Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / f2fs / segment.c
blobfa284d397199faed53f1c8ffb4de611440ad2e73
1 /*
2 * fs/f2fs/segment.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
24 * This function balances dirty node and dentry pages.
25 * In addition, it controls garbage collection.
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
30 * We should do GC or end up with checkpoint, if there are so many dirty
31 * dir/node pages without enough free segments.
33 if (has_not_enough_free_secs(sbi, 0)) {
34 mutex_lock(&sbi->gc_mutex);
35 f2fs_gc(sbi);
39 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
41 /* check the # of cached NAT entries and prefree segments */
42 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
43 excess_prefree_segs(sbi))
44 f2fs_sync_fs(sbi->sb, true);
47 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
48 enum dirty_type dirty_type)
50 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
52 /* need not be added */
53 if (IS_CURSEG(sbi, segno))
54 return;
56 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
57 dirty_i->nr_dirty[dirty_type]++;
59 if (dirty_type == DIRTY) {
60 struct seg_entry *sentry = get_seg_entry(sbi, segno);
61 enum dirty_type t = sentry->type;
63 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
64 dirty_i->nr_dirty[t]++;
68 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
69 enum dirty_type dirty_type)
71 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
73 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
74 dirty_i->nr_dirty[dirty_type]--;
76 if (dirty_type == DIRTY) {
77 struct seg_entry *sentry = get_seg_entry(sbi, segno);
78 enum dirty_type t = sentry->type;
80 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
81 dirty_i->nr_dirty[t]--;
83 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
84 clear_bit(GET_SECNO(sbi, segno),
85 dirty_i->victim_secmap);
90 * Should not occur error such as -ENOMEM.
91 * Adding dirty entry into seglist is not critical operation.
92 * If a given segment is one of current working segments, it won't be added.
94 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
96 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
97 unsigned short valid_blocks;
99 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
100 return;
102 mutex_lock(&dirty_i->seglist_lock);
104 valid_blocks = get_valid_blocks(sbi, segno, 0);
106 if (valid_blocks == 0) {
107 __locate_dirty_segment(sbi, segno, PRE);
108 __remove_dirty_segment(sbi, segno, DIRTY);
109 } else if (valid_blocks < sbi->blocks_per_seg) {
110 __locate_dirty_segment(sbi, segno, DIRTY);
111 } else {
112 /* Recovery routine with SSR needs this */
113 __remove_dirty_segment(sbi, segno, DIRTY);
116 mutex_unlock(&dirty_i->seglist_lock);
120 * Should call clear_prefree_segments after checkpoint is done.
122 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
124 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
125 unsigned int segno = -1;
126 unsigned int total_segs = TOTAL_SEGS(sbi);
128 mutex_lock(&dirty_i->seglist_lock);
129 while (1) {
130 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
131 segno + 1);
132 if (segno >= total_segs)
133 break;
134 __set_test_and_free(sbi, segno);
136 mutex_unlock(&dirty_i->seglist_lock);
139 void clear_prefree_segments(struct f2fs_sb_info *sbi)
141 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
142 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
143 unsigned int total_segs = TOTAL_SEGS(sbi);
144 unsigned int start = 0, end = -1;
146 mutex_lock(&dirty_i->seglist_lock);
148 while (1) {
149 int i;
150 start = find_next_bit(prefree_map, total_segs, end + 1);
151 if (start >= total_segs)
152 break;
153 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
155 for (i = start; i < end; i++)
156 clear_bit(i, prefree_map);
158 dirty_i->nr_dirty[PRE] -= end - start;
160 if (!test_opt(sbi, DISCARD))
161 continue;
163 blkdev_issue_discard(sbi->sb->s_bdev,
164 START_BLOCK(sbi, start) <<
165 sbi->log_sectors_per_block,
166 (1 << (sbi->log_sectors_per_block +
167 sbi->log_blocks_per_seg)) * (end - start),
168 GFP_NOFS, 0);
170 mutex_unlock(&dirty_i->seglist_lock);
173 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
175 struct sit_info *sit_i = SIT_I(sbi);
176 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
177 sit_i->dirty_sentries++;
180 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
181 unsigned int segno, int modified)
183 struct seg_entry *se = get_seg_entry(sbi, segno);
184 se->type = type;
185 if (modified)
186 __mark_sit_entry_dirty(sbi, segno);
189 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
191 struct seg_entry *se;
192 unsigned int segno, offset;
193 long int new_vblocks;
195 segno = GET_SEGNO(sbi, blkaddr);
197 se = get_seg_entry(sbi, segno);
198 new_vblocks = se->valid_blocks + del;
199 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
201 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
202 (new_vblocks > sbi->blocks_per_seg)));
204 se->valid_blocks = new_vblocks;
205 se->mtime = get_mtime(sbi);
206 SIT_I(sbi)->max_mtime = se->mtime;
208 /* Update valid block bitmap */
209 if (del > 0) {
210 if (f2fs_set_bit(offset, se->cur_valid_map))
211 BUG();
212 } else {
213 if (!f2fs_clear_bit(offset, se->cur_valid_map))
214 BUG();
216 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
217 se->ckpt_valid_blocks += del;
219 __mark_sit_entry_dirty(sbi, segno);
221 /* update total number of valid blocks to be written in ckpt area */
222 SIT_I(sbi)->written_valid_blocks += del;
224 if (sbi->segs_per_sec > 1)
225 get_sec_entry(sbi, segno)->valid_blocks += del;
