039 * ensure that subsystems won't disappear once selected.
1041 BUG_ON(ss == NULL);
1042 if (ss->root != &rootnode) {
1043 /* Subsystem isn't free */
1044 return -EBUSY;
1048 /* Currently we don't handle adding/removing subsystems when
1049 * any child cgroups exist. This is theoretically supportable
1050 * but involves complex error handling, so it's being left until
1051 * later */
1052 if (root->number_of_cgroups > 1)
1053 return -EBUSY;
1055 /* Process each subsystem */
1056 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1057 struct cgroup_subsys *ss = subsys[i];
1058 unsigned long bit = 1UL << i;
1059 if (bit & added_bits) {
1060 /* We're binding this subsystem to this hierarchy */
1061 BUG_ON(ss == NULL);
1062 BUG_ON(cgrp->subsys[i]);
1063 BUG_ON(!dummytop->subsys[i]);
1064 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1065 mutex_lock(&ss->hierarchy_mutex);
1066 cgrp->subsys[i] = dummytop->subsys[i];
1067 cgrp->subsys[i]->cgroup = cgrp;
1068 list_move(&ss->sibling, &root->subsys_list);
1069 ss->root = root;
1070 if (ss->bind)
1071 ss->bind(cgrp);
1072 mutex_unlock(&ss->hierarchy_mutex);
1073 /* refcount was already taken, and we're keeping it */
1074 } else if (bit & removed_bits) {
1075 /* We're removing this subsystem */
1076 BUG_ON(ss == NULL);
1077 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1078 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1079 mutex_lock(&ss->hierarchy_mutex);
1080 if (ss->bind)
1081 ss->bind(dummytop);
1082 dummytop->subsys[i]->cgroup = dummytop;
1083 cgrp->subsys[i] = NULL;
1084 subsys[i]->root = &rootnode;
1085 list_move(&ss->sibling, &rootnode.subsys_list);
1086 mutex_unlock(&ss->hierarchy_mutex);
1087 /* subsystem is now free - drop reference on module */
1088 module_put(ss->module);
1089 } else if (bit & final_bits) {
1090 /* Subsystem state should already exist */
1091 BUG_ON(ss == NULL);
1092 BUG_ON(!cgrp->subsys[i]);
1094 * a refcount was taken, but we already had one, so
1095 * drop the extra reference.
1097 module_put(ss->module);
1098 #ifdef CONFIG_MODULE_UNLOAD
1099 BUG_ON(ss->module && !module_refcount(ss->module));
1100 #endif
1101 } else {
1102 /* Subsystem state shouldn't exist */
1103 BUG_ON(cgrp->subsys[i]);
1106 root->subsys_bits = root->actual_subsys_bits = final_bits;
1107 synchronize_rcu();
1109 return 0;
1112 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1114 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1115 struct cgroup_subsys *ss;
1117 mutex_lock(&cgroup_root_mutex);
1118 for_each_subsys(root, ss)
1119 seq_printf(seq, ",%s", ss->name);
1120 if (test_bit(ROOT_NOPREFIX, &root->flags))
1121 seq_puts(seq, ",noprefix");
1122 if (strlen(root->release_agent_path))
1123 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1124 if (clone_children(&root->top_cgroup))
1125 seq_puts(seq, ",clone_children");
1126 if (strlen(root->name))
1127 seq_printf(seq, ",name=%s", root->name);
1128 mutex_unlock(&cgroup_root_mutex);
1129 return 0;
1132 struct cgroup_sb_opts {
1133 unsigned long subsys_bits;
1134 unsigned long flags;
1135 char *release_agent;
1136 bool clone_children;
1137 char *name;
1138 /* User explicitly requested empty subsystem */
1139 bool none;
1141 struct cgroupfs_root *new_root;
1146 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1147 * with cgroup_mutex held to protect the subsys[] array. This function takes
1148 * refcounts on subsystems to be used, unless it returns error, in which case
1149 * no refcounts are taken.
1151 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1153 char *token, *o = data;
1154 bool all_ss = false, one_ss = false;
1155 unsigned long mask = (unsigned long)-1;
1156 int i;
1157 bool module_pin_failed = false;
1159 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1161 #ifdef CONFIG_CPUSETS
1162 mask = ~(1UL << cpuset_subsys_id);
1163 #endif
1165 memset(opts, 0, sizeof(*opts));
1167 while ((token = strsep(&o, ",")) != NULL) {
1168 if (!*token)
1169 return -EINVAL;
1170 if (!strcmp(token, "none")) {
1171 /* Explicitly have no subsystems */
1172 opts->none = true;
1173 continue;
1175 if (!strcmp(token, "all")) {
1176 /* Mutually exclusive option 'all' + subsystem name */
1177 if (one_ss)
1178 return -EINVAL;
1179 all_ss = true;
1180 continue;
1182 if (!strcmp(token, "noprefix")) {
1183 set_bit(ROOT_NOPREFIX, &opts->flags);
1184 continue;
1186 if (!strcmp(token, "clone_children")) {
1187 opts->clone_children = true;
1188 continue;
1190 if (!strncmp(token, "release_agent=", 14)) {
1191 /* Specifying two release agents is forbidden */
1192 if (opts->release_agent)
1193 return -EINVAL;
1194 opts->release_agent =
1195 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1196 if (!opts->release_agent)
1197 return -ENOMEM;
1198 continue;
1200 if (!strncmp(token, "name=", 5)) {
1201 const char *name = token + 5;
1202 /* Can't specify an empty name */
1203 if (!strlen(name))
1204 return -EINVAL;
1205 /* Must match [\w.-]+ */
1206 for (i = 0; i < strlen(name); i++) {
1207 char c = name[i];
1208 if (isalnum(c))
1209 continue;
1210 if ((c == '.') || (c == '-') || (c == '_'))
1211 continue;
1212 return -EINVAL;
1214 /* Specifying two names is forbidden */
1215 if (opts->name)
1216 return -EINVAL;
1217 opts->name = kstrndup(name,
1218 MAX_CGROUP_ROOT_NAMELEN - 1,
1219 GFP_KERNEL);
1220 if (!opts->name)
1221 return -ENOMEM;
1223 continue;
1226 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1227 struct cgroup_subsys *ss = subsys[i];
1228 if (ss == NULL)
1229 continue;
1230 if (strcmp(token, ss->name))
1231 continue;
1232 if (ss->disabled)
1233 continue;
1235 /* Mutually exclusive option 'all' + subsystem name */
1236 if (all_ss)
1237 return -EINVAL;
1238 set_bit(i, &opts->subsys_bits);
1239 one_ss = true;
1241 break;
1243 if (i == CGROUP_SUBSYS_COUNT)
1244 return -ENOENT;
1248 * If the 'all' option was specified select all the subsystems,
1249 * otherwise if 'none', 'name=' and a subsystem name options
1250 * were not specified, let's default to 'all'
1252 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1253 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1254 struct cgroup_subsys *ss = subsys[i];
1255 if (ss == NULL)
1256 continue;
1257 if (ss->disabled)
1258 continue;
1259 set_bit(i, &opts->subsys_bits);
1263 /* Consistency checks */
1266 * Option noprefix was introduced just for backward compatibility
1267 * with the old cpuset, so we allow noprefix only if mounting just
1268 * the cpuset subsystem.
1270 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1271 (opts->subsys_bits & mask))
1272 return -EINVAL;
1275 /* Can't specify "none" and some subsystems */
1276 if (opts->subsys_bits && opts->none)
1277 return -EINVAL;
1280 * We either have to specify by name or by subsystems. (So all
1281 * empty hierarchies must have a name).
1283 if (!opts->subsys_bits && !opts->name)
1284 return -EINVAL;
1287 * Grab references on all the modules we'll need, so the subsystems
1288 * don't dance around before rebind_subsystems attaches them. This may
1289 * take duplicate reference counts on a subsystem that's already used,
1290 * but rebind_subsystems handles this case.
1292 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1293 unsigned long bit = 1UL << i;
1295 if (!(bit & opts->subsys_bits))
1296 continue;
1297 if (!try_module_get(subsys[i]->module)) {
1298 module_pin_failed = true;
1299 break;
1302 if (module_pin_failed) {
1304 * oops, one of the modules was going away. this means that we
1305 * raced with a module_delete call, and to the user this is
1306 * essentially a "subsystem doesn't exist" case.
1308 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1309 /* drop refcounts only on the ones we took */
1310 unsigned long bit = 1UL << i;
1312 if (!(bit & opts->subsys_bits))
1313 continue;
1314 module_put(subsys[i]->module);
1316 return -ENOENT;
1319 return 0;
1322 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1324 int i;
1325 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1326 unsigned long bit = 1UL << i;
1328 if (!(bit & subsys_bits))
1329 continue;
1330 module_put(subsys[i]->module);
1334 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1336 int ret = 0;
1337 struct cgroupfs_root *root = sb->s_fs_info;
1338 struct cgroup *cgrp = &root->top_cgroup;
1339 struct cgroup_sb_opts opts;
1341 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1342 mutex_lock(&cgroup_mutex);
1343 mutex_lock(&cgroup_root_mutex);
1345 /* See what subsystems are wanted */
1346 ret = parse_cgroupfs_options(data, &opts);
1347 if (ret)
1348 goto out_unlock;
1350 /* See feature-removal-schedule.txt */
1351 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1352 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1353 task_tgid_nr(current), current->comm);
1355 /* Don't allow flags or name to change at remount */
1356 if (opts.flags != root->flags ||
1357 (opts.name && strcmp(opts.name, root->name))) {
1358 ret = -EINVAL;
1359 drop_parsed_module_refcounts(opts.subsys_bits);
1360 goto out_unlock;
1363 ret = rebind_subsystems(root, opts.subsys_bits);
1364 if (ret) {
1365 drop_parsed_module_refcounts(opts.subsys_bits);
1366 goto out_unlock;
1369 /* clear out any existing files and repopulate subsystem files */
1370 cgroup_clear_directory(cgrp->dentry);
1371 cgroup_populate_dir(cgrp);
1373 if (opts.release_agent)
1374 strcpy(root->release_agent_path, opts.release_agent);
1375 out_unlock:
1376 kfree(opts.release_agent);
1377 kfree(opts.name);
1378 mutex_unlock(&cgroup_root_mutex);
1379 mutex_unlock(&cgroup_mutex);
1380 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1381 return ret;
1384 static const struct super_operations cgroup_ops = {
1385 .statfs = simple_statfs,
1386 .drop_inode = generic_delete_inode,
1387 .show_options = cgroup_show_options,
1388 .remount_fs = cgroup_remount,
1391 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1393 INIT_LIST_HEAD(&cgrp->sibling);
1394 INIT_LIST_HEAD(&cgrp->children);
1395 INIT_LIST_HEAD(&cgrp->files);
1396 INIT_LIST_HEAD(&cgrp->css_sets);
1397 INIT_LIST_HEAD(&cgrp->release_list);
1398 INIT_LIST_HEAD(&cgrp->pidlists);
1399 mutex_init(&cgrp->pidlist_mutex);
1400 INIT_LIST_HEAD(&cgrp->event_list);
1401 spin_lock_init(&cgrp->event_list_lock);
1404 static void init_cgroup_root(struct cgroupfs_root *root)
1406 struct cgroup *cgrp = &root->top_cgroup;
1408 INIT_LIST_HEAD(&root->subsys_list);
1409 INIT_LIST_HEAD(&root->root_list);
1410 INIT_LIST_HEAD(&root->allcg_list);
1411 root->number_of_cgroups = 1;
1412 cgrp->root = root;
1413 cgrp->top_cgroup = cgrp;
1414 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1415 init_cgroup_housekeeping(cgrp);
1418 static bool init_root_id(struct cgroupfs_root *root)
1420 int ret = 0;
1422 do {
1423 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1424 return false;
1425 spin_lock(&hierarchy_id_lock);
1426 /* Try to allocate the next unused ID */
1427 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1428 &root->hierarchy_id);
1429 if (ret == -ENOSPC)
1430 /* Try again starting from 0 */
1431 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1432 if (!ret) {
1433 next_hierarchy_id = root->hierarchy_id + 1;
1434 } else if (ret != -EAGAIN) {
1435 /* Can only get here if the 31-bit IDR is full ... */
1436 BUG_ON(ret);
1438 spin_unlock(&hierarchy_id_lock);
1439 } while (ret);
1440 return true;
1443 static int cgroup_test_super(struct super_block *sb, void *data)
1445 struct cgroup_sb_opts *opts = data;
1446 struct cgroupfs_root *root = sb->s_fs_info;
1448 /* If we asked for a name then it must match */
1449 if (opts->name && strcmp(opts->name, root->name))
1450 return 0;
1453 * If we asked for subsystems (or explicitly for no
1454 * subsystems) then they must match
1456 if ((opts->subsys_bits || opts->none)
1457 && (opts->subsys_bits != root->subsys_bits))
1458 return 0;
1460 return 1;
1463 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1465 struct cgroupfs_root *root;
1467 if (!opts->subsys_bits && !opts->none)
1468 return NULL;
1470 root = kzalloc(sizeof(*root), GFP_KERNEL);
1471 if (!root)
1472 return ERR_PTR(-ENOMEM);
1474 if (!init_root_id(root)) {
1475 kfree(root);
1476 return ERR_PTR(-ENOMEM);
1478 init_cgroup_root(root);
1480 root->subsys_bits = opts->subsys_bits;
1481 root->flags = opts->flags;
1482 if (opts->release_agent)
1483 strcpy(root->release_agent_path, opts->release_agent);
1484 if (opts->name)
1485 strcpy(root->name, opts->name);
1486 if (opts->clone_children)
1487 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1488 return root;
1491 static void cgroup_drop_root(struct cgroupfs_root *root)
1493 if (!root)
1494 return;
1496 BUG_ON(!root->hierarchy_id);
1497 spin_lock(&hierarchy_id_lock);
1498 ida_remove(&hierarchy_ida, root->hierarchy_id);
1499 spin_unlock(&hierarchy_id_lock);
1500 kfree(root);
1503 static int cgroup_set_super(struct super_block *sb, void *data)
1505 int ret;
1506 struct cgroup_sb_opts *opts = data;
1508 /* If we don't have a new root, we can't set up a new sb */
1509 if (!opts->new_root)
1510 return -EINVAL;
1512 BUG_ON(!opts->subsys_bits && !opts->none);
1514 ret = set_anon_super(sb, NULL);
1515 if (ret)
1516 return ret;
1518 sb->s_fs_info = opts->new_root;
1519 opts->new_root->sb = sb;
1521 sb->s_blocksize = PAGE_CACHE_SIZE;
1522 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1523 sb->s_magic = CGROUP_SUPER_MAGIC;
1524 sb->s_op = &cgroup_ops;
1526 return 0;
1529 static int cgroup_get_rootdir(struct super_block *sb)
1531 static const struct dentry_operations cgroup_dops = {
1532 .d_iput = cgroup_diput,
1533 .d_delete = cgroup_delete,
1536 struct inode *inode =
1537 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1539 if (!inode)
1540 return -ENOMEM;
1542 inode->i_fop = &simple_dir_operations;
1543 inode->i_op = &cgroup_dir_inode_operations;
1544 /* directories start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
1546 sb->s_root = d_make_root(inode);
1547 if (!sb->s_root)
1548 return -ENOMEM;
1549 /* for everything else we want ->d_op set */
1550 sb->s_d_op = &cgroup_dops;
1551 return 0;
1554 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1555 int flags, const char *unused_dev_name,
1556 void *data)
1558 struct cgroup_sb_opts opts;
1559 struct cgroupfs_root *root;
1560 int ret = 0;
1561 struct super_block *sb;
1562 struct cgroupfs_root *new_root;
1563 struct inode *inode;
1565 /* First find the desired set of subsystems */
1566 mutex_lock(&cgroup_mutex);
1567 ret = parse_cgroupfs_options(data, &opts);
1568 mutex_unlock(&cgroup_mutex);
1569 if (ret)
1570 goto out_err;
1573 * Allocate a new cgroup root. We may not need it if we're
1574 * reusing an existing hierarchy.
