percpu: pcpu_embed_first_chunk() should free unused parts after all allocs are complete
[linux-2.6.git] / kernel / rcutree.c
blobd0c5baf1ab18a254753f2d3c2eb5ba2cf56202b6
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
56 #include "rcutree.h"
57 #include <trace/events/rcu.h>
59 #include "rcu.h"
61 /* Data structures. */
63 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
65 #define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
73 }, \
74 .fqs_state = RCU_GP_IDLE, \
75 .gpnum = -300, \
76 .completed = -300, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
79 .n_force_qs = 0, \
80 .n_force_qs_ngp = 0, \
81 .name = #structname, \
84 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
85 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
87 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
88 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
90 static struct rcu_state *rcu_state;
93 * The rcu_scheduler_active variable transitions from zero to one just
94 * before the first task is spawned. So when this variable is zero, RCU
95 * can assume that there is but one task, allowing RCU to (for example)
96 * optimized synchronize_sched() to a simple barrier(). When this variable
97 * is one, RCU must actually do all the hard work required to detect real
98 * grace periods. This variable is also used to suppress boot-time false
99 * positives from lockdep-RCU error checking.
101 int rcu_scheduler_active __read_mostly;
102 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
105 * The rcu_scheduler_fully_active variable transitions from zero to one
106 * during the early_initcall() processing, which is after the scheduler
107 * is capable of creating new tasks. So RCU processing (for example,
108 * creating tasks for RCU priority boosting) must be delayed until after
109 * rcu_scheduler_fully_active transitions from zero to one. We also
110 * currently delay invocation of any RCU callbacks until after this point.
112 * It might later prove better for people registering RCU callbacks during
113 * early boot to take responsibility for these callbacks, but one step at
114 * a time.
116 static int rcu_scheduler_fully_active __read_mostly;
118 #ifdef CONFIG_RCU_BOOST
121 * Control variables for per-CPU and per-rcu_node kthreads. These
122 * handle all flavors of RCU.
124 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
125 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
126 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
128 DEFINE_PER_CPU(char, rcu_cpu_has_work);
130 #endif /* #ifdef CONFIG_RCU_BOOST */
132 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
133 static void invoke_rcu_core(void);
134 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
137 * Track the rcutorture test sequence number and the update version
138 * number within a given test. The rcutorture_testseq is incremented
139 * on every rcutorture module load and unload, so has an odd value
140 * when a test is running. The rcutorture_vernum is set to zero
141 * when rcutorture starts and is incremented on each rcutorture update.
142 * These variables enable correlating rcutorture output with the
143 * RCU tracing information.
145 unsigned long rcutorture_testseq;
146 unsigned long rcutorture_vernum;
149 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
150 * permit this function to be invoked without holding the root rcu_node
151 * structure's ->lock, but of course results can be subject to change.
153 static int rcu_gp_in_progress(struct rcu_state *rsp)
155 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
159 * Note a quiescent state. Because we do not need to know
160 * how many quiescent states passed, just if there was at least
161 * one since the start of the grace period, this just sets a flag.
162 * The caller must have disabled preemption.
164 void rcu_sched_qs(int cpu)
166 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
168 rdp->passed_quiesce_gpnum = rdp->gpnum;
169 barrier();
170 if (rdp->passed_quiesce == 0)
171 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
172 rdp->passed_quiesce = 1;
175 void rcu_bh_qs(int cpu)
177 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
179 rdp->passed_quiesce_gpnum = rdp->gpnum;
180 barrier();
181 if (rdp->passed_quiesce == 0)
182 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
183 rdp->passed_quiesce = 1;
187 * Note a context switch. This is a quiescent state for RCU-sched,
188 * and requires special handling for preemptible RCU.
189 * The caller must have disabled preemption.
191 void rcu_note_context_switch(int cpu)
193 trace_rcu_utilization("Start context switch");
194 rcu_sched_qs(cpu);
195 rcu_preempt_note_context_switch(cpu);
196 trace_rcu_utilization("End context switch");
198 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
200 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
201 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
202 .dynticks = ATOMIC_INIT(1),
205 static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
206 static int qhimark = 10000; /* If this many pending, ignore blimit. */
207 static int qlowmark = 100; /* Once only this many pending, use blimit. */
209 module_param(blimit, int, 0);
210 module_param(qhimark, int, 0);
211 module_param(qlowmark, int, 0);
213 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
214 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
216 module_param(rcu_cpu_stall_suppress, int, 0644);
217 module_param(rcu_cpu_stall_timeout, int, 0644);
219 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
220 static int rcu_pending(int cpu);
223 * Return the number of RCU-sched batches processed thus far for debug & stats.
225 long rcu_batches_completed_sched(void)
227 return rcu_sched_state.completed;
229 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
232 * Return the number of RCU BH batches processed thus far for debug & stats.
234 long rcu_batches_completed_bh(void)
236 return rcu_bh_state.completed;
238 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
241 * Force a quiescent state for RCU BH.
243 void rcu_bh_force_quiescent_state(void)
245 force_quiescent_state(&rcu_bh_state, 0);
247 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
250 * Record the number of times rcutorture tests have been initiated and
251 * terminated. This information allows the debugfs tracing stats to be
252 * correlated to the rcutorture messages, even when the rcutorture module
253 * is being repeatedly loaded and unloaded. In other words, we cannot
254 * store this state in rcutorture itself.
256 void rcutorture_record_test_transition(void)
258 rcutorture_testseq++;
259 rcutorture_vernum = 0;
261 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
264 * Record the number of writer passes through the current rcutorture test.
265 * This is also used to correlate debugfs tracing stats with the rcutorture
266 * messages.
268 void rcutorture_record_progress(unsigned long vernum)
270 rcutorture_vernum++;
272 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
275 * Force a quiescent state for RCU-sched.
277 void rcu_sched_force_quiescent_state(void)
279 force_quiescent_state(&rcu_sched_state, 0);
281 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
284 * Does the CPU have callbacks ready to be invoked?
286 static int
287 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
289 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
293 * Does the current CPU require a yet-as-unscheduled grace period?
295 static int
296 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
298 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
302 * Return the root node of the specified rcu_state structure.
304 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
306 return &rsp->node[0];
310 * If the specified CPU is offline, tell the caller that it is in
311 * a quiescent state. Otherwise, whack it with a reschedule IPI.
312 * Grace periods can end up waiting on an offline CPU when that
313 * CPU is in the process of coming online -- it will be added to the
314 * rcu_node bitmasks before it actually makes it online. The same thing
315 * can happen while a CPU is in the process of coming online. Because this
316 * race is quite rare, we check for it after detecting that the grace
317 * period has been delayed rather than checking each and every CPU
318 * each and every time we start a new grace period.
320 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
323 * If the CPU is offline for more than a jiffy, it is in a quiescent
324 * state. We can trust its state not to change because interrupts
325 * are disabled. The reason for the jiffy's worth of slack is to
326 * handle CPUs initializing on the way up and finding their way
327 * to the idle loop on the way down.
329 if (cpu_is_offline(rdp->cpu) &&
330 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
332 rdp->offline_fqs++;
333 return 1;
335 return 0;
339 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
341 * If the new value of the ->dynticks_nesting counter now is zero,
342 * we really have entered idle, and must do the appropriate accounting.
343 * The caller must have disabled interrupts.
345 static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
347 trace_rcu_dyntick("Start", oldval, 0);
348 if (!is_idle_task(current)) {
349 struct task_struct *idle = idle_task(smp_processor_id());
351 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
352 ftrace_dump(DUMP_ALL);
353 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
354 current->pid, current->comm,
355 idle->pid, idle->comm); /* must be idle task! */
357 rcu_prepare_for_idle(smp_processor_id());
358 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
359 smp_mb__before_atomic_inc(); /* See above. */
360 atomic_inc(&rdtp->dynticks);
361 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
362 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
365 * The idle task is not permitted to enter the idle loop while
366 * in an RCU read-side critical section.
368 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
369 "Illegal idle entry in RCU read-side critical section.");
370 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
371 "Illegal idle entry in RCU-bh read-side critical section.");
372 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
373 "Illegal idle entry in RCU-sched read-side critical section.");
377 * rcu_idle_enter - inform RCU that current CPU is entering idle
379 * Enter idle mode, in other words, -leave- the mode in which RCU
380 * read-side critical sections can occur. (Though RCU read-side
381 * critical sections can occur in irq handlers in idle, a possibility
382 * handled by irq_enter() and irq_exit().)
384 * We crowbar the ->dynticks_nesting field to zero to allow for
385 * the possibility of usermode upcalls having messed up our count
386 * of interrupt nesting level during the prior busy period.
