Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / include / linux / dmaengine.h
blob41cf0c399288e022edf32f7e65c6f151004829d9
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
24 #include <linux/device.h>
25 #include <linux/uio.h>
26 #include <linux/bug.h>
27 #include <linux/scatterlist.h>
28 #include <linux/bitmap.h>
29 #include <linux/types.h>
30 #include <asm/page.h>
32 /**
33 * typedef dma_cookie_t - an opaque DMA cookie
35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37 typedef s32 dma_cookie_t;
38 #define DMA_MIN_COOKIE 1
39 #define DMA_MAX_COOKIE INT_MAX
41 static inline int dma_submit_error(dma_cookie_t cookie)
43 return cookie < 0 ? cookie : 0;
46 /**
47 * enum dma_status - DMA transaction status
48 * @DMA_COMPLETE: transaction completed
49 * @DMA_IN_PROGRESS: transaction not yet processed
50 * @DMA_PAUSED: transaction is paused
51 * @DMA_ERROR: transaction failed
53 enum dma_status {
54 DMA_COMPLETE,
55 DMA_IN_PROGRESS,
56 DMA_PAUSED,
57 DMA_ERROR,
60 /**
61 * enum dma_transaction_type - DMA transaction types/indexes
63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
64 * automatically set as dma devices are registered.
66 enum dma_transaction_type {
67 DMA_MEMCPY,
68 DMA_XOR,
69 DMA_PQ,
70 DMA_XOR_VAL,
71 DMA_PQ_VAL,
72 DMA_INTERRUPT,
73 DMA_SG,
74 DMA_PRIVATE,
75 DMA_ASYNC_TX,
76 DMA_SLAVE,
77 DMA_CYCLIC,
78 DMA_INTERLEAVE,
79 /* last transaction type for creation of the capabilities mask */
80 DMA_TX_TYPE_END,
83 /**
84 * enum dma_transfer_direction - dma transfer mode and direction indicator
85 * @DMA_MEM_TO_MEM: Async/Memcpy mode
86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
90 enum dma_transfer_direction {
91 DMA_MEM_TO_MEM,
92 DMA_MEM_TO_DEV,
93 DMA_DEV_TO_MEM,
94 DMA_DEV_TO_DEV,
95 DMA_TRANS_NONE,
98 /**
99 * Interleaved Transfer Request
100 * ----------------------------
101 * A chunk is collection of contiguous bytes to be transfered.
102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103 * ICGs may or maynot change between chunks.
104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105 * that when repeated an integral number of times, specifies the transfer.
106 * A transfer template is specification of a Frame, the number of times
107 * it is to be repeated and other per-transfer attributes.
109 * Practically, a client driver would have ready a template for each
110 * type of transfer it is going to need during its lifetime and
111 * set only 'src_start' and 'dst_start' before submitting the requests.
114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
117 * == Chunk size
118 * ... ICG
122 * struct data_chunk - Element of scatter-gather list that makes a frame.
123 * @size: Number of bytes to read from source.
124 * size_dst := fn(op, size_src), so doesn't mean much for destination.
125 * @icg: Number of bytes to jump after last src/dst address of this
126 * chunk and before first src/dst address for next chunk.
127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
130 struct data_chunk {
131 size_t size;
132 size_t icg;
136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137 * and attributes.
138 * @src_start: Bus address of source for the first chunk.
139 * @dst_start: Bus address of destination for the first chunk.
140 * @dir: Specifies the type of Source and Destination.
141 * @src_inc: If the source address increments after reading from it.
142 * @dst_inc: If the destination address increments after writing to it.
143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144 * Otherwise, source is read contiguously (icg ignored).
145 * Ignored if src_inc is false.
146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147 * Otherwise, destination is filled contiguously (icg ignored).
148 * Ignored if dst_inc is false.
149 * @numf: Number of frames in this template.
150 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151 * @sgl: Array of {chunk,icg} pairs that make up a frame.