1576 new_root = cgroup_root_from_opts(&opts);
1577 if (IS_ERR(new_root)) {
1578 ret = PTR_ERR(new_root);
1579 goto drop_modules;
1581 opts.new_root = new_root;
1583 /* Locate an existing or new sb for this hierarchy */
1584 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1585 if (IS_ERR(sb)) {
1586 ret = PTR_ERR(sb);
1587 cgroup_drop_root(opts.new_root);
1588 goto drop_modules;
1591 root = sb->s_fs_info;
1592 BUG_ON(!root);
1593 if (root == opts.new_root) {
1594 /* We used the new root structure, so this is a new hierarchy */
1595 struct list_head tmp_cg_links;
1596 struct cgroup *root_cgrp = &root->top_cgroup;
1597 struct cgroupfs_root *existing_root;
1598 const struct cred *cred;
1599 int i;
1601 BUG_ON(sb->s_root != NULL);
1603 ret = cgroup_get_rootdir(sb);
1604 if (ret)
1605 goto drop_new_super;
1606 inode = sb->s_root->d_inode;
1608 mutex_lock(&inode->i_mutex);
1609 mutex_lock(&cgroup_mutex);
1610 mutex_lock(&cgroup_root_mutex);
1612 /* Check for name clashes with existing mounts */
1613 ret = -EBUSY;
1614 if (strlen(root->name))
1615 for_each_active_root(existing_root)
1616 if (!strcmp(existing_root->name, root->name))
1617 goto unlock_drop;
1620 * We're accessing css_set_count without locking
1621 * css_set_lock here, but that's OK - it can only be
1622 * increased by someone holding cgroup_lock, and
1623 * that's us. The worst that can happen is that we
1624 * have some link structures left over
1626 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1627 if (ret)
1628 goto unlock_drop;
1630 ret = rebind_subsystems(root, root->subsys_bits);
1631 if (ret == -EBUSY) {
1632 free_cg_links(&tmp_cg_links);
1633 goto unlock_drop;
1636 * There must be no failure case after here, since rebinding
1637 * takes care of subsystems' refcounts, which are explicitly
1638 * dropped in the failure exit path.
1641 /* EBUSY should be the only error here */
1642 BUG_ON(ret);
1644 list_add(&root->root_list, &roots);
1645 root_count++;
1647 sb->s_root->d_fsdata = root_cgrp;
1648 root->top_cgroup.dentry = sb->s_root;
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
1653 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1654 struct hlist_head *hhead = &css_set_table[i];
1655 struct hlist_node *node;
1656 struct css_set *cg;
1658 hlist_for_each_entry(cg, node, hhead, hlist)
1659 link_css_set(&tmp_cg_links, cg, root_cgrp);
1661 write_unlock(&css_set_lock);
1663 free_cg_links(&tmp_cg_links);
1665 BUG_ON(!list_empty(&root_cgrp->sibling));
1666 BUG_ON(!list_empty(&root_cgrp->children));
1667 BUG_ON(root->number_of_cgroups != 1);
1669 cred = override_creds(&init_cred);
1670 cgroup_populate_dir(root_cgrp);
1671 revert_creds(cred);
1672 mutex_unlock(&cgroup_root_mutex);
1673 mutex_unlock(&cgroup_mutex);
1674 mutex_unlock(&inode->i_mutex);
1675 } else {
1677 * We re-used an existing hierarchy - the new root (if
1678 * any) is not needed
1680 cgroup_drop_root(opts.new_root);
1681 /* no subsys rebinding, so refcounts don't change */
1682 drop_parsed_module_refcounts(opts.subsys_bits);
1685 kfree(opts.release_agent);
1686 kfree(opts.name);
1687 return dget(sb->s_root);
1689 unlock_drop:
1690 mutex_unlock(&cgroup_root_mutex);
1691 mutex_unlock(&cgroup_mutex);
1692 mutex_unlock(&inode->i_mutex);
1693 drop_new_super:
1694 deactivate_locked_super(sb);
1695 drop_modules:
1696 drop_parsed_module_refcounts(opts.subsys_bits);
1697 out_err:
1698 kfree(opts.release_agent);
1699 kfree(opts.name);
1700 return ERR_PTR(ret);
1703 static void cgroup_kill_sb(struct super_block *sb) {
1704 struct cgroupfs_root *root = sb->s_fs_info;
1705 struct cgroup *cgrp = &root->top_cgroup;
1706 int ret;
1707 struct cg_cgroup_link *link;
1708 struct cg_cgroup_link *saved_link;
1710 BUG_ON(!root);
1712 BUG_ON(root->number_of_cgroups != 1);
1713 BUG_ON(!list_empty(&cgrp->children));
1714 BUG_ON(!list_empty(&cgrp->sibling));
1716 mutex_lock(&cgroup_mutex);
1717 mutex_lock(&cgroup_root_mutex);
1719 /* Rebind all subsystems back to the default hierarchy */
1720 ret = rebind_subsystems(root, 0);
1721 /* Shouldn't be able to fail ... */
1722 BUG_ON(ret);
1725 * Release all the links from css_sets to this hierarchy's
1726 * root cgroup
1728 write_lock(&css_set_lock);
1730 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1731 cgrp_link_list) {
1732 list_del(&link->cg_link_list);
1733 list_del(&link->cgrp_link_list);
1734 kfree(link);
1736 write_unlock(&css_set_lock);
1738 if (!list_empty(&root->root_list)) {
1739 list_del(&root->root_list);
1740 root_count--;
1743 mutex_unlock(&cgroup_root_mutex);
1744 mutex_unlock(&cgroup_mutex);
1746 kill_litter_super(sb);
1747 cgroup_drop_root(root);
1750 static struct file_system_type cgroup_fs_type = {
1751 .name = "cgroup",
1752 .mount = cgroup_mount,
1753 .kill_sb = cgroup_kill_sb,
1756 static struct kobject *cgroup_kobj;
1759 * cgroup_path - generate the path of a cgroup
1760 * @cgrp: the cgroup in question
1761 * @buf: the buffer to write the path into
1762 * @buflen: the length of the buffer
1764 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1765 * reference. Writes path of cgroup into buf. Returns 0 on success,
1766 * -errno on error.
1768 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1770 char *start;
1771 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1772 cgroup_lock_is_held());
1774 if (!dentry || cgrp == dummytop) {
1776 * Inactive subsystems have no dentry for their root
1777 * cgroup
1779 strcpy(buf, "/");
1780 return 0;
1783 start = buf + buflen;
1785 *--start = '\0';
1786 for (;;) {
1787 int len = dentry->d_name.len;
1789 if ((start -= len) < buf)
1790 return -ENAMETOOLONG;
1791 memcpy(start, dentry->d_name.name, len);
1792 cgrp = cgrp->parent;
1793 if (!cgrp)
1794 break;
1796 dentry = rcu_dereference_check(cgrp->dentry,
1797 cgroup_lock_is_held());
1798 if (!cgrp->parent)
1799 continue;
1800 if (--start < buf)
1801 return -ENAMETOOLONG;
1802 *start = '/';
1804 memmove(buf, start, buf + buflen - start);
1805 return 0;
1807 EXPORT_SYMBOL_GPL(cgroup_path);
1810 * Control Group taskset
1812 struct task_and_cgroup {
1813 struct task_struct *task;
1814 struct cgroup *cgrp;
1815 struct css_set *cg;
1818 struct cgroup_taskset {
1819 struct task_and_cgroup single;
1820 struct flex_array *tc_array;
1821 int tc_array_len;
1822 int idx;
1823 struct cgroup *cur_cgrp;
1827 * cgroup_taskset_first - reset taskset and return the first task
1828 * @tset: taskset of interest
1830 * @tset iteration is initialized and the first task is returned.
1832 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1834 if (tset->tc_array) {
1835 tset->idx = 0;
1836 return cgroup_taskset_next(tset);
1837 } else {
1838 tset->cur_cgrp = tset->single.cgrp;
1839 return tset->single.task;
1842 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1845 * cgroup_taskset_next - iterate to the next task in taskset
1846 * @tset: taskset of interest
1848 * Return the next task in @tset. Iteration must have been initialized
1849 * with cgroup_taskset_first().
1851 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1853 struct task_and_cgroup *tc;
1855 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1856 return NULL;
1858 tc = flex_array_get(tset->tc_array, tset->idx++);
1859 tset->cur_cgrp = tc->cgrp;
1860 return tc->task;
1862 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1865 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1866 * @tset: taskset of interest
1868 * Return the cgroup for the current (last returned) task of @tset. This
1869 * function must be preceded by either cgroup_taskset_first() or
1870 * cgroup_taskset_next().
1872 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1874 return tset->cur_cgrp;
1876 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1879 * cgroup_taskset_size - return the number of tasks in taskset
1880 * @tset: taskset of interest
1882 int cgroup_taskset_size(struct cgroup_taskset *tset)
1884 return tset->tc_array ? tset->tc_array_len : 1;
1886 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1890 * cgroup_task_migrate - move a task from one cgroup to another.
1892 * 'guarantee' is set if the caller promises that a new css_set for the task
1893 * will already exist. If not set, this function might sleep, and can fail with
1894 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1896 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1897 struct task_struct *tsk, struct css_set *newcg)
1899 struct css_set *oldcg;
1902 * We are synchronized through threadgroup_lock() against PF_EXITING
1903 * setting such that we can't race against cgroup_exit() changing the
1904 * css_set to init_css_set and dropping the old one.
1906 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1907 oldcg = tsk->cgroups;
1909 task_lock(tsk);
1910 rcu_assign_pointer(tsk->cgroups, newcg);
1911 task_unlock(tsk);
1913 /* Update the css_set linked lists if we're using them */
1914 write_lock(&css_set_lock);
1915 if (!list_empty(&tsk->cg_list))
1916 list_move(&tsk->cg_list, &newcg->tasks);
1917 write_unlock(&css_set_lock);
1920 * We just gained a reference on oldcg by taking it from the task. As
1921 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1922 * it here; it will be freed under RCU.
1924 put_css_set(oldcg);
1926 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1930 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1931 * @cgrp: the cgroup the task is attaching to
1932 * @tsk: the task to be attached
1934 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1935 * @tsk during call.
1937 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1939 int retval = 0;
1940 struct cgroup_subsys *ss, *failed_ss = NULL;
1941 struct cgroup *oldcgrp;
1942 struct cgroupfs_root *root = cgrp->root;
1943 struct cgroup_taskset tset = { };
1944 struct css_set *newcg;
1946 /* @tsk either already exited or can't exit until the end */
1947 if (tsk->flags & PF_EXITING)
1948 return -ESRCH;
1950 /* Nothing to do if the task is already in that cgroup */
1951 oldcgrp = task_cgroup_from_root(tsk, root);
1952 if (cgrp == oldcgrp)
1953 return 0;
1955 tset.single.task = tsk;
1956 tset.single.cgrp = oldcgrp;
1958 for_each_subsys(root, ss) {
1959 if (ss->can_attach) {
1960 retval = ss->can_attach(cgrp, &tset);
1961 if (retval) {
1963 * Remember on which subsystem the can_attach()
1964 * failed, so that we only call cancel_attach()
1965 * against the subsystems whose can_attach()
1966 * succeeded. (See below)
1968 failed_ss = ss;
1969 goto out;
1974 newcg = find_css_set(tsk->cgroups, cgrp);
1975 if (!newcg) {
1976 retval = -ENOMEM;
1977 goto out;
1980 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1982 for_each_subsys(root, ss) {
1983 if (ss->attach)
1984 ss->attach(cgrp, &tset);
1987 synchronize_rcu();
1990 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1991 * is no longer empty.
1993 cgroup_wakeup_rmdir_waiter(cgrp);
1994 out:
1995 if (retval) {
1996 for_each_subsys(root, ss) {
1997 if (ss == failed_ss)
1999 * This subsystem was the one that failed the
2000 * can_attach() check earlier, so we don't need
2001 * to call cancel_attach() against it or any
2002 * remaining subsystems.
2004 break;
2005 if (ss->cancel_attach)
2006 ss->cancel_attach(cgrp, &tset);
2009 return retval;
2013 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2014 * @from: attach to all cgroups of a given task
2015 * @tsk: the task to be attached
2017 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2019 struct cgroupfs_root *root;
2020 int retval = 0;
2022 cgroup_lock();
2023 for_each_active_root(root) {
2024 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2026 retval = cgroup_attach_task(from_cg, tsk);
2027 if (retval)
2028 break;
2030 cgroup_unlock();
2032 return retval;
2034 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2037 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2038 * @cgrp: the cgroup to attach to
2039 * @leader: the threadgroup leader task_struct of the group to be attached
2041 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2042 * task_lock of each thread in leader's threadgroup individually in turn.
2044 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2046 int retval, i, group_size;
2047 struct cgroup_subsys *ss, *failed_ss = NULL;
2048 /* guaranteed to be initialized later, but the compiler needs this */
2049 struct cgroupfs_root *root = cgrp->root;
2050 /* threadgroup list cursor and array */
2051 struct task_struct *tsk;
2052 struct task_and_cgroup *tc;
2053 struct flex_array *group;
2054 struct cgroup_taskset tset = { };
2057 * step 0: in order to do expensive, possibly blocking operations for
2058 * every thread, we cannot iterate the thread group list, since it needs
2059 * rcu or tasklist locked. instead, build an array of all threads in the
2060 * group - group_rwsem prevents new threads from appearing, and if
2061 * threads exit, this will just be an over-estimate.
2063 group_size = get_nr_threads(leader);
2064 /* flex_array supports very large thread-groups better than kmalloc. */
2065 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2066 if (!group)
2067 return -ENOMEM;
2068 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2069 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2070 if (retval)
2071 goto out_free_group_list;
2073 tsk = leader;
2074 i = 0;
2076 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2077 * already PF_EXITING could be freed from underneath us unless we
2078 * take an rcu_read_lock.
2080 rcu_read_lock();
2081 do {
2082 struct task_and_cgroup ent;
2084 /* @tsk either already exited or can't exit until the end */
2085 if (tsk->flags & PF_EXITING)
2086 continue;
2088 /* as per above, nr_threads may decrease, but not increase. */
2089 BUG_ON(i >= group_size);
2090 ent.task = tsk;
2091 ent.cgrp = task_cgroup_from_root(tsk, root);
2092 /* nothing to do if this task is already in the cgroup */
2093 if (ent.cgrp == cgrp)
2094 continue;
2096 * saying GFP_ATOMIC has no effect here because we did prealloc
2097 * earlier, but it's good form to communicate our expectations.
2099 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2100 BUG_ON(retval != 0);
2101 i++;
2102 } while_each_thread(leader, tsk);
2103 rcu_read_unlock();
2104 /* remember the number of threads in the array for later. */
2105 group_size = i;
2106 tset.tc_array = group;
2107 tset.tc_array_len = group_size;
2109 /* methods shouldn't be called if no task is actually migrating */
2110 retval = 0;
2111 if (!group_size)
2112 goto out_free_group_list;
2115 * step 1: check that we can legitimately attach to the cgroup.