388 void rcu_idle_enter(void)
390 unsigned long flags;
391 long long oldval;
392 struct rcu_dynticks *rdtp;
394 local_irq_save(flags);
395 rdtp = &__get_cpu_var(rcu_dynticks);
396 oldval = rdtp->dynticks_nesting;
397 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
398 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
399 rdtp->dynticks_nesting = 0;
400 else
401 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
402 rcu_idle_enter_common(rdtp, oldval);
403 local_irq_restore(flags);
405 EXPORT_SYMBOL_GPL(rcu_idle_enter);
408 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
410 * Exit from an interrupt handler, which might possibly result in entering
411 * idle mode, in other words, leaving the mode in which read-side critical
412 * sections can occur.
414 * This code assumes that the idle loop never does anything that might
415 * result in unbalanced calls to irq_enter() and irq_exit(). If your
416 * architecture violates this assumption, RCU will give you what you
417 * deserve, good and hard. But very infrequently and irreproducibly.
419 * Use things like work queues to work around this limitation.
421 * You have been warned.
423 void rcu_irq_exit(void)
425 unsigned long flags;
426 long long oldval;
427 struct rcu_dynticks *rdtp;
429 local_irq_save(flags);
430 rdtp = &__get_cpu_var(rcu_dynticks);
431 oldval = rdtp->dynticks_nesting;
432 rdtp->dynticks_nesting--;
433 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
434 if (rdtp->dynticks_nesting)
435 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
436 else
437 rcu_idle_enter_common(rdtp, oldval);
438 local_irq_restore(flags);
442 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
444 * If the new value of the ->dynticks_nesting counter was previously zero,
445 * we really have exited idle, and must do the appropriate accounting.
446 * The caller must have disabled interrupts.
448 static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
450 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
451 atomic_inc(&rdtp->dynticks);
452 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
453 smp_mb__after_atomic_inc(); /* See above. */
454 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
455 rcu_cleanup_after_idle(smp_processor_id());
456 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
457 if (!is_idle_task(current)) {
458 struct task_struct *idle = idle_task(smp_processor_id());
460 trace_rcu_dyntick("Error on exit: not idle task",
461 oldval, rdtp->dynticks_nesting);
462 ftrace_dump(DUMP_ALL);
463 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
464 current->pid, current->comm,
465 idle->pid, idle->comm); /* must be idle task! */
470 * rcu_idle_exit - inform RCU that current CPU is leaving idle
472 * Exit idle mode, in other words, -enter- the mode in which RCU
473 * read-side critical sections can occur.
475 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
476 * allow for the possibility of usermode upcalls messing up our count
477 * of interrupt nesting level during the busy period that is just
478 * now starting.
480 void rcu_idle_exit(void)
482 unsigned long flags;
483 struct rcu_dynticks *rdtp;
484 long long oldval;
486 local_irq_save(flags);
487 rdtp = &__get_cpu_var(rcu_dynticks);
488 oldval = rdtp->dynticks_nesting;
489 WARN_ON_ONCE(oldval < 0);
490 if (oldval & DYNTICK_TASK_NEST_MASK)
491 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
492 else
493 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
494 rcu_idle_exit_common(rdtp, oldval);
495 local_irq_restore(flags);
497 EXPORT_SYMBOL_GPL(rcu_idle_exit);
500 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
502 * Enter an interrupt handler, which might possibly result in exiting
503 * idle mode, in other words, entering the mode in which read-side critical
504 * sections can occur.
506 * Note that the Linux kernel is fully capable of entering an interrupt
507 * handler that it never exits, for example when doing upcalls to
508 * user mode! This code assumes that the idle loop never does upcalls to
509 * user mode. If your architecture does do upcalls from the idle loop (or
510 * does anything else that results in unbalanced calls to the irq_enter()
511 * and irq_exit() functions), RCU will give you what you deserve, good
512 * and hard. But very infrequently and irreproducibly.
514 * Use things like work queues to work around this limitation.
516 * You have been warned.
518 void rcu_irq_enter(void)
520 unsigned long flags;
521 struct rcu_dynticks *rdtp;
522 long long oldval;
524 local_irq_save(flags);
525 rdtp = &__get_cpu_var(rcu_dynticks);
526 oldval = rdtp->dynticks_nesting;
527 rdtp->dynticks_nesting++;
528 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
529 if (oldval)
530 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
531 else
532 rcu_idle_exit_common(rdtp, oldval);
533 local_irq_restore(flags);
537 * rcu_nmi_enter - inform RCU of entry to NMI context
539 * If the CPU was idle with dynamic ticks active, and there is no
540 * irq handler running, this updates rdtp->dynticks_nmi to let the
541 * RCU grace-period handling know that the CPU is active.
543 void rcu_nmi_enter(void)
545 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
547 if (rdtp->dynticks_nmi_nesting == 0 &&
548 (atomic_read(&rdtp->dynticks) & 0x1))
549 return;
550 rdtp->dynticks_nmi_nesting++;
551 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
552 atomic_inc(&rdtp->dynticks);
553 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
554 smp_mb__after_atomic_inc(); /* See above. */
555 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
559 * rcu_nmi_exit - inform RCU of exit from NMI context
561 * If the CPU was idle with dynamic ticks active, and there is no
562 * irq handler running, this updates rdtp->dynticks_nmi to let the
563 * RCU grace-period handling know that the CPU is no longer active.
565 void rcu_nmi_exit(void)
567 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
569 if (rdtp->dynticks_nmi_nesting == 0 ||
570 --rdtp->dynticks_nmi_nesting != 0)
571 return;
572 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
573 smp_mb__before_atomic_inc(); /* See above. */
574 atomic_inc(&rdtp->dynticks);
575 smp_mb__after_atomic_inc(); /* Force delay to next write. */
576 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
579 #ifdef CONFIG_PROVE_RCU
582 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
584 * If the current CPU is in its idle loop and is neither in an interrupt
585 * or NMI handler, return true.
587 int rcu_is_cpu_idle(void)
589 int ret;
591 preempt_disable();
592 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
593 preempt_enable();
594 return ret;
596 EXPORT_SYMBOL(rcu_is_cpu_idle);
598 #ifdef CONFIG_HOTPLUG_CPU
601 * Is the current CPU online? Disable preemption to avoid false positives
602 * that could otherwise happen due to the current CPU number being sampled,
603 * this task being preempted, its old CPU being taken offline, resuming
604 * on some other CPU, then determining that its old CPU is now offline.
605 * It is OK to use RCU on an offline processor during initial boot, hence
606 * the check for rcu_scheduler_fully_active. Note also that it is OK
607 * for a CPU coming online to use RCU for one jiffy prior to marking itself
608 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
609 * offline to continue to use RCU for one jiffy after marking itself
610 * offline in the cpu_online_mask. This leniency is necessary given the
611 * non-atomic nature of the online and offline processing, for example,
612 * the fact that a CPU enters the scheduler after completing the CPU_DYING
613 * notifiers.
615 * This is also why RCU internally marks CPUs online during the
616 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
618 * Disable checking if in an NMI handler because we cannot safely report
619 * errors from NMI handlers anyway.
621 bool rcu_lockdep_current_cpu_online(void)
623 struct rcu_data *rdp;
624 struct rcu_node *rnp;
625 bool ret;
627 if (in_nmi())
628 return 1;
629 preempt_disable();
630 rdp = &__get_cpu_var(rcu_sched_data);
631 rnp = rdp->mynode;
632 ret = (rdp->grpmask & rnp->qsmaskinit) ||
633 !rcu_scheduler_fully_active;
634 preempt_enable();
635 return ret;
637 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
639 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
641 #endif /* #ifdef CONFIG_PROVE_RCU */
644 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
646 * If the current CPU is idle or running at a first-level (not nested)
647 * interrupt from idle, return true. The caller must have at least
648 * disabled preemption.
650 int rcu_is_cpu_rrupt_from_idle(void)
652 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
656 * Snapshot the specified CPU's dynticks counter so that we can later
657 * credit them with an implicit quiescent state. Return 1 if this CPU
658 * is in dynticks idle mode, which is an extended quiescent state.
660 static int dyntick_save_progress_counter(struct rcu_data *rdp)
662 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
663 return (rdp->dynticks_snap & 0x1) == 0;
667 * Return true if the specified CPU has passed through a quiescent
668 * state by virtue of being in or having passed through an dynticks
669 * idle state since the last call to dyntick_save_progress_counter()
670 * for this same CPU.
672 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
674 unsigned int curr;
675 unsigned int snap;
677 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
678 snap = (unsigned int)rdp->dynticks_snap;
681 * If the CPU passed through or entered a dynticks idle phase with
682 * no active irq/NMI handlers, then we can safely pretend that the CPU
683 * already acknowledged the request to pass through a quiescent
684 * state. Either way, that CPU cannot possibly be in an RCU
685 * read-side critical section that started before the beginning
686 * of the current RCU grace period.