153 struct dma_interleaved_template {
154 dma_addr_t src_start;
155 dma_addr_t dst_start;
156 enum dma_transfer_direction dir;
157 bool src_inc;
158 bool dst_inc;
159 bool src_sgl;
160 bool dst_sgl;
161 size_t numf;
162 size_t frame_size;
163 struct data_chunk sgl[0];
167 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
168 * control completion, and communicate status.
169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
170 * this transaction
171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
172 * acknowledges receipt, i.e. has has a chance to establish any dependency
173 * chains
174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177 * sources that were the result of a previous operation, in the case of a PQ
178 * operation it continues the calculation with new sources
179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180 * on the result of this operation
182 enum dma_ctrl_flags {
183 DMA_PREP_INTERRUPT = (1 << 0),
184 DMA_CTRL_ACK = (1 << 1),
185 DMA_PREP_PQ_DISABLE_P = (1 << 2),
186 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187 DMA_PREP_CONTINUE = (1 << 4),
188 DMA_PREP_FENCE = (1 << 5),
192 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
193 * on a running channel.
194 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
195 * @DMA_PAUSE: pause ongoing transfers
196 * @DMA_RESUME: resume paused transfer
197 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
198 * that need to runtime reconfigure the slave channels (as opposed to passing
199 * configuration data in statically from the platform). An additional
200 * argument of struct dma_slave_config must be passed in with this
201 * command.
202 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
203 * into external start mode.
205 enum dma_ctrl_cmd {
206 DMA_TERMINATE_ALL,
207 DMA_PAUSE,
208 DMA_RESUME,
209 DMA_SLAVE_CONFIG,
210 FSLDMA_EXTERNAL_START,
214 * enum sum_check_bits - bit position of pq_check_flags
216 enum sum_check_bits {
217 SUM_CHECK_P = 0,
218 SUM_CHECK_Q = 1,
222 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
223 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
224 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
226 enum sum_check_flags {
227 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
228 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
233 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
234 * See linux/cpumask.h
236 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
239 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
240 * @memcpy_count: transaction counter
241 * @bytes_transferred: byte counter
244 struct dma_chan_percpu {
245 /* stats */
246 unsigned long memcpy_count;
247 unsigned long bytes_transferred;
251 * struct dma_chan - devices supply DMA channels, clients use them
252 * @device: ptr to the dma device who supplies this channel, always !%NULL
253 * @cookie: last cookie value returned to client
254 * @completed_cookie: last completed cookie for this channel
255 * @chan_id: channel ID for sysfs
256 * @dev: class device for sysfs
257 * @device_node: used to add this to the device chan list
258 * @local: per-cpu pointer to a struct dma_chan_percpu
259 * @client-count: how many clients are using this channel
260 * @table_count: number of appearances in the mem-to-mem allocation table
261 * @private: private data for certain client-channel associations
263 struct dma_chan {
264 struct dma_device *device;
265 dma_cookie_t cookie;
266 dma_cookie_t completed_cookie;
268 /* sysfs */
269 int chan_id;
270 struct dma_chan_dev *dev;
272 struct list_head device_node;
273 struct dma_chan_percpu __percpu *local;
274 int client_count;
275 int table_count;
276 void *private;
280 * struct dma_chan_dev - relate sysfs device node to backing channel device
281 * @chan - driver channel device
282 * @device - sysfs device
283 * @dev_id - parent dma_device dev_id
284 * @idr_ref - reference count to gate release of dma_device dev_id
286 struct dma_chan_dev {
287 struct dma_chan *chan;
288 struct device device;
289 int dev_id;
290 atomic_t *idr_ref;
294 * enum dma_slave_buswidth - defines bus with of the DMA slave
295 * device, source or target buses
297 enum dma_slave_buswidth {
298 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
299 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
300 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
301 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
302 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
306 * struct dma_slave_config - dma slave channel runtime config
307 * @direction: whether the data shall go in or out on this slave
308 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
309 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
310 * need to differentiate source and target addresses.
311 * @src_addr: this is the physical address where DMA slave data
312 * should be read (RX), if the source is memory this argument is
313 * ignored.
314 * @dst_addr: this is the physical address where DMA slave data
315 * should be written (TX), if the source is memory this argument
316 * is ignored.