2117 for_each_subsys(root, ss) {
2118 if (ss->can_attach) {
2119 retval = ss->can_attach(cgrp, &tset);
2120 if (retval) {
2121 failed_ss = ss;
2122 goto out_cancel_attach;
2128 * step 2: make sure css_sets exist for all threads to be migrated.
2129 * we use find_css_set, which allocates a new one if necessary.
2131 for (i = 0; i < group_size; i++) {
2132 tc = flex_array_get(group, i);
2133 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2134 if (!tc->cg) {
2135 retval = -ENOMEM;
2136 goto out_put_css_set_refs;
2141 * step 3: now that we're guaranteed success wrt the css_sets,
2142 * proceed to move all tasks to the new cgroup. There are no
2143 * failure cases after here, so this is the commit point.
2145 for (i = 0; i < group_size; i++) {
2146 tc = flex_array_get(group, i);
2147 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2149 /* nothing is sensitive to fork() after this point. */
2152 * step 4: do subsystem attach callbacks.
2154 for_each_subsys(root, ss) {
2155 if (ss->attach)
2156 ss->attach(cgrp, &tset);
2160 * step 5: success! and cleanup
2162 synchronize_rcu();
2163 cgroup_wakeup_rmdir_waiter(cgrp);
2164 retval = 0;
2165 out_put_css_set_refs:
2166 if (retval) {
2167 for (i = 0; i < group_size; i++) {
2168 tc = flex_array_get(group, i);
2169 if (!tc->cg)
2170 break;
2171 put_css_set(tc->cg);
2174 out_cancel_attach:
2175 if (retval) {
2176 for_each_subsys(root, ss) {
2177 if (ss == failed_ss)
2178 break;
2179 if (ss->cancel_attach)
2180 ss->cancel_attach(cgrp, &tset);
2183 out_free_group_list:
2184 flex_array_free(group);
2185 return retval;
2189 * Find the task_struct of the task to attach by vpid and pass it along to the
2190 * function to attach either it or all tasks in its threadgroup. Will lock
2191 * cgroup_mutex and threadgroup; may take task_lock of task.
2193 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2195 struct task_struct *tsk;
2196 const struct cred *cred = current_cred(), *tcred;
2197 int ret;
2199 if (!cgroup_lock_live_group(cgrp))
2200 return -ENODEV;
2202 retry_find_task:
2203 rcu_read_lock();
2204 if (pid) {
2205 tsk = find_task_by_vpid(pid);
2206 if (!tsk) {
2207 rcu_read_unlock();
2208 ret= -ESRCH;
2209 goto out_unlock_cgroup;
2212 * even if we're attaching all tasks in the thread group, we
2213 * only need to check permissions on one of them.
2215 tcred = __task_cred(tsk);
2216 if (cred->euid &&
2217 cred->euid != tcred->uid &&
2218 cred->euid != tcred->suid) {
2219 rcu_read_unlock();
2220 ret = -EACCES;
2221 goto out_unlock_cgroup;
2223 } else
2224 tsk = current;
2226 if (threadgroup)
2227 tsk = tsk->group_leader;
2228 get_task_struct(tsk);
2229 rcu_read_unlock();
2231 threadgroup_lock(tsk);
2232 if (threadgroup) {
2233 if (!thread_group_leader(tsk)) {
2235 * a race with de_thread from another thread's exec()
2236 * may strip us of our leadership, if this happens,
2237 * there is no choice but to throw this task away and
2238 * try again; this is
2239 * "double-double-toil-and-trouble-check locking".
2241 threadgroup_unlock(tsk);
2242 put_task_struct(tsk);
2243 goto retry_find_task;
2245 ret = cgroup_attach_proc(cgrp, tsk);
2246 } else
2247 ret = cgroup_attach_task(cgrp, tsk);
2248 threadgroup_unlock(tsk);
2250 put_task_struct(tsk);
2251 out_unlock_cgroup:
2252 cgroup_unlock();
2253 return ret;
2256 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2258 return attach_task_by_pid(cgrp, pid, false);
2261 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2263 return attach_task_by_pid(cgrp, tgid, true);
2267 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2268 * @cgrp: the cgroup to be checked for liveness
2270 * On success, returns true; the lock should be later released with
2271 * cgroup_unlock(). On failure returns false with no lock held.
2273 bool cgroup_lock_live_group(struct cgroup *cgrp)
2275 mutex_lock(&cgroup_mutex);
2276 if (cgroup_is_removed(cgrp)) {
2277 mutex_unlock(&cgroup_mutex);
2278 return false;
2280 return true;
2282 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2284 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2285 const char *buffer)
2287 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2288 if (strlen(buffer) >= PATH_MAX)
2289 return -EINVAL;
2290 if (!cgroup_lock_live_group(cgrp))
2291 return -ENODEV;
2292 mutex_lock(&cgroup_root_mutex);
2293 strcpy(cgrp->root->release_agent_path, buffer);
2294 mutex_unlock(&cgroup_root_mutex);
2295 cgroup_unlock();
2296 return 0;
2299 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2300 struct seq_file *seq)
2302 if (!cgroup_lock_live_group(cgrp))
2303 return -ENODEV;
2304 seq_puts(seq, cgrp->root->release_agent_path);
2305 seq_putc(seq, '\n');
2306 cgroup_unlock();
2307 return 0;
2310 /* A buffer size big enough for numbers or short strings */
2311 #define CGROUP_LOCAL_BUFFER_SIZE 64
2313 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2314 struct file *file,
2315 const char __user *userbuf,
2316 size_t nbytes, loff_t *unused_ppos)
2318 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2319 int retval = 0;
2320 char *end;
2322 if (!nbytes)
2323 return -EINVAL;
2324 if (nbytes >= sizeof(buffer))
2325 return -E2BIG;
2326 if (copy_from_user(buffer, userbuf, nbytes))
2327 return -EFAULT;
2329 buffer[nbytes] = 0; /* nul-terminate */
2330 if (cft->write_u64) {
2331 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2332 if (*end)
2333 return -EINVAL;
2334 retval = cft->write_u64(cgrp, cft, val);
2335 } else {
2336 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2337 if (*end)
2338 return -EINVAL;
2339 retval = cft->write_s64(cgrp, cft, val);
2341 if (!retval)
2342 retval = nbytes;
2343 return retval;
2346 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2347 struct file *file,
2348 const char __user *userbuf,
2349 size_t nbytes, loff_t *unused_ppos)
2351 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2352 int retval = 0;
2353 size_t max_bytes = cft->max_write_len;
2354 char *buffer = local_buffer;
2356 if (!max_bytes)
2357 max_bytes = sizeof(local_buffer) - 1;
2358 if (nbytes >= max_bytes)
2359 return -E2BIG;
2360 /* Allocate a dynamic buffer if we need one */
2361 if (nbytes >= sizeof(local_buffer)) {
2362 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2363 if (buffer == NULL)
2364 return -ENOMEM;
2366 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2367 retval = -EFAULT;
2368 goto out;
2371 buffer[nbytes] = 0; /* nul-terminate */
2372 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2373 if (!retval)
2374 retval = nbytes;
2375 out:
2376 if (buffer != local_buffer)
2377 kfree(buffer);
2378 return retval;
2381 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2382 size_t nbytes, loff_t *ppos)
2384 struct cftype *cft = __d_cft(file->f_dentry);
2385 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2387 if (cgroup_is_removed(cgrp))
2388 return -ENODEV;
2389 if (cft->write)
2390 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2391 if (cft->write_u64 || cft->write_s64)
2392 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2393 if (cft->write_string)
2394 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2395 if (cft->trigger) {
2396 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2397 return ret ? ret : nbytes;
2399 return -EINVAL;
2402 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2403 struct file *file,
2404 char __user *buf, size_t nbytes,
2405 loff_t *ppos)
2407 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2408 u64 val = cft->read_u64(cgrp, cft);
2409 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2411 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2414 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2415 struct file *file,
2416 char __user *buf, size_t nbytes,
2417 loff_t *ppos)
2419 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2420 s64 val = cft->read_s64(cgrp, cft);
2421 int len = sprintf(tmp, "%lld\n", (long long) val);
2423 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2426 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2427 size_t nbytes, loff_t *ppos)
2429 struct cftype *cft = __d_cft(file->f_dentry);
2430 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2432 if (cgroup_is_removed(cgrp))
2433 return -ENODEV;
2435 if (cft->read)
2436 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2437 if (cft->read_u64)
2438 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2439 if (cft->read_s64)
2440 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2441 return -EINVAL;
2445 * seqfile ops/methods for returning structured data. Currently just
2446 * supports string->u64 maps, but can be extended in future.
2449 struct cgroup_seqfile_state {
2450 struct cftype *cft;
2451 struct cgroup *cgroup;
2454 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2456 struct seq_file *sf = cb->state;
2457 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2460 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2462 struct cgroup_seqfile_state *state = m->private;
2463 struct cftype *cft = state->cft;
2464 if (cft->read_map) {
2465 struct cgroup_map_cb cb = {
2466 .fill = cgroup_map_add,
2467 .state = m,
2469 return cft->read_map(state->cgroup, cft, &cb);
2471 return cft->read_seq_string(state->cgroup, cft, m);
2474 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2476 struct seq_file *seq = file->private_data;
2477 kfree(seq->private);
2478 return single_release(inode, file);
2481 static const struct file_operations cgroup_seqfile_operations = {
2482 .read = seq_read,
2483 .write = cgroup_file_write,
2484 .llseek = seq_lseek,
2485 .release = cgroup_seqfile_release,
2488 static int cgroup_file_open(struct inode *inode, struct file *file)
2490 int err;
2491 struct cftype *cft;
2493 err = generic_file_open(inode, file);
2494 if (err)
2495 return err;
2496 cft = __d_cft(file->f_dentry);
2498 if (cft->read_map || cft->read_seq_string) {
2499 struct cgroup_seqfile_state *state =
2500 kzalloc(sizeof(*state), GFP_USER);
2501 if (!state)
2502 return -ENOMEM;
2503 state->cft = cft;
2504 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2505 file->f_op = &cgroup_seqfile_operations;
2506 err = single_open(file, cgroup_seqfile_show, state);
2507 if (err < 0)
2508 kfree(state);
2509 } else if (cft->open)
2510 err = cft->open(inode, file);
2511 else
2512 err = 0;
2514 return err;
2517 static int cgroup_file_release(struct inode *inode, struct file *file)
2519 struct cftype *cft = __d_cft(file->f_dentry);
2520 if (cft->release)
2521 return cft->release(inode, file);
2522 return 0;
2526 * cgroup_rename - Only allow simple rename of directories in place.
2528 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2529 struct inode *new_dir, struct dentry *new_dentry)
2531 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2532 return -ENOTDIR;
2533 if (new_dentry->d_inode)
2534 return -EEXIST;
2535 if (old_dir != new_dir)
2536 return -EIO;
2537 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2540 static const struct file_operations cgroup_file_operations = {
2541 .read = cgroup_file_read,
2542 .write = cgroup_file_write,
2543 .llseek = generic_file_llseek,
2544 .open = cgroup_file_open,
2545 .release = cgroup_file_release,
2548 static const struct inode_operations cgroup_dir_inode_operations = {
2549 .lookup = cgroup_lookup,
2550 .mkdir = cgroup_mkdir,
2551 .rmdir = cgroup_rmdir,
2552 .rename = cgroup_rename,
2555 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2557 if (dentry->d_name.len > NAME_MAX)
2558 return ERR_PTR(-ENAMETOOLONG);
2559 d_add(dentry, NULL);
2560 return NULL;
2564 * Check if a file is a control file
2566 static inline struct cftype *__file_cft(struct file *file)
2568 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2569 return ERR_PTR(-EINVAL);
2570 return __d_cft(file->f_dentry);
2573 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2574 struct super_block *sb)
2576 struct inode *inode;
2578 if (!dentry)
2579 return -ENOENT;
2580 if (dentry->d_inode)
2581 return -EEXIST;
2583 inode = cgroup_new_inode(mode, sb);
2584 if (!inode)
2585 return -ENOMEM;
2587 if (S_ISDIR(mode)) {
2588 inode->i_op = &cgroup_dir_inode_operations;
2589 inode->i_fop = &simple_dir_operations;
2591 /* start off with i_nlink == 2 (for "." entry) */
2592 inc_nlink(inode);
2594 /* start with the directory inode held, so that we can
2595 * populate it without racing with another mkdir */
2596 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2597 } else if (S_ISREG(mode)) {
2598 inode->i_size = 0;
2599 inode->i_fop = &cgroup_file_operations;
2601 d_instantiate(dentry, inode);
2602 dget(dentry); /* Extra count - pin the dentry in core */
2603 return 0;
2607 * cgroup_create_dir - create a directory for an object.
2608 * @cgrp: the cgroup we create the directory for. It must have a valid
2609 * ->parent field. And we are going to fill its ->dentry field.
2610 * @dentry: dentry of the new cgroup
2611 * @mode: mode to set on new directory.
2613 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2614 umode_t mode)
2616 struct dentry *parent;
2617 int error = 0;
2619 parent = cgrp->parent->dentry;
2620 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2621 if (!error) {
2622 dentry->d_fsdata = cgrp;
2623 inc_nlink(parent->d_inode);
2624 rcu_assign_pointer(cgrp->dentry, dentry);
2625 dget(dentry);
2627 dput(dentry);
2629 return error;
2633 * cgroup_file_mode - deduce file mode of a control file
2634 * @cft: the control file in question
2636 * returns cft->mode if ->mode is not 0
2637 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2638 * returns S_IRUGO if it has only a read handler
2639 * returns S_IWUSR if it has only a write hander
2641 static umode_t cgroup_file_mode(const struct cftype *cft)
2643 umode_t mode = 0;
2645 if (cft->mode)
2646 return cft->mode;
2648 if (cft->read || cft->read_u64 || cft->read_s64 ||
2649 cft->read_map || cft->read_seq_string)
2650 mode |= S_IRUGO;
2652 if (cft->write || cft->write_u64 || cft->write_s64 ||
2653 cft->write_string || cft->trigger)
2654 mode |= S_IWUSR;
2656 return mode;
2659 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2660 const struct cftype *cft)
2662 struct dentry *dir = cgrp->dentry;
2663 struct cgroup *parent = __d_cgrp(dir);
2664 struct dentry *dentry;
2665 struct cfent *cfe;
2666 int error;
2667 umode_t mode;
2668 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2670 /* does @cft->flags tell us to skip creation on @cgrp? */
2671 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2672 return 0;
2673 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2674 return 0;
2676 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2677 strcpy(name, subsys->name);
2678 strcat(name, ".");
2680 strcat(name, cft->name);
2682 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2684 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2685 if (!cfe)
2686 return -ENOMEM;
2688 dentry = lookup_one_len(name, dir, strlen(name));
2689 if (IS_ERR(dentry)) {
2690 error = PTR_ERR(dentry);
2691 goto out;
2694 mode = cgroup_file_mode(cft);
2695 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2696 if (!error) {
2697 cfe->type = (void *)cft;
2698 cfe->dentry = dentry;
2699 dentry->d_fsdata = cfe;
2700 list_add_tail(&cfe->node, &parent->files);
2701 cfe = NULL;
2703 dput(dentry);
2704 out:
2705 kfree(cfe);
2706 return error;
2709 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2710 const struct cftype cfts[], bool is_add)
2712 const struct cftype *cft;
2713 int err, ret = 0;
2715 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2716 if (is_add)
2717 err = cgroup_add_file(cgrp, subsys, cft);
2718 else
2719 err = cgroup_rm_file(cgrp, cft);
2720 if (err) {
2721 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2722 is_add ? "add" : "remove", cft->name, err);
2723 ret = err;
2726 return ret;
2729 static DEFINE_MUTEX(cgroup_cft_mutex);
2731 static void cgroup_cfts_prepare(void)
2732 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2735 * Thanks to the entanglement with vfs inode locking, we can't walk
2736 * the existing cgroups under cgroup_mutex and create files.
