Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / net / mac80211 / rx.c
blobcaecef870c0e44e3562cdc0a874bcfd233fc77a1
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
59 return skb;
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
87 int len;
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 8;
92 /* allocate extra bitmaps */
93 if (status->vendor_radiotap_len)
94 len += 4;
95 if (status->chains)
96 len += 4 * hweight8(status->chains);
98 if (ieee80211_have_rx_timestamp(status)) {
99 len = ALIGN(len, 8);
100 len += 8;
102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 len += 1;
105 /* antenna field, if we don't have per-chain info */
106 if (!status->chains)
107 len += 1;
109 /* padding for RX_FLAGS if necessary */
110 len = ALIGN(len, 2);
112 if (status->flag & RX_FLAG_HT) /* HT info */
113 len += 3;
115 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 len = ALIGN(len, 4);
117 len += 8;
120 if (status->flag & RX_FLAG_VHT) {
121 len = ALIGN(len, 2);
122 len += 12;
125 if (status->chains) {
126 /* antenna and antenna signal fields */
127 len += 2 * hweight8(status->chains);
130 if (status->vendor_radiotap_len) {
131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 status->vendor_radiotap_align = 1;
133 /* align standard part of vendor namespace */
134 len = ALIGN(len, 2);
135 /* allocate standard part of vendor namespace */
136 len += 6;
137 /* align vendor-defined part */
138 len = ALIGN(len, status->vendor_radiotap_align);
139 /* vendor-defined part is already in skb */
142 return len;
146 * ieee80211_add_rx_radiotap_header - add radiotap header
148 * add a radiotap header containing all the fields which the hardware provided.
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 struct sk_buff *skb,
153 struct ieee80211_rate *rate,
154 int rtap_len, bool has_fcs)
156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 struct ieee80211_radiotap_header *rthdr;
158 unsigned char *pos;
159 __le32 *it_present;
160 u32 it_present_val;
161 u16 rx_flags = 0;
162 u16 channel_flags = 0;
163 int mpdulen, chain;
164 unsigned long chains = status->chains;
166 mpdulen = skb->len;
167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 mpdulen += FCS_LEN;
170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 memset(rthdr, 0, rtap_len);
172 it_present = &rthdr->it_present;
174 /* radiotap header, set always present flags */
175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
180 if (!status->chains)
181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 it_present_val |=
185 BIT(IEEE80211_RADIOTAP_EXT) |
186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 put_unaligned_le32(it_present_val, it_present);
188 it_present++;
189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
193 if (status->vendor_radiotap_len) {
194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 BIT(IEEE80211_RADIOTAP_EXT);
196 put_unaligned_le32(it_present_val, it_present);
197 it_present++;
198 it_present_val = status->vendor_radiotap_bitmap;
201 put_unaligned_le32(it_present_val, it_present);
203 pos = (void *)(it_present + 1);
205 /* the order of the following fields is important */
207 /* IEEE80211_RADIOTAP_TSFT */
208 if (ieee80211_have_rx_timestamp(status)) {
209 /* padding */
210 while ((pos - (u8 *)rthdr) & 7)
211 *pos++ = 0;
212 put_unaligned_le64(
213 ieee80211_calculate_rx_timestamp(local, status,
214 mpdulen, 0),
215 pos);
216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 pos += 8;
220 /* IEEE80211_RADIOTAP_FLAGS */
221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 *pos |= IEEE80211_RADIOTAP_F_FCS;
223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 if (status->flag & RX_FLAG_SHORTPRE)
226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 pos++;
229 /* IEEE80211_RADIOTAP_RATE */
230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
232 * Without rate information don't add it. If we have,
233 * MCS information is a separate field in radiotap,
234 * added below. The byte here is needed as padding
235 * for the channel though, so initialise it to 0.
237 *pos = 0;
238 } else {
239 int shift = 0;
240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 if (status->flag & RX_FLAG_10MHZ)
242 shift = 1;
243 else if (status->flag & RX_FLAG_5MHZ)
244 shift = 2;
245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
247 pos++;
249 /* IEEE80211_RADIOTAP_CHANNEL */
250 put_unaligned_le16(status->freq, pos);
251 pos += 2;
252 if (status->flag & RX_FLAG_10MHZ)
253 channel_flags |= IEEE80211_CHAN_HALF;
254 else if (status->flag & RX_FLAG_5MHZ)
255 channel_flags |= IEEE80211_CHAN_QUARTER;
257 if (status->band == IEEE80211_BAND_5GHZ)
258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 else if (rate)
264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 else
266 channel_flags |= IEEE80211_CHAN_2GHZ;
267 put_unaligned_le16(channel_flags, pos);
268 pos += 2;
270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 *pos = status->signal;
274 rthdr->it_present |=
275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 pos++;
279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
281 if (!status->chains) {
282 /* IEEE80211_RADIOTAP_ANTENNA */
283 *pos = status->antenna;
284 pos++;
287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
289 /* IEEE80211_RADIOTAP_RX_FLAGS */
290 /* ensure 2 byte alignment for the 2 byte field as required */
291 if ((pos - (u8 *)rthdr) & 1)
292 *pos++ = 0;
293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 put_unaligned_le16(rx_flags, pos);
296 pos += 2;
298 if (status->flag & RX_FLAG_HT) {
299 unsigned int stbc;
301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 *pos++ = local->hw.radiotap_mcs_details;
303 *pos = 0;
304 if (status->flag & RX_FLAG_SHORT_GI)
305 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 if (status->flag & RX_FLAG_40MHZ)
307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 if (status->flag & RX_FLAG_HT_GF)
309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 pos++;
313 *pos++ = status->rate_idx;
316 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 u16 flags = 0;
319 /* ensure 4 byte alignment */
320 while ((pos - (u8 *)rthdr) & 3)
321 pos++;
322 rthdr->it_present |=
323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 put_unaligned_le32(status->ampdu_reference, pos);
325 pos += 4;
326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 put_unaligned_le16(flags, pos);
339 pos += 2;
340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 *pos++ = status->ampdu_delimiter_crc;
342 else
343 *pos++ = 0;
344 *pos++ = 0;
347 if (status->flag & RX_FLAG_VHT) {
348 u16 known = local->hw.radiotap_vht_details;
350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 /* known field - how to handle 80+80? */
352 if (status->flag & RX_FLAG_80P80MHZ)
353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 put_unaligned_le16(known, pos);
355 pos += 2;
356 /* flags */
357 if (status->flag & RX_FLAG_SHORT_GI)
358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 pos++;
360 /* bandwidth */
361 if (status->flag & RX_FLAG_80MHZ)
362 *pos++ = 4;
363 else if (status->flag & RX_FLAG_80P80MHZ)
364 *pos++ = 0; /* marked not known above */
365 else if (status->flag & RX_FLAG_160MHZ)
366 *pos++ = 11;
367 else if (status->flag & RX_FLAG_40MHZ)
368 *pos++ = 1;
369 else /* 20 MHz */
370 *pos++ = 0;
371 /* MCS/NSS */
372 *pos = (status->rate_idx << 4) | status->vht_nss;
373 pos += 4;
374 /* coding field */
375 pos++;
376 /* group ID */
377 pos++;
378 /* partial_aid */
379 pos += 2;
382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 *pos++ = status->chain_signal[chain];
384 *pos++ = chain;
387 if (status->vendor_radiotap_len) {
388 /* ensure 2 byte alignment for the vendor field as required */
389 if ((pos - (u8 *)rthdr) & 1)
390 *pos++ = 0;
391 *pos++ = status->vendor_radiotap_oui[0];
392 *pos++ = status->vendor_radiotap_oui[1];
393 *pos++ = status->vendor_radiotap_oui[2];
394 *pos++ = status->vendor_radiotap_subns;
395 put_unaligned_le16(status->vendor_radiotap_len, pos);
396 pos += 2;
397 /* align the actual payload as requested */
398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 *pos++ = 0;
404 * This function copies a received frame to all monitor interfaces and
405 * returns a cleaned-up SKB that no longer includes the FCS nor the
406 * radiotap header the driver might have added.
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 struct ieee80211_rate *rate)
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 struct ieee80211_sub_if_data *sdata;
414 int needed_headroom;
415 struct sk_buff *skb, *skb2;
416 struct net_device *prev_dev = NULL;
417 int present_fcs_len = 0;
420 * First, we may need to make a copy of the skb because
421 * (1) we need to modify it for radiotap (if not present), and
422 * (2) the other RX handlers will modify the skb we got.
424 * We don't need to, of course, if we aren't going to return
425 * the SKB because it has a bad FCS/PLCP checksum.
428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 present_fcs_len = FCS_LEN;
431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 dev_kfree_skb(origskb);
434 return NULL;
437 if (!local->monitors) {
438 if (should_drop_frame(origskb, present_fcs_len)) {
439 dev_kfree_skb(origskb);
440 return NULL;
443 return remove_monitor_info(local, origskb);
446 /* room for the radiotap header based on driver features */
447 needed_headroom = ieee80211_rx_radiotap_space(local, status);
449 if (should_drop_frame(origskb, present_fcs_len)) {
450 /* only need to expand headroom if necessary */
451 skb = origskb;
452 origskb = NULL;
455 * This shouldn't trigger often because most devices have an
456 * RX header they pull before we get here, and that should
457 * be big enough for our radiotap information. We should
458 * probably export the length to drivers so that we can have
459 * them allocate enough headroom to start with.
461 if (skb_headroom(skb) < needed_headroom &&
462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 dev_kfree_skb(skb);
464 return NULL;
466 } else {
468 * Need to make a copy and possibly remove radiotap header
469 * and FCS from the original.
471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
473 origskb = remove_monitor_info(local, origskb);
475 if (!skb)
476 return origskb;
479 /* prepend radiotap information */
480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 true);
483 skb_reset_mac_header(skb);
484 skb->ip_summed = CHECKSUM_UNNECESSARY;
485 skb->pkt_type = PACKET_OTHERHOST;
486 skb->protocol = htons(ETH_P_802_2);
488 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 continue;
492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 continue;
495 if (!ieee80211_sdata_running(sdata))
496 continue;
498 if (prev_dev) {
499 skb2 = skb_clone(skb, GFP_ATOMIC);
500 if (skb2) {
501 skb2->dev = prev_dev;
502 netif_receive_skb(skb2);
506 prev_dev = sdata->dev;
507 sdata->dev->stats.rx_packets++;
508 sdata->dev->stats.rx_bytes += skb->len;
511 if (prev_dev) {
512 skb->dev = prev_dev;
513 netif_receive_skb(skb);
514 } else
515 dev_kfree_skb(skb);
517 return origskb;
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 int tid, seqno_idx, security_idx;
526 /* does the frame have a qos control field? */
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 u8 *qc = ieee80211_get_qos_ctl(hdr);
529 /* frame has qos control */
530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 status->rx_flags |= IEEE80211_RX_AMSDU;
534 seqno_idx = tid;
535 security_idx = tid;
536 } else {
538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
540 * Sequence numbers for management frames, QoS data
541 * frames with a broadcast/multicast address in the
542 * Address 1 field, and all non-QoS data frames sent
543 * by QoS STAs are assigned using an additional single
544 * modulo-4096 counter, [...]