317 * @src_addr_width: this is the width in bytes of the source (RX)
318 * register where DMA data shall be read. If the source
319 * is memory this may be ignored depending on architecture.
320 * Legal values: 1, 2, 4, 8.
321 * @dst_addr_width: same as src_addr_width but for destination
322 * target (TX) mutatis mutandis.
323 * @src_maxburst: the maximum number of words (note: words, as in
324 * units of the src_addr_width member, not bytes) that can be sent
325 * in one burst to the device. Typically something like half the
326 * FIFO depth on I/O peripherals so you don't overflow it. This
327 * may or may not be applicable on memory sources.
328 * @dst_maxburst: same as src_maxburst but for destination target
329 * mutatis mutandis.
330 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
331 * with 'true' if peripheral should be flow controller. Direction will be
332 * selected at Runtime.
333 * @slave_id: Slave requester id. Only valid for slave channels. The dma
334 * slave peripheral will have unique id as dma requester which need to be
335 * pass as slave config.
337 * This struct is passed in as configuration data to a DMA engine
338 * in order to set up a certain channel for DMA transport at runtime.
339 * The DMA device/engine has to provide support for an additional
340 * command in the channel config interface, DMA_SLAVE_CONFIG
341 * and this struct will then be passed in as an argument to the
342 * DMA engine device_control() function.
344 * The rationale for adding configuration information to this struct
345 * is as follows: if it is likely that most DMA slave controllers in
346 * the world will support the configuration option, then make it
347 * generic. If not: if it is fixed so that it be sent in static from
348 * the platform data, then prefer to do that. Else, if it is neither
349 * fixed at runtime, nor generic enough (such as bus mastership on
350 * some CPU family and whatnot) then create a custom slave config
351 * struct and pass that, then make this config a member of that
352 * struct, if applicable.
354 struct dma_slave_config {
355 enum dma_transfer_direction direction;
356 dma_addr_t src_addr;
357 dma_addr_t dst_addr;
358 enum dma_slave_buswidth src_addr_width;
359 enum dma_slave_buswidth dst_addr_width;
360 u32 src_maxburst;
361 u32 dst_maxburst;
362 bool device_fc;
363 unsigned int slave_id;
366 /* struct dma_slave_caps - expose capabilities of a slave channel only
368 * @src_addr_widths: bit mask of src addr widths the channel supports
369 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
370 * @directions: bit mask of slave direction the channel supported
371 * since the enum dma_transfer_direction is not defined as bits for each
372 * type of direction, the dma controller should fill (1 << <TYPE>) and same
373 * should be checked by controller as well
374 * @cmd_pause: true, if pause and thereby resume is supported
375 * @cmd_terminate: true, if terminate cmd is supported
377 struct dma_slave_caps {
378 u32 src_addr_widths;
379 u32 dstn_addr_widths;
380 u32 directions;
381 bool cmd_pause;
382 bool cmd_terminate;
385 static inline const char *dma_chan_name(struct dma_chan *chan)
387 return dev_name(&chan->dev->device);
390 void dma_chan_cleanup(struct kref *kref);
393 * typedef dma_filter_fn - callback filter for dma_request_channel
394 * @chan: channel to be reviewed
395 * @filter_param: opaque parameter passed through dma_request_channel
397 * When this optional parameter is specified in a call to dma_request_channel a
398 * suitable channel is passed to this routine for further dispositioning before
399 * being returned. Where 'suitable' indicates a non-busy channel that
400 * satisfies the given capability mask. It returns 'true' to indicate that the
401 * channel is suitable.