2737 * Instead, we increment reference on all cgroups and build list of
2738 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2739 * exclusive access to the field.
2741 mutex_lock(&cgroup_cft_mutex);
2742 mutex_lock(&cgroup_mutex);
2745 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2746 const struct cftype *cfts, bool is_add)
2747 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2749 LIST_HEAD(pending);
2750 struct cgroup *cgrp, *n;
2752 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2753 if (cfts && ss->root != &rootnode) {
2754 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2755 dget(cgrp->dentry);
2756 list_add_tail(&cgrp->cft_q_node, &pending);
2760 mutex_unlock(&cgroup_mutex);
2763 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2764 * files for all cgroups which were created before.
2766 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2767 struct inode *inode = cgrp->dentry->d_inode;
2769 mutex_lock(&inode->i_mutex);
2770 mutex_lock(&cgroup_mutex);
2771 if (!cgroup_is_removed(cgrp))
2772 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2773 mutex_unlock(&cgroup_mutex);
2774 mutex_unlock(&inode->i_mutex);
2776 list_del_init(&cgrp->cft_q_node);
2777 dput(cgrp->dentry);
2780 mutex_unlock(&cgroup_cft_mutex);
2784 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2785 * @ss: target cgroup subsystem
2786 * @cfts: zero-length name terminated array of cftypes
2788 * Register @cfts to @ss. Files described by @cfts are created for all
2789 * existing cgroups to which @ss is attached and all future cgroups will
2790 * have them too. This function can be called anytime whether @ss is
2791 * attached or not.
2793 * Returns 0 on successful registration, -errno on failure. Note that this
2794 * function currently returns 0 as long as @cfts registration is successful
2795 * even if some file creation attempts on existing cgroups fail.
2797 int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2799 struct cftype_set *set;
2801 set = kzalloc(sizeof(*set), GFP_KERNEL);
2802 if (!set)
2803 return -ENOMEM;
2805 cgroup_cfts_prepare();
2806 set->cfts = cfts;
2807 list_add_tail(&set->node, &ss->cftsets);
2808 cgroup_cfts_commit(ss, cfts, true);
2810 return 0;
2812 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2815 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2816 * @ss: target cgroup subsystem
2817 * @cfts: zero-length name terminated array of cftypes
2819 * Unregister @cfts from @ss. Files described by @cfts are removed from
2820 * all existing cgroups to which @ss is attached and all future cgroups
2821 * won't have them either. This function can be called anytime whether @ss
2822 * is attached or not.
2824 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2825 * registered with @ss.
2827 int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2829 struct cftype_set *set;
2831 cgroup_cfts_prepare();
2833 list_for_each_entry(set, &ss->cftsets, node) {
2834 if (set->cfts == cfts) {
2835 list_del_init(&set->node);
2836 cgroup_cfts_commit(ss, cfts, false);
2837 return 0;
2841 cgroup_cfts_commit(ss, NULL, false);
2842 return -ENOENT;
2846 * cgroup_task_count - count the number of tasks in a cgroup.
2847 * @cgrp: the cgroup in question
2849 * Return the number of tasks in the cgroup.
2851 int cgroup_task_count(const struct cgroup *cgrp)
2853 int count = 0;
2854 struct cg_cgroup_link *link;
2856 read_lock(&css_set_lock);
2857 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2858 count += atomic_read(&link->cg->refcount);
2860 read_unlock(&css_set_lock);
2861 return count;
2865 * Advance a list_head iterator. The iterator should be positioned at
2866 * the start of a css_set
2868 static void cgroup_advance_iter(struct cgroup *cgrp,
2869 struct cgroup_iter *it)
2871 struct list_head *l = it->cg_link;
2872 struct cg_cgroup_link *link;
2873 struct css_set *cg;
2875 /* Advance to the next non-empty css_set */
2876 do {
2877 l = l->next;
2878 if (l == &cgrp->css_sets) {
2879 it->cg_link = NULL;
2880 return;
2882 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2883 cg = link->cg;
2884 } while (list_empty(&cg->tasks));
2885 it->cg_link = l;
2886 it->task = cg->tasks.next;
2890 * To reduce the fork() overhead for systems that are not actually
2891 * using their cgroups capability, we don't maintain the lists running
2892 * through each css_set to its tasks until we see the list actually
2893 * used - in other words after the first call to cgroup_iter_start().
2895 static void cgroup_enable_task_cg_lists(void)
2897 struct task_struct *p, *g;
2898 write_lock(&css_set_lock);
2899 use_task_css_set_links = 1;
2901 * We need tasklist_lock because RCU is not safe against
2902 * while_each_thread(). Besides, a forking task that has passed
2903 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2904 * is not guaranteed to have its child immediately visible in the
2905 * tasklist if we walk through it with RCU.
2907 read_lock(&tasklist_lock);
2908 do_each_thread(g, p) {
2909 task_lock(p);
2911 * We should check if the process is exiting, otherwise
2912 * it will race with cgroup_exit() in that the list
2913 * entry won't be deleted though the process has exited.
2915 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2916 list_add(&p->cg_list, &p->cgroups->tasks);
2917 task_unlock(p);
2918 } while_each_thread(g, p);
2919 read_unlock(&tasklist_lock);
2920 write_unlock(&css_set_lock);
2923 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2924 __acquires(css_set_lock)
2927 * The first time anyone tries to iterate across a cgroup,
2928 * we need to enable the list linking each css_set to its
2929 * tasks, and fix up all existing tasks.
2931 if (!use_task_css_set_links)
2932 cgroup_enable_task_cg_lists();
2934 read_lock(&css_set_lock);
2935 it->cg_link = &cgrp->css_sets;
2936 cgroup_advance_iter(cgrp, it);
2939 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2940 struct cgroup_iter *it)
2942 struct task_struct *res;
2943 struct list_head *l = it->task;
2944 struct cg_cgroup_link *link;
2946 /* If the iterator cg is NULL, we have no tasks */
2947 if (!it->cg_link)
2948 return NULL;
2949 res = list_entry(l, struct task_struct, cg_list);
2950 /* Advance iterator to find next entry */
2951 l = l->next;
2952 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2953 if (l == &link->cg->tasks) {
2954 /* We reached the end of this task list - move on to
2955 * the next cg_cgroup_link */
2956 cgroup_advance_iter(cgrp, it);
2957 } else {
2958 it->task = l;
2960 return res;
2963 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2964 __releases(css_set_lock)
2966 read_unlock(&css_set_lock);
2969 static inline int started_after_time(struct task_struct *t1,
2970 struct timespec *time,
2971 struct task_struct *t2)
2973 int start_diff = timespec_compare(&t1->start_time, time);
2974 if (start_diff > 0) {
2975 return 1;
2976 } else if (start_diff < 0) {
2977 return 0;
2978 } else {
2980 * Arbitrarily, if two processes started at the same
2981 * time, we'll say that the lower pointer value
2982 * started first. Note that t2 may have exited by now
2983 * so this may not be a valid pointer any longer, but
2984 * that's fine - it still serves to distinguish
2985 * between two tasks started (effectively) simultaneously.
2987 return t1 > t2;
2992 * This function is a callback from heap_insert() and is used to order
2993 * the heap.
2994 * In this case we order the heap in descending task start time.
2996 static inline int started_after(void *p1, void *p2)
2998 struct task_struct *t1 = p1;
2999 struct task_struct *t2 = p2;
3000 return started_after_time(t1, &t2->start_time, t2);
3004 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3005 * @scan: struct cgroup_scanner containing arguments for the scan
3007 * Arguments include pointers to callback functions test_task() and
3008 * process_task().
3009 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3010 * and if it returns true, call process_task() for it also.
3011 * The test_task pointer may be NULL, meaning always true (select all tasks).
3012 * Effectively duplicates cgroup_iter_{start,next,end}()
3013 * but does not lock css_set_lock for the call to process_task().
3014 * The struct cgroup_scanner may be embedded in any structure of the caller's
3015 * creation.
3016 * It is guaranteed that process_task() will act on every task that
3017 * is a member of the cgroup for the duration of this call. This
3018 * function may or may not call process_task() for tasks that exit
3019 * or move to a different cgroup during the call, or are forked or
3020 * move into the cgroup during the call.
3022 * Note that test_task() may be called with locks held, and may in some
3023 * situations be called multiple times for the same task, so it should
3024 * be cheap.
3025 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3026 * pre-allocated and will be used for heap operations (and its "gt" member will
3027 * be overwritten), else a temporary heap will be used (allocation of which
3028 * may cause this function to fail).
3030 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3032 int retval, i;
3033 struct cgroup_iter it;
3034 struct task_struct *p, *dropped;
3035 /* Never dereference latest_task, since it's not refcounted */
3036 struct task_struct *latest_task = NULL;
3037 struct ptr_heap tmp_heap;
3038 struct ptr_heap *heap;
3039 struct timespec latest_time = { 0, 0 };
3041 if (scan->heap) {
3042 /* The caller supplied our heap and pre-allocated its memory */
3043 heap = scan->heap;
3044 heap->gt = &started_after;
3045 } else {
3046 /* We need to allocate our own heap memory */
3047 heap = &tmp_heap;
3048 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3049 if (retval)
3050 /* cannot allocate the heap */
3051 return retval;
3054 again:
3056 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3057 * to determine which are of interest, and using the scanner's
3058 * "process_task" callback to process any of them that need an update.
3059 * Since we don't want to hold any locks during the task updates,
3060 * gather tasks to be processed in a heap structure.
3061 * The heap is sorted by descending task start time.
3062 * If the statically-sized heap fills up, we overflow tasks that
3063 * started later, and in future iterations only consider tasks that
3064 * started after the latest task in the previous pass. This
3065 * guarantees forward progress and that we don't miss any tasks.
3067 heap->size = 0;
3068 cgroup_iter_start(scan->cg, &it);
3069 while ((p = cgroup_iter_next(scan->cg, &it))) {
3071 * Only affect tasks that qualify per the caller's callback,
3072 * if he provided one
3074 if (scan->test_task && !scan->test_task(p, scan))
3075 continue;
3077 * Only process tasks that started after the last task
3078 * we processed
3080 if (!started_after_time(p, &latest_time, latest_task))
3081 continue;
3082 dropped = heap_insert(heap, p);
3083 if (dropped == NULL) {
3085 * The new task was inserted; the heap wasn't
3086 * previously full
3088 get_task_struct(p);
3089 } else if (dropped != p) {
3091 * The new task was inserted, and pushed out a
3092 * different task
3094 get_task_struct(p);
3095 put_task_struct(dropped);
3098 * Else the new task was newer than anything already in
3099 * the heap and wasn't inserted
3102 cgroup_iter_end(scan->cg, &it);
3104 if (heap->size) {
3105 for (i = 0; i < heap->size; i++) {
3106 struct task_struct *q = heap->ptrs[i];
3107 if (i == 0) {
3108 latest_time = q->start_time;
3109 latest_task = q;
3111 /* Process the task per the caller's callback */
3112 scan->process_task(q, scan);
3113 put_task_struct(q);
3116 * If we had to process any tasks at all, scan again
3117 * in case some of them were in the middle of forking
3118 * children that didn't get processed.
3119 * Not the most efficient way to do it, but it avoids
3120 * having to take callback_mutex in the fork path
3122 goto again;
3124 if (heap == &tmp_heap)
3125 heap_free(&tmp_heap);
3126 return 0;
3130 * Stuff for reading the 'tasks'/'procs' files.
3132 * Reading this file can return large amounts of data if a cgroup has
3133 * *lots* of attached tasks. So it may need several calls to read(),
3134 * but we cannot guarantee that the information we produce is correct
3135 * unless we produce it entirely atomically.
3139 /* which pidlist file are we talking about? */
3140 enum cgroup_filetype {
3141 CGROUP_FILE_PROCS,
3142 CGROUP_FILE_TASKS,
3146 * A pidlist is a list of pids that virtually represents the contents of one
3147 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3148 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3149 * to the cgroup.
3151 struct cgroup_pidlist {
3153 * used to find which pidlist is wanted. doesn't change as long as
3154 * this particular list stays in the list.
3156 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3157 /* array of xids */
3158 pid_t *list;
3159 /* how many elements the above list has */
3160 int length;
3161 /* how many files are using the current array */
3162 int use_count;
3163 /* each of these stored in a list by its cgroup */
3164 struct list_head links;
3165 /* pointer to the cgroup we belong to, for list removal purposes */
3166 struct cgroup *owner;
3167 /* protects the other fields */
3168 struct rw_semaphore mutex;
3172 * The following two functions "fix" the issue where there are more pids
3173 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3174 * TODO: replace with a kernel-wide solution to this problem
3176 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3177 static void *pidlist_allocate(int count)
3179 if (PIDLIST_TOO_LARGE(count))
3180 return vmalloc(count * sizeof(pid_t));
3181 else
3182 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3184 static void pidlist_free(void *p)
3186 if (is_vmalloc_addr(p))
3187 vfree(p);
3188 else
3189 kfree(p);
3191 static void *pidlist_resize(void *p, int newcount)
3193 void *newlist;
3194 /* note: if new alloc fails, old p will still be valid either way */
3195 if (is_vmalloc_addr(p)) {
3196 newlist = vmalloc(newcount * sizeof(pid_t));
3197 if (!newlist)
3198 return NULL;
3199 memcpy(newlist, p, newcount * sizeof(pid_t));
3200 vfree(p);
3201 } else {
3202 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3204 return newlist;
3208 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3209 * If the new stripped list is sufficiently smaller and there's enough memory
3210 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3211 * number of unique elements.
3213 /* is the size difference enough that we should re-allocate the array? */
3214 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3215 static int pidlist_uniq(pid_t **p, int length)
3217 int src, dest = 1;
3218 pid_t *list = *p;
3219 pid_t *newlist;
3222 * we presume the 0th element is unique, so i starts at 1. trivial
3223 * edge cases first; no work needs to be done for either
3225 if (length == 0 || length == 1)
3226 return length;
3227 /* src and dest walk down the list; dest counts unique elements */
3228 for (src = 1; src < length; src++) {
3229 /* find next unique element */
3230 while (list[src] == list[src-1]) {
3231 src++;
3232 if (src == length)
3233 goto after;
3235 /* dest always points to where the next unique element goes */
3236 list[dest] = list[src];
3237 dest++;
3239 after:
3241 * if the length difference is large enough, we want to allocate a
3242 * smaller buffer to save memory. if this fails due to out of memory,
3243 * we'll just stay with what we've got.
3245 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3246 newlist = pidlist_resize(list, dest);
3247 if (newlist)
3248 *p = newlist;
3250 return dest;
3253 static int cmppid(const void *a, const void *b)
3255 return *(pid_t *)a - *(pid_t *)b;
3259 * find the appropriate pidlist for our purpose (given procs vs tasks)
3260 * returns with the lock on that pidlist already held, and takes care
3261 * of the use count, or returns NULL with no locks held if we're out of
3262 * memory.
3264 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3265 enum cgroup_filetype type)
3267 struct cgroup_pidlist *l;
3268 /* don't need task_nsproxy() if we're looking at ourself */
3269 struct pid_namespace *ns = current->nsproxy->pid_ns;
3272 * We can't drop the pidlist_mutex before taking the l->mutex in case
3273 * the last ref-holder is trying to remove l from the list at the same
3274 * time. Holding the pidlist_mutex precludes somebody taking whichever
3275 * list we find out from under us - compare release_pid_array().