546 * We also use that counter for non-QoS STAs.
548 seqno_idx = IEEE80211_NUM_TIDS;
549 security_idx = 0;
550 if (ieee80211_is_mgmt(hdr->frame_control))
551 security_idx = IEEE80211_NUM_TIDS;
552 tid = 0;
555 rx->seqno_idx = seqno_idx;
556 rx->security_idx = security_idx;
557 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 * For now, set skb->priority to 0 for other cases. */
559 rx->skb->priority = (tid > 7) ? 0 : tid;
563 * DOC: Packet alignment
565 * Drivers always need to pass packets that are aligned to two-byte boundaries
566 * to the stack.
568 * Additionally, should, if possible, align the payload data in a way that
569 * guarantees that the contained IP header is aligned to a four-byte
570 * boundary. In the case of regular frames, this simply means aligning the
571 * payload to a four-byte boundary (because either the IP header is directly
572 * contained, or IV/RFC1042 headers that have a length divisible by four are
573 * in front of it). If the payload data is not properly aligned and the
574 * architecture doesn't support efficient unaligned operations, mac80211
575 * will align the data.
577 * With A-MSDU frames, however, the payload data address must yield two modulo
578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579 * push the IP header further back to a multiple of four again. Thankfully, the
580 * specs were sane enough this time around to require padding each A-MSDU
581 * subframe to a length that is a multiple of four.
583 * Padding like Atheros hardware adds which is between the 802.11 header and
584 * the payload is not supported, the driver is required to move the 802.11
585 * header to be directly in front of the payload in that case.
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 WARN_ONCE((unsigned long)rx->skb->data & 1,
591 "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
596 /* rx handlers */
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 return 0;
605 return ieee80211_is_robust_mgmt_frame(hdr);
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 return 0;
616 return ieee80211_is_robust_mgmt_frame(hdr);
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 struct ieee80211_mmie *mmie;
626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 return -1;
629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 return -1; /* not a robust management frame */
632 mmie = (struct ieee80211_mmie *)
633 (skb->data + skb->len - sizeof(*mmie));
634 if (mmie->element_id != WLAN_EID_MMIE ||
635 mmie->length != sizeof(*mmie) - 2)
636 return -1;
638 return le16_to_cpu(mmie->key_id);
641 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
643 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
644 char *dev_addr = rx->sdata->vif.addr;
646 if (ieee80211_is_data(hdr->frame_control)) {
647 if (is_multicast_ether_addr(hdr->addr1)) {
648 if (ieee80211_has_tods(hdr->frame_control) ||
649 !ieee80211_has_fromds(hdr->frame_control))
650 return RX_DROP_MONITOR;
651 if (ether_addr_equal(hdr->addr3, dev_addr))
652 return RX_DROP_MONITOR;
653 } else {
654 if (!ieee80211_has_a4(hdr->frame_control))
655 return RX_DROP_MONITOR;
656 if (ether_addr_equal(hdr->addr4, dev_addr))
657 return RX_DROP_MONITOR;
661 /* If there is not an established peer link and this is not a peer link
662 * establisment frame, beacon or probe, drop the frame.
665 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
666 struct ieee80211_mgmt *mgmt;
668 if (!ieee80211_is_mgmt(hdr->frame_control))
669 return RX_DROP_MONITOR;
671 if (ieee80211_is_action(hdr->frame_control)) {
672 u8 category;
674 /* make sure category field is present */
675 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
676 return RX_DROP_MONITOR;
678 mgmt = (struct ieee80211_mgmt *)hdr;
679 category = mgmt->u.action.category;
680 if (category != WLAN_CATEGORY_MESH_ACTION &&
681 category != WLAN_CATEGORY_SELF_PROTECTED)
682 return RX_DROP_MONITOR;
683 return RX_CONTINUE;
686 if (ieee80211_is_probe_req(hdr->frame_control) ||
687 ieee80211_is_probe_resp(hdr->frame_control) ||
688 ieee80211_is_beacon(hdr->frame_control) ||
689 ieee80211_is_auth(hdr->frame_control))
690 return RX_CONTINUE;
692 return RX_DROP_MONITOR;
695 return RX_CONTINUE;
698 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
699 struct tid_ampdu_rx *tid_agg_rx,
700 int index,
701 struct sk_buff_head *frames)
703 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
704 struct ieee80211_rx_status *status;
706 lockdep_assert_held(&tid_agg_rx->reorder_lock);
708 if (!skb)
709 goto no_frame;
711 /* release the frame from the reorder ring buffer */
712 tid_agg_rx->stored_mpdu_num--;
713 tid_agg_rx->reorder_buf[index] = NULL;
714 status = IEEE80211_SKB_RXCB(skb);
715 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
716 __skb_queue_tail(frames, skb);
718 no_frame:
719 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
722 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
723 struct tid_ampdu_rx *tid_agg_rx,
724 u16 head_seq_num,
725 struct sk_buff_head *frames)
727 int index;
729 lockdep_assert_held(&tid_agg_rx->reorder_lock);
731 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
732 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
733 tid_agg_rx->ssn) %
734 tid_agg_rx->buf_size;
735 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
736 frames);
741 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
742 * the skb was added to the buffer longer than this time ago, the earlier
743 * frames that have not yet been received are assumed to be lost and the skb
744 * can be released for processing. This may also release other skb's from the
745 * reorder buffer if there are no additional gaps between the frames.
747 * Callers must hold tid_agg_rx->reorder_lock.
749 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
751 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
752 struct tid_ampdu_rx *tid_agg_rx,
753 struct sk_buff_head *frames)
755 int index, j;
757 lockdep_assert_held(&tid_agg_rx->reorder_lock);
759 /* release the buffer until next missing frame */
760 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
761 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
762 if (!tid_agg_rx->reorder_buf[index] &&
763 tid_agg_rx->stored_mpdu_num) {
765 * No buffers ready to be released, but check whether any
766 * frames in the reorder buffer have timed out.
768 int skipped = 1;
769 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
770 j = (j + 1) % tid_agg_rx->buf_size) {
771 if (!tid_agg_rx->reorder_buf[j]) {
772 skipped++;
773 continue;
775 if (skipped &&
776 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
777 HT_RX_REORDER_BUF_TIMEOUT))
778 goto set_release_timer;
780 ht_dbg_ratelimited(sdata,
781 "release an RX reorder frame due to timeout on earlier frames\n");
782 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
783 frames);
786 * Increment the head seq# also for the skipped slots.
788 tid_agg_rx->head_seq_num =
789 (tid_agg_rx->head_seq_num +
790 skipped) & IEEE80211_SN_MASK;
791 skipped = 0;
793 } else while (tid_agg_rx->reorder_buf[index]) {
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
797 tid_agg_rx->ssn) %
798 tid_agg_rx->buf_size;
801 if (tid_agg_rx->stored_mpdu_num) {
802 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
803 tid_agg_rx->ssn) %
804 tid_agg_rx->buf_size;
806 for (; j != (index - 1) % tid_agg_rx->buf_size;
807 j = (j + 1) % tid_agg_rx->buf_size) {
808 if (tid_agg_rx->reorder_buf[j])
809 break;
812 set_release_timer:
814 mod_timer(&tid_agg_rx->reorder_timer,
815 tid_agg_rx->reorder_time[j] + 1 +
816 HT_RX_REORDER_BUF_TIMEOUT);
817 } else {
818 del_timer(&tid_agg_rx->reorder_timer);
823 * As this function belongs to the RX path it must be under
824 * rcu_read_lock protection. It returns false if the frame
825 * can be processed immediately, true if it was consumed.
827 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
828 struct tid_ampdu_rx *tid_agg_rx,
829 struct sk_buff *skb,
830 struct sk_buff_head *frames)
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
833 u16 sc = le16_to_cpu(hdr->seq_ctrl);
834 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
835 u16 head_seq_num, buf_size;
836 int index;
837 bool ret = true;
839 spin_lock(&tid_agg_rx->reorder_lock);
841 buf_size = tid_agg_rx->buf_size;
842 head_seq_num = tid_agg_rx->head_seq_num;
844 /* frame with out of date sequence number */
845 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
846 dev_kfree_skb(skb);
847 goto out;
851 * If frame the sequence number exceeds our buffering window
852 * size release some previous frames to make room for this one.
854 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
855 head_seq_num = ieee80211_sn_inc(
856 ieee80211_sn_sub(mpdu_seq_num, buf_size));
857 /* release stored frames up to new head to stack */
858 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
859 head_seq_num, frames);
862 /* Now the new frame is always in the range of the reordering buffer */
864 index = ieee80211_sn_sub(mpdu_seq_num,
865 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
867 /* check if we already stored this frame */
868 if (tid_agg_rx->reorder_buf[index]) {
869 dev_kfree_skb(skb);
870 goto out;
874 * If the current MPDU is in the right order and nothing else
875 * is stored we can process it directly, no need to buffer it.
876 * If it is first but there's something stored, we may be able
877 * to release frames after this one.
879 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
880 tid_agg_rx->stored_mpdu_num == 0) {
881 tid_agg_rx->head_seq_num =
882 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
883 ret = false;
884 goto out;
887 /* put the frame in the reordering buffer */
888 tid_agg_rx->reorder_buf[index] = skb;
889 tid_agg_rx->reorder_time[index] = jiffies;
890 tid_agg_rx->stored_mpdu_num++;
891 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
893 out:
894 spin_unlock(&tid_agg_rx->reorder_lock);
895 return ret;
899 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
900 * true if the MPDU was buffered, false if it should be processed.
902 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
903 struct sk_buff_head *frames)
905 struct sk_buff *skb = rx->skb;
906 struct ieee80211_local *local = rx->local;
907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
908 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
909 struct sta_info *sta = rx->sta;
910 struct tid_ampdu_rx *tid_agg_rx;
911 u16 sc;
912 u8 tid, ack_policy;
914 if (!ieee80211_is_data_qos(hdr->frame_control))
915 goto dont_reorder;
918 * filter the QoS data rx stream according to
919 * STA/TID and check if this STA/TID is on aggregation
922 if (!sta)
923 goto dont_reorder;
925 ack_policy = *ieee80211_get_qos_ctl(hdr) &
926 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
927 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
929 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
930 if (!tid_agg_rx)
931 goto dont_reorder;
933 /* qos null data frames are excluded */
934 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
935 goto dont_reorder;
937 /* not part of a BA session */
938 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
939 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
940 goto dont_reorder;
942 /* not actually part of this BA session */
943 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
944 goto dont_reorder;
946 /* new, potentially un-ordered, ampdu frame - process it */
948 /* reset session timer */
949 if (tid_agg_rx->timeout)
950 tid_agg_rx->last_rx = jiffies;
952 /* if this mpdu is fragmented - terminate rx aggregation session */
953 sc = le16_to_cpu(hdr->seq_ctrl);
954 if (sc & IEEE80211_SCTL_FRAG) {
955 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
956 skb_queue_tail(&rx->sdata->skb_queue, skb);
957 ieee80211_queue_work(&local->hw, &rx->sdata->work);
958 return;
962 * No locking needed -- we will only ever process one
963 * RX packet at a time, and thus own tid_agg_rx. All
964 * other code manipulating it needs to (and does) make
965 * sure that we cannot get to it any more before doing
966 * anything with it.