403 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
405 typedef void (*dma_async_tx_callback)(void *dma_async_param);
407 struct dmaengine_unmap_data {
408 u8 to_cnt;
409 u8 from_cnt;
410 u8 bidi_cnt;
411 struct device *dev;
412 struct kref kref;
413 size_t len;
414 dma_addr_t addr[0];
418 * struct dma_async_tx_descriptor - async transaction descriptor
419 * ---dma generic offload fields---
420 * @cookie: tracking cookie for this transaction, set to -EBUSY if
421 * this tx is sitting on a dependency list
422 * @flags: flags to augment operation preparation, control completion, and
423 * communicate status
424 * @phys: physical address of the descriptor
425 * @chan: target channel for this operation
426 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
427 * @callback: routine to call after this operation is complete
428 * @callback_param: general parameter to pass to the callback routine
429 * ---async_tx api specific fields---
430 * @next: at completion submit this descriptor
431 * @parent: pointer to the next level up in the dependency chain
432 * @lock: protect the parent and next pointers
434 struct dma_async_tx_descriptor {
435 dma_cookie_t cookie;
436 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
437 dma_addr_t phys;
438 struct dma_chan *chan;
439 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
440 dma_async_tx_callback callback;
441 void *callback_param;
442 struct dmaengine_unmap_data *unmap;
443 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
444 struct dma_async_tx_descriptor *next;
445 struct dma_async_tx_descriptor *parent;
446 spinlock_t lock;
447 #endif
450 #ifdef CONFIG_DMA_ENGINE
451 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
452 struct dmaengine_unmap_data *unmap)
454 kref_get(&unmap->kref);
455 tx->unmap = unmap;
458 struct dmaengine_unmap_data *
459 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
460 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
461 #else
462 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
463 struct dmaengine_unmap_data *unmap)
466 static inline struct dmaengine_unmap_data *
467 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
469 return NULL;
471 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
474 #endif
476 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
478 if (tx->unmap) {
479 dmaengine_unmap_put(tx->unmap);
480 tx->unmap = NULL;
484 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
485 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
488 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
491 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
493 BUG();
495 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
498 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
501 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
503 return NULL;
505 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
507 return NULL;
510 #else
511 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
513 spin_lock_bh(&txd->lock);
515 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
517 spin_unlock_bh(&txd->lock);
519 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
521 txd->next = next;
522 next->parent = txd;
524 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
526 txd->parent = NULL;
528 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
530 txd->next = NULL;
532 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
534 return txd->parent;
536 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
538 return txd->next;
540 #endif
543 * struct dma_tx_state - filled in to report the status of
544 * a transfer.
545 * @last: last completed DMA cookie
546 * @used: last issued DMA cookie (i.e. the one in progress)
547 * @residue: the remaining number of bytes left to transmit
548 * on the selected transfer for states DMA_IN_PROGRESS and
549 * DMA_PAUSED if this is implemented in the driver, else 0
551 struct dma_tx_state {
552 dma_cookie_t last;
553 dma_cookie_t used;
554 u32 residue;
558 * struct dma_device - info on the entity supplying DMA services
559 * @chancnt: how many DMA channels are supported
560 * @privatecnt: how many DMA channels are requested by dma_request_channel
561 * @channels: the list of struct dma_chan
562 * @global_node: list_head for global dma_device_list
563 * @cap_mask: one or more dma_capability flags
564 * @max_xor: maximum number of xor sources, 0 if no capability
565 * @max_pq: maximum number of PQ sources and PQ-continue capability
566 * @copy_align: alignment shift for memcpy operations
567 * @xor_align: alignment shift for xor operations
568 * @pq_align: alignment shift for pq operations
569 * @fill_align: alignment shift for memset operations
570 * @dev_id: unique device ID
571 * @dev: struct device reference for dma mapping api
572 * @device_alloc_chan_resources: allocate resources and return the
573 * number of allocated descriptors
574 * @device_free_chan_resources: release DMA channel's resources
575 * @device_prep_dma_memcpy: prepares a memcpy operation
576 * @device_prep_dma_xor: prepares a xor operation
577 * @device_prep_dma_xor_val: prepares a xor validation operation
578 * @device_prep_dma_pq: prepares a pq operation
579 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
580 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
581 * @device_prep_slave_sg: prepares a slave dma operation
582 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
583 * The function takes a buffer of size buf_len. The callback function will
584 * be called after period_len bytes have been transferred.
585 * @device_prep_interleaved_dma: Transfer expression in a generic way.