688 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
689 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
690 rdp->dynticks_fqs++;
691 return 1;
694 /* Go check for the CPU being offline. */
695 return rcu_implicit_offline_qs(rdp);
698 static int jiffies_till_stall_check(void)
700 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
703 * Limit check must be consistent with the Kconfig limits
704 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
706 if (till_stall_check < 3) {
707 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
708 till_stall_check = 3;
709 } else if (till_stall_check > 300) {
710 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
711 till_stall_check = 300;
713 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
716 static void record_gp_stall_check_time(struct rcu_state *rsp)
718 rsp->gp_start = jiffies;
719 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
722 static void print_other_cpu_stall(struct rcu_state *rsp)
724 int cpu;
725 long delta;
726 unsigned long flags;
727 int ndetected;
728 struct rcu_node *rnp = rcu_get_root(rsp);
730 /* Only let one CPU complain about others per time interval. */
732 raw_spin_lock_irqsave(&rnp->lock, flags);
733 delta = jiffies - rsp->jiffies_stall;
734 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
735 raw_spin_unlock_irqrestore(&rnp->lock, flags);
736 return;
738 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
739 raw_spin_unlock_irqrestore(&rnp->lock, flags);
742 * OK, time to rat on our buddy...
743 * See Documentation/RCU/stallwarn.txt for info on how to debug
744 * RCU CPU stall warnings.
746 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
747 rsp->name);
748 print_cpu_stall_info_begin();
749 rcu_for_each_leaf_node(rsp, rnp) {
750 raw_spin_lock_irqsave(&rnp->lock, flags);
751 ndetected += rcu_print_task_stall(rnp);
752 raw_spin_unlock_irqrestore(&rnp->lock, flags);
753 if (rnp->qsmask == 0)
754 continue;
755 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
756 if (rnp->qsmask & (1UL << cpu)) {
757 print_cpu_stall_info(rsp, rnp->grplo + cpu);
758 ndetected++;
763 * Now rat on any tasks that got kicked up to the root rcu_node
764 * due to CPU offlining.
766 rnp = rcu_get_root(rsp);
767 raw_spin_lock_irqsave(&rnp->lock, flags);
768 ndetected = rcu_print_task_stall(rnp);
769 raw_spin_unlock_irqrestore(&rnp->lock, flags);
771 print_cpu_stall_info_end();
772 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
773 smp_processor_id(), (long)(jiffies - rsp->gp_start));
774 if (ndetected == 0)
775 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
776 else if (!trigger_all_cpu_backtrace())
777 dump_stack();
779 /* If so configured, complain about tasks blocking the grace period. */
781 rcu_print_detail_task_stall(rsp);
783 force_quiescent_state(rsp, 0); /* Kick them all. */
786 static void print_cpu_stall(struct rcu_state *rsp)
788 unsigned long flags;
789 struct rcu_node *rnp = rcu_get_root(rsp);
792 * OK, time to rat on ourselves...
793 * See Documentation/RCU/stallwarn.txt for info on how to debug
794 * RCU CPU stall warnings.
796 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
797 print_cpu_stall_info_begin();
798 print_cpu_stall_info(rsp, smp_processor_id());
799 print_cpu_stall_info_end();
800 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
801 if (!trigger_all_cpu_backtrace())
802 dump_stack();
804 raw_spin_lock_irqsave(&rnp->lock, flags);
805 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
806 rsp->jiffies_stall = jiffies +
807 3 * jiffies_till_stall_check() + 3;
808 raw_spin_unlock_irqrestore(&rnp->lock, flags);
810 set_need_resched(); /* kick ourselves to get things going. */
813 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
815 unsigned long j;
816 unsigned long js;
817 struct rcu_node *rnp;
819 if (rcu_cpu_stall_suppress)
820 return;
821 j = ACCESS_ONCE(jiffies);
822 js = ACCESS_ONCE(rsp->jiffies_stall);
823 rnp = rdp->mynode;
824 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
826 /* We haven't checked in, so go dump stack. */
827 print_cpu_stall(rsp);
829 } else if (rcu_gp_in_progress(rsp) &&
830 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
832 /* They had a few time units to dump stack, so complain. */
833 print_other_cpu_stall(rsp);
837 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
839 rcu_cpu_stall_suppress = 1;
840 return NOTIFY_DONE;
844 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
846 * Set the stall-warning timeout way off into the future, thus preventing
847 * any RCU CPU stall-warning messages from appearing in the current set of
848 * RCU grace periods.
850 * The caller must disable hard irqs.
852 void rcu_cpu_stall_reset(void)
854 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
855 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
856 rcu_preempt_stall_reset();
859 static struct notifier_block rcu_panic_block = {
860 .notifier_call = rcu_panic,
863 static void __init check_cpu_stall_init(void)
865 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
869 * Update CPU-local rcu_data state to record the newly noticed grace period.
870 * This is used both when we started the grace period and when we notice
871 * that someone else started the grace period. The caller must hold the
872 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
873 * and must have irqs disabled.
875 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
877 if (rdp->gpnum != rnp->gpnum) {
879 * If the current grace period is waiting for this CPU,
880 * set up to detect a quiescent state, otherwise don't
881 * go looking for one.
883 rdp->gpnum = rnp->gpnum;
884 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
885 if (rnp->qsmask & rdp->grpmask) {
886 rdp->qs_pending = 1;
887 rdp->passed_quiesce = 0;
888 } else
889 rdp->qs_pending = 0;
890 zero_cpu_stall_ticks(rdp);
894 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
896 unsigned long flags;
897 struct rcu_node *rnp;
899 local_irq_save(flags);
900 rnp = rdp->mynode;
901 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
902 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
903 local_irq_restore(flags);
904 return;
906 __note_new_gpnum(rsp, rnp, rdp);
907 raw_spin_unlock_irqrestore(&rnp->lock, flags);
911 * Did someone else start a new RCU grace period start since we last
912 * checked? Update local state appropriately if so. Must be called
913 * on the CPU corresponding to rdp.
915 static int
916 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
918 unsigned long flags;
919 int ret = 0;
921 local_irq_save(flags);
922 if (rdp->gpnum != rsp->gpnum) {
923 note_new_gpnum(rsp, rdp);
924 ret = 1;
926 local_irq_restore(flags);
927 return ret;
931 * Advance this CPU's callbacks, but only if the current grace period
932 * has ended. This may be called only from the CPU to whom the rdp
933 * belongs. In addition, the corresponding leaf rcu_node structure's
934 * ->lock must be held by the caller, with irqs disabled.
936 static void
937 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
939 /* Did another grace period end? */
940 if (rdp->completed != rnp->completed) {
942 /* Advance callbacks. No harm if list empty. */
943 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
944 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
945 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
947 /* Remember that we saw this grace-period completion. */
948 rdp->completed = rnp->completed;
949 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
952 * If we were in an extended quiescent state, we may have
953 * missed some grace periods that others CPUs handled on
954 * our behalf. Catch up with this state to avoid noting
955 * spurious new grace periods. If another grace period
956 * has started, then rnp->gpnum will have advanced, so
957 * we will detect this later on.
959 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
960 rdp->gpnum = rdp->completed;
963 * If RCU does not need a quiescent state from this CPU,
964 * then make sure that this CPU doesn't go looking for one.
966 if ((rnp->qsmask & rdp->grpmask) == 0)
967 rdp->qs_pending = 0;
972 * Advance this CPU's callbacks, but only if the current grace period
973 * has ended. This may be called only from the CPU to whom the rdp
974 * belongs.
976 static void
977 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
979 unsigned long flags;
980 struct rcu_node *rnp;
982 local_irq_save(flags);
983 rnp = rdp->mynode;
984 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
985 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
986 local_irq_restore(flags);
987 return;
989 __rcu_process_gp_end(rsp, rnp, rdp);
990 raw_spin_unlock_irqrestore(&rnp->lock, flags);
994 * Do per-CPU grace-period initialization for running CPU. The caller
995 * must hold the lock of the leaf rcu_node structure corresponding to
996 * this CPU.
998 static void
999 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1001 /* Prior grace period ended, so advance callbacks for current CPU. */
1002 __rcu_process_gp_end(rsp, rnp, rdp);
1005 * Because this CPU just now started the new grace period, we know
1006 * that all of its callbacks will be covered by this upcoming grace
1007 * period, even the ones that were registered arbitrarily recently.
1008 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1010 * Other CPUs cannot be sure exactly when the grace period started.
1011 * Therefore, their recently registered callbacks must pass through
1012 * an additional RCU_NEXT_READY stage, so that they will be handled
1013 * by the next RCU grace period.
1015 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1016 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1018 /* Set state so that this CPU will detect the next quiescent state. */
1019 __note_new_gpnum(rsp, rnp, rdp);
1023 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1024 * in preparation for detecting the next grace period. The caller must hold
1025 * the root node's ->lock, which is released before return. Hard irqs must
1026 * be disabled.