968 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
969 frames))
970 return;
972 dont_reorder:
973 __skb_queue_tail(frames, skb);
976 static ieee80211_rx_result debug_noinline
977 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
983 * Drop duplicate 802.11 retransmissions
984 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
986 if (rx->skb->len >= 24 && rx->sta &&
987 !ieee80211_is_ctl(hdr->frame_control) &&
988 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
989 !is_multicast_ether_addr(hdr->addr1)) {
990 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
991 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
992 hdr->seq_ctrl)) {
993 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
994 rx->local->dot11FrameDuplicateCount++;
995 rx->sta->num_duplicates++;
997 return RX_DROP_UNUSABLE;
998 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
999 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1003 if (unlikely(rx->skb->len < 16)) {
1004 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1005 return RX_DROP_MONITOR;
1008 /* Drop disallowed frame classes based on STA auth/assoc state;
1009 * IEEE 802.11, Chap 5.5.
1011 * mac80211 filters only based on association state, i.e. it drops
1012 * Class 3 frames from not associated stations. hostapd sends
1013 * deauth/disassoc frames when needed. In addition, hostapd is
1014 * responsible for filtering on both auth and assoc states.
1017 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1018 return ieee80211_rx_mesh_check(rx);
1020 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1021 ieee80211_is_pspoll(hdr->frame_control)) &&
1022 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1023 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1024 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1026 * accept port control frames from the AP even when it's not
1027 * yet marked ASSOC to prevent a race where we don't set the
1028 * assoc bit quickly enough before it sends the first frame
1030 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1031 ieee80211_is_data_present(hdr->frame_control)) {
1032 unsigned int hdrlen;
1033 __be16 ethertype;
1035 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1037 if (rx->skb->len < hdrlen + 8)
1038 return RX_DROP_MONITOR;
1040 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1041 if (ethertype == rx->sdata->control_port_protocol)
1042 return RX_CONTINUE;
1045 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1046 cfg80211_rx_spurious_frame(rx->sdata->dev,
1047 hdr->addr2,
1048 GFP_ATOMIC))
1049 return RX_DROP_UNUSABLE;
1051 return RX_DROP_MONITOR;
1054 return RX_CONTINUE;
1058 static ieee80211_rx_result debug_noinline
1059 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1061 struct ieee80211_local *local;
1062 struct ieee80211_hdr *hdr;
1063 struct sk_buff *skb;
1065 local = rx->local;
1066 skb = rx->skb;
1067 hdr = (struct ieee80211_hdr *) skb->data;
1069 if (!local->pspolling)
1070 return RX_CONTINUE;
1072 if (!ieee80211_has_fromds(hdr->frame_control))
1073 /* this is not from AP */
1074 return RX_CONTINUE;
1076 if (!ieee80211_is_data(hdr->frame_control))
1077 return RX_CONTINUE;
1079 if (!ieee80211_has_moredata(hdr->frame_control)) {
1080 /* AP has no more frames buffered for us */
1081 local->pspolling = false;
1082 return RX_CONTINUE;
1085 /* more data bit is set, let's request a new frame from the AP */
1086 ieee80211_send_pspoll(local, rx->sdata);
1088 return RX_CONTINUE;
1091 static void sta_ps_start(struct sta_info *sta)
1093 struct ieee80211_sub_if_data *sdata = sta->sdata;
1094 struct ieee80211_local *local = sdata->local;
1095 struct ps_data *ps;
1097 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1098 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1099 ps = &sdata->bss->ps;
1100 else
1101 return;
1103 atomic_inc(&ps->num_sta_ps);
1104 set_sta_flag(sta, WLAN_STA_PS_STA);
1105 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1106 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1107 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1108 sta->sta.addr, sta->sta.aid);
1111 static void sta_ps_end(struct sta_info *sta)
1113 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1114 sta->sta.addr, sta->sta.aid);
1116 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1117 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1118 sta->sta.addr, sta->sta.aid);
1119 return;
1122 ieee80211_sta_ps_deliver_wakeup(sta);
1125 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1127 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1128 bool in_ps;
1130 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1132 /* Don't let the same PS state be set twice */
1133 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1134 if ((start && in_ps) || (!start && !in_ps))
1135 return -EINVAL;
1137 if (start)
1138 sta_ps_start(sta_inf);
1139 else
1140 sta_ps_end(sta_inf);
1142 return 0;
1144 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1146 static ieee80211_rx_result debug_noinline
1147 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1149 struct ieee80211_sub_if_data *sdata = rx->sdata;
1150 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1151 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1152 int tid, ac;
1154 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1155 return RX_CONTINUE;
1157 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1158 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1159 return RX_CONTINUE;
1162 * The device handles station powersave, so don't do anything about
1163 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1164 * it to mac80211 since they're handled.)
1166 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1167 return RX_CONTINUE;
1170 * Don't do anything if the station isn't already asleep. In
1171 * the uAPSD case, the station will probably be marked asleep,
1172 * in the PS-Poll case the station must be confused ...
1174 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1175 return RX_CONTINUE;
1177 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1178 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1179 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1180 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1181 else
1182 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1185 /* Free PS Poll skb here instead of returning RX_DROP that would
1186 * count as an dropped frame. */
1187 dev_kfree_skb(rx->skb);
1189 return RX_QUEUED;
1190 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1191 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1192 ieee80211_has_pm(hdr->frame_control) &&
1193 (ieee80211_is_data_qos(hdr->frame_control) ||
1194 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1195 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1196 ac = ieee802_1d_to_ac[tid & 7];
1199 * If this AC is not trigger-enabled do nothing.
1201 * NB: This could/should check a separate bitmap of trigger-
1202 * enabled queues, but for now we only implement uAPSD w/o
1203 * TSPEC changes to the ACs, so they're always the same.
1205 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1206 return RX_CONTINUE;
1208 /* if we are in a service period, do nothing */
1209 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1210 return RX_CONTINUE;
1212 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1213 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1214 else
1215 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1218 return RX_CONTINUE;
1221 static ieee80211_rx_result debug_noinline
1222 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1224 struct sta_info *sta = rx->sta;
1225 struct sk_buff *skb = rx->skb;
1226 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1227 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1228 int i;
1230 if (!sta)
1231 return RX_CONTINUE;
1234 * Update last_rx only for IBSS packets which are for the current
1235 * BSSID and for station already AUTHORIZED to avoid keeping the
1236 * current IBSS network alive in cases where other STAs start
1237 * using different BSSID. This will also give the station another
1238 * chance to restart the authentication/authorization in case
1239 * something went wrong the first time.
1241 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1242 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1243 NL80211_IFTYPE_ADHOC);
1244 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1245 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1246 sta->last_rx = jiffies;
1247 if (ieee80211_is_data(hdr->frame_control)) {
1248 sta->last_rx_rate_idx = status->rate_idx;
1249 sta->last_rx_rate_flag = status->flag;
1250 sta->last_rx_rate_vht_nss = status->vht_nss;
1253 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1255 * Mesh beacons will update last_rx when if they are found to
1256 * match the current local configuration when processed.
1258 sta->last_rx = jiffies;
1259 if (ieee80211_is_data(hdr->frame_control)) {
1260 sta->last_rx_rate_idx = status->rate_idx;
1261 sta->last_rx_rate_flag = status->flag;
1262 sta->last_rx_rate_vht_nss = status->vht_nss;
1266 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1267 return RX_CONTINUE;
1269 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1270 ieee80211_sta_rx_notify(rx->sdata, hdr);
1272 sta->rx_fragments++;
1273 sta->rx_bytes += rx->skb->len;
1274 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1275 sta->last_signal = status->signal;
1276 ewma_add(&sta->avg_signal, -status->signal);
1279 if (status->chains) {
1280 sta->chains = status->chains;
1281 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1282 int signal = status->chain_signal[i];
1284 if (!(status->chains & BIT(i)))
1285 continue;
1287 sta->chain_signal_last[i] = signal;
1288 ewma_add(&sta->chain_signal_avg[i], -signal);
1293 * Change STA power saving mode only at the end of a frame
1294 * exchange sequence.
1296 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1297 !ieee80211_has_morefrags(hdr->frame_control) &&
1298 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1299 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1300 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1301 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1303 * Ignore doze->wake transitions that are
1304 * indicated by non-data frames, the standard
1305 * is unclear here, but for example going to
1306 * PS mode and then scanning would cause a
1307 * doze->wake transition for the probe request,
1308 * and that is clearly undesirable.
1310 if (ieee80211_is_data(hdr->frame_control) &&
1311 !ieee80211_has_pm(hdr->frame_control))
1312 sta_ps_end(sta);
1313 } else {
1314 if (ieee80211_has_pm(hdr->frame_control))
1315 sta_ps_start(sta);
1319 /* mesh power save support */
1320 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1321 ieee80211_mps_rx_h_sta_process(sta, hdr);
1324 * Drop (qos-)data::nullfunc frames silently, since they
1325 * are used only to control station power saving mode.
1327 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1328 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1329 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1332 * If we receive a 4-addr nullfunc frame from a STA
1333 * that was not moved to a 4-addr STA vlan yet send
1334 * the event to userspace and for older hostapd drop
1335 * the frame to the monitor interface.
1337 if (ieee80211_has_a4(hdr->frame_control) &&
1338 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1339 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1340 !rx->sdata->u.vlan.sta))) {
1341 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1342 cfg80211_rx_unexpected_4addr_frame(
1343 rx->sdata->dev, sta->sta.addr,
1344 GFP_ATOMIC);
1345 return RX_DROP_MONITOR;
1348 * Update counter and free packet here to avoid
1349 * counting this as a dropped packed.
1351 sta->rx_packets++;
1352 dev_kfree_skb(rx->skb);
1353 return RX_QUEUED;
1356 return RX_CONTINUE;
1357 } /* ieee80211_rx_h_sta_process */
1359 static ieee80211_rx_result debug_noinline
1360 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1362 struct sk_buff *skb = rx->skb;
1363 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1365 int keyidx;
1366 int hdrlen;
1367 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1368 struct ieee80211_key *sta_ptk = NULL;
1369 int mmie_keyidx = -1;
1370 __le16 fc;
1373 * Key selection 101
1375 * There are four types of keys:
1376 * - GTK (group keys)
1377 * - IGTK (group keys for management frames)
1378 * - PTK (pairwise keys)
1379 * - STK (station-to-station pairwise keys)
1381 * When selecting a key, we have to distinguish between multicast
1382 * (including broadcast) and unicast frames, the latter can only
1383 * use PTKs and STKs while the former always use GTKs and IGTKs.
1384 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1385 * unicast frames can also use key indices like GTKs. Hence, if we
1386 * don't have a PTK/STK we check the key index for a WEP key.