586 * @device_control: manipulate all pending operations on a channel, returns
587 * zero or error code
588 * @device_tx_status: poll for transaction completion, the optional
589 * txstate parameter can be supplied with a pointer to get a
590 * struct with auxiliary transfer status information, otherwise the call
591 * will just return a simple status code
592 * @device_issue_pending: push pending transactions to hardware
593 * @device_slave_caps: return the slave channel capabilities
595 struct dma_device {
597 unsigned int chancnt;
598 unsigned int privatecnt;
599 struct list_head channels;
600 struct list_head global_node;
601 dma_cap_mask_t cap_mask;
602 unsigned short max_xor;
603 unsigned short max_pq;
604 u8 copy_align;
605 u8 xor_align;
606 u8 pq_align;
607 u8 fill_align;
608 #define DMA_HAS_PQ_CONTINUE (1 << 15)
610 int dev_id;
611 struct device *dev;
613 int (*device_alloc_chan_resources)(struct dma_chan *chan);
614 void (*device_free_chan_resources)(struct dma_chan *chan);
616 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
617 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
618 size_t len, unsigned long flags);
619 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
620 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
621 unsigned int src_cnt, size_t len, unsigned long flags);
622 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
623 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
624 size_t len, enum sum_check_flags *result, unsigned long flags);
625 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
626 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
627 unsigned int src_cnt, const unsigned char *scf,
628 size_t len, unsigned long flags);
629 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
630 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
631 unsigned int src_cnt, const unsigned char *scf, size_t len,
632 enum sum_check_flags *pqres, unsigned long flags);
633 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
634 struct dma_chan *chan, unsigned long flags);
635 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
636 struct dma_chan *chan,
637 struct scatterlist *dst_sg, unsigned int dst_nents,
638 struct scatterlist *src_sg, unsigned int src_nents,
639 unsigned long flags);
641 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
642 struct dma_chan *chan, struct scatterlist *sgl,
643 unsigned int sg_len, enum dma_transfer_direction direction,
644 unsigned long flags, void *context);
645 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
646 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
647 size_t period_len, enum dma_transfer_direction direction,
648 unsigned long flags, void *context);
649 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
650 struct dma_chan *chan, struct dma_interleaved_template *xt,
651 unsigned long flags);
652 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
653 unsigned long arg);
655 enum dma_status (*device_tx_status)(struct dma_chan *chan,
656 dma_cookie_t cookie,
657 struct dma_tx_state *txstate);
658 void (*device_issue_pending)(struct dma_chan *chan);
659 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
662 static inline int dmaengine_device_control(struct dma_chan *chan,
663 enum dma_ctrl_cmd cmd,
664 unsigned long arg)
666 if (chan->device->device_control)
667 return chan->device->device_control(chan, cmd, arg);
669 return -ENOSYS;
672 static inline int dmaengine_slave_config(struct dma_chan *chan,
673 struct dma_slave_config *config)
675 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
676 (unsigned long)config);
679 static inline bool is_slave_direction(enum dma_transfer_direction direction)
681 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
684 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
685 struct dma_chan *chan, dma_addr_t buf, size_t len,
686 enum dma_transfer_direction dir, unsigned long flags)
688 struct scatterlist sg;
689 sg_init_table(&sg, 1);
690 sg_dma_address(&sg) = buf;
691 sg_dma_len(&sg) = len;
693 return chan->device->device_prep_slave_sg(chan, &sg, 1,
694 dir, flags, NULL);
697 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
698 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
699 enum dma_transfer_direction dir, unsigned long flags)
701 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
702 dir, flags, NULL);
705 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
706 struct rio_dma_ext;
707 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
708 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
709 enum dma_transfer_direction dir, unsigned long flags,
710 struct rio_dma_ext *rio_ext)
712 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
713 dir, flags, rio_ext);
715 #endif
717 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
718 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
719 size_t period_len, enum dma_transfer_direction dir,
720 unsigned long flags)
722 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
723 period_len, dir, flags, NULL);
726 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
727 struct dma_chan *chan, struct dma_interleaved_template *xt,
728 unsigned long flags)
730 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
733 static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
735 if (!chan || !caps)
736 return -EINVAL;
738 /* check if the channel supports slave transactions */
739 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
740 return -ENXIO;
742 if (chan->device->device_slave_caps)
743 return chan->device->device_slave_caps(chan, caps);
745 return -ENXIO;
748 static inline int dmaengine_terminate_all(struct dma_chan *chan)
750 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
753 static inline int dmaengine_pause(struct dma_chan *chan)