1028 * Note that it is legal for a dying CPU (which is marked as offline) to
1029 * invoke this function. This can happen when the dying CPU reports its
1030 * quiescent state.
1032 static void
1033 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1034 __releases(rcu_get_root(rsp)->lock)
1036 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1037 struct rcu_node *rnp = rcu_get_root(rsp);
1039 if (!rcu_scheduler_fully_active ||
1040 !cpu_needs_another_gp(rsp, rdp)) {
1042 * Either the scheduler hasn't yet spawned the first
1043 * non-idle task or this CPU does not need another
1044 * grace period. Either way, don't start a new grace
1045 * period.
1047 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1048 return;
1051 if (rsp->fqs_active) {
1053 * This CPU needs a grace period, but force_quiescent_state()
1054 * is running. Tell it to start one on this CPU's behalf.
1056 rsp->fqs_need_gp = 1;
1057 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1058 return;
1061 /* Advance to a new grace period and initialize state. */
1062 rsp->gpnum++;
1063 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
1064 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1065 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
1066 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1067 record_gp_stall_check_time(rsp);
1068 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
1070 /* Exclude any concurrent CPU-hotplug operations. */
1071 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
1074 * Set the quiescent-state-needed bits in all the rcu_node
1075 * structures for all currently online CPUs in breadth-first
1076 * order, starting from the root rcu_node structure. This
1077 * operation relies on the layout of the hierarchy within the
1078 * rsp->node[] array. Note that other CPUs will access only
1079 * the leaves of the hierarchy, which still indicate that no
1080 * grace period is in progress, at least until the corresponding
1081 * leaf node has been initialized. In addition, we have excluded
1082 * CPU-hotplug operations.
1084 * Note that the grace period cannot complete until we finish
1085 * the initialization process, as there will be at least one
1086 * qsmask bit set in the root node until that time, namely the
1087 * one corresponding to this CPU, due to the fact that we have
1088 * irqs disabled.
1090 rcu_for_each_node_breadth_first(rsp, rnp) {
1091 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1092 rcu_preempt_check_blocked_tasks(rnp);
1093 rnp->qsmask = rnp->qsmaskinit;
1094 rnp->gpnum = rsp->gpnum;
1095 rnp->completed = rsp->completed;
1096 if (rnp == rdp->mynode)
1097 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1098 rcu_preempt_boost_start_gp(rnp);
1099 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1100 rnp->level, rnp->grplo,
1101 rnp->grphi, rnp->qsmask);
1102 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1105 rnp = rcu_get_root(rsp);
1106 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1107 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1108 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1109 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
1113 * Report a full set of quiescent states to the specified rcu_state
1114 * data structure. This involves cleaning up after the prior grace
1115 * period and letting rcu_start_gp() start up the next grace period
1116 * if one is needed. Note that the caller must hold rnp->lock, as
1117 * required by rcu_start_gp(), which will release it.
1119 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1120 __releases(rcu_get_root(rsp)->lock)
1122 unsigned long gp_duration;
1123 struct rcu_node *rnp = rcu_get_root(rsp);
1124 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1126 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1129 * Ensure that all grace-period and pre-grace-period activity
1130 * is seen before the assignment to rsp->completed.
1132 smp_mb(); /* See above block comment. */
1133 gp_duration = jiffies - rsp->gp_start;
1134 if (gp_duration > rsp->gp_max)
1135 rsp->gp_max = gp_duration;
1138 * We know the grace period is complete, but to everyone else
1139 * it appears to still be ongoing. But it is also the case
1140 * that to everyone else it looks like there is nothing that
1141 * they can do to advance the grace period. It is therefore
1142 * safe for us to drop the lock in order to mark the grace
1143 * period as completed in all of the rcu_node structures.
1145 * But if this CPU needs another grace period, it will take
1146 * care of this while initializing the next grace period.
1147 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1148 * because the callbacks have not yet been advanced: Those
1149 * callbacks are waiting on the grace period that just now
1150 * completed.
1152 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1153 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1156 * Propagate new ->completed value to rcu_node structures
1157 * so that other CPUs don't have to wait until the start
1158 * of the next grace period to process their callbacks.
1160 rcu_for_each_node_breadth_first(rsp, rnp) {
1161 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1162 rnp->completed = rsp->gpnum;
1163 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1165 rnp = rcu_get_root(rsp);
1166 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1169 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
1170 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1171 rsp->fqs_state = RCU_GP_IDLE;
1172 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1176 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1177 * Allows quiescent states for a group of CPUs to be reported at one go
1178 * to the specified rcu_node structure, though all the CPUs in the group
1179 * must be represented by the same rcu_node structure (which need not be
1180 * a leaf rcu_node structure, though it often will be). That structure's
1181 * lock must be held upon entry, and it is released before return.
1183 static void
1184 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1185 struct rcu_node *rnp, unsigned long flags)
1186 __releases(rnp->lock)
1188 struct rcu_node *rnp_c;
1190 /* Walk up the rcu_node hierarchy. */
1191 for (;;) {
1192 if (!(rnp->qsmask & mask)) {
1194 /* Our bit has already been cleared, so done. */
1195 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1196 return;
1198 rnp->qsmask &= ~mask;
1199 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1200 mask, rnp->qsmask, rnp->level,
1201 rnp->grplo, rnp->grphi,
1202 !!rnp->gp_tasks);
1203 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1205 /* Other bits still set at this level, so done. */
1206 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207 return;
1209 mask = rnp->grpmask;
1210 if (rnp->parent == NULL) {
1212 /* No more levels. Exit loop holding root lock. */
1214 break;
1216 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217 rnp_c = rnp;
1218 rnp = rnp->parent;
1219 raw_spin_lock_irqsave(&rnp->lock, flags);
1220 WARN_ON_ONCE(rnp_c->qsmask);
1224 * Get here if we are the last CPU to pass through a quiescent
1225 * state for this grace period. Invoke rcu_report_qs_rsp()
1226 * to clean up and start the next grace period if one is needed.
1228 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1232 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1233 * structure. This must be either called from the specified CPU, or
1234 * called when the specified CPU is known to be offline (and when it is
1235 * also known that no other CPU is concurrently trying to help the offline
1236 * CPU). The lastcomp argument is used to make sure we are still in the
1237 * grace period of interest. We don't want to end the current grace period
1238 * based on quiescent states detected in an earlier grace period!
1240 static void
1241 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
1243 unsigned long flags;
1244 unsigned long mask;
1245 struct rcu_node *rnp;
1247 rnp = rdp->mynode;
1248 raw_spin_lock_irqsave(&rnp->lock, flags);
1249 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
1252 * The grace period in which this quiescent state was
1253 * recorded has ended, so don't report it upwards.
1254 * We will instead need a new quiescent state that lies
1255 * within the current grace period.
1257 rdp->passed_quiesce = 0; /* need qs for new gp. */
1258 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259 return;
1261 mask = rdp->grpmask;
1262 if ((rnp->qsmask & mask) == 0) {
1263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1264 } else {
1265 rdp->qs_pending = 0;
1268 * This GP can't end until cpu checks in, so all of our
1269 * callbacks can be processed during the next GP.
1271 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1273 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1278 * Check to see if there is a new grace period of which this CPU
1279 * is not yet aware, and if so, set up local rcu_data state for it.
1280 * Otherwise, see if this CPU has just passed through its first
1281 * quiescent state for this grace period, and record that fact if so.
1283 static void
1284 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1286 /* If there is now a new grace period, record and return. */
1287 if (check_for_new_grace_period(rsp, rdp))
1288 return;
1291 * Does this CPU still need to do its part for current grace period?
1292 * If no, return and let the other CPUs do their part as well.
1294 if (!rdp->qs_pending)
1295 return;
1298 * Was there a quiescent state since the beginning of the grace
1299 * period? If no, then exit and wait for the next call.
1301 if (!rdp->passed_quiesce)
1302 return;
1305 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1306 * judge of that).
1308 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
1311 #ifdef CONFIG_HOTPLUG_CPU
1314 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1315 * Also record a quiescent state for this CPU for the current grace period.
1316 * Synchronization and interrupt disabling are not required because
1317 * this function executes in stop_machine() context. Therefore, cleanup
1318 * operations that might block must be done later from the CPU_DEAD
1319 * notifier.
1321 * Note that the outgoing CPU's bit has already been cleared in the
1322 * cpu_online_mask. This allows us to randomly pick a callback
1323 * destination from the bits set in that mask.