1388 * Note that in a regular BSS, multicast frames are sent by the
1389 * AP only, associated stations unicast the frame to the AP first
1390 * which then multicasts it on their behalf.
1392 * There is also a slight problem in IBSS mode: GTKs are negotiated
1393 * with each station, that is something we don't currently handle.
1394 * The spec seems to expect that one negotiates the same key with
1395 * every station but there's no such requirement; VLANs could be
1396 * possible.
1400 * No point in finding a key and decrypting if the frame is neither
1401 * addressed to us nor a multicast frame.
1403 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1404 return RX_CONTINUE;
1406 /* start without a key */
1407 rx->key = NULL;
1409 if (rx->sta)
1410 sta_ptk = rcu_dereference(rx->sta->ptk);
1412 fc = hdr->frame_control;
1414 if (!ieee80211_has_protected(fc))
1415 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1417 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1418 rx->key = sta_ptk;
1419 if ((status->flag & RX_FLAG_DECRYPTED) &&
1420 (status->flag & RX_FLAG_IV_STRIPPED))
1421 return RX_CONTINUE;
1422 /* Skip decryption if the frame is not protected. */
1423 if (!ieee80211_has_protected(fc))
1424 return RX_CONTINUE;
1425 } else if (mmie_keyidx >= 0) {
1426 /* Broadcast/multicast robust management frame / BIP */
1427 if ((status->flag & RX_FLAG_DECRYPTED) &&
1428 (status->flag & RX_FLAG_IV_STRIPPED))
1429 return RX_CONTINUE;
1431 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1432 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1433 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1434 if (rx->sta)
1435 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1436 if (!rx->key)
1437 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1438 } else if (!ieee80211_has_protected(fc)) {
1440 * The frame was not protected, so skip decryption. However, we
1441 * need to set rx->key if there is a key that could have been
1442 * used so that the frame may be dropped if encryption would
1443 * have been expected.
1445 struct ieee80211_key *key = NULL;
1446 struct ieee80211_sub_if_data *sdata = rx->sdata;
1447 int i;
1449 if (ieee80211_is_mgmt(fc) &&
1450 is_multicast_ether_addr(hdr->addr1) &&
1451 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1452 rx->key = key;
1453 else {
1454 if (rx->sta) {
1455 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1456 key = rcu_dereference(rx->sta->gtk[i]);
1457 if (key)
1458 break;
1461 if (!key) {
1462 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1463 key = rcu_dereference(sdata->keys[i]);
1464 if (key)
1465 break;
1468 if (key)
1469 rx->key = key;
1471 return RX_CONTINUE;
1472 } else {
1473 u8 keyid;
1475 * The device doesn't give us the IV so we won't be
1476 * able to look up the key. That's ok though, we
1477 * don't need to decrypt the frame, we just won't
1478 * be able to keep statistics accurate.
1479 * Except for key threshold notifications, should
1480 * we somehow allow the driver to tell us which key
1481 * the hardware used if this flag is set?
1483 if ((status->flag & RX_FLAG_DECRYPTED) &&
1484 (status->flag & RX_FLAG_IV_STRIPPED))
1485 return RX_CONTINUE;
1487 hdrlen = ieee80211_hdrlen(fc);
1489 if (rx->skb->len < 8 + hdrlen)
1490 return RX_DROP_UNUSABLE; /* TODO: count this? */
1493 * no need to call ieee80211_wep_get_keyidx,
1494 * it verifies a bunch of things we've done already
1496 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1497 keyidx = keyid >> 6;
1499 /* check per-station GTK first, if multicast packet */
1500 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1501 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1503 /* if not found, try default key */
1504 if (!rx->key) {
1505 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1508 * RSNA-protected unicast frames should always be
1509 * sent with pairwise or station-to-station keys,
1510 * but for WEP we allow using a key index as well.
1512 if (rx->key &&
1513 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1514 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1515 !is_multicast_ether_addr(hdr->addr1))
1516 rx->key = NULL;
1520 if (rx->key) {
1521 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1522 return RX_DROP_MONITOR;
1524 rx->key->tx_rx_count++;
1525 /* TODO: add threshold stuff again */
1526 } else {
1527 return RX_DROP_MONITOR;
1530 switch (rx->key->conf.cipher) {
1531 case WLAN_CIPHER_SUITE_WEP40:
1532 case WLAN_CIPHER_SUITE_WEP104:
1533 result = ieee80211_crypto_wep_decrypt(rx);
1534 break;
1535 case WLAN_CIPHER_SUITE_TKIP:
1536 result = ieee80211_crypto_tkip_decrypt(rx);
1537 break;
1538 case WLAN_CIPHER_SUITE_CCMP:
1539 result = ieee80211_crypto_ccmp_decrypt(rx);
1540 break;
1541 case WLAN_CIPHER_SUITE_AES_CMAC:
1542 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1543 break;
1544 default:
1546 * We can reach here only with HW-only algorithms
1547 * but why didn't it decrypt the frame?!
1549 return RX_DROP_UNUSABLE;
1552 /* the hdr variable is invalid after the decrypt handlers */
1554 /* either the frame has been decrypted or will be dropped */
1555 status->flag |= RX_FLAG_DECRYPTED;
1557 return result;
1560 static inline struct ieee80211_fragment_entry *
1561 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1562 unsigned int frag, unsigned int seq, int rx_queue,
1563 struct sk_buff **skb)
1565 struct ieee80211_fragment_entry *entry;
1567 entry = &sdata->fragments[sdata->fragment_next++];
1568 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1569 sdata->fragment_next = 0;
1571 if (!skb_queue_empty(&entry->skb_list))
1572 __skb_queue_purge(&entry->skb_list);
1574 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1575 *skb = NULL;
1576 entry->first_frag_time = jiffies;
1577 entry->seq = seq;
1578 entry->rx_queue = rx_queue;
1579 entry->last_frag = frag;
1580 entry->ccmp = 0;
1581 entry->extra_len = 0;
1583 return entry;
1586 static inline struct ieee80211_fragment_entry *
1587 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1588 unsigned int frag, unsigned int seq,
1589 int rx_queue, struct ieee80211_hdr *hdr)
1591 struct ieee80211_fragment_entry *entry;
1592 int i, idx;
1594 idx = sdata->fragment_next;
1595 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1596 struct ieee80211_hdr *f_hdr;
1598 idx--;
1599 if (idx < 0)
1600 idx = IEEE80211_FRAGMENT_MAX - 1;
1602 entry = &sdata->fragments[idx];
1603 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1604 entry->rx_queue != rx_queue ||
1605 entry->last_frag + 1 != frag)
1606 continue;
1608 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1611 * Check ftype and addresses are equal, else check next fragment
1613 if (((hdr->frame_control ^ f_hdr->frame_control) &
1614 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1615 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1616 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1617 continue;
1619 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1620 __skb_queue_purge(&entry->skb_list);
1621 continue;
1623 return entry;
1626 return NULL;
1629 static ieee80211_rx_result debug_noinline
1630 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1632 struct ieee80211_hdr *hdr;
1633 u16 sc;
1634 __le16 fc;
1635 unsigned int frag, seq;
1636 struct ieee80211_fragment_entry *entry;
1637 struct sk_buff *skb;
1638 struct ieee80211_rx_status *status;
1640 hdr = (struct ieee80211_hdr *)rx->skb->data;
1641 fc = hdr->frame_control;
1643 if (ieee80211_is_ctl(fc))
1644 return RX_CONTINUE;
1646 sc = le16_to_cpu(hdr->seq_ctrl);
1647 frag = sc & IEEE80211_SCTL_FRAG;
1649 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1650 is_multicast_ether_addr(hdr->addr1))) {
1651 /* not fragmented */
1652 goto out;
1654 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1656 if (skb_linearize(rx->skb))
1657 return RX_DROP_UNUSABLE;
1660 * skb_linearize() might change the skb->data and
1661 * previously cached variables (in this case, hdr) need to
1662 * be refreshed with the new data.
1664 hdr = (struct ieee80211_hdr *)rx->skb->data;
1665 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1667 if (frag == 0) {
1668 /* This is the first fragment of a new frame. */
1669 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1670 rx->seqno_idx, &(rx->skb));
1671 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1672 ieee80211_has_protected(fc)) {
1673 int queue = rx->security_idx;
1674 /* Store CCMP PN so that we can verify that the next
1675 * fragment has a sequential PN value. */
1676 entry->ccmp = 1;
1677 memcpy(entry->last_pn,
1678 rx->key->u.ccmp.rx_pn[queue],
1679 IEEE80211_CCMP_PN_LEN);
1681 return RX_QUEUED;
1684 /* This is a fragment for a frame that should already be pending in
1685 * fragment cache. Add this fragment to the end of the pending entry.
1687 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1688 rx->seqno_idx, hdr);
1689 if (!entry) {
1690 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1691 return RX_DROP_MONITOR;
1694 /* Verify that MPDUs within one MSDU have sequential PN values.
1695 * (IEEE 802.11i, 8.3.3.4.5) */
1696 if (entry->ccmp) {
1697 int i;
1698 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1699 int queue;
1700 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1701 return RX_DROP_UNUSABLE;
1702 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1703 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1704 pn[i]++;
1705 if (pn[i])
1706 break;
1708 queue = rx->security_idx;
1709 rpn = rx->key->u.ccmp.rx_pn[queue];
1710 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1711 return RX_DROP_UNUSABLE;
1712 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1715 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1716 __skb_queue_tail(&entry->skb_list, rx->skb);
1717 entry->last_frag = frag;
1718 entry->extra_len += rx->skb->len;
1719 if (ieee80211_has_morefrags(fc)) {
1720 rx->skb = NULL;
1721 return RX_QUEUED;
1724 rx->skb = __skb_dequeue(&entry->skb_list);
1725 if (skb_tailroom(rx->skb) < entry->extra_len) {
1726 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1727 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1728 GFP_ATOMIC))) {
1729 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1730 __skb_queue_purge(&entry->skb_list);
1731 return RX_DROP_UNUSABLE;
1734 while ((skb = __skb_dequeue(&entry->skb_list))) {
1735 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1736 dev_kfree_skb(skb);
1739 /* Complete frame has been reassembled - process it now */
1740 status = IEEE80211_SKB_RXCB(rx->skb);
1741 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1743 out:
1744 if (rx->sta)
1745 rx->sta->rx_packets++;
1746 if (is_multicast_ether_addr(hdr->addr1))
1747 rx->local->dot11MulticastReceivedFrameCount++;
1748 else
1749 ieee80211_led_rx(rx->local);
1750 return RX_CONTINUE;
1753 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1755 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1756 return -EACCES;
1758 return 0;
1761 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1763 struct sk_buff *skb = rx->skb;
1764 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1767 * Pass through unencrypted frames if the hardware has
1768 * decrypted them already.
1770 if (status->flag & RX_FLAG_DECRYPTED)
1771 return 0;
1773 /* Drop unencrypted frames if key is set. */
1774 if (unlikely(!ieee80211_has_protected(fc) &&
1775 !ieee80211_is_nullfunc(fc) &&
1776 ieee80211_is_data(fc) &&
1777 (rx->key || rx->sdata->drop_unencrypted)))
1778 return -EACCES;
1780 return 0;
1783 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1785 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1787 __le16 fc = hdr->frame_control;
1790 * Pass through unencrypted frames if the hardware has
1791 * decrypted them already.