3277 mutex_lock(&cgrp->pidlist_mutex);
3278 list_for_each_entry(l, &cgrp->pidlists, links) {
3279 if (l->key.type == type && l->key.ns == ns) {
3280 /* make sure l doesn't vanish out from under us */
3281 down_write(&l->mutex);
3282 mutex_unlock(&cgrp->pidlist_mutex);
3283 return l;
3286 /* entry not found; create a new one */
3287 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3288 if (!l) {
3289 mutex_unlock(&cgrp->pidlist_mutex);
3290 return l;
3292 init_rwsem(&l->mutex);
3293 down_write(&l->mutex);
3294 l->key.type = type;
3295 l->key.ns = get_pid_ns(ns);
3296 l->use_count = 0; /* don't increment here */
3297 l->list = NULL;
3298 l->owner = cgrp;
3299 list_add(&l->links, &cgrp->pidlists);
3300 mutex_unlock(&cgrp->pidlist_mutex);
3301 return l;
3305 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3307 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3308 struct cgroup_pidlist **lp)
3310 pid_t *array;
3311 int length;
3312 int pid, n = 0; /* used for populating the array */
3313 struct cgroup_iter it;
3314 struct task_struct *tsk;
3315 struct cgroup_pidlist *l;
3318 * If cgroup gets more users after we read count, we won't have
3319 * enough space - tough. This race is indistinguishable to the
3320 * caller from the case that the additional cgroup users didn't
3321 * show up until sometime later on.
3323 length = cgroup_task_count(cgrp);
3324 array = pidlist_allocate(length);
3325 if (!array)
3326 return -ENOMEM;
3327 /* now, populate the array */
3328 cgroup_iter_start(cgrp, &it);
3329 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3330 if (unlikely(n == length))
3331 break;
3332 /* get tgid or pid for procs or tasks file respectively */
3333 if (type == CGROUP_FILE_PROCS)
3334 pid = task_tgid_vnr(tsk);
3335 else
3336 pid = task_pid_vnr(tsk);
3337 if (pid > 0) /* make sure to only use valid results */
3338 array[n++] = pid;
3340 cgroup_iter_end(cgrp, &it);
3341 length = n;
3342 /* now sort & (if procs) strip out duplicates */
3343 sort(array, length, sizeof(pid_t), cmppid, NULL);
3344 if (type == CGROUP_FILE_PROCS)
3345 length = pidlist_uniq(&array, length);
3346 l = cgroup_pidlist_find(cgrp, type);
3347 if (!l) {
3348 pidlist_free(array);
3349 return -ENOMEM;
3351 /* store array, freeing old if necessary - lock already held */
3352 pidlist_free(l->list);
3353 l->list = array;
3354 l->length = length;
3355 l->use_count++;
3356 up_write(&l->mutex);
3357 *lp = l;
3358 return 0;
3362 * cgroupstats_build - build and fill cgroupstats
3363 * @stats: cgroupstats to fill information into
3364 * @dentry: A dentry entry belonging to the cgroup for which stats have
3365 * been requested.
3367 * Build and fill cgroupstats so that taskstats can export it to user
3368 * space.
3370 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3372 int ret = -EINVAL;
3373 struct cgroup *cgrp;
3374 struct cgroup_iter it;
3375 struct task_struct *tsk;
3378 * Validate dentry by checking the superblock operations,
3379 * and make sure it's a directory.
3381 if (dentry->d_sb->s_op != &cgroup_ops ||
3382 !S_ISDIR(dentry->d_inode->i_mode))
3383 goto err;
3385 ret = 0;
3386 cgrp = dentry->d_fsdata;
3388 cgroup_iter_start(cgrp, &it);
3389 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3390 switch (tsk->state) {
3391 case TASK_RUNNING:
3392 stats->nr_running++;
3393 break;
3394 case TASK_INTERRUPTIBLE:
3395 stats->nr_sleeping++;
3396 break;
3397 case TASK_UNINTERRUPTIBLE:
3398 stats->nr_uninterruptible++;
3399 break;
3400 case TASK_STOPPED:
3401 stats->nr_stopped++;
3402 break;
3403 default:
3404 if (delayacct_is_task_waiting_on_io(tsk))
3405 stats->nr_io_wait++;
3406 break;
3409 cgroup_iter_end(cgrp, &it);
3411 err:
3412 return ret;
3417 * seq_file methods for the tasks/procs files. The seq_file position is the
3418 * next pid to display; the seq_file iterator is a pointer to the pid
3419 * in the cgroup->l->list array.
3422 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3425 * Initially we receive a position value that corresponds to
3426 * one more than the last pid shown (or 0 on the first call or
3427 * after a seek to the start). Use a binary-search to find the
3428 * next pid to display, if any
3430 struct cgroup_pidlist *l = s->private;
3431 int index = 0, pid = *pos;
3432 int *iter;
3434 down_read(&l->mutex);
3435 if (pid) {
3436 int end = l->length;
3438 while (index < end) {
3439 int mid = (index + end) / 2;
3440 if (l->list[mid] == pid) {
3441 index = mid;
3442 break;
3443 } else if (l->list[mid] <= pid)
3444 index = mid + 1;
3445 else
3446 end = mid;
3449 /* If we're off the end of the array, we're done */
3450 if (index >= l->length)
3451 return NULL;
3452 /* Update the abstract position to be the actual pid that we found */
3453 iter = l->list + index;
3454 *pos = *iter;
3455 return iter;
3458 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3460 struct cgroup_pidlist *l = s->private;
3461 up_read(&l->mutex);
3464 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3466 struct cgroup_pidlist *l = s->private;
3467 pid_t *p = v;
3468 pid_t *end = l->list + l->length;
3470 * Advance to the next pid in the array. If this goes off the
3471 * end, we're done
3473 p++;
3474 if (p >= end) {
3475 return NULL;
3476 } else {
3477 *pos = *p;
3478 return p;
3482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3484 return seq_printf(s, "%d\n", *(int *)v);
3488 * seq_operations functions for iterating on pidlists through seq_file -
3489 * independent of whether it's tasks or procs
3491 static const struct seq_operations cgroup_pidlist_seq_operations = {
3492 .start = cgroup_pidlist_start,
3493 .stop = cgroup_pidlist_stop,
3494 .next = cgroup_pidlist_next,
3495 .show = cgroup_pidlist_show,
3498 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3501 * the case where we're the last user of this particular pidlist will
3502 * have us remove it from the cgroup's list, which entails taking the
3503 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3504 * pidlist_mutex, we have to take pidlist_mutex first.
3506 mutex_lock(&l->owner->pidlist_mutex);
3507 down_write(&l->mutex);
3508 BUG_ON(!l->use_count);
3509 if (!--l->use_count) {
3510 /* we're the last user if refcount is 0; remove and free */
3511 list_del(&l->links);
3512 mutex_unlock(&l->owner->pidlist_mutex);
3513 pidlist_free(l->list);
3514 put_pid_ns(l->key.ns);
3515 up_write(&l->mutex);
3516 kfree(l);
3517 return;
3519 mutex_unlock(&l->owner->pidlist_mutex);
3520 up_write(&l->mutex);
3523 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3525 struct cgroup_pidlist *l;
3526 if (!(file->f_mode & FMODE_READ))
3527 return 0;
3529 * the seq_file will only be initialized if the file was opened for
3530 * reading; hence we check if it's not null only in that case.
3532 l = ((struct seq_file *)file->private_data)->private;
3533 cgroup_release_pid_array(l);
3534 return seq_release(inode, file);
3537 static const struct file_operations cgroup_pidlist_operations = {
3538 .read = seq_read,
3539 .llseek = seq_lseek,
3540 .write = cgroup_file_write,
3541 .release = cgroup_pidlist_release,
3545 * The following functions handle opens on a file that displays a pidlist
3546 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3547 * in the cgroup.
3549 /* helper function for the two below it */
3550 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3552 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3553 struct cgroup_pidlist *l;
3554 int retval;
3556 /* Nothing to do for write-only files */
3557 if (!(file->f_mode & FMODE_READ))
3558 return 0;
3560 /* have the array populated */
3561 retval = pidlist_array_load(cgrp, type, &l);
3562 if (retval)
3563 return retval;
3564 /* configure file information */
3565 file->f_op = &cgroup_pidlist_operations;
3567 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3568 if (retval) {
3569 cgroup_release_pid_array(l);
3570 return retval;
3572 ((struct seq_file *)file->private_data)->private = l;
3573 return 0;
3575 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3577 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3579 static int cgroup_procs_open(struct inode *unused, struct file *file)
3581 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3584 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3585 struct cftype *cft)
3587 return notify_on_release(cgrp);
3590 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3591 struct cftype *cft,
3592 u64 val)
3594 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3595 if (val)
3596 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3597 else
3598 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3599 return 0;
3603 * Unregister event and free resources.
3605 * Gets called from workqueue.
3607 static void cgroup_event_remove(struct work_struct *work)
3609 struct cgroup_event *event = container_of(work, struct cgroup_event,
3610 remove);
3611 struct cgroup *cgrp = event->cgrp;
3613 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3615 eventfd_ctx_put(event->eventfd);
3616 kfree(event);
3617 dput(cgrp->dentry);
3621 * Gets called on POLLHUP on eventfd when user closes it.
3623 * Called with wqh->lock held and interrupts disabled.
3625 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3626 int sync, void *key)
3628 struct cgroup_event *event = container_of(wait,
3629 struct cgroup_event, wait);
3630 struct cgroup *cgrp = event->cgrp;
3631 unsigned long flags = (unsigned long)key;
3633 if (flags & POLLHUP) {
3634 __remove_wait_queue(event->wqh, &event->wait);
3635 spin_lock(&cgrp->event_list_lock);
3636 list_del(&event->list);
3637 spin_unlock(&cgrp->event_list_lock);
3639 * We are in atomic context, but cgroup_event_remove() may
3640 * sleep, so we have to call it in workqueue.
3642 schedule_work(&event->remove);
3645 return 0;
3648 static void cgroup_event_ptable_queue_proc(struct file *file,
3649 wait_queue_head_t *wqh, poll_table *pt)
3651 struct cgroup_event *event = container_of(pt,
3652 struct cgroup_event, pt);
3654 event->wqh = wqh;
3655 add_wait_queue(wqh, &event->wait);
3659 * Parse input and register new cgroup event handler.
3661 * Input must be in format '<event_fd> <control_fd> <args>'.
3662 * Interpretation of args is defined by control file implementation.
3664 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3665 const char *buffer)
3667 struct cgroup_event *event = NULL;
3668 unsigned int efd, cfd;
3669 struct file *efile = NULL;
3670 struct file *cfile = NULL;
3671 char *endp;
3672 int ret;
3674 efd = simple_strtoul(buffer, &endp, 10);
3675 if (*endp != ' ')
3676 return -EINVAL;
3677 buffer = endp + 1;
3679 cfd = simple_strtoul(buffer, &endp, 10);
3680 if ((*endp != ' ') && (*endp != '\0'))
3681 return -EINVAL;
3682 buffer = endp + 1;
3684 event = kzalloc(sizeof(*event), GFP_KERNEL);
3685 if (!event)
3686 return -ENOMEM;
3687 event->cgrp = cgrp;
3688 INIT_LIST_HEAD(&event->list);
3689 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3690 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3691 INIT_WORK(&event->remove, cgroup_event_remove);
3693 efile = eventfd_fget(efd);
3694 if (IS_ERR(efile)) {
3695 ret = PTR_ERR(efile);
3696 goto fail;
3699 event->eventfd = eventfd_ctx_fileget(efile);
3700 if (IS_ERR(event->eventfd)) {
3701 ret = PTR_ERR(event->eventfd);
3702 goto fail;
3705 cfile = fget(cfd);
3706 if (!cfile) {
3707 ret = -EBADF;
3708 goto fail;
3711 /* the process need read permission on control file */
3712 /* AV: shouldn't we check that it's been opened for read instead? */
3713 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3714 if (ret < 0)
3715 goto fail;
3717 event->cft = __file_cft(cfile);
3718 if (IS_ERR(event->cft)) {
3719 ret = PTR_ERR(event->cft);
3720 goto fail;
3723 if (!event->cft->register_event || !event->cft->unregister_event) {
3724 ret = -EINVAL;
3725 goto fail;
3728 ret = event->cft->register_event(cgrp, event->cft,
3729 event->eventfd, buffer);
3730 if (ret)
3731 goto fail;
3733 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3734 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3735 ret = 0;
3736 goto fail;
3740 * Events should be removed after rmdir of cgroup directory, but before
3741 * destroying subsystem state objects. Let's take reference to cgroup
3742 * directory dentry to do that.
3744 dget(cgrp->dentry);
3746 spin_lock(&cgrp->event_list_lock);
3747 list_add(&event->list, &cgrp->event_list);
3748 spin_unlock(&cgrp->event_list_lock);
3750 fput(cfile);
3751 fput(efile);
3753 return 0;
3755 fail:
3756 if (cfile)
3757 fput(cfile);
3759 if (event && event->eventfd && !IS_ERR(event->eventfd))
3760 eventfd_ctx_put(event->eventfd);
3762 if (!IS_ERR_OR_NULL(efile))
3763 fput(efile);
3765 kfree(event);
3767 return ret;
3770 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3771 struct cftype *cft)
3773 return clone_children(cgrp);
3776 static int cgroup_clone_children_write(struct cgroup *cgrp,
3777 struct cftype *cft,
3778 u64 val)
3780 if (val)
3781 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3782 else
3783 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3784 return 0;
3788 * for the common functions, 'private' gives the type of file
3790 /* for hysterical raisins, we can't put this on the older files */
3791 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3792 static struct cftype files[] = {
3794 .name = "tasks",
3795 .open = cgroup_tasks_open,
3796 .write_u64 = cgroup_tasks_write,
3797 .release = cgroup_pidlist_release,
3798 .mode = S_IRUGO | S_IWUSR,
3801 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3802 .open = cgroup_procs_open,
3803 .write_u64 = cgroup_procs_write,
3804 .release = cgroup_pidlist_release,
3805 .mode = S_IRUGO | S_IWUSR,
3808 .name = "notify_on_release",
3809 .read_u64 = cgroup_read_notify_on_release,
3810 .write_u64 = cgroup_write_notify_on_release,
3813 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3814 .write_string = cgroup_write_event_control,
3815 .mode = S_IWUGO,
3818 .name = "cgroup.clone_children",
3819 .read_u64 = cgroup_clone_children_read,
3820 .write_u64 = cgroup_clone_children_write,
3823 .name = "release_agent",
3824 .flags = CFTYPE_ONLY_ON_ROOT,
3825 .read_seq_string = cgroup_release_agent_show,
3826 .write_string = cgroup_release_agent_write,
3827 .max_write_len = PATH_MAX,
3829 { } /* terminate */
3832 static int cgroup_populate_dir(struct cgroup *cgrp)
3834 int err;
3835 struct cgroup_subsys *ss;
3837 err = cgroup_addrm_files(cgrp, NULL, files, true);
3838 if (err < 0)
3839 return err;
3841 /* process cftsets of each subsystem */
3842 for_each_subsys(cgrp->root, ss) {
3843 struct cftype_set *set;
3845 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3846 return err;
3848 list_for_each_entry(set, &ss->cftsets, node)
3849 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3852 /* This cgroup is ready now */
3853 for_each_subsys(cgrp->root, ss) {
3854 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3856 * Update id->css pointer and make this css visible from
3857 * CSS ID functions. This pointer will be dereferened
3858 * from RCU-read-side without locks.