1325 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1327 int i;
1328 unsigned long mask;
1329 int receive_cpu = cpumask_any(cpu_online_mask);
1330 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1331 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1332 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */
1334 /* First, adjust the counts. */
1335 if (rdp->nxtlist != NULL) {
1336 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1337 receive_rdp->qlen += rdp->qlen;
1338 rdp->qlen_lazy = 0;
1339 rdp->qlen = 0;
1343 * Next, move ready-to-invoke callbacks to be invoked on some
1344 * other CPU. These will not be required to pass through another
1345 * grace period: They are done, regardless of CPU.
1347 if (rdp->nxtlist != NULL &&
1348 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1349 struct rcu_head *oldhead;
1350 struct rcu_head **oldtail;
1351 struct rcu_head **newtail;
1353 oldhead = rdp->nxtlist;
1354 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1355 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1356 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1357 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1358 newtail = rdp->nxttail[RCU_DONE_TAIL];
1359 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1360 if (receive_rdp->nxttail[i] == oldtail)
1361 receive_rdp->nxttail[i] = newtail;
1362 if (rdp->nxttail[i] == newtail)
1363 rdp->nxttail[i] = &rdp->nxtlist;
1368 * Finally, put the rest of the callbacks at the end of the list.
1369 * The ones that made it partway through get to start over: We
1370 * cannot assume that grace periods are synchronized across CPUs.
1371 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1372 * this does not seem compelling. Not yet, anyway.)
1374 if (rdp->nxtlist != NULL) {
1375 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1376 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1377 rdp->nxttail[RCU_NEXT_TAIL];
1378 receive_rdp->n_cbs_adopted += rdp->qlen;
1379 rdp->n_cbs_orphaned += rdp->qlen;
1381 rdp->nxtlist = NULL;
1382 for (i = 0; i < RCU_NEXT_SIZE; i++)
1383 rdp->nxttail[i] = &rdp->nxtlist;
1387 * Record a quiescent state for the dying CPU. This is safe
1388 * only because we have already cleared out the callbacks.
1389 * (Otherwise, the RCU core might try to schedule the invocation
1390 * of callbacks on this now-offline CPU, which would be bad.)
1392 mask = rdp->grpmask; /* rnp->grplo is constant. */
1393 trace_rcu_grace_period(rsp->name,
1394 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1395 "cpuofl");
1396 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1397 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1401 * The CPU has been completely removed, and some other CPU is reporting
1402 * this fact from process context. Do the remainder of the cleanup.
1403 * There can only be one CPU hotplug operation at a time, so no other
1404 * CPU can be attempting to update rcu_cpu_kthread_task.
1406 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1408 unsigned long flags;
1409 unsigned long mask;
1410 int need_report = 0;
1411 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1412 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rnp. */
1414 /* Adjust any no-longer-needed kthreads. */
1415 rcu_stop_cpu_kthread(cpu);
1416 rcu_node_kthread_setaffinity(rnp, -1);
1418 /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */
1420 /* Exclude any attempts to start a new grace period. */
1421 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1423 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1424 mask = rdp->grpmask; /* rnp->grplo is constant. */
1425 do {
1426 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1427 rnp->qsmaskinit &= ~mask;
1428 if (rnp->qsmaskinit != 0) {
1429 if (rnp != rdp->mynode)
1430 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1431 break;
1433 if (rnp == rdp->mynode)
1434 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1435 else
1436 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1437 mask = rnp->grpmask;
1438 rnp = rnp->parent;
1439 } while (rnp != NULL);
1442 * We still hold the leaf rcu_node structure lock here, and
1443 * irqs are still disabled. The reason for this subterfuge is
1444 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1445 * held leads to deadlock.
1447 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1448 rnp = rdp->mynode;
1449 if (need_report & RCU_OFL_TASKS_NORM_GP)
1450 rcu_report_unblock_qs_rnp(rnp, flags);
1451 else
1452 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1453 if (need_report & RCU_OFL_TASKS_EXP_GP)
1454 rcu_report_exp_rnp(rsp, rnp, true);
1457 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1463 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1467 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1470 * Invoke any RCU callbacks that have made it to the end of their grace
1471 * period. Thottle as specified by rdp->blimit.
1473 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1475 unsigned long flags;
1476 struct rcu_head *next, *list, **tail;
1477 int bl, count, count_lazy;
1479 /* If no callbacks are ready, just return.*/
1480 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1481 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1482 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1483 need_resched(), is_idle_task(current),
1484 rcu_is_callbacks_kthread());
1485 return;
1489 * Extract the list of ready callbacks, disabling to prevent
1490 * races with call_rcu() from interrupt handlers.
1492 local_irq_save(flags);
1493 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1494 bl = rdp->blimit;
1495 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1496 list = rdp->nxtlist;
1497 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1498 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1499 tail = rdp->nxttail[RCU_DONE_TAIL];
1500 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1501 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1502 rdp->nxttail[count] = &rdp->nxtlist;
1503 local_irq_restore(flags);
1505 /* Invoke callbacks. */
1506 count = count_lazy = 0;
1507 while (list) {
1508 next = list->next;
1509 prefetch(next);
1510 debug_rcu_head_unqueue(list);
1511 if (__rcu_reclaim(rsp->name, list))
1512 count_lazy++;
1513 list = next;
1514 /* Stop only if limit reached and CPU has something to do. */
1515 if (++count >= bl &&
1516 (need_resched() ||
1517 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1518 break;
1521 local_irq_save(flags);
1522 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1523 is_idle_task(current),
1524 rcu_is_callbacks_kthread());
1526 /* Update count, and requeue any remaining callbacks. */
1527 rdp->qlen_lazy -= count_lazy;
1528 rdp->qlen -= count;
1529 rdp->n_cbs_invoked += count;
1530 if (list != NULL) {
1531 *tail = rdp->nxtlist;
1532 rdp->nxtlist = list;
1533 for (count = 0; count < RCU_NEXT_SIZE; count++)
1534 if (&rdp->nxtlist == rdp->nxttail[count])
1535 rdp->nxttail[count] = tail;
1536 else
1537 break;
1540 /* Reinstate batch limit if we have worked down the excess. */
1541 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1542 rdp->blimit = blimit;
1544 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1545 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1546 rdp->qlen_last_fqs_check = 0;
1547 rdp->n_force_qs_snap = rsp->n_force_qs;
1548 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1549 rdp->qlen_last_fqs_check = rdp->qlen;
1551 local_irq_restore(flags);
1553 /* Re-invoke RCU core processing if there are callbacks remaining. */
1554 if (cpu_has_callbacks_ready_to_invoke(rdp))
1555 invoke_rcu_core();
1559 * Check to see if this CPU is in a non-context-switch quiescent state
1560 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1561 * Also schedule RCU core processing.
1563 * This function must be called from hardirq context. It is normally
1564 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1565 * false, there is no point in invoking rcu_check_callbacks().
1567 void rcu_check_callbacks(int cpu, int user)
1569 trace_rcu_utilization("Start scheduler-tick");
1570 increment_cpu_stall_ticks();
1571 if (user || rcu_is_cpu_rrupt_from_idle()) {
1574 * Get here if this CPU took its interrupt from user
1575 * mode or from the idle loop, and if this is not a
1576 * nested interrupt. In this case, the CPU is in
1577 * a quiescent state, so note it.
1579 * No memory barrier is required here because both
1580 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1581 * variables that other CPUs neither access nor modify,
1582 * at least not while the corresponding CPU is online.
1585 rcu_sched_qs(cpu);
1586 rcu_bh_qs(cpu);
1588 } else if (!in_softirq()) {
1591 * Get here if this CPU did not take its interrupt from
1592 * softirq, in other words, if it is not interrupting
1593 * a rcu_bh read-side critical section. This is an _bh
1594 * critical section, so note it.
1597 rcu_bh_qs(cpu);
1599 rcu_preempt_check_callbacks(cpu);
1600 if (rcu_pending(cpu))
1601 invoke_rcu_core();
1602 trace_rcu_utilization("End scheduler-tick");
1606 * Scan the leaf rcu_node structures, processing dyntick state for any that
1607 * have not yet encountered a quiescent state, using the function specified.
1608 * Also initiate boosting for any threads blocked on the root rcu_node.
1610 * The caller must have suppressed start of new grace periods.
1612 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1614 unsigned long bit;
1615 int cpu;
1616 unsigned long flags;
1617 unsigned long mask;
1618 struct rcu_node *rnp;
1620 rcu_for_each_leaf_node(rsp, rnp) {
1621 mask = 0;
1622 raw_spin_lock_irqsave(&rnp->lock, flags);
1623 if (!rcu_gp_in_progress(rsp)) {
1624 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1625 return;
1627 if (rnp->qsmask == 0) {
1628 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
1629 continue;
1631 cpu = rnp->grplo;
1632 bit = 1;
1633 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1634 if ((rnp->qsmask & bit) != 0 &&
1635 f(per_cpu_ptr(rsp->rda, cpu)))
1636 mask |= bit;
1638 if (mask != 0) {
1640 /* rcu_report_qs_rnp() releases rnp->lock. */
1641 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1642 continue;
1644 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1646 rnp = rcu_get_root(rsp);
1647 if (rnp->qsmask == 0) {
1648 raw_spin_lock_irqsave(&rnp->lock, flags);
1649 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1654 * Force quiescent states on reluctant CPUs, and also detect which
1655 * CPUs are in dyntick-idle mode.