1793 if (status->flag & RX_FLAG_DECRYPTED)
1794 return 0;
1796 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1797 if (unlikely(!ieee80211_has_protected(fc) &&
1798 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1799 rx->key)) {
1800 if (ieee80211_is_deauth(fc) ||
1801 ieee80211_is_disassoc(fc))
1802 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1803 rx->skb->data,
1804 rx->skb->len);
1805 return -EACCES;
1807 /* BIP does not use Protected field, so need to check MMIE */
1808 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1809 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1810 if (ieee80211_is_deauth(fc) ||
1811 ieee80211_is_disassoc(fc))
1812 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1813 rx->skb->data,
1814 rx->skb->len);
1815 return -EACCES;
1818 * When using MFP, Action frames are not allowed prior to
1819 * having configured keys.
1821 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1822 ieee80211_is_robust_mgmt_frame(
1823 (struct ieee80211_hdr *) rx->skb->data)))
1824 return -EACCES;
1827 return 0;
1830 static int
1831 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1833 struct ieee80211_sub_if_data *sdata = rx->sdata;
1834 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1835 bool check_port_control = false;
1836 struct ethhdr *ehdr;
1837 int ret;
1839 *port_control = false;
1840 if (ieee80211_has_a4(hdr->frame_control) &&
1841 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1842 return -1;
1844 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1845 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1847 if (!sdata->u.mgd.use_4addr)
1848 return -1;
1849 else
1850 check_port_control = true;
1853 if (is_multicast_ether_addr(hdr->addr1) &&
1854 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1855 return -1;
1857 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1858 if (ret < 0)
1859 return ret;
1861 ehdr = (struct ethhdr *) rx->skb->data;
1862 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1863 *port_control = true;
1864 else if (check_port_control)
1865 return -1;
1867 return 0;
1871 * requires that rx->skb is a frame with ethernet header
1873 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1875 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1876 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1877 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1880 * Allow EAPOL frames to us/the PAE group address regardless
1881 * of whether the frame was encrypted or not.
1883 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1884 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1885 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1886 return true;
1888 if (ieee80211_802_1x_port_control(rx) ||
1889 ieee80211_drop_unencrypted(rx, fc))
1890 return false;
1892 return true;
1896 * requires that rx->skb is a frame with ethernet header
1898 static void
1899 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1901 struct ieee80211_sub_if_data *sdata = rx->sdata;
1902 struct net_device *dev = sdata->dev;
1903 struct sk_buff *skb, *xmit_skb;
1904 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1905 struct sta_info *dsta;
1906 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1908 skb = rx->skb;
1909 xmit_skb = NULL;
1911 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1912 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1913 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1914 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1915 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1916 if (is_multicast_ether_addr(ehdr->h_dest)) {
1918 * send multicast frames both to higher layers in
1919 * local net stack and back to the wireless medium
1921 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1922 if (!xmit_skb)
1923 net_info_ratelimited("%s: failed to clone multicast frame\n",
1924 dev->name);
1925 } else {
1926 dsta = sta_info_get(sdata, skb->data);
1927 if (dsta) {
1929 * The destination station is associated to
1930 * this AP (in this VLAN), so send the frame
1931 * directly to it and do not pass it to local
1932 * net stack.
1934 xmit_skb = skb;
1935 skb = NULL;
1940 if (skb) {
1941 int align __maybe_unused;
1943 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1945 * 'align' will only take the values 0 or 2 here
1946 * since all frames are required to be aligned
1947 * to 2-byte boundaries when being passed to
1948 * mac80211; the code here works just as well if
1949 * that isn't true, but mac80211 assumes it can
1950 * access fields as 2-byte aligned (e.g. for
1951 * compare_ether_addr)
1953 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1954 if (align) {
1955 if (WARN_ON(skb_headroom(skb) < 3)) {
1956 dev_kfree_skb(skb);
1957 skb = NULL;
1958 } else {
1959 u8 *data = skb->data;
1960 size_t len = skb_headlen(skb);
1961 skb->data -= align;
1962 memmove(skb->data, data, len);
1963 skb_set_tail_pointer(skb, len);
1966 #endif
1968 if (skb) {
1969 /* deliver to local stack */
1970 skb->protocol = eth_type_trans(skb, dev);
1971 memset(skb->cb, 0, sizeof(skb->cb));
1972 netif_receive_skb(skb);
1976 if (xmit_skb) {
1978 * Send to wireless media and increase priority by 256 to
1979 * keep the received priority instead of reclassifying
1980 * the frame (see cfg80211_classify8021d).
1982 xmit_skb->priority += 256;
1983 xmit_skb->protocol = htons(ETH_P_802_3);
1984 skb_reset_network_header(xmit_skb);
1985 skb_reset_mac_header(xmit_skb);
1986 dev_queue_xmit(xmit_skb);
1990 static ieee80211_rx_result debug_noinline
1991 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1993 struct net_device *dev = rx->sdata->dev;
1994 struct sk_buff *skb = rx->skb;
1995 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1996 __le16 fc = hdr->frame_control;
1997 struct sk_buff_head frame_list;
1998 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2000 if (unlikely(!ieee80211_is_data(fc)))
2001 return RX_CONTINUE;
2003 if (unlikely(!ieee80211_is_data_present(fc)))
2004 return RX_DROP_MONITOR;
2006 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2007 return RX_CONTINUE;
2009 if (ieee80211_has_a4(hdr->frame_control) &&
2010 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2011 !rx->sdata->u.vlan.sta)
2012 return RX_DROP_UNUSABLE;
2014 if (is_multicast_ether_addr(hdr->addr1) &&
2015 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2016 rx->sdata->u.vlan.sta) ||
2017 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2018 rx->sdata->u.mgd.use_4addr)))
2019 return RX_DROP_UNUSABLE;
2021 skb->dev = dev;
2022 __skb_queue_head_init(&frame_list);
2024 if (skb_linearize(skb))
2025 return RX_DROP_UNUSABLE;
2027 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2028 rx->sdata->vif.type,
2029 rx->local->hw.extra_tx_headroom, true);
2031 while (!skb_queue_empty(&frame_list)) {
2032 rx->skb = __skb_dequeue(&frame_list);
2034 if (!ieee80211_frame_allowed(rx, fc)) {
2035 dev_kfree_skb(rx->skb);
2036 continue;
2038 dev->stats.rx_packets++;
2039 dev->stats.rx_bytes += rx->skb->len;
2041 ieee80211_deliver_skb(rx);
2044 return RX_QUEUED;
2047 #ifdef CONFIG_MAC80211_MESH
2048 static ieee80211_rx_result
2049 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2051 struct ieee80211_hdr *fwd_hdr, *hdr;
2052 struct ieee80211_tx_info *info;
2053 struct ieee80211s_hdr *mesh_hdr;
2054 struct sk_buff *skb = rx->skb, *fwd_skb;
2055 struct ieee80211_local *local = rx->local;
2056 struct ieee80211_sub_if_data *sdata = rx->sdata;
2057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2058 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2059 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2060 u16 q, hdrlen;
2062 hdr = (struct ieee80211_hdr *) skb->data;
2063 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2065 /* make sure fixed part of mesh header is there, also checks skb len */
2066 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2067 return RX_DROP_MONITOR;
2069 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2071 /* make sure full mesh header is there, also checks skb len */
2072 if (!pskb_may_pull(rx->skb,
2073 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2074 return RX_DROP_MONITOR;
2076 /* reload pointers */
2077 hdr = (struct ieee80211_hdr *) skb->data;
2078 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2080 /* frame is in RMC, don't forward */
2081 if (ieee80211_is_data(hdr->frame_control) &&
2082 is_multicast_ether_addr(hdr->addr1) &&
2083 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2084 return RX_DROP_MONITOR;
2086 if (!ieee80211_is_data(hdr->frame_control) ||
2087 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2088 return RX_CONTINUE;
2090 if (!mesh_hdr->ttl)
2091 return RX_DROP_MONITOR;
2093 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2094 struct mesh_path *mppath;
2095 char *proxied_addr;
2096 char *mpp_addr;
2098 if (is_multicast_ether_addr(hdr->addr1)) {
2099 mpp_addr = hdr->addr3;
2100 proxied_addr = mesh_hdr->eaddr1;
2101 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2102 /* has_a4 already checked in ieee80211_rx_mesh_check */
2103 mpp_addr = hdr->addr4;
2104 proxied_addr = mesh_hdr->eaddr2;
2105 } else {
2106 return RX_DROP_MONITOR;
2109 rcu_read_lock();
2110 mppath = mpp_path_lookup(sdata, proxied_addr);
2111 if (!mppath) {
2112 mpp_path_add(sdata, proxied_addr, mpp_addr);
2113 } else {
2114 spin_lock_bh(&mppath->state_lock);
2115 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2116 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2117 spin_unlock_bh(&mppath->state_lock);
2119 rcu_read_unlock();
2122 /* Frame has reached destination. Don't forward */
2123 if (!is_multicast_ether_addr(hdr->addr1) &&
2124 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2125 return RX_CONTINUE;
2127 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2128 if (ieee80211_queue_stopped(&local->hw, q)) {
2129 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2130 return RX_DROP_MONITOR;
2132 skb_set_queue_mapping(skb, q);
2134 if (!--mesh_hdr->ttl) {
2135 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2136 goto out;
2139 if (!ifmsh->mshcfg.dot11MeshForwarding)
2140 goto out;
2142 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2143 if (!fwd_skb) {
2144 net_info_ratelimited("%s: failed to clone mesh frame\n",
2145 sdata->name);
2146 goto out;
2149 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2150 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2151 info = IEEE80211_SKB_CB(fwd_skb);
2152 memset(info, 0, sizeof(*info));
2153 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2154 info->control.vif = &rx->sdata->vif;
2155 info->control.jiffies = jiffies;
2156 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2157 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2158 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2159 /* update power mode indication when forwarding */
2160 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2161 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2162 /* mesh power mode flags updated in mesh_nexthop_lookup */
2163 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2164 } else {
2165 /* unable to resolve next hop */
2166 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2167 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2168 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2169 kfree_skb(fwd_skb);
2170 return RX_DROP_MONITOR;
2173 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2174 ieee80211_add_pending_skb(local, fwd_skb);
2175 out:
2176 if (is_multicast_ether_addr(hdr->addr1) ||
2177 sdata->dev->flags & IFF_PROMISC)
2178 return RX_CONTINUE;
2179 else
2180 return RX_DROP_MONITOR;
2182 #endif
2184 static ieee80211_rx_result debug_noinline
2185 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2187 struct ieee80211_sub_if_data *sdata = rx->sdata;
2188 struct ieee80211_local *local = rx->local;
2189 struct net_device *dev = sdata->dev;
2190 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 __le16 fc = hdr->frame_control;
2192 bool port_control;
2193 int err;
2195 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2196 return RX_CONTINUE;
2198 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2199 return RX_DROP_MONITOR;
2202 * Send unexpected-4addr-frame event to hostapd. For older versions,
2203 * also drop the frame to cooked monitor interfaces.