3860 if (css->id)
3861 rcu_assign_pointer(css->id->css, css);
3864 return 0;
3867 static void css_dput_fn(struct work_struct *work)
3869 struct cgroup_subsys_state *css =
3870 container_of(work, struct cgroup_subsys_state, dput_work);
3872 dput(css->cgroup->dentry);
3875 static void init_cgroup_css(struct cgroup_subsys_state *css,
3876 struct cgroup_subsys *ss,
3877 struct cgroup *cgrp)
3879 css->cgroup = cgrp;
3880 atomic_set(&css->refcnt, 1);
3881 css->flags = 0;
3882 css->id = NULL;
3883 if (cgrp == dummytop)
3884 set_bit(CSS_ROOT, &css->flags);
3885 BUG_ON(cgrp->subsys[ss->subsys_id]);
3886 cgrp->subsys[ss->subsys_id] = css;
3889 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
3890 * which is put on the last css_put(). dput() requires process
3891 * context, which css_put() may be called without. @css->dput_work
3892 * will be used to invoke dput() asynchronously from css_put().
3894 INIT_WORK(&css->dput_work, css_dput_fn);
3895 if (ss->__DEPRECATED_clear_css_refs)
3896 set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3899 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3901 /* We need to take each hierarchy_mutex in a consistent order */
3902 int i;
3905 * No worry about a race with rebind_subsystems that might mess up the
3906 * locking order, since both parties are under cgroup_mutex.
3908 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3909 struct cgroup_subsys *ss = subsys[i];
3910 if (ss == NULL)
3911 continue;
3912 if (ss->root == root)
3913 mutex_lock(&ss->hierarchy_mutex);
3917 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3919 int i;
3921 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3922 struct cgroup_subsys *ss = subsys[i];
3923 if (ss == NULL)
3924 continue;
3925 if (ss->root == root)
3926 mutex_unlock(&ss->hierarchy_mutex);
3931 * cgroup_create - create a cgroup
3932 * @parent: cgroup that will be parent of the new cgroup
3933 * @dentry: dentry of the new cgroup
3934 * @mode: mode to set on new inode
3936 * Must be called with the mutex on the parent inode held
3938 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3939 umode_t mode)
3941 struct cgroup *cgrp;
3942 struct cgroupfs_root *root = parent->root;
3943 int err = 0;
3944 struct cgroup_subsys *ss;
3945 struct super_block *sb = root->sb;
3947 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3948 if (!cgrp)
3949 return -ENOMEM;
3951 /* Grab a reference on the superblock so the hierarchy doesn't
3952 * get deleted on unmount if there are child cgroups. This
3953 * can be done outside cgroup_mutex, since the sb can't
3954 * disappear while someone has an open control file on the
3955 * fs */
3956 atomic_inc(&sb->s_active);
3958 mutex_lock(&cgroup_mutex);
3960 init_cgroup_housekeeping(cgrp);
3962 cgrp->parent = parent;
3963 cgrp->root = parent->root;
3964 cgrp->top_cgroup = parent->top_cgroup;
3966 if (notify_on_release(parent))
3967 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3969 if (clone_children(parent))
3970 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3972 for_each_subsys(root, ss) {
3973 struct cgroup_subsys_state *css = ss->create(cgrp);
3975 if (IS_ERR(css)) {
3976 err = PTR_ERR(css);
3977 goto err_destroy;
3979 init_cgroup_css(css, ss, cgrp);
3980 if (ss->use_id) {
3981 err = alloc_css_id(ss, parent, cgrp);
3982 if (err)
3983 goto err_destroy;
3985 /* At error, ->destroy() callback has to free assigned ID. */
3986 if (clone_children(parent) && ss->post_clone)
3987 ss->post_clone(cgrp);
3990 cgroup_lock_hierarchy(root);
3991 list_add(&cgrp->sibling, &cgrp->parent->children);
3992 cgroup_unlock_hierarchy(root);
3993 root->number_of_cgroups++;
3995 err = cgroup_create_dir(cgrp, dentry, mode);
3996 if (err < 0)
3997 goto err_remove;
3999 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
4000 for_each_subsys(root, ss)
4001 if (!ss->__DEPRECATED_clear_css_refs)
4002 dget(dentry);
4004 /* The cgroup directory was pre-locked for us */
4005 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4007 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4009 err = cgroup_populate_dir(cgrp);
4010 /* If err < 0, we have a half-filled directory - oh well ;) */
4012 mutex_unlock(&cgroup_mutex);
4013 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4015 return 0;
4017 err_remove:
4019 cgroup_lock_hierarchy(root);
4020 list_del(&cgrp->sibling);
4021 cgroup_unlock_hierarchy(root);
4022 root->number_of_cgroups--;
4024 err_destroy:
4026 for_each_subsys(root, ss) {
4027 if (cgrp->subsys[ss->subsys_id])
4028 ss->destroy(cgrp);
4031 mutex_unlock(&cgroup_mutex);
4033 /* Release the reference count that we took on the superblock */
4034 deactivate_super(sb);
4036 kfree(cgrp);
4037 return err;
4040 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4042 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4044 /* the vfs holds inode->i_mutex already */
4045 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4049 * Check the reference count on each subsystem. Since we already
4050 * established that there are no tasks in the cgroup, if the css refcount
4051 * is also 1, then there should be no outstanding references, so the
4052 * subsystem is safe to destroy. We scan across all subsystems rather than
4053 * using the per-hierarchy linked list of mounted subsystems since we can
4054 * be called via check_for_release() with no synchronization other than
4055 * RCU, and the subsystem linked list isn't RCU-safe.
4057 static int cgroup_has_css_refs(struct cgroup *cgrp)
4059 int i;
4062 * We won't need to lock the subsys array, because the subsystems
4063 * we're concerned about aren't going anywhere since our cgroup root
4064 * has a reference on them.
4066 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4067 struct cgroup_subsys *ss = subsys[i];
4068 struct cgroup_subsys_state *css;
4070 /* Skip subsystems not present or not in this hierarchy */
4071 if (ss == NULL || ss->root != cgrp->root)
4072 continue;
4074 css = cgrp->subsys[ss->subsys_id];
4076 * When called from check_for_release() it's possible
4077 * that by this point the cgroup has been removed
4078 * and the css deleted. But a false-positive doesn't
4079 * matter, since it can only happen if the cgroup
4080 * has been deleted and hence no longer needs the
4081 * release agent to be called anyway.
4083 if (css && css_refcnt(css) > 1)
4084 return 1;
4086 return 0;
4090 * Atomically mark all (or else none) of the cgroup's CSS objects as
4091 * CSS_REMOVED. Return true on success, or false if the cgroup has
4092 * busy subsystems. Call with cgroup_mutex held
4094 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4095 * not, cgroup removal behaves differently.
4097 * If clear is set, css refcnt for the subsystem should be zero before
4098 * cgroup removal can be committed. This is implemented by
4099 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4100 * called multiple times until all css refcnts reach zero and is allowed to
4101 * veto removal on any invocation. This behavior is deprecated and will be
4102 * removed as soon as the existing user (memcg) is updated.
4104 * If clear is not set, each css holds an extra reference to the cgroup's
4105 * dentry and cgroup removal proceeds regardless of css refs.
4106 * ->pre_destroy() will be called at least once and is not allowed to fail.
4107 * On the last put of each css, whenever that may be, the extra dentry ref
4108 * is put so that dentry destruction happens only after all css's are
4109 * released.
4111 static int cgroup_clear_css_refs(struct cgroup *cgrp)
4113 struct cgroup_subsys *ss;
4114 unsigned long flags;
4115 bool failed = false;
4117 local_irq_save(flags);
4120 * Block new css_tryget() by deactivating refcnt. If all refcnts
4121 * for subsystems w/ clear_css_refs set were 1 at the moment of
4122 * deactivation, we succeeded.
4124 for_each_subsys(cgrp->root, ss) {
4125 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4127 WARN_ON(atomic_read(&css->refcnt) < 0);
4128 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4130 if (ss->__DEPRECATED_clear_css_refs)
4131 failed |= css_refcnt(css) != 1;
4135 * If succeeded, set REMOVED and put all the base refs; otherwise,
4136 * restore refcnts to positive values. Either way, all in-progress
4137 * css_tryget() will be released.
4139 for_each_subsys(cgrp->root, ss) {
4140 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4142 if (!failed) {
4143 set_bit(CSS_REMOVED, &css->flags);
4144 css_put(css);
4145 } else {
4146 atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
4150 local_irq_restore(flags);
4151 return !failed;
4154 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4156 struct cgroup *cgrp = dentry->d_fsdata;
4157 struct dentry *d;
4158 struct cgroup *parent;
4159 DEFINE_WAIT(wait);
4160 struct cgroup_event *event, *tmp;
4161 int ret;
4163 /* the vfs holds both inode->i_mutex already */
4164 again:
4165 mutex_lock(&cgroup_mutex);
4166 if (atomic_read(&cgrp->count) != 0) {
4167 mutex_unlock(&cgroup_mutex);
4168 return -EBUSY;
4170 if (!list_empty(&cgrp->children)) {
4171 mutex_unlock(&cgroup_mutex);
4172 return -EBUSY;
4174 mutex_unlock(&cgroup_mutex);
4177 * In general, subsystem has no css->refcnt after pre_destroy(). But
4178 * in racy cases, subsystem may have to get css->refcnt after
4179 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4180 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4181 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4182 * and subsystem's reference count handling. Please see css_get/put
4183 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4185 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4188 * Call pre_destroy handlers of subsys. Notify subsystems
4189 * that rmdir() request comes.
4191 ret = cgroup_call_pre_destroy(cgrp);
4192 if (ret) {
4193 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4194 return ret;
4197 mutex_lock(&cgroup_mutex);
4198 parent = cgrp->parent;
4199 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4200 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4201 mutex_unlock(&cgroup_mutex);
4202 return -EBUSY;
4204 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4205 if (!cgroup_clear_css_refs(cgrp)) {
4206 mutex_unlock(&cgroup_mutex);
4208 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4209 * prepare_to_wait(), we need to check this flag.
4211 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4212 schedule();
4213 finish_wait(&cgroup_rmdir_waitq, &wait);
4214 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4215 if (signal_pending(current))
4216 return -EINTR;
4217 goto again;
4219 /* NO css_tryget() can success after here. */
4220 finish_wait(&cgroup_rmdir_waitq, &wait);
4221 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4223 raw_spin_lock(&release_list_lock);
4224 set_bit(CGRP_REMOVED, &cgrp->flags);
4225 if (!list_empty(&cgrp->release_list))
4226 list_del_init(&cgrp->release_list);
4227 raw_spin_unlock(&release_list_lock);
4229 cgroup_lock_hierarchy(cgrp->root);
4230 /* delete this cgroup from parent->children */
4231 list_del_init(&cgrp->sibling);
4232 cgroup_unlock_hierarchy(cgrp->root);
4234 list_del_init(&cgrp->allcg_node);
4236 d = dget(cgrp->dentry);
4238 cgroup_d_remove_dir(d);
4239 dput(d);
4241 set_bit(CGRP_RELEASABLE, &parent->flags);
4242 check_for_release(parent);
4245 * Unregister events and notify userspace.
4246 * Notify userspace about cgroup removing only after rmdir of cgroup
4247 * directory to avoid race between userspace and kernelspace
4249 spin_lock(&cgrp->event_list_lock);
4250 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4251 list_del(&event->list);
4252 remove_wait_queue(event->wqh, &event->wait);
4253 eventfd_signal(event->eventfd, 1);
4254 schedule_work(&event->remove);
4256 spin_unlock(&cgrp->event_list_lock);
4258 mutex_unlock(&cgroup_mutex);
4259 return 0;
4262 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4264 INIT_LIST_HEAD(&ss->cftsets);
4267 * base_cftset is embedded in subsys itself, no need to worry about
4268 * deregistration.
4270 if (ss->base_cftypes) {
4271 ss->base_cftset.cfts = ss->base_cftypes;
4272 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4276 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4278 struct cgroup_subsys_state *css;
4280 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4282 /* init base cftset */
4283 cgroup_init_cftsets(ss);
4285 /* Create the top cgroup state for this subsystem */
4286 list_add(&ss->sibling, &rootnode.subsys_list);
4287 ss->root = &rootnode;
4288 css = ss->create(dummytop);
4289 /* We don't handle early failures gracefully */
4290 BUG_ON(IS_ERR(css));
4291 init_cgroup_css(css, ss, dummytop);
4293 /* Update the init_css_set to contain a subsys
4294 * pointer to this state - since the subsystem is
4295 * newly registered, all tasks and hence the
4296 * init_css_set is in the subsystem's top cgroup. */
4297 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4299 need_forkexit_callback |= ss->fork || ss->exit;
4301 /* At system boot, before all subsystems have been
4302 * registered, no tasks have been forked, so we don't
4303 * need to invoke fork callbacks here. */
4304 BUG_ON(!list_empty(&init_task.tasks));
4306 mutex_init(&ss->hierarchy_mutex);
4307 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4308 ss->active = 1;
4310 /* this function shouldn't be used with modular subsystems, since they
4311 * need to register a subsys_id, among other things */
4312 BUG_ON(ss->module);
4316 * cgroup_load_subsys: load and register a modular subsystem at runtime
4317 * @ss: the subsystem to load
4319 * This function should be called in a modular subsystem's initcall. If the
4320 * subsystem is built as a module, it will be assigned a new subsys_id and set
4321 * up for use. If the subsystem is built-in anyway, work is delegated to the
4322 * simpler cgroup_init_subsys.
4324 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4326 int i;
4327 struct cgroup_subsys_state *css;
4329 /* check name and function validity */
4330 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4331 ss->create == NULL || ss->destroy == NULL)
4332 return -EINVAL;
4335 * we don't support callbacks in modular subsystems. this check is
4336 * before the ss->module check for consistency; a subsystem that could
4337 * be a module should still have no callbacks even if the user isn't
4338 * compiling it as one.
4340 if (ss->fork || ss->exit)
4341 return -EINVAL;
4344 * an optionally modular subsystem is built-in: we want to do nothing,
4345 * since cgroup_init_subsys will have already taken care of it.
4347 if (ss->module == NULL) {
4348 /* a few sanity checks */
4349 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4350 BUG_ON(subsys[ss->subsys_id] != ss);
4351 return 0;
4354 /* init base cftset */
4355 cgroup_init_cftsets(ss);
4358 * need to register a subsys id before anything else - for example,
4359 * init_cgroup_css needs it.
4361 mutex_lock(&cgroup_mutex);
4362 /* find the first empty slot in the array */
4363 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4364 if (subsys[i] == NULL)
4365 break;
4367 if (i == CGROUP_SUBSYS_COUNT) {
4368 /* maximum number of subsystems already registered! */
4369 mutex_unlock(&cgroup_mutex);
4370 return -EBUSY;
4372 /* assign ourselves the subsys_id */
4373 ss->subsys_id = i;
4374 subsys[i] = ss;
4377 * no ss->create seems to need anything important in the ss struct, so
4378 * this can happen first (i.e. before the rootnode attachment).
4380 css = ss->create(dummytop);
4381 if (IS_ERR(css)) {
4382 /* failure case - need to deassign the subsys[] slot. */
4383 subsys[i] = NULL;
4384 mutex_unlock(&cgroup_mutex);
4385 return PTR_ERR(css);
4388 list_add(&ss->sibling, &rootnode.subsys_list);
4389 ss->root = &rootnode;
4391 /* our new subsystem will be attached to the dummy hierarchy. */
4392 init_cgroup_css(css, ss, dummytop);
4393 /* init_idr must be after init_cgroup_css because it sets css->id. */
4394 if (ss->use_id) {
4395 int ret = cgroup_init_idr(ss, css);
4396 if (ret) {
4397 dummytop->subsys[ss->subsys_id] = NULL;
4398 ss->destroy(dummytop);
4399 subsys[i] = NULL;
4400 mutex_unlock(&cgroup_mutex);
4401 return ret;
4406 * Now we need to entangle the css into the existing css_sets. unlike
4407 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4408 * will need a new pointer to it; done by iterating the css_set_table.