1657 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1659 unsigned long flags;
1660 struct rcu_node *rnp = rcu_get_root(rsp);
1662 trace_rcu_utilization("Start fqs");
1663 if (!rcu_gp_in_progress(rsp)) {
1664 trace_rcu_utilization("End fqs");
1665 return; /* No grace period in progress, nothing to force. */
1667 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1668 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1669 trace_rcu_utilization("End fqs");
1670 return; /* Someone else is already on the job. */
1672 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1673 goto unlock_fqs_ret; /* no emergency and done recently. */
1674 rsp->n_force_qs++;
1675 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1676 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1677 if(!rcu_gp_in_progress(rsp)) {
1678 rsp->n_force_qs_ngp++;
1679 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1680 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1682 rsp->fqs_active = 1;
1683 switch (rsp->fqs_state) {
1684 case RCU_GP_IDLE:
1685 case RCU_GP_INIT:
1687 break; /* grace period idle or initializing, ignore. */
1689 case RCU_SAVE_DYNTICK:
1690 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1691 break; /* So gcc recognizes the dead code. */
1693 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1695 /* Record dyntick-idle state. */
1696 force_qs_rnp(rsp, dyntick_save_progress_counter);
1697 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1698 if (rcu_gp_in_progress(rsp))
1699 rsp->fqs_state = RCU_FORCE_QS;
1700 break;
1702 case RCU_FORCE_QS:
1704 /* Check dyntick-idle state, send IPI to laggarts. */
1705 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1706 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1708 /* Leave state in case more forcing is required. */
1710 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1711 break;
1713 rsp->fqs_active = 0;
1714 if (rsp->fqs_need_gp) {
1715 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1716 rsp->fqs_need_gp = 0;
1717 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1718 trace_rcu_utilization("End fqs");
1719 return;
1721 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1722 unlock_fqs_ret:
1723 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1724 trace_rcu_utilization("End fqs");
1728 * This does the RCU core processing work for the specified rcu_state
1729 * and rcu_data structures. This may be called only from the CPU to
1730 * whom the rdp belongs.
1732 static void
1733 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1735 unsigned long flags;
1737 WARN_ON_ONCE(rdp->beenonline == 0);
1740 * If an RCU GP has gone long enough, go check for dyntick
1741 * idle CPUs and, if needed, send resched IPIs.
1743 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1744 force_quiescent_state(rsp, 1);
1747 * Advance callbacks in response to end of earlier grace
1748 * period that some other CPU ended.
1750 rcu_process_gp_end(rsp, rdp);
1752 /* Update RCU state based on any recent quiescent states. */
1753 rcu_check_quiescent_state(rsp, rdp);
1755 /* Does this CPU require a not-yet-started grace period? */
1756 if (cpu_needs_another_gp(rsp, rdp)) {
1757 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1758 rcu_start_gp(rsp, flags); /* releases above lock */
1761 /* If there are callbacks ready, invoke them. */
1762 if (cpu_has_callbacks_ready_to_invoke(rdp))
1763 invoke_rcu_callbacks(rsp, rdp);
1767 * Do RCU core processing for the current CPU.
1769 static void rcu_process_callbacks(struct softirq_action *unused)
1771 trace_rcu_utilization("Start RCU core");
1772 __rcu_process_callbacks(&rcu_sched_state,
1773 &__get_cpu_var(rcu_sched_data));
1774 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1775 rcu_preempt_process_callbacks();
1776 trace_rcu_utilization("End RCU core");
1780 * Schedule RCU callback invocation. If the specified type of RCU
1781 * does not support RCU priority boosting, just do a direct call,
1782 * otherwise wake up the per-CPU kernel kthread. Note that because we
1783 * are running on the current CPU with interrupts disabled, the
1784 * rcu_cpu_kthread_task cannot disappear out from under us.
1786 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1788 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1789 return;
1790 if (likely(!rsp->boost)) {
1791 rcu_do_batch(rsp, rdp);
1792 return;
1794 invoke_rcu_callbacks_kthread();
1797 static void invoke_rcu_core(void)
1799 raise_softirq(RCU_SOFTIRQ);
1802 static void
1803 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1804 struct rcu_state *rsp, bool lazy)
1806 unsigned long flags;
1807 struct rcu_data *rdp;
1809 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1810 debug_rcu_head_queue(head);
1811 head->func = func;
1812 head->next = NULL;
1814 smp_mb(); /* Ensure RCU update seen before callback registry. */
1817 * Opportunistically note grace-period endings and beginnings.
1818 * Note that we might see a beginning right after we see an
1819 * end, but never vice versa, since this CPU has to pass through
1820 * a quiescent state betweentimes.
1822 local_irq_save(flags);
1823 rdp = this_cpu_ptr(rsp->rda);
1825 /* Add the callback to our list. */
1826 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1827 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1828 rdp->qlen++;
1829 if (lazy)
1830 rdp->qlen_lazy++;
1832 if (__is_kfree_rcu_offset((unsigned long)func))
1833 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1834 rdp->qlen_lazy, rdp->qlen);
1835 else
1836 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1838 /* If interrupts were disabled, don't dive into RCU core. */
1839 if (irqs_disabled_flags(flags)) {
1840 local_irq_restore(flags);
1841 return;
1845 * Force the grace period if too many callbacks or too long waiting.
1846 * Enforce hysteresis, and don't invoke force_quiescent_state()
1847 * if some other CPU has recently done so. Also, don't bother
1848 * invoking force_quiescent_state() if the newly enqueued callback
1849 * is the only one waiting for a grace period to complete.
1851 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1853 /* Are we ignoring a completed grace period? */
1854 rcu_process_gp_end(rsp, rdp);
1855 check_for_new_grace_period(rsp, rdp);
1857 /* Start a new grace period if one not already started. */
1858 if (!rcu_gp_in_progress(rsp)) {
1859 unsigned long nestflag;
1860 struct rcu_node *rnp_root = rcu_get_root(rsp);
1862 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1863 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1864 } else {
1865 /* Give the grace period a kick. */
1866 rdp->blimit = LONG_MAX;
1867 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1868 *rdp->nxttail[RCU_DONE_TAIL] != head)
1869 force_quiescent_state(rsp, 0);
1870 rdp->n_force_qs_snap = rsp->n_force_qs;
1871 rdp->qlen_last_fqs_check = rdp->qlen;
1873 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1874 force_quiescent_state(rsp, 1);
1875 local_irq_restore(flags);
1879 * Queue an RCU-sched callback for invocation after a grace period.
1881 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1883 __call_rcu(head, func, &rcu_sched_state, 0);
1885 EXPORT_SYMBOL_GPL(call_rcu_sched);
1888 * Queue an RCU callback for invocation after a quicker grace period.
1890 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1892 __call_rcu(head, func, &rcu_bh_state, 0);
1894 EXPORT_SYMBOL_GPL(call_rcu_bh);
1897 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1899 * Control will return to the caller some time after a full rcu-sched
1900 * grace period has elapsed, in other words after all currently executing
1901 * rcu-sched read-side critical sections have completed. These read-side
1902 * critical sections are delimited by rcu_read_lock_sched() and
1903 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1904 * local_irq_disable(), and so on may be used in place of
1905 * rcu_read_lock_sched().
1907 * This means that all preempt_disable code sequences, including NMI and
1908 * hardware-interrupt handlers, in progress on entry will have completed
1909 * before this primitive returns. However, this does not guarantee that
1910 * softirq handlers will have completed, since in some kernels, these
1911 * handlers can run in process context, and can block.
1913 * This primitive provides the guarantees made by the (now removed)
1914 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1915 * guarantees that rcu_read_lock() sections will have completed.
1916 * In "classic RCU", these two guarantees happen to be one and
1917 * the same, but can differ in realtime RCU implementations.
1919 void synchronize_sched(void)
1921 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1922 !lock_is_held(&rcu_lock_map) &&
1923 !lock_is_held(&rcu_sched_lock_map),
1924 "Illegal synchronize_sched() in RCU-sched read-side critical section");
1925 if (rcu_blocking_is_gp())
1926 return;
1927 wait_rcu_gp(call_rcu_sched);
1929 EXPORT_SYMBOL_GPL(synchronize_sched);
1932 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1934 * Control will return to the caller some time after a full rcu_bh grace
1935 * period has elapsed, in other words after all currently executing rcu_bh
1936 * read-side critical sections have completed. RCU read-side critical
1937 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1938 * and may be nested.