2205 if (ieee80211_has_a4(hdr->frame_control) &&
2206 sdata->vif.type == NL80211_IFTYPE_AP) {
2207 if (rx->sta &&
2208 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2209 cfg80211_rx_unexpected_4addr_frame(
2210 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2211 return RX_DROP_MONITOR;
2214 err = __ieee80211_data_to_8023(rx, &port_control);
2215 if (unlikely(err))
2216 return RX_DROP_UNUSABLE;
2218 if (!ieee80211_frame_allowed(rx, fc))
2219 return RX_DROP_MONITOR;
2221 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2222 unlikely(port_control) && sdata->bss) {
2223 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2224 u.ap);
2225 dev = sdata->dev;
2226 rx->sdata = sdata;
2229 rx->skb->dev = dev;
2231 dev->stats.rx_packets++;
2232 dev->stats.rx_bytes += rx->skb->len;
2234 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2235 !is_multicast_ether_addr(
2236 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2237 (!local->scanning &&
2238 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2239 mod_timer(&local->dynamic_ps_timer, jiffies +
2240 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2243 ieee80211_deliver_skb(rx);
2245 return RX_QUEUED;
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2251 struct sk_buff *skb = rx->skb;
2252 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2253 struct tid_ampdu_rx *tid_agg_rx;
2254 u16 start_seq_num;
2255 u16 tid;
2257 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2258 return RX_CONTINUE;
2260 if (ieee80211_is_back_req(bar->frame_control)) {
2261 struct {
2262 __le16 control, start_seq_num;
2263 } __packed bar_data;
2265 if (!rx->sta)
2266 return RX_DROP_MONITOR;
2268 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2269 &bar_data, sizeof(bar_data)))
2270 return RX_DROP_MONITOR;
2272 tid = le16_to_cpu(bar_data.control) >> 12;
2274 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2275 if (!tid_agg_rx)
2276 return RX_DROP_MONITOR;
2278 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2280 /* reset session timer */
2281 if (tid_agg_rx->timeout)
2282 mod_timer(&tid_agg_rx->session_timer,
2283 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2285 spin_lock(&tid_agg_rx->reorder_lock);
2286 /* release stored frames up to start of BAR */
2287 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2288 start_seq_num, frames);
2289 spin_unlock(&tid_agg_rx->reorder_lock);
2291 kfree_skb(skb);
2292 return RX_QUEUED;
2296 * After this point, we only want management frames,
2297 * so we can drop all remaining control frames to
2298 * cooked monitor interfaces.
2300 return RX_DROP_MONITOR;
2303 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2304 struct ieee80211_mgmt *mgmt,
2305 size_t len)
2307 struct ieee80211_local *local = sdata->local;
2308 struct sk_buff *skb;
2309 struct ieee80211_mgmt *resp;
2311 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2312 /* Not to own unicast address */
2313 return;
2316 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2317 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2318 /* Not from the current AP or not associated yet. */
2319 return;
2322 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2323 /* Too short SA Query request frame */
2324 return;
2327 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2328 if (skb == NULL)
2329 return;
2331 skb_reserve(skb, local->hw.extra_tx_headroom);
2332 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2333 memset(resp, 0, 24);
2334 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2335 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2336 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2337 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2338 IEEE80211_STYPE_ACTION);
2339 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2340 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2341 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2342 memcpy(resp->u.action.u.sa_query.trans_id,
2343 mgmt->u.action.u.sa_query.trans_id,
2344 WLAN_SA_QUERY_TR_ID_LEN);
2346 ieee80211_tx_skb(sdata, skb);
2349 static ieee80211_rx_result debug_noinline
2350 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2352 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2353 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2356 * From here on, look only at management frames.
2357 * Data and control frames are already handled,
2358 * and unknown (reserved) frames are useless.
2360 if (rx->skb->len < 24)
2361 return RX_DROP_MONITOR;
2363 if (!ieee80211_is_mgmt(mgmt->frame_control))
2364 return RX_DROP_MONITOR;
2366 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2367 ieee80211_is_beacon(mgmt->frame_control) &&
2368 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2369 int sig = 0;
2371 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2372 sig = status->signal;
2374 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2375 rx->skb->data, rx->skb->len,
2376 status->freq, sig);
2377 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2380 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2381 return RX_DROP_MONITOR;
2383 if (ieee80211_drop_unencrypted_mgmt(rx))
2384 return RX_DROP_UNUSABLE;
2386 return RX_CONTINUE;
2389 static ieee80211_rx_result debug_noinline
2390 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2392 struct ieee80211_local *local = rx->local;
2393 struct ieee80211_sub_if_data *sdata = rx->sdata;
2394 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2395 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2396 int len = rx->skb->len;
2398 if (!ieee80211_is_action(mgmt->frame_control))
2399 return RX_CONTINUE;
2401 /* drop too small frames */
2402 if (len < IEEE80211_MIN_ACTION_SIZE)
2403 return RX_DROP_UNUSABLE;
2405 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2406 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2407 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2408 return RX_DROP_UNUSABLE;
2410 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2411 return RX_DROP_UNUSABLE;
2413 switch (mgmt->u.action.category) {
2414 case WLAN_CATEGORY_HT:
2415 /* reject HT action frames from stations not supporting HT */
2416 if (!rx->sta->sta.ht_cap.ht_supported)
2417 goto invalid;
2419 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2420 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2421 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2422 sdata->vif.type != NL80211_IFTYPE_AP &&
2423 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2424 break;
2426 /* verify action & smps_control/chanwidth are present */
2427 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2428 goto invalid;
2430 switch (mgmt->u.action.u.ht_smps.action) {
2431 case WLAN_HT_ACTION_SMPS: {
2432 struct ieee80211_supported_band *sband;
2433 enum ieee80211_smps_mode smps_mode;
2435 /* convert to HT capability */
2436 switch (mgmt->u.action.u.ht_smps.smps_control) {
2437 case WLAN_HT_SMPS_CONTROL_DISABLED:
2438 smps_mode = IEEE80211_SMPS_OFF;
2439 break;
2440 case WLAN_HT_SMPS_CONTROL_STATIC:
2441 smps_mode = IEEE80211_SMPS_STATIC;
2442 break;
2443 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2444 smps_mode = IEEE80211_SMPS_DYNAMIC;
2445 break;
2446 default:
2447 goto invalid;
2450 /* if no change do nothing */
2451 if (rx->sta->sta.smps_mode == smps_mode)
2452 goto handled;
2453 rx->sta->sta.smps_mode = smps_mode;
2455 sband = rx->local->hw.wiphy->bands[status->band];
2457 rate_control_rate_update(local, sband, rx->sta,
2458 IEEE80211_RC_SMPS_CHANGED);
2459 goto handled;
2461 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2462 struct ieee80211_supported_band *sband;
2463 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2464 enum ieee80211_sta_rx_bandwidth new_bw;
2466 /* If it doesn't support 40 MHz it can't change ... */
2467 if (!(rx->sta->sta.ht_cap.cap &
2468 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2469 goto handled;
2471 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2472 new_bw = IEEE80211_STA_RX_BW_20;
2473 else
2474 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2476 if (rx->sta->sta.bandwidth == new_bw)
2477 goto handled;
2479 sband = rx->local->hw.wiphy->bands[status->band];
2481 rate_control_rate_update(local, sband, rx->sta,
2482 IEEE80211_RC_BW_CHANGED);
2483 goto handled;
2485 default:
2486 goto invalid;
2489 break;
2490 case WLAN_CATEGORY_PUBLIC:
2491 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2492 goto invalid;
2493 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2494 break;
2495 if (!rx->sta)
2496 break;
2497 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2498 break;
2499 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2500 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2501 break;
2502 if (len < offsetof(struct ieee80211_mgmt,
2503 u.action.u.ext_chan_switch.variable))
2504 goto invalid;
2505 goto queue;
2506 case WLAN_CATEGORY_VHT:
2507 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2508 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2509 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2510 sdata->vif.type != NL80211_IFTYPE_AP &&
2511 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2512 break;
2514 /* verify action code is present */
2515 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2516 goto invalid;
2518 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2519 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2520 u8 opmode;
2522 /* verify opmode is present */
2523 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2524 goto invalid;
2526 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2528 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2529 opmode, status->band,
2530 false);
2531 goto handled;
2533 default:
2534 break;
2536 break;
2537 case WLAN_CATEGORY_BACK:
2538 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2539 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2540 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2541 sdata->vif.type != NL80211_IFTYPE_AP &&
2542 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2543 break;
2545 /* verify action_code is present */
2546 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2547 break;
2549 switch (mgmt->u.action.u.addba_req.action_code) {
2550 case WLAN_ACTION_ADDBA_REQ:
2551 if (len < (IEEE80211_MIN_ACTION_SIZE +
2552 sizeof(mgmt->u.action.u.addba_req)))
2553 goto invalid;
2554 break;
2555 case WLAN_ACTION_ADDBA_RESP:
2556 if (len < (IEEE80211_MIN_ACTION_SIZE +
2557 sizeof(mgmt->u.action.u.addba_resp)))
2558 goto invalid;
2559 break;
2560 case WLAN_ACTION_DELBA:
2561 if (len < (IEEE80211_MIN_ACTION_SIZE +
2562 sizeof(mgmt->u.action.u.delba)))
2563 goto invalid;
2564 break;
2565 default:
2566 goto invalid;
2569 goto queue;
2570 case WLAN_CATEGORY_SPECTRUM_MGMT:
2571 /* verify action_code is present */
2572 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2573 break;
2575 switch (mgmt->u.action.u.measurement.action_code) {
2576 case WLAN_ACTION_SPCT_MSR_REQ:
2577 if (status->band != IEEE80211_BAND_5GHZ)
2578 break;
2580 if (len < (IEEE80211_MIN_ACTION_SIZE +
2581 sizeof(mgmt->u.action.u.measurement)))
2582 break;
2584 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2585 break;
2587 ieee80211_process_measurement_req(sdata, mgmt, len);
2588 goto handled;
2589 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2590 u8 *bssid;
2591 if (len < (IEEE80211_MIN_ACTION_SIZE +
2592 sizeof(mgmt->u.action.u.chan_switch)))
2593 break;
2595 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2596 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2597 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2598 break;
2600 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2601 bssid = sdata->u.mgd.bssid;
2602 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2603 bssid = sdata->u.ibss.bssid;
2604 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2605 bssid = mgmt->sa;
2606 else
2607 break;
2609 if (!ether_addr_equal(mgmt->bssid, bssid))
2610 break;
2612 goto queue;
2615 break;
2616 case WLAN_CATEGORY_SA_QUERY:
2617 if (len < (IEEE80211_MIN_ACTION_SIZE +
2618 sizeof(mgmt->u.action.u.sa_query)))
2619 break;
2621 switch (mgmt->u.action.u.sa_query.action) {
2622 case WLAN_ACTION_SA_QUERY_REQUEST:
2623 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2624 break;
2625 ieee80211_process_sa_query_req(sdata, mgmt, len);
2626 goto handled;
2628 break;
2629 case WLAN_CATEGORY_SELF_PROTECTED:
2630 if (len < (IEEE80211_MIN_ACTION_SIZE +
2631 sizeof(mgmt->u.action.u.self_prot.action_code)))
2632 break;
2634 switch (mgmt->u.action.u.self_prot.action_code) {
2635 case WLAN_SP_MESH_PEERING_OPEN:
2636 case WLAN_SP_MESH_PEERING_CLOSE:
2637 case WLAN_SP_MESH_PEERING_CONFIRM:
2638 if (!ieee80211_vif_is_mesh(&sdata->vif))
2639 goto invalid;
2640 if (sdata->u.mesh.user_mpm)
2641 /* userspace handles this frame */
2642 break;
2643 goto queue;
2644 case WLAN_SP_MGK_INFORM:
2645 case WLAN_SP_MGK_ACK:
2646 if (!ieee80211_vif_is_mesh(&sdata->vif))
2647 goto invalid;
2648 break;
2650 break;
2651 case WLAN_CATEGORY_MESH_ACTION:
2652 if (len < (IEEE80211_MIN_ACTION_SIZE +
2653 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2654 break;
2656 if (!ieee80211_vif_is_mesh(&sdata->vif))
2657 break;
2658 if (mesh_action_is_path_sel(mgmt) &&
2659 !mesh_path_sel_is_hwmp(sdata))
2660 break;
2661 goto queue;
2664 return RX_CONTINUE;
2666 invalid:
2667 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2668 /* will return in the next handlers */
2669 return RX_CONTINUE;
2671 handled:
2672 if (rx->sta)
2673 rx->sta->rx_packets++;
2674 dev_kfree_skb(rx->skb);
2675 return RX_QUEUED;
2677 queue:
2678 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2679 skb_queue_tail(&sdata->skb_queue, rx->skb);
2680 ieee80211_queue_work(&local->hw, &sdata->work);
2681 if (rx->sta)
2682 rx->sta->rx_packets++;
2683 return RX_QUEUED;
2686 static ieee80211_rx_result debug_noinline
2687 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2689 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2690 int sig = 0;
2692 /* skip known-bad action frames and return them in the next handler */
2693 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2694 return RX_CONTINUE;
2697 * Getting here means the kernel doesn't know how to handle
2698 * it, but maybe userspace does ... include returned frames
2699 * so userspace can register for those to know whether ones
2700 * it transmitted were processed or returned.