755 return dmaengine_device_control(chan, DMA_PAUSE, 0);
758 static inline int dmaengine_resume(struct dma_chan *chan)
760 return dmaengine_device_control(chan, DMA_RESUME, 0);
763 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
764 dma_cookie_t cookie, struct dma_tx_state *state)
766 return chan->device->device_tx_status(chan, cookie, state);
769 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
771 return desc->tx_submit(desc);
774 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
776 size_t mask;
778 if (!align)
779 return true;
780 mask = (1 << align) - 1;
781 if (mask & (off1 | off2 | len))
782 return false;
783 return true;
786 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
787 size_t off2, size_t len)
789 return dmaengine_check_align(dev->copy_align, off1, off2, len);
792 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
793 size_t off2, size_t len)
795 return dmaengine_check_align(dev->xor_align, off1, off2, len);
798 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
799 size_t off2, size_t len)
801 return dmaengine_check_align(dev->pq_align, off1, off2, len);
804 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
805 size_t off2, size_t len)
807 return dmaengine_check_align(dev->fill_align, off1, off2, len);
810 static inline void
811 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
813 dma->max_pq = maxpq;
814 if (has_pq_continue)
815 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
818 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
820 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
823 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
825 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
827 return (flags & mask) == mask;
830 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
832 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
835 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
837 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
840 /* dma_maxpq - reduce maxpq in the face of continued operations
841 * @dma - dma device with PQ capability
842 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
844 * When an engine does not support native continuation we need 3 extra
845 * source slots to reuse P and Q with the following coefficients:
846 * 1/ {00} * P : remove P from Q', but use it as a source for P'
847 * 2/ {01} * Q : use Q to continue Q' calculation
848 * 3/ {00} * Q : subtract Q from P' to cancel (2)
850 * In the case where P is disabled we only need 1 extra source:
851 * 1/ {01} * Q : use Q to continue Q' calculation
853 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
855 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
856 return dma_dev_to_maxpq(dma);
857 else if (dmaf_p_disabled_continue(flags))
858 return dma_dev_to_maxpq(dma) - 1;
859 else if (dmaf_continue(flags))
860 return dma_dev_to_maxpq(dma) - 3;
861 BUG();
864 /* --- public DMA engine API --- */
866 #ifdef CONFIG_DMA_ENGINE
867 void dmaengine_get(void);
868 void dmaengine_put(void);
869 #else
870 static inline void dmaengine_get(void)
873 static inline void dmaengine_put(void)
876 #endif
878 #ifdef CONFIG_NET_DMA
879 #define net_dmaengine_get() dmaengine_get()
880 #define net_dmaengine_put() dmaengine_put()
881 #else
882 static inline void net_dmaengine_get(void)
885 static inline void net_dmaengine_put(void)
888 #endif
890 #ifdef CONFIG_ASYNC_TX_DMA
891 #define async_dmaengine_get() dmaengine_get()
892 #define async_dmaengine_put() dmaengine_put()
893 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
894 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
895 #else
896 #define async_dma_find_channel(type) dma_find_channel(type)
897 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
898 #else
899 static inline void async_dmaengine_get(void)
902 static inline void async_dmaengine_put(void)
905 static inline struct dma_chan *
906 async_dma_find_channel(enum dma_transaction_type type)
908 return NULL;
910 #endif /* CONFIG_ASYNC_TX_DMA */
912 dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
913 void *dest, void *src, size_t len);
914 dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
915 struct page *page, unsigned int offset, void *kdata, size_t len);
916 dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
917 struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
918 unsigned int src_off, size_t len);
919 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
920 struct dma_chan *chan);
922 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
924 tx->flags |= DMA_CTRL_ACK;
927 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
929 tx->flags &= ~DMA_CTRL_ACK;
932 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
934 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
937 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
938 static inline void
939 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
941 set_bit(tx_type, dstp->bits);
944 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
945 static inline void
946 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
948 clear_bit(tx_type, dstp->bits);
951 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
952 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
954 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
957 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
958 static inline int
959 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
961 return test_bit(tx_type, srcp->bits);
964 #define for_each_dma_cap_mask(cap, mask) \
965 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
968 * dma_async_issue_pending - flush pending transactions to HW
969 * @chan: target DMA channel
971 * This allows drivers to push copies to HW in batches,
972 * reducing MMIO writes where possible.