1940 void synchronize_rcu_bh(void)
1942 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1943 !lock_is_held(&rcu_lock_map) &&
1944 !lock_is_held(&rcu_sched_lock_map),
1945 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
1946 if (rcu_blocking_is_gp())
1947 return;
1948 wait_rcu_gp(call_rcu_bh);
1950 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1952 static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
1953 static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1955 static int synchronize_sched_expedited_cpu_stop(void *data)
1958 * There must be a full memory barrier on each affected CPU
1959 * between the time that try_stop_cpus() is called and the
1960 * time that it returns.
1962 * In the current initial implementation of cpu_stop, the
1963 * above condition is already met when the control reaches
1964 * this point and the following smp_mb() is not strictly
1965 * necessary. Do smp_mb() anyway for documentation and
1966 * robustness against future implementation changes.
1968 smp_mb(); /* See above comment block. */
1969 return 0;
1973 * synchronize_sched_expedited - Brute-force RCU-sched grace period
1975 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
1976 * approach to force the grace period to end quickly. This consumes
1977 * significant time on all CPUs and is unfriendly to real-time workloads,
1978 * so is thus not recommended for any sort of common-case code. In fact,
1979 * if you are using synchronize_sched_expedited() in a loop, please
1980 * restructure your code to batch your updates, and then use a single
1981 * synchronize_sched() instead.
1983 * Note that it is illegal to call this function while holding any lock
1984 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
1985 * to call this function from a CPU-hotplug notifier. Failing to observe
1986 * these restriction will result in deadlock.
1988 * This implementation can be thought of as an application of ticket
1989 * locking to RCU, with sync_sched_expedited_started and
1990 * sync_sched_expedited_done taking on the roles of the halves
1991 * of the ticket-lock word. Each task atomically increments
1992 * sync_sched_expedited_started upon entry, snapshotting the old value,
1993 * then attempts to stop all the CPUs. If this succeeds, then each
1994 * CPU will have executed a context switch, resulting in an RCU-sched
1995 * grace period. We are then done, so we use atomic_cmpxchg() to
1996 * update sync_sched_expedited_done to match our snapshot -- but
1997 * only if someone else has not already advanced past our snapshot.
1999 * On the other hand, if try_stop_cpus() fails, we check the value
2000 * of sync_sched_expedited_done. If it has advanced past our
2001 * initial snapshot, then someone else must have forced a grace period
2002 * some time after we took our snapshot. In this case, our work is
2003 * done for us, and we can simply return. Otherwise, we try again,
2004 * but keep our initial snapshot for purposes of checking for someone
2005 * doing our work for us.
2007 * If we fail too many times in a row, we fall back to synchronize_sched().
2009 void synchronize_sched_expedited(void)
2011 int firstsnap, s, snap, trycount = 0;
2013 /* Note that atomic_inc_return() implies full memory barrier. */
2014 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2015 get_online_cpus();
2016 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2019 * Each pass through the following loop attempts to force a
2020 * context switch on each CPU.
2022 while (try_stop_cpus(cpu_online_mask,
2023 synchronize_sched_expedited_cpu_stop,
2024 NULL) == -EAGAIN) {
2025 put_online_cpus();
2027 /* No joy, try again later. Or just synchronize_sched(). */
2028 if (trycount++ < 10)
2029 udelay(trycount * num_online_cpus());
2030 else {
2031 synchronize_sched();
2032 return;
2035 /* Check to see if someone else did our work for us. */
2036 s = atomic_read(&sync_sched_expedited_done);
2037 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2038 smp_mb(); /* ensure test happens before caller kfree */
2039 return;
2043 * Refetching sync_sched_expedited_started allows later
2044 * callers to piggyback on our grace period. We subtract
2045 * 1 to get the same token that the last incrementer got.
2046 * We retry after they started, so our grace period works
2047 * for them, and they started after our first try, so their
2048 * grace period works for us.
2050 get_online_cpus();
2051 snap = atomic_read(&sync_sched_expedited_started);
2052 smp_mb(); /* ensure read is before try_stop_cpus(). */
2056 * Everyone up to our most recent fetch is covered by our grace
2057 * period. Update the counter, but only if our work is still
2058 * relevant -- which it won't be if someone who started later
2059 * than we did beat us to the punch.
2061 do {
2062 s = atomic_read(&sync_sched_expedited_done);
2063 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2064 smp_mb(); /* ensure test happens before caller kfree */
2065 break;
2067 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2069 put_online_cpus();
2071 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2074 * Check to see if there is any immediate RCU-related work to be done
2075 * by the current CPU, for the specified type of RCU, returning 1 if so.
2076 * The checks are in order of increasing expense: checks that can be
2077 * carried out against CPU-local state are performed first. However,
2078 * we must check for CPU stalls first, else we might not get a chance.
2080 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2082 struct rcu_node *rnp = rdp->mynode;
2084 rdp->n_rcu_pending++;
2086 /* Check for CPU stalls, if enabled. */
2087 check_cpu_stall(rsp, rdp);
2089 /* Is the RCU core waiting for a quiescent state from this CPU? */
2090 if (rcu_scheduler_fully_active &&
2091 rdp->qs_pending && !rdp->passed_quiesce) {
2094 * If force_quiescent_state() coming soon and this CPU
2095 * needs a quiescent state, and this is either RCU-sched
2096 * or RCU-bh, force a local reschedule.
2098 rdp->n_rp_qs_pending++;
2099 if (!rdp->preemptible &&
2100 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2101 jiffies))
2102 set_need_resched();
2103 } else if (rdp->qs_pending && rdp->passed_quiesce) {
2104 rdp->n_rp_report_qs++;
2105 return 1;
2108 /* Does this CPU have callbacks ready to invoke? */
2109 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2110 rdp->n_rp_cb_ready++;
2111 return 1;
2114 /* Has RCU gone idle with this CPU needing another grace period? */
2115 if (cpu_needs_another_gp(rsp, rdp)) {
2116 rdp->n_rp_cpu_needs_gp++;
2117 return 1;
2120 /* Has another RCU grace period completed? */
2121 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2122 rdp->n_rp_gp_completed++;
2123 return 1;
2126 /* Has a new RCU grace period started? */
2127 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2128 rdp->n_rp_gp_started++;
2129 return 1;
2132 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2133 if (rcu_gp_in_progress(rsp) &&
2134 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2135 rdp->n_rp_need_fqs++;
2136 return 1;
2139 /* nothing to do */
2140 rdp->n_rp_need_nothing++;
2141 return 0;
2145 * Check to see if there is any immediate RCU-related work to be done
2146 * by the current CPU, returning 1 if so. This function is part of the
2147 * RCU implementation; it is -not- an exported member of the RCU API.
2149 static int rcu_pending(int cpu)
2151 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2152 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2153 rcu_preempt_pending(cpu);
2157 * Check to see if any future RCU-related work will need to be done
2158 * by the current CPU, even if none need be done immediately, returning
2159 * 1 if so.
2161 static int rcu_cpu_has_callbacks(int cpu)
2163 /* RCU callbacks either ready or pending? */
2164 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2165 per_cpu(rcu_bh_data, cpu).nxtlist ||
2166 rcu_preempt_cpu_has_callbacks(cpu);
2169 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2170 static atomic_t rcu_barrier_cpu_count;
2171 static DEFINE_MUTEX(rcu_barrier_mutex);
2172 static struct completion rcu_barrier_completion;
2174 static void rcu_barrier_callback(struct rcu_head *notused)
2176 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2177 complete(&rcu_barrier_completion);
2181 * Called with preemption disabled, and from cross-cpu IRQ context.
2183 static void rcu_barrier_func(void *type)
2185 int cpu = smp_processor_id();
2186 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2187 void (*call_rcu_func)(struct rcu_head *head,
2188 void (*func)(struct rcu_head *head));
2190 atomic_inc(&rcu_barrier_cpu_count);
2191 call_rcu_func = type;
2192 call_rcu_func(head, rcu_barrier_callback);
2196 * Orchestrate the specified type of RCU barrier, waiting for all
2197 * RCU callbacks of the specified type to complete.
2199 static void _rcu_barrier(struct rcu_state *rsp,
2200 void (*call_rcu_func)(struct rcu_head *head,
2201 void (*func)(struct rcu_head *head)))
2203 BUG_ON(in_interrupt());
2204 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2205 mutex_lock(&rcu_barrier_mutex);
2206 init_completion(&rcu_barrier_completion);
2208 * Initialize rcu_barrier_cpu_count to 1, then invoke
2209 * rcu_barrier_func() on each CPU, so that each CPU also has
2210 * incremented rcu_barrier_cpu_count. Only then is it safe to
2211 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2212 * might complete its grace period before all of the other CPUs
2213 * did their increment, causing this function to return too
2214 * early. Note that on_each_cpu() disables irqs, which prevents
2215 * any CPUs from coming online or going offline until each online
2216 * CPU has queued its RCU-barrier callback.