2703 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2704 sig = status->signal;
2706 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2707 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2708 if (rx->sta)
2709 rx->sta->rx_packets++;
2710 dev_kfree_skb(rx->skb);
2711 return RX_QUEUED;
2714 return RX_CONTINUE;
2717 static ieee80211_rx_result debug_noinline
2718 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2720 struct ieee80211_local *local = rx->local;
2721 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2722 struct sk_buff *nskb;
2723 struct ieee80211_sub_if_data *sdata = rx->sdata;
2724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2726 if (!ieee80211_is_action(mgmt->frame_control))
2727 return RX_CONTINUE;
2730 * For AP mode, hostapd is responsible for handling any action
2731 * frames that we didn't handle, including returning unknown
2732 * ones. For all other modes we will return them to the sender,
2733 * setting the 0x80 bit in the action category, as required by
2734 * 802.11-2012 9.24.4.
2735 * Newer versions of hostapd shall also use the management frame
2736 * registration mechanisms, but older ones still use cooked
2737 * monitor interfaces so push all frames there.
2739 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2740 (sdata->vif.type == NL80211_IFTYPE_AP ||
2741 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2742 return RX_DROP_MONITOR;
2744 if (is_multicast_ether_addr(mgmt->da))
2745 return RX_DROP_MONITOR;
2747 /* do not return rejected action frames */
2748 if (mgmt->u.action.category & 0x80)
2749 return RX_DROP_UNUSABLE;
2751 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2752 GFP_ATOMIC);
2753 if (nskb) {
2754 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2756 nmgmt->u.action.category |= 0x80;
2757 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2758 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2760 memset(nskb->cb, 0, sizeof(nskb->cb));
2762 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2763 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2765 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2766 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2767 IEEE80211_TX_CTL_NO_CCK_RATE;
2768 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2769 info->hw_queue =
2770 local->hw.offchannel_tx_hw_queue;
2773 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2774 status->band);
2776 dev_kfree_skb(rx->skb);
2777 return RX_QUEUED;
2780 static ieee80211_rx_result debug_noinline
2781 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2783 struct ieee80211_sub_if_data *sdata = rx->sdata;
2784 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2785 __le16 stype;
2787 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2789 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2790 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2791 sdata->vif.type != NL80211_IFTYPE_STATION)
2792 return RX_DROP_MONITOR;
2794 switch (stype) {
2795 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2796 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2797 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2798 /* process for all: mesh, mlme, ibss */
2799 break;
2800 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2801 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2802 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2803 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2804 if (is_multicast_ether_addr(mgmt->da) &&
2805 !is_broadcast_ether_addr(mgmt->da))
2806 return RX_DROP_MONITOR;
2808 /* process only for station */
2809 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2810 return RX_DROP_MONITOR;
2811 break;
2812 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2813 /* process only for ibss and mesh */
2814 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2815 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2816 return RX_DROP_MONITOR;
2817 break;
2818 default:
2819 return RX_DROP_MONITOR;
2822 /* queue up frame and kick off work to process it */
2823 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2824 skb_queue_tail(&sdata->skb_queue, rx->skb);
2825 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2826 if (rx->sta)
2827 rx->sta->rx_packets++;
2829 return RX_QUEUED;
2832 /* TODO: use IEEE80211_RX_FRAGMENTED */
2833 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2834 struct ieee80211_rate *rate)
2836 struct ieee80211_sub_if_data *sdata;
2837 struct ieee80211_local *local = rx->local;
2838 struct sk_buff *skb = rx->skb, *skb2;
2839 struct net_device *prev_dev = NULL;
2840 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2841 int needed_headroom;
2844 * If cooked monitor has been processed already, then
2845 * don't do it again. If not, set the flag.
2847 if (rx->flags & IEEE80211_RX_CMNTR)
2848 goto out_free_skb;
2849 rx->flags |= IEEE80211_RX_CMNTR;
2851 /* If there are no cooked monitor interfaces, just free the SKB */
2852 if (!local->cooked_mntrs)
2853 goto out_free_skb;
2855 /* room for the radiotap header based on driver features */
2856 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2858 if (skb_headroom(skb) < needed_headroom &&
2859 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2860 goto out_free_skb;
2862 /* prepend radiotap information */
2863 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2864 false);
2866 skb_set_mac_header(skb, 0);
2867 skb->ip_summed = CHECKSUM_UNNECESSARY;
2868 skb->pkt_type = PACKET_OTHERHOST;
2869 skb->protocol = htons(ETH_P_802_2);
2871 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2872 if (!ieee80211_sdata_running(sdata))
2873 continue;
2875 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2876 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2877 continue;
2879 if (prev_dev) {
2880 skb2 = skb_clone(skb, GFP_ATOMIC);
2881 if (skb2) {
2882 skb2->dev = prev_dev;
2883 netif_receive_skb(skb2);
2887 prev_dev = sdata->dev;
2888 sdata->dev->stats.rx_packets++;
2889 sdata->dev->stats.rx_bytes += skb->len;
2892 if (prev_dev) {
2893 skb->dev = prev_dev;
2894 netif_receive_skb(skb);
2895 return;
2898 out_free_skb:
2899 dev_kfree_skb(skb);
2902 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2903 ieee80211_rx_result res)
2905 switch (res) {
2906 case RX_DROP_MONITOR:
2907 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2908 if (rx->sta)
2909 rx->sta->rx_dropped++;
2910 /* fall through */
2911 case RX_CONTINUE: {
2912 struct ieee80211_rate *rate = NULL;
2913 struct ieee80211_supported_band *sband;
2914 struct ieee80211_rx_status *status;
2916 status = IEEE80211_SKB_RXCB((rx->skb));
2918 sband = rx->local->hw.wiphy->bands[status->band];
2919 if (!(status->flag & RX_FLAG_HT) &&
2920 !(status->flag & RX_FLAG_VHT))
2921 rate = &sband->bitrates[status->rate_idx];
2923 ieee80211_rx_cooked_monitor(rx, rate);
2924 break;
2926 case RX_DROP_UNUSABLE:
2927 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2928 if (rx->sta)
2929 rx->sta->rx_dropped++;
2930 dev_kfree_skb(rx->skb);
2931 break;
2932 case RX_QUEUED:
2933 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2934 break;
2938 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2939 struct sk_buff_head *frames)
2941 ieee80211_rx_result res = RX_DROP_MONITOR;
2942 struct sk_buff *skb;
2944 #define CALL_RXH(rxh) \
2945 do { \
2946 res = rxh(rx); \
2947 if (res != RX_CONTINUE) \
2948 goto rxh_next; \
2949 } while (0);
2951 spin_lock_bh(&rx->local->rx_path_lock);
2953 while ((skb = __skb_dequeue(frames))) {
2955 * all the other fields are valid across frames
2956 * that belong to an aMPDU since they are on the
2957 * same TID from the same station
2959 rx->skb = skb;
2961 CALL_RXH(ieee80211_rx_h_check_more_data)
2962 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2963 CALL_RXH(ieee80211_rx_h_sta_process)
2964 CALL_RXH(ieee80211_rx_h_decrypt)
2965 CALL_RXH(ieee80211_rx_h_defragment)
2966 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2967 /* must be after MMIC verify so header is counted in MPDU mic */
2968 #ifdef CONFIG_MAC80211_MESH
2969 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2970 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2971 #endif
2972 CALL_RXH(ieee80211_rx_h_amsdu)
2973 CALL_RXH(ieee80211_rx_h_data)
2975 /* special treatment -- needs the queue */
2976 res = ieee80211_rx_h_ctrl(rx, frames);
2977 if (res != RX_CONTINUE)
2978 goto rxh_next;
2980 CALL_RXH(ieee80211_rx_h_mgmt_check)
2981 CALL_RXH(ieee80211_rx_h_action)
2982 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2983 CALL_RXH(ieee80211_rx_h_action_return)
2984 CALL_RXH(ieee80211_rx_h_mgmt)
2986 rxh_next:
2987 ieee80211_rx_handlers_result(rx, res);
2989 #undef CALL_RXH
2992 spin_unlock_bh(&rx->local->rx_path_lock);
2995 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2997 struct sk_buff_head reorder_release;
2998 ieee80211_rx_result res = RX_DROP_MONITOR;
3000 __skb_queue_head_init(&reorder_release);
3002 #define CALL_RXH(rxh) \
3003 do { \
3004 res = rxh(rx); \
3005 if (res != RX_CONTINUE) \
3006 goto rxh_next; \
3007 } while (0);
3009 CALL_RXH(ieee80211_rx_h_check)
3011 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3013 ieee80211_rx_handlers(rx, &reorder_release);
3014 return;
3016 rxh_next:
3017 ieee80211_rx_handlers_result(rx, res);
3019 #undef CALL_RXH
3023 * This function makes calls into the RX path, therefore
3024 * it has to be invoked under RCU read lock.