4409 * furthermore, modifying the existing css_sets will corrupt the hash
4410 * table state, so each changed css_set will need its hash recomputed.
4411 * this is all done under the css_set_lock.
4413 write_lock(&css_set_lock);
4414 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4415 struct css_set *cg;
4416 struct hlist_node *node, *tmp;
4417 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4419 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4420 /* skip entries that we already rehashed */
4421 if (cg->subsys[ss->subsys_id])
4422 continue;
4423 /* remove existing entry */
4424 hlist_del(&cg->hlist);
4425 /* set new value */
4426 cg->subsys[ss->subsys_id] = css;
4427 /* recompute hash and restore entry */
4428 new_bucket = css_set_hash(cg->subsys);
4429 hlist_add_head(&cg->hlist, new_bucket);
4432 write_unlock(&css_set_lock);
4434 mutex_init(&ss->hierarchy_mutex);
4435 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4436 ss->active = 1;
4438 /* success! */
4439 mutex_unlock(&cgroup_mutex);
4440 return 0;
4442 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4445 * cgroup_unload_subsys: unload a modular subsystem
4446 * @ss: the subsystem to unload
4448 * This function should be called in a modular subsystem's exitcall. When this
4449 * function is invoked, the refcount on the subsystem's module will be 0, so
4450 * the subsystem will not be attached to any hierarchy.
4452 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4454 struct cg_cgroup_link *link;
4455 struct hlist_head *hhead;
4457 BUG_ON(ss->module == NULL);
4460 * we shouldn't be called if the subsystem is in use, and the use of
4461 * try_module_get in parse_cgroupfs_options should ensure that it
4462 * doesn't start being used while we're killing it off.
4464 BUG_ON(ss->root != &rootnode);
4466 mutex_lock(&cgroup_mutex);
4467 /* deassign the subsys_id */
4468 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4469 subsys[ss->subsys_id] = NULL;
4471 /* remove subsystem from rootnode's list of subsystems */
4472 list_del_init(&ss->sibling);
4475 * disentangle the css from all css_sets attached to the dummytop. as
4476 * in loading, we need to pay our respects to the hashtable gods.
4478 write_lock(&css_set_lock);
4479 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4480 struct css_set *cg = link->cg;
4482 hlist_del(&cg->hlist);
4483 BUG_ON(!cg->subsys[ss->subsys_id]);
4484 cg->subsys[ss->subsys_id] = NULL;
4485 hhead = css_set_hash(cg->subsys);
4486 hlist_add_head(&cg->hlist, hhead);
4488 write_unlock(&css_set_lock);
4491 * remove subsystem's css from the dummytop and free it - need to free
4492 * before marking as null because ss->destroy needs the cgrp->subsys
4493 * pointer to find their state. note that this also takes care of
4494 * freeing the css_id.
4496 ss->destroy(dummytop);
4497 dummytop->subsys[ss->subsys_id] = NULL;
4499 mutex_unlock(&cgroup_mutex);
4501 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4504 * cgroup_init_early - cgroup initialization at system boot
4506 * Initialize cgroups at system boot, and initialize any
4507 * subsystems that request early init.
4509 int __init cgroup_init_early(void)
4511 int i;
4512 atomic_set(&init_css_set.refcount, 1);
4513 INIT_LIST_HEAD(&init_css_set.cg_links);
4514 INIT_LIST_HEAD(&init_css_set.tasks);
4515 INIT_HLIST_NODE(&init_css_set.hlist);
4516 css_set_count = 1;
4517 init_cgroup_root(&rootnode);
4518 root_count = 1;
4519 init_task.cgroups = &init_css_set;
4521 init_css_set_link.cg = &init_css_set;
4522 init_css_set_link.cgrp = dummytop;
4523 list_add(&init_css_set_link.cgrp_link_list,
4524 &rootnode.top_cgroup.css_sets);
4525 list_add(&init_css_set_link.cg_link_list,
4526 &init_css_set.cg_links);
4528 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4529 INIT_HLIST_HEAD(&css_set_table[i]);
4531 /* at bootup time, we don't worry about modular subsystems */
4532 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4533 struct cgroup_subsys *ss = subsys[i];
4535 BUG_ON(!ss->name);
4536 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4537 BUG_ON(!ss->create);
4538 BUG_ON(!ss->destroy);
4539 if (ss->subsys_id != i) {
4540 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4541 ss->name, ss->subsys_id);
4542 BUG();
4545 if (ss->early_init)
4546 cgroup_init_subsys(ss);
4548 return 0;
4552 * cgroup_init - cgroup initialization
4554 * Register cgroup filesystem and /proc file, and initialize
4555 * any subsystems that didn't request early init.
4557 int __init cgroup_init(void)
4559 int err;
4560 int i;
4561 struct hlist_head *hhead;
4563 err = bdi_init(&cgroup_backing_dev_info);
4564 if (err)
4565 return err;
4567 /* at bootup time, we don't worry about modular subsystems */
4568 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4569 struct cgroup_subsys *ss = subsys[i];
4570 if (!ss->early_init)
4571 cgroup_init_subsys(ss);
4572 if (ss->use_id)
4573 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4576 /* Add init_css_set to the hash table */
4577 hhead = css_set_hash(init_css_set.subsys);
4578 hlist_add_head(&init_css_set.hlist, hhead);
4579 BUG_ON(!init_root_id(&rootnode));
4581 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4582 if (!cgroup_kobj) {
4583 err = -ENOMEM;
4584 goto out;
4587 err = register_filesystem(&cgroup_fs_type);
4588 if (err < 0) {
4589 kobject_put(cgroup_kobj);
4590 goto out;
4593 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4595 out:
4596 if (err)
4597 bdi_destroy(&cgroup_backing_dev_info);
4599 return err;
4603 * proc_cgroup_show()
4604 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4605 * - Used for /proc/<pid>/cgroup.
4606 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4607 * doesn't really matter if tsk->cgroup changes after we read it,
4608 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4609 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4610 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4611 * cgroup to top_cgroup.
4614 /* TODO: Use a proper seq_file iterator */
4615 static int proc_cgroup_show(struct seq_file *m, void *v)
4617 struct pid *pid;
4618 struct task_struct *tsk;
4619 char *buf;
4620 int retval;
4621 struct cgroupfs_root *root;
4623 retval = -ENOMEM;
4624 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4625 if (!buf)
4626 goto out;
4628 retval = -ESRCH;
4629 pid = m->private;
4630 tsk = get_pid_task(pid, PIDTYPE_PID);
4631 if (!tsk)
4632 goto out_free;
4634 retval = 0;
4636 mutex_lock(&cgroup_mutex);
4638 for_each_active_root(root) {
4639 struct cgroup_subsys *ss;
4640 struct cgroup *cgrp;
4641 int count = 0;
4643 seq_printf(m, "%d:", root->hierarchy_id);
4644 for_each_subsys(root, ss)
4645 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4646 if (strlen(root->name))
4647 seq_printf(m, "%sname=%s", count ? "," : "",
4648 root->name);
4649 seq_putc(m, ':');
4650 cgrp = task_cgroup_from_root(tsk, root);
4651 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4652 if (retval < 0)
4653 goto out_unlock;
4654 seq_puts(m, buf);
4655 seq_putc(m, '\n');
4658 out_unlock:
4659 mutex_unlock(&cgroup_mutex);
4660 put_task_struct(tsk);
4661 out_free:
4662 kfree(buf);
4663 out:
4664 return retval;
4667 static int cgroup_open(struct inode *inode, struct file *file)
4669 struct pid *pid = PROC_I(inode)->pid;
4670 return single_open(file, proc_cgroup_show, pid);
4673 const struct file_operations proc_cgroup_operations = {
4674 .open = cgroup_open,
4675 .read = seq_read,
4676 .llseek = seq_lseek,
4677 .release = single_release,
4680 /* Display information about each subsystem and each hierarchy */
4681 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4683 int i;
4685 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4687 * ideally we don't want subsystems moving around while we do this.
4688 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4689 * subsys/hierarchy state.
4691 mutex_lock(&cgroup_mutex);
4692 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4693 struct cgroup_subsys *ss = subsys[i];
4694 if (ss == NULL)
4695 continue;
4696 seq_printf(m, "%s\t%d\t%d\t%d\n",
4697 ss->name, ss->root->hierarchy_id,
4698 ss->root->number_of_cgroups, !ss->disabled);
4700 mutex_unlock(&cgroup_mutex);
4701 return 0;
4704 static int cgroupstats_open(struct inode *inode, struct file *file)
4706 return single_open(file, proc_cgroupstats_show, NULL);
4709 static const struct file_operations proc_cgroupstats_operations = {
4710 .open = cgroupstats_open,
4711 .read = seq_read,
4712 .llseek = seq_lseek,
4713 .release = single_release,
4717 * cgroup_fork - attach newly forked task to its parents cgroup.
4718 * @child: pointer to task_struct of forking parent process.
4720 * Description: A task inherits its parent's cgroup at fork().
4722 * A pointer to the shared css_set was automatically copied in
4723 * fork.c by dup_task_struct(). However, we ignore that copy, since
4724 * it was not made under the protection of RCU, cgroup_mutex or
4725 * threadgroup_change_begin(), so it might no longer be a valid
4726 * cgroup pointer. cgroup_attach_task() might have already changed
4727 * current->cgroups, allowing the previously referenced cgroup
4728 * group to be removed and freed.
4730 * Outside the pointer validity we also need to process the css_set
4731 * inheritance between threadgoup_change_begin() and
4732 * threadgoup_change_end(), this way there is no leak in any process
4733 * wide migration performed by cgroup_attach_proc() that could otherwise
4734 * miss a thread because it is too early or too late in the fork stage.
4736 * At the point that cgroup_fork() is called, 'current' is the parent
4737 * task, and the passed argument 'child' points to the child task.
4739 void cgroup_fork(struct task_struct *child)
4742 * We don't need to task_lock() current because current->cgroups
4743 * can't be changed concurrently here. The parent obviously hasn't
4744 * exited and called cgroup_exit(), and we are synchronized against
4745 * cgroup migration through threadgroup_change_begin().
4747 child->cgroups = current->cgroups;
4748 get_css_set(child->cgroups);
4749 INIT_LIST_HEAD(&child->cg_list);
4753 * cgroup_fork_callbacks - run fork callbacks
4754 * @child: the new task
4756 * Called on a new task very soon before adding it to the
4757 * tasklist. No need to take any locks since no-one can
4758 * be operating on this task.
4760 void cgroup_fork_callbacks(struct task_struct *child)
4762 if (need_forkexit_callback) {
4763 int i;
4765 * forkexit callbacks are only supported for builtin
4766 * subsystems, and the builtin section of the subsys array is
4767 * immutable, so we don't need to lock the subsys array here.
4769 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4770 struct cgroup_subsys *ss = subsys[i];
4771 if (ss->fork)
4772 ss->fork(child);
4778 * cgroup_post_fork - called on a new task after adding it to the task list
4779 * @child: the task in question
4781 * Adds the task to the list running through its css_set if necessary.
4782 * Has to be after the task is visible on the task list in case we race
4783 * with the first call to cgroup_iter_start() - to guarantee that the
4784 * new task ends up on its list.
4786 void cgroup_post_fork(struct task_struct *child)
4789 * use_task_css_set_links is set to 1 before we walk the tasklist
4790 * under the tasklist_lock and we read it here after we added the child
4791 * to the tasklist under the tasklist_lock as well. If the child wasn't
4792 * yet in the tasklist when we walked through it from
4793 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4794 * should be visible now due to the paired locking and barriers implied
4795 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4796 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4797 * lock on fork.
4799 if (use_task_css_set_links) {
4800 write_lock(&css_set_lock);
4801 if (list_empty(&child->cg_list)) {
4803 * It's safe to use child->cgroups without task_lock()
4804 * here because we are protected through
4805 * threadgroup_change_begin() against concurrent
4806 * css_set change in cgroup_task_migrate(). Also
4807 * the task can't exit at that point until
4808 * wake_up_new_task() is called, so we are protected
4809 * against cgroup_exit() setting child->cgroup to
4810 * init_css_set.
4812 list_add(&child->cg_list, &child->cgroups->tasks);
4814 write_unlock(&css_set_lock);
4818 * cgroup_exit - detach cgroup from exiting task
4819 * @tsk: pointer to task_struct of exiting process
4820 * @run_callback: run exit callbacks?
4822 * Description: Detach cgroup from @tsk and release it.
4824 * Note that cgroups marked notify_on_release force every task in
4825 * them to take the global cgroup_mutex mutex when exiting.
4826 * This could impact scaling on very large systems. Be reluctant to
4827 * use notify_on_release cgroups where very high task exit scaling
4828 * is required on large systems.
4830 * the_top_cgroup_hack:
4832 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4834 * We call cgroup_exit() while the task is still competent to
4835 * handle notify_on_release(), then leave the task attached to the
4836 * root cgroup in each hierarchy for the remainder of its exit.
4838 * To do this properly, we would increment the reference count on
4839 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4840 * code we would add a second cgroup function call, to drop that
4841 * reference. This would just create an unnecessary hot spot on
4842 * the top_cgroup reference count, to no avail.
4844 * Normally, holding a reference to a cgroup without bumping its
4845 * count is unsafe. The cgroup could go away, or someone could
4846 * attach us to a different cgroup, decrementing the count on
4847 * the first cgroup that we never incremented. But in this case,
4848 * top_cgroup isn't going away, and either task has PF_EXITING set,
4849 * which wards off any cgroup_attach_task() attempts, or task is a failed
4850 * fork, never visible to cgroup_attach_task.
4852 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4854 struct css_set *cg;
4855 int i;
4858 * Unlink from the css_set task list if necessary.
4859 * Optimistically check cg_list before taking
4860 * css_set_lock
4862 if (!list_empty(&tsk->cg_list)) {
4863 write_lock(&css_set_lock);
4864 if (!list_empty(&tsk->cg_list))
4865 list_del_init(&tsk->cg_list);
4866 write_unlock(&css_set_lock);
4869 /* Reassign the task to the init_css_set. */
4870 task_lock(tsk);
4871 cg = tsk->cgroups;
4872 tsk->cgroups = &init_css_set;
4874 if (run_callbacks && need_forkexit_callback) {
4876 * modular subsystems can't use callbacks, so no need to lock
4877 * the subsys array
4879 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4880 struct cgroup_subsys *ss = subsys[i];
4881 if (ss->exit) {
4882 struct cgroup *old_cgrp =
4883 rcu_dereference_raw(cg->subsys[i])->cgroup;
4884 struct cgroup *cgrp = task_cgroup(tsk, i);
4885 ss->exit(cgrp, old_cgrp, tsk);
4889 task_unlock(tsk);
4891 if (cg)
4892 put_css_set_taskexit(cg);
4896 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4897 * @cgrp: the cgroup in question
4898 * @task: the task in question
4900 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4901 * hierarchy.
4903 * If we are sending in dummytop, then presumably we are creating
4904 * the top cgroup in the subsystem.
4906 * Called only by the ns (nsproxy) cgroup.