2218 atomic_set(&rcu_barrier_cpu_count, 1);
2219 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2220 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2221 complete(&rcu_barrier_completion);
2222 wait_for_completion(&rcu_barrier_completion);
2223 mutex_unlock(&rcu_barrier_mutex);
2227 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2229 void rcu_barrier_bh(void)
2231 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2233 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2236 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2238 void rcu_barrier_sched(void)
2240 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2242 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2245 * Do boot-time initialization of a CPU's per-CPU RCU data.
2247 static void __init
2248 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2250 unsigned long flags;
2251 int i;
2252 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2253 struct rcu_node *rnp = rcu_get_root(rsp);
2255 /* Set up local state, ensuring consistent view of global state. */
2256 raw_spin_lock_irqsave(&rnp->lock, flags);
2257 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2258 rdp->nxtlist = NULL;
2259 for (i = 0; i < RCU_NEXT_SIZE; i++)
2260 rdp->nxttail[i] = &rdp->nxtlist;
2261 rdp->qlen_lazy = 0;
2262 rdp->qlen = 0;
2263 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2264 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2265 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2266 rdp->cpu = cpu;
2267 rdp->rsp = rsp;
2268 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2272 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2273 * offline event can be happening at a given time. Note also that we
2274 * can accept some slop in the rsp->completed access due to the fact
2275 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2277 static void __cpuinit
2278 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2280 unsigned long flags;
2281 unsigned long mask;
2282 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2283 struct rcu_node *rnp = rcu_get_root(rsp);
2285 /* Set up local state, ensuring consistent view of global state. */
2286 raw_spin_lock_irqsave(&rnp->lock, flags);
2287 rdp->beenonline = 1; /* We have now been online. */
2288 rdp->preemptible = preemptible;
2289 rdp->qlen_last_fqs_check = 0;
2290 rdp->n_force_qs_snap = rsp->n_force_qs;
2291 rdp->blimit = blimit;
2292 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2293 atomic_set(&rdp->dynticks->dynticks,
2294 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2295 rcu_prepare_for_idle_init(cpu);
2296 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2299 * A new grace period might start here. If so, we won't be part
2300 * of it, but that is OK, as we are currently in a quiescent state.
2303 /* Exclude any attempts to start a new GP on large systems. */
2304 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2306 /* Add CPU to rcu_node bitmasks. */
2307 rnp = rdp->mynode;
2308 mask = rdp->grpmask;
2309 do {
2310 /* Exclude any attempts to start a new GP on small systems. */
2311 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2312 rnp->qsmaskinit |= mask;
2313 mask = rnp->grpmask;
2314 if (rnp == rdp->mynode) {
2316 * If there is a grace period in progress, we will
2317 * set up to wait for it next time we run the
2318 * RCU core code.
2320 rdp->gpnum = rnp->completed;
2321 rdp->completed = rnp->completed;
2322 rdp->passed_quiesce = 0;
2323 rdp->qs_pending = 0;
2324 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
2325 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2327 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2328 rnp = rnp->parent;
2329 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2331 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2334 static void __cpuinit rcu_prepare_cpu(int cpu)
2336 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2337 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2338 rcu_preempt_init_percpu_data(cpu);
2342 * Handle CPU online/offline notification events.
2344 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2345 unsigned long action, void *hcpu)
2347 long cpu = (long)hcpu;
2348 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2349 struct rcu_node *rnp = rdp->mynode;
2351 trace_rcu_utilization("Start CPU hotplug");
2352 switch (action) {
2353 case CPU_UP_PREPARE:
2354 case CPU_UP_PREPARE_FROZEN:
2355 rcu_prepare_cpu(cpu);
2356 rcu_prepare_kthreads(cpu);
2357 break;
2358 case CPU_ONLINE:
2359 case CPU_DOWN_FAILED:
2360 rcu_node_kthread_setaffinity(rnp, -1);
2361 rcu_cpu_kthread_setrt(cpu, 1);
2362 break;
2363 case CPU_DOWN_PREPARE:
2364 rcu_node_kthread_setaffinity(rnp, cpu);
2365 rcu_cpu_kthread_setrt(cpu, 0);
2366 break;
2367 case CPU_DYING:
2368 case CPU_DYING_FROZEN:
2370 * The whole machine is "stopped" except this CPU, so we can
2371 * touch any data without introducing corruption. We send the
2372 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2374 rcu_cleanup_dying_cpu(&rcu_bh_state);
2375 rcu_cleanup_dying_cpu(&rcu_sched_state);
2376 rcu_preempt_cleanup_dying_cpu();
2377 rcu_cleanup_after_idle(cpu);
2378 break;
2379 case CPU_DEAD:
2380 case CPU_DEAD_FROZEN:
2381 case CPU_UP_CANCELED:
2382 case CPU_UP_CANCELED_FROZEN:
2383 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2384 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2385 rcu_preempt_cleanup_dead_cpu(cpu);
2386 break;
2387 default:
2388 break;
2390 trace_rcu_utilization("End CPU hotplug");
2391 return NOTIFY_OK;
2395 * This function is invoked towards the end of the scheduler's initialization
2396 * process. Before this is called, the idle task might contain
2397 * RCU read-side critical sections (during which time, this idle
2398 * task is booting the system). After this function is called, the
2399 * idle tasks are prohibited from containing RCU read-side critical
2400 * sections. This function also enables RCU lockdep checking.
2402 void rcu_scheduler_starting(void)
2404 WARN_ON(num_online_cpus() != 1);
2405 WARN_ON(nr_context_switches() > 0);
2406 rcu_scheduler_active = 1;
2410 * Compute the per-level fanout, either using the exact fanout specified
2411 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2413 #ifdef CONFIG_RCU_FANOUT_EXACT
2414 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2416 int i;
2418 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2419 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2420 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2422 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2423 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2425 int ccur;
2426 int cprv;
2427 int i;
2429 cprv = NR_CPUS;
2430 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2431 ccur = rsp->levelcnt[i];
2432 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2433 cprv = ccur;
2436 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2439 * Helper function for rcu_init() that initializes one rcu_state structure.
2441 static void __init rcu_init_one(struct rcu_state *rsp,
2442 struct rcu_data __percpu *rda)
2444 static char *buf[] = { "rcu_node_level_0",
2445 "rcu_node_level_1",
2446 "rcu_node_level_2",
2447 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2448 int cpustride = 1;
2449 int i;
2450 int j;
2451 struct rcu_node *rnp;
2453 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2455 /* Initialize the level-tracking arrays. */
2457 for (i = 1; i < NUM_RCU_LVLS; i++)
2458 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2459 rcu_init_levelspread(rsp);
2461 /* Initialize the elements themselves, starting from the leaves. */
2463 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2464 cpustride *= rsp->levelspread[i];
2465 rnp = rsp->level[i];
2466 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2467 raw_spin_lock_init(&rnp->lock);
2468 lockdep_set_class_and_name(&rnp->lock,
2469 &rcu_node_class[i], buf[i]);
2470 rnp->gpnum = 0;
2471 rnp->qsmask = 0;
2472 rnp->qsmaskinit = 0;
2473 rnp->grplo = j * cpustride;
2474 rnp->grphi = (j + 1) * cpustride - 1;
2475 if (rnp->grphi >= NR_CPUS)
2476 rnp->grphi = NR_CPUS - 1;
2477 if (i == 0) {
2478 rnp->grpnum = 0;
2479 rnp->grpmask = 0;
2480 rnp->parent = NULL;
2481 } else {
2482 rnp->grpnum = j % rsp->levelspread[i - 1];
2483 rnp->grpmask = 1UL << rnp->grpnum;
2484 rnp->parent = rsp->level[i - 1] +
2485 j / rsp->levelspread[i - 1];
2487 rnp->level = i;
2488 INIT_LIST_HEAD(&rnp->blkd_tasks);
2492 rsp->rda = rda;
2493 rnp = rsp->level[NUM_RCU_LVLS - 1];
2494 for_each_possible_cpu(i) {
2495 while (i > rnp->grphi)
2496 rnp++;
2497 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2498 rcu_boot_init_percpu_data(i, rsp);
2502 void __init rcu_init(void)
2504 int cpu;
2506 rcu_bootup_announce();
2507 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2508 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2509 __rcu_init_preempt();
2510 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
2513 * We don't need protection against CPU-hotplug here because
2514 * this is called early in boot, before either interrupts
2515 * or the scheduler are operational.
2517 cpu_notifier(rcu_cpu_notify, 0);
2518 for_each_online_cpu(cpu)
2519 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2520 check_cpu_stall_init();
2523 #include "rcutree_plugin.h"