974 static inline void dma_async_issue_pending(struct dma_chan *chan)
976 chan->device->device_issue_pending(chan);
980 * dma_async_is_tx_complete - poll for transaction completion
981 * @chan: DMA channel
982 * @cookie: transaction identifier to check status of
983 * @last: returns last completed cookie, can be NULL
984 * @used: returns last issued cookie, can be NULL
986 * If @last and @used are passed in, upon return they reflect the driver
987 * internal state and can be used with dma_async_is_complete() to check
988 * the status of multiple cookies without re-checking hardware state.
990 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
991 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
993 struct dma_tx_state state;
994 enum dma_status status;
996 status = chan->device->device_tx_status(chan, cookie, &state);
997 if (last)
998 *last = state.last;
999 if (used)
1000 *used = state.used;
1001 return status;
1005 * dma_async_is_complete - test a cookie against chan state
1006 * @cookie: transaction identifier to test status of
1007 * @last_complete: last know completed transaction
1008 * @last_used: last cookie value handed out
1010 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1011 * the test logic is separated for lightweight testing of multiple cookies
1013 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1014 dma_cookie_t last_complete, dma_cookie_t last_used)
1016 if (last_complete <= last_used) {
1017 if ((cookie <= last_complete) || (cookie > last_used))
1018 return DMA_COMPLETE;
1019 } else {
1020 if ((cookie <= last_complete) && (cookie > last_used))
1021 return DMA_COMPLETE;
1023 return DMA_IN_PROGRESS;
1026 static inline void
1027 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1029 if (st) {
1030 st->last = last;
1031 st->used = used;
1032 st->residue = residue;
1036 #ifdef CONFIG_DMA_ENGINE
1037 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1038 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1039 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1040 void dma_issue_pending_all(void);
1041 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1042 dma_filter_fn fn, void *fn_param);
1043 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1044 void dma_release_channel(struct dma_chan *chan);
1045 #else
1046 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1048 return NULL;
1050 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1052 return DMA_COMPLETE;
1054 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1056 return DMA_COMPLETE;
1058 static inline void dma_issue_pending_all(void)
1061 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1062 dma_filter_fn fn, void *fn_param)
1064 return NULL;
1066 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1067 const char *name)
1069 return NULL;
1071 static inline void dma_release_channel(struct dma_chan *chan)
1074 #endif
1076 /* --- DMA device --- */
1078 int dma_async_device_register(struct dma_device *device);
1079 void dma_async_device_unregister(struct dma_device *device);
1080 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1081 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1082 struct dma_chan *net_dma_find_channel(void);
1083 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1084 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1085 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1087 static inline struct dma_chan
1088 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1089 dma_filter_fn fn, void *fn_param,
1090 struct device *dev, char *name)
1092 struct dma_chan *chan;
1094 chan = dma_request_slave_channel(dev, name);
1095 if (chan)
1096 return chan;
1098 return __dma_request_channel(mask, fn, fn_param);
1101 /* --- Helper iov-locking functions --- */
1103 struct dma_page_list {
1104 char __user *base_address;
1105 int nr_pages;
1106 struct page **pages;
1109 struct dma_pinned_list {
1110 int nr_iovecs;
1111 struct dma_page_list page_list[0];
1114 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1115 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1117 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1118 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1119 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1120 struct dma_pinned_list *pinned_list, struct page *page,
1121 unsigned int offset, size_t len);
1123 #endif /* DMAENGINE_H */