3026 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3028 struct sk_buff_head frames;
3029 struct ieee80211_rx_data rx = {
3030 .sta = sta,
3031 .sdata = sta->sdata,
3032 .local = sta->local,
3033 /* This is OK -- must be QoS data frame */
3034 .security_idx = tid,
3035 .seqno_idx = tid,
3036 .flags = 0,
3038 struct tid_ampdu_rx *tid_agg_rx;
3040 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3041 if (!tid_agg_rx)
3042 return;
3044 __skb_queue_head_init(&frames);
3046 spin_lock(&tid_agg_rx->reorder_lock);
3047 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3048 spin_unlock(&tid_agg_rx->reorder_lock);
3050 ieee80211_rx_handlers(&rx, &frames);
3053 /* main receive path */
3055 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
3056 struct ieee80211_hdr *hdr)
3058 struct ieee80211_sub_if_data *sdata = rx->sdata;
3059 struct sk_buff *skb = rx->skb;
3060 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3061 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3062 int multicast = is_multicast_ether_addr(hdr->addr1);
3064 switch (sdata->vif.type) {
3065 case NL80211_IFTYPE_STATION:
3066 if (!bssid && !sdata->u.mgd.use_4addr)
3067 return 0;
3068 if (!multicast &&
3069 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3070 if (!(sdata->dev->flags & IFF_PROMISC) ||
3071 sdata->u.mgd.use_4addr)
3072 return 0;
3073 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3075 break;
3076 case NL80211_IFTYPE_ADHOC:
3077 if (!bssid)
3078 return 0;
3079 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3080 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3081 return 0;
3082 if (ieee80211_is_beacon(hdr->frame_control)) {
3083 return 1;
3084 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3085 return 0;
3086 } else if (!multicast &&
3087 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3088 if (!(sdata->dev->flags & IFF_PROMISC))
3089 return 0;
3090 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3091 } else if (!rx->sta) {
3092 int rate_idx;
3093 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3094 rate_idx = 0; /* TODO: HT/VHT rates */
3095 else
3096 rate_idx = status->rate_idx;
3097 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3098 BIT(rate_idx));
3100 break;
3101 case NL80211_IFTYPE_MESH_POINT:
3102 if (!multicast &&
3103 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3104 if (!(sdata->dev->flags & IFF_PROMISC))
3105 return 0;
3107 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3109 break;
3110 case NL80211_IFTYPE_AP_VLAN:
3111 case NL80211_IFTYPE_AP:
3112 if (!bssid) {
3113 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3114 return 0;
3115 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3117 * Accept public action frames even when the
3118 * BSSID doesn't match, this is used for P2P
3119 * and location updates. Note that mac80211
3120 * itself never looks at these frames.
3122 if (!multicast &&
3123 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3124 return 0;
3125 if (ieee80211_is_public_action(hdr, skb->len))
3126 return 1;
3127 if (!ieee80211_is_beacon(hdr->frame_control))
3128 return 0;
3129 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3131 break;
3132 case NL80211_IFTYPE_WDS:
3133 if (bssid || !ieee80211_is_data(hdr->frame_control))
3134 return 0;
3135 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3136 return 0;
3137 break;
3138 case NL80211_IFTYPE_P2P_DEVICE:
3139 if (!ieee80211_is_public_action(hdr, skb->len) &&
3140 !ieee80211_is_probe_req(hdr->frame_control) &&
3141 !ieee80211_is_probe_resp(hdr->frame_control) &&
3142 !ieee80211_is_beacon(hdr->frame_control))
3143 return 0;
3144 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3145 !multicast)
3146 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3147 break;
3148 default:
3149 /* should never get here */
3150 WARN_ON_ONCE(1);
3151 break;
3154 return 1;
3158 * This function returns whether or not the SKB
3159 * was destined for RX processing or not, which,
3160 * if consume is true, is equivalent to whether
3161 * or not the skb was consumed.
3163 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3164 struct sk_buff *skb, bool consume)
3166 struct ieee80211_local *local = rx->local;
3167 struct ieee80211_sub_if_data *sdata = rx->sdata;
3168 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3169 struct ieee80211_hdr *hdr = (void *)skb->data;
3170 int prepares;
3172 rx->skb = skb;
3173 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3174 prepares = prepare_for_handlers(rx, hdr);
3176 if (!prepares)
3177 return false;
3179 if (!consume) {
3180 skb = skb_copy(skb, GFP_ATOMIC);
3181 if (!skb) {
3182 if (net_ratelimit())
3183 wiphy_debug(local->hw.wiphy,
3184 "failed to copy skb for %s\n",
3185 sdata->name);
3186 return true;
3189 rx->skb = skb;
3192 ieee80211_invoke_rx_handlers(rx);
3193 return true;
3197 * This is the actual Rx frames handler. as it blongs to Rx path it must
3198 * be called with rcu_read_lock protection.
3200 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3201 struct sk_buff *skb)
3203 struct ieee80211_local *local = hw_to_local(hw);
3204 struct ieee80211_sub_if_data *sdata;
3205 struct ieee80211_hdr *hdr;
3206 __le16 fc;
3207 struct ieee80211_rx_data rx;
3208 struct ieee80211_sub_if_data *prev;
3209 struct sta_info *sta, *tmp, *prev_sta;
3210 int err = 0;
3212 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3213 memset(&rx, 0, sizeof(rx));
3214 rx.skb = skb;
3215 rx.local = local;
3217 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3218 local->dot11ReceivedFragmentCount++;
3220 if (ieee80211_is_mgmt(fc)) {
3221 /* drop frame if too short for header */
3222 if (skb->len < ieee80211_hdrlen(fc))
3223 err = -ENOBUFS;
3224 else
3225 err = skb_linearize(skb);
3226 } else {
3227 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3230 if (err) {
3231 dev_kfree_skb(skb);
3232 return;
3235 hdr = (struct ieee80211_hdr *)skb->data;
3236 ieee80211_parse_qos(&rx);
3237 ieee80211_verify_alignment(&rx);
3239 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3240 ieee80211_is_beacon(hdr->frame_control)))
3241 ieee80211_scan_rx(local, skb);
3243 if (ieee80211_is_data(fc)) {
3244 prev_sta = NULL;
3246 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3247 if (!prev_sta) {
3248 prev_sta = sta;
3249 continue;
3252 rx.sta = prev_sta;
3253 rx.sdata = prev_sta->sdata;
3254 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3256 prev_sta = sta;
3259 if (prev_sta) {
3260 rx.sta = prev_sta;
3261 rx.sdata = prev_sta->sdata;
3263 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3264 return;
3265 goto out;
3269 prev = NULL;
3271 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3272 if (!ieee80211_sdata_running(sdata))
3273 continue;
3275 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3276 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3277 continue;
3280 * frame is destined for this interface, but if it's
3281 * not also for the previous one we handle that after
3282 * the loop to avoid copying the SKB once too much
3285 if (!prev) {
3286 prev = sdata;
3287 continue;
3290 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3291 rx.sdata = prev;
3292 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3294 prev = sdata;
3297 if (prev) {
3298 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3299 rx.sdata = prev;
3301 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3302 return;
3305 out:
3306 dev_kfree_skb(skb);
3310 * This is the receive path handler. It is called by a low level driver when an
3311 * 802.11 MPDU is received from the hardware.
3313 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3315 struct ieee80211_local *local = hw_to_local(hw);
3316 struct ieee80211_rate *rate = NULL;
3317 struct ieee80211_supported_band *sband;
3318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3320 WARN_ON_ONCE(softirq_count() == 0);
3322 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3323 goto drop;
3325 sband = local->hw.wiphy->bands[status->band];
3326 if (WARN_ON(!sband))
3327 goto drop;
3330 * If we're suspending, it is possible although not too likely
3331 * that we'd be receiving frames after having already partially
3332 * quiesced the stack. We can't process such frames then since
3333 * that might, for example, cause stations to be added or other
3334 * driver callbacks be invoked.
3336 if (unlikely(local->quiescing || local->suspended))
3337 goto drop;
3339 /* We might be during a HW reconfig, prevent Rx for the same reason */
3340 if (unlikely(local->in_reconfig))
3341 goto drop;
3344 * The same happens when we're not even started,
3345 * but that's worth a warning.
3347 if (WARN_ON(!local->started))
3348 goto drop;
3350 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3352 * Validate the rate, unless a PLCP error means that
3353 * we probably can't have a valid rate here anyway.
3356 if (status->flag & RX_FLAG_HT) {
3358 * rate_idx is MCS index, which can be [0-76]
3359 * as documented on:
3361 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3363 * Anything else would be some sort of driver or
3364 * hardware error. The driver should catch hardware
3365 * errors.
3367 if (WARN(status->rate_idx > 76,
3368 "Rate marked as an HT rate but passed "
3369 "status->rate_idx is not "
3370 "an MCS index [0-76]: %d (0x%02x)\n",
3371 status->rate_idx,
3372 status->rate_idx))
3373 goto drop;
3374 } else if (status->flag & RX_FLAG_VHT) {
3375 if (WARN_ONCE(status->rate_idx > 9 ||
3376 !status->vht_nss ||
3377 status->vht_nss > 8,
3378 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3379 status->rate_idx, status->vht_nss))
3380 goto drop;
3381 } else {
3382 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3383 goto drop;
3384 rate = &sband->bitrates[status->rate_idx];
3388 status->rx_flags = 0;
3391 * key references and virtual interfaces are protected using RCU
3392 * and this requires that we are in a read-side RCU section during
3393 * receive processing
3395 rcu_read_lock();
3398 * Frames with failed FCS/PLCP checksum are not returned,
3399 * all other frames are returned without radiotap header
3400 * if it was previously present.
3401 * Also, frames with less than 16 bytes are dropped.
3403 skb = ieee80211_rx_monitor(local, skb, rate);
3404 if (!skb) {
3405 rcu_read_unlock();
3406 return;
3409 ieee80211_tpt_led_trig_rx(local,
3410 ((struct ieee80211_hdr *)skb->data)->frame_control,
3411 skb->len);
3412 __ieee80211_rx_handle_packet(hw, skb);
3414 rcu_read_unlock();
3416 return;
3417 drop:
3418 kfree_skb(skb);
3420 EXPORT_SYMBOL(ieee80211_rx);
3422 /* This is a version of the rx handler that can be called from hard irq
3423 * context. Post the skb on the queue and schedule the tasklet */
3424 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3426 struct ieee80211_local *local = hw_to_local(hw);
3428 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3430 skb->pkt_type = IEEE80211_RX_MSG;
3431 skb_queue_tail(&local->skb_queue, skb);
3432 tasklet_schedule(&local->tasklet);
3434 EXPORT_SYMBOL(ieee80211_rx_irqsafe);