4908 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4910 int ret;
4911 struct cgroup *target;
4913 if (cgrp == dummytop)
4914 return 1;
4916 target = task_cgroup_from_root(task, cgrp->root);
4917 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4918 cgrp = cgrp->parent;
4919 ret = (cgrp == target);
4920 return ret;
4923 static void check_for_release(struct cgroup *cgrp)
4925 /* All of these checks rely on RCU to keep the cgroup
4926 * structure alive */
4927 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4928 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4929 /* Control Group is currently removeable. If it's not
4930 * already queued for a userspace notification, queue
4931 * it now */
4932 int need_schedule_work = 0;
4933 raw_spin_lock(&release_list_lock);
4934 if (!cgroup_is_removed(cgrp) &&
4935 list_empty(&cgrp->release_list)) {
4936 list_add(&cgrp->release_list, &release_list);
4937 need_schedule_work = 1;
4939 raw_spin_unlock(&release_list_lock);
4940 if (need_schedule_work)
4941 schedule_work(&release_agent_work);
4945 /* Caller must verify that the css is not for root cgroup */
4946 bool __css_tryget(struct cgroup_subsys_state *css)
4948 do {
4949 int v = css_refcnt(css);
4951 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4952 return true;
4953 cpu_relax();
4954 } while (!test_bit(CSS_REMOVED, &css->flags));
4956 return false;
4958 EXPORT_SYMBOL_GPL(__css_tryget);
4960 /* Caller must verify that the css is not for root cgroup */
4961 void __css_put(struct cgroup_subsys_state *css)
4963 struct cgroup *cgrp = css->cgroup;
4965 rcu_read_lock();
4966 atomic_dec(&css->refcnt);
4967 switch (css_refcnt(css)) {
4968 case 1:
4969 if (notify_on_release(cgrp)) {
4970 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4971 check_for_release(cgrp);
4973 cgroup_wakeup_rmdir_waiter(cgrp);
4974 break;
4975 case 0:
4976 if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
4977 schedule_work(&css->dput_work);
4978 break;
4980 rcu_read_unlock();
4982 EXPORT_SYMBOL_GPL(__css_put);
4985 * Notify userspace when a cgroup is released, by running the
4986 * configured release agent with the name of the cgroup (path
4987 * relative to the root of cgroup file system) as the argument.
4989 * Most likely, this user command will try to rmdir this cgroup.
4991 * This races with the possibility that some other task will be
4992 * attached to this cgroup before it is removed, or that some other
4993 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4994 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4995 * unused, and this cgroup will be reprieved from its death sentence,
4996 * to continue to serve a useful existence. Next time it's released,
4997 * we will get notified again, if it still has 'notify_on_release' set.
4999 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5000 * means only wait until the task is successfully execve()'d. The
5001 * separate release agent task is forked by call_usermodehelper(),
5002 * then control in this thread returns here, without waiting for the
5003 * release agent task. We don't bother to wait because the caller of
5004 * this routine has no use for the exit status of the release agent
5005 * task, so no sense holding our caller up for that.
5007 static void cgroup_release_agent(struct work_struct *work)
5009 BUG_ON(work != &release_agent_work);
5010 mutex_lock(&cgroup_mutex);
5011 raw_spin_lock(&release_list_lock);
5012 while (!list_empty(&release_list)) {
5013 char *argv[3], *envp[3];
5014 int i;
5015 char *pathbuf = NULL, *agentbuf = NULL;
5016 struct cgroup *cgrp = list_entry(release_list.next,
5017 struct cgroup,
5018 release_list);
5019 list_del_init(&cgrp->release_list);
5020 raw_spin_unlock(&release_list_lock);
5021 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5022 if (!pathbuf)
5023 goto continue_free;
5024 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5025 goto continue_free;
5026 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5027 if (!agentbuf)
5028 goto continue_free;
5030 i = 0;
5031 argv[i++] = agentbuf;
5032 argv[i++] = pathbuf;
5033 argv[i] = NULL;
5035 i = 0;
5036 /* minimal command environment */
5037 envp[i++] = "HOME=/";
5038 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5039 envp[i] = NULL;
5041 /* Drop the lock while we invoke the usermode helper,
5042 * since the exec could involve hitting disk and hence
5043 * be a slow process */
5044 mutex_unlock(&cgroup_mutex);
5045 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5046 mutex_lock(&cgroup_mutex);
5047 continue_free:
5048 kfree(pathbuf);
5049 kfree(agentbuf);
5050 raw_spin_lock(&release_list_lock);
5052 raw_spin_unlock(&release_list_lock);
5053 mutex_unlock(&cgroup_mutex);
5056 static int __init cgroup_disable(char *str)
5058 int i;
5059 char *token;
5061 while ((token = strsep(&str, ",")) != NULL) {
5062 if (!*token)
5063 continue;
5065 * cgroup_disable, being at boot time, can't know about module
5066 * subsystems, so we don't worry about them.
5068 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5069 struct cgroup_subsys *ss = subsys[i];
5071 if (!strcmp(token, ss->name)) {
5072 ss->disabled = 1;
5073 printk(KERN_INFO "Disabling %s control group"
5074 " subsystem\n", ss->name);
5075 break;
5079 return 1;
5081 __setup("cgroup_disable=", cgroup_disable);
5084 * Functons for CSS ID.
5088 *To get ID other than 0, this should be called when !cgroup_is_removed().
5090 unsigned short css_id(struct cgroup_subsys_state *css)
5092 struct css_id *cssid;
5095 * This css_id() can return correct value when somone has refcnt
5096 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5097 * it's unchanged until freed.
5099 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5101 if (cssid)
5102 return cssid->id;
5103 return 0;
5105 EXPORT_SYMBOL_GPL(css_id);
5107 unsigned short css_depth(struct cgroup_subsys_state *css)
5109 struct css_id *cssid;
5111 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5113 if (cssid)
5114 return cssid->depth;
5115 return 0;
5117 EXPORT_SYMBOL_GPL(css_depth);
5120 * css_is_ancestor - test "root" css is an ancestor of "child"
5121 * @child: the css to be tested.
5122 * @root: the css supporsed to be an ancestor of the child.
5124 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5125 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
5126 * But, considering usual usage, the csses should be valid objects after test.
5127 * Assuming that the caller will do some action to the child if this returns
5128 * returns true, the caller must take "child";s reference count.
5129 * If "child" is valid object and this returns true, "root" is valid, too.
5132 bool css_is_ancestor(struct cgroup_subsys_state *child,
5133 const struct cgroup_subsys_state *root)
5135 struct css_id *child_id;
5136 struct css_id *root_id;
5137 bool ret = true;
5139 rcu_read_lock();
5140 child_id = rcu_dereference(child->id);
5141 root_id = rcu_dereference(root->id);
5142 if (!child_id
5143 || !root_id
5144 || (child_id->depth < root_id->depth)
5145 || (child_id->stack[root_id->depth] != root_id->id))
5146 ret = false;
5147 rcu_read_unlock();
5148 return ret;
5151 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5153 struct css_id *id = css->id;
5154 /* When this is called before css_id initialization, id can be NULL */
5155 if (!id)
5156 return;
5158 BUG_ON(!ss->use_id);
5160 rcu_assign_pointer(id->css, NULL);
5161 rcu_assign_pointer(css->id, NULL);
5162 spin_lock(&ss->id_lock);
5163 idr_remove(&ss->idr, id->id);
5164 spin_unlock(&ss->id_lock);
5165 kfree_rcu(id, rcu_head);
5167 EXPORT_SYMBOL_GPL(free_css_id);
5170 * This is called by init or create(). Then, calls to this function are
5171 * always serialized (By cgroup_mutex() at create()).
5174 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5176 struct css_id *newid;
5177 int myid, error, size;
5179 BUG_ON(!ss->use_id);
5181 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5182 newid = kzalloc(size, GFP_KERNEL);
5183 if (!newid)
5184 return ERR_PTR(-ENOMEM);
5185 /* get id */
5186 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5187 error = -ENOMEM;
5188 goto err_out;
5190 spin_lock(&ss->id_lock);
5191 /* Don't use 0. allocates an ID of 1-65535 */
5192 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5193 spin_unlock(&ss->id_lock);
5195 /* Returns error when there are no free spaces for new ID.*/
5196 if (error) {
5197 error = -ENOSPC;
5198 goto err_out;
5200 if (myid > CSS_ID_MAX)
5201 goto remove_idr;
5203 newid->id = myid;
5204 newid->depth = depth;
5205 return newid;
5206 remove_idr:
5207 error = -ENOSPC;
5208 spin_lock(&ss->id_lock);
5209 idr_remove(&ss->idr, myid);
5210 spin_unlock(&ss->id_lock);
5211 err_out:
5212 kfree(newid);
5213 return ERR_PTR(error);
5217 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5218 struct cgroup_subsys_state *rootcss)
5220 struct css_id *newid;
5222 spin_lock_init(&ss->id_lock);
5223 idr_init(&ss->idr);
5225 newid = get_new_cssid(ss, 0);
5226 if (IS_ERR(newid))
5227 return PTR_ERR(newid);
5229 newid->stack[0] = newid->id;
5230 newid->css = rootcss;
5231 rootcss->id = newid;
5232 return 0;
5235 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5236 struct cgroup *child)
5238 int subsys_id, i, depth = 0;
5239 struct cgroup_subsys_state *parent_css, *child_css;
5240 struct css_id *child_id, *parent_id;
5242 subsys_id = ss->subsys_id;
5243 parent_css = parent->subsys[subsys_id];
5244 child_css = child->subsys[subsys_id];
5245 parent_id = parent_css->id;
5246 depth = parent_id->depth + 1;
5248 child_id = get_new_cssid(ss, depth);
5249 if (IS_ERR(child_id))
5250 return PTR_ERR(child_id);
5252 for (i = 0; i < depth; i++)
5253 child_id->stack[i] = parent_id->stack[i];
5254 child_id->stack[depth] = child_id->id;
5256 * child_id->css pointer will be set after this cgroup is available
5257 * see cgroup_populate_dir()
5259 rcu_assign_pointer(child_css->id, child_id);
5261 return 0;
5265 * css_lookup - lookup css by id
5266 * @ss: cgroup subsys to be looked into.
5267 * @id: the id
5269 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5270 * NULL if not. Should be called under rcu_read_lock()
5272 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5274 struct css_id *cssid = NULL;
5276 BUG_ON(!ss->use_id);
5277 cssid = idr_find(&ss->idr, id);
5279 if (unlikely(!cssid))
5280 return NULL;
5282 return rcu_dereference(cssid->css);
5284 EXPORT_SYMBOL_GPL(css_lookup);
5287 * css_get_next - lookup next cgroup under specified hierarchy.
5288 * @ss: pointer to subsystem
5289 * @id: current position of iteration.
5290 * @root: pointer to css. search tree under this.
5291 * @foundid: position of found object.
5293 * Search next css under the specified hierarchy of rootid. Calling under
5294 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5296 struct cgroup_subsys_state *
5297 css_get_next(struct cgroup_subsys *ss, int id,
5298 struct cgroup_subsys_state *root, int *foundid)
5300 struct cgroup_subsys_state *ret = NULL;
5301 struct css_id *tmp;
5302 int tmpid;
5303 int rootid = css_id(root);
5304 int depth = css_depth(root);
5306 if (!rootid)
5307 return NULL;
5309 BUG_ON(!ss->use_id);
5310 WARN_ON_ONCE(!rcu_read_lock_held());
5312 /* fill start point for scan */
5313 tmpid = id;
5314 while (1) {
5316 * scan next entry from bitmap(tree), tmpid is updated after
5317 * idr_get_next().
5319 tmp = idr_get_next(&ss->idr, &tmpid);
5320 if (!tmp)
5321 break;
5322 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5323 ret = rcu_dereference(tmp->css);
5324 if (ret) {
5325 *foundid = tmpid;
5326 break;
5329 /* continue to scan from next id */
5330 tmpid = tmpid + 1;
5332 return ret;
5336 * get corresponding css from file open on cgroupfs directory
5338 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5340 struct cgroup *cgrp;
5341 struct inode *inode;
5342 struct cgroup_subsys_state *css;
5344 inode = f->f_dentry->d_inode;
5345 /* check in cgroup filesystem dir */
5346 if (inode->i_op != &cgroup_dir_inode_operations)
5347 return ERR_PTR(-EBADF);
5349 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5350 return ERR_PTR(-EINVAL);
5352 /* get cgroup */
5353 cgrp = __d_cgrp(f->f_dentry);
5354 css = cgrp->subsys[id];
5355 return css ? css : ERR_PTR(-ENOENT);
5358 #ifdef CONFIG_CGROUP_DEBUG
5359 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5361 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5363 if (!css)
5364 return ERR_PTR(-ENOMEM);
5366 return css;
5369 static void debug_destroy(struct cgroup *cont)
5371 kfree(cont->subsys[debug_subsys_id]);
5374 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5376 return atomic_read(&cont->count);
5379 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5381 return cgroup_task_count(cont);
5384 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5386 return (u64)(unsigned long)current->cgroups;
5389 static u64 current_css_set_refcount_read(struct cgroup *cont,
5390 struct cftype *cft)
5392 u64 count;
5394 rcu_read_lock();
5395 count = atomic_read(&current->cgroups->refcount);
5396 rcu_read_unlock();
5397 return count;
5400 static int current_css_set_cg_links_read(struct cgroup *cont,
5401 struct cftype *cft,
5402 struct seq_file *seq)
5404 struct cg_cgroup_link *link;
5405 struct css_set *cg;
5407 read_lock(&css_set_lock);
5408 rcu_read_lock();
5409 cg = rcu_dereference(current->cgroups);
5410 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5411 struct cgroup *c = link->cgrp;
5412 const char *name;
5414 if (c->dentry)
5415 name = c->dentry->d_name.name;
5416 else
5417 name = "?";
5418 seq_printf(seq, "Root %d group %s\n",
5419 c->root->hierarchy_id, name);
5421 rcu_read_unlock();
5422 read_unlock(&css_set_lock);
5423 return 0;
5426 #define MAX_TASKS_SHOWN_PER_CSS 25
5427 static int cgroup_css_links_read(struct cgroup *cont,
5428 struct cftype *cft,
5429 struct seq_file *seq)
5431 struct cg_cgroup_link *link;
5433 read_lock(&css_set_lock);
5434 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5435 struct css_set *cg = link->cg;
5436 struct task_struct *task;
5437 int count = 0;
5438 seq_printf(seq, "css_set %p\n", cg);
5439 list_for_each_entry(task, &cg->tasks, cg_list) {
5440 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5441 seq_puts(seq, " ...\n");
5442 break;
5443 } else {
5444 seq_printf(seq, " task %d\n",
5445 task_pid_vnr(task));
5449 read_unlock(&css_set_lock);
5450 return 0;
5453 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5455 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5458 static struct cftype debug_files[] = {
5460 .name = "cgroup_refcount",
5461 .read_u64 = cgroup_refcount_read,
5464 .name = "taskcount",
5465 .read_u64 = debug_taskcount_read,
5469 .name = "current_css_set",
5470 .read_u64 = current_css_set_read,
5474 .name = "current_css_set_refcount",
5475 .read_u64 = current_css_set_refcount_read,
5479 .name = "current_css_set_cg_links",
5480 .read_seq_string = current_css_set_cg_links_read,
5484 .name = "cgroup_css_links",
5485 .read_seq_string = cgroup_css_links_read,
5489 .name = "releasable",
5490 .read_u64 = releasable_read,
5493 { } /* terminate */
5496 struct cgroup_subsys debug_subsys = {
5497 .name = "debug",
5498 .create = debug_create,
5499 .destroy = debug_destroy,
5500 .subsys_id = debug_subsys_id,
5501 .base_cftypes = debug_files,
5503 #endif /* CONFIG_CGROUP_DEBUG */