228 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
229 block_t old_blkaddr, block_t new_blkaddr)
231 update_sit_entry(sbi, new_blkaddr, 1);
232 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
233 update_sit_entry(sbi, old_blkaddr, -1);
236 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
238 unsigned int segno = GET_SEGNO(sbi, addr);
239 struct sit_info *sit_i = SIT_I(sbi);
241 f2fs_bug_on(addr == NULL_ADDR);
242 if (addr == NEW_ADDR)
243 return;
245 /* add it into sit main buffer */
246 mutex_lock(&sit_i->sentry_lock);
248 update_sit_entry(sbi, addr, -1);
250 /* add it into dirty seglist */
251 locate_dirty_segment(sbi, segno);
253 mutex_unlock(&sit_i->sentry_lock);
257 * This function should be resided under the curseg_mutex lock
259 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
260 struct f2fs_summary *sum)
262 struct curseg_info *curseg = CURSEG_I(sbi, type);
263 void *addr = curseg->sum_blk;
264 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
265 memcpy(addr, sum, sizeof(struct f2fs_summary));
269 * Calculate the number of current summary pages for writing
271 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
273 int valid_sum_count = 0;
274 int i, sum_in_page;
276 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277 if (sbi->ckpt->alloc_type[i] == SSR)
278 valid_sum_count += sbi->blocks_per_seg;
279 else
280 valid_sum_count += curseg_blkoff(sbi, i);
283 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
284 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
285 if (valid_sum_count <= sum_in_page)
286 return 1;
287 else if ((valid_sum_count - sum_in_page) <=
288 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
289 return 2;
290 return 3;
294 * Caller should put this summary page
296 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
298 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
301 static void write_sum_page(struct f2fs_sb_info *sbi,
302 struct f2fs_summary_block *sum_blk, block_t blk_addr)
304 struct page *page = grab_meta_page(sbi, blk_addr);
305 void *kaddr = page_address(page);
306 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
307 set_page_dirty(page);
308 f2fs_put_page(page, 1);
311 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
313 struct curseg_info *curseg = CURSEG_I(sbi, type);
314 unsigned int segno = curseg->segno + 1;
315 struct free_segmap_info *free_i = FREE_I(sbi);
317 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
318 return !test_bit(segno, free_i->free_segmap);
319 return 0;
323 * Find a new segment from the free segments bitmap to right order
324 * This function should be returned with success, otherwise BUG
326 static void get_new_segment(struct f2fs_sb_info *sbi,
327 unsigned int *newseg, bool new_sec, int dir)
329 struct free_segmap_info *free_i = FREE_I(sbi);
330 unsigned int segno, secno, zoneno;
331 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
332 unsigned int hint = *newseg / sbi->segs_per_sec;
333 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
334 unsigned int left_start = hint;
335 bool init = true;
336 int go_left = 0;
337 int i;
339 write_lock(&free_i->segmap_lock);
341 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
342 segno = find_next_zero_bit(free_i->free_segmap,
343 TOTAL_SEGS(sbi), *newseg + 1);
344 if (segno - *newseg < sbi->segs_per_sec -
345 (*newseg % sbi->segs_per_sec))
346 goto got_it;
348 find_other_zone:
349 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
350 if (secno >= TOTAL_SECS(sbi)) {
351 if (dir == ALLOC_RIGHT) {
352 secno = find_next_zero_bit(free_i->free_secmap,
353 TOTAL_SECS(sbi), 0);
354 f2fs_bug_on(secno >= TOTAL_SECS(sbi));
355 } else {
356 go_left = 1;
357 left_start = hint - 1;
360 if (go_left == 0)
361 goto skip_left;
363 while (test_bit(left_start, free_i->free_secmap)) {
364 if (left_start > 0) {
365 left_start--;
366 continue;
368 left_start = find_next_zero_bit(free_i->free_secmap,
369 TOTAL_SECS(sbi), 0);
370 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
371 break;
373 secno = left_start;
374 skip_left:
375 hint = secno;
376 segno = secno * sbi->segs_per_sec;
377 zoneno = secno / sbi->secs_per_zone;
379 /* give up on finding another zone */
380 if (!init)
381 goto got_it;
382 if (sbi->secs_per_zone == 1)
383 goto got_it;
384 if (zoneno == old_zoneno)
385 goto got_it;
386 if (dir == ALLOC_LEFT) {
387 if (!go_left && zoneno + 1 >= total_zones)
388 goto got_it;
389 if (go_left && zoneno == 0)
390 goto got_it;
392 for (i = 0; i < NR_CURSEG_TYPE; i++)
393 if (CURSEG_I(sbi, i)->zone == zoneno)
394 break;
396 if (i < NR_CURSEG_TYPE) {
397 /* zone is in user, try another */
398 if (go_left)
399 hint = zoneno * sbi->secs_per_zone - 1;
400 else if (zoneno + 1 >= total_zones)
401 hint = 0;
402 else
403 hint = (zoneno + 1) * sbi->secs_per_zone;
404 init = false;
405 goto find_other_zone;
407 got_it:
408 /* set it as dirty segment in free segmap */
409 f2fs_bug_on(test_bit(segno, free_i->free_segmap));
410 __set_inuse(sbi, segno);
411 *newseg = segno;
412 write_unlock(&free_i->segmap_lock);
415 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
417 struct curseg_info *curseg = CURSEG_I(sbi, type);
418 struct summary_footer *sum_footer;
420 curseg->segno = curseg->next_segno;
421 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
422 curseg->next_blkoff = 0;
423 curseg->next_segno = NULL_SEGNO;
425 sum_footer = &(curseg->sum_blk->footer);
426 memset(sum_footer, 0, sizeof(struct summary_footer));
427 if (IS_DATASEG(type))
428 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
429 if (IS_NODESEG(type))
430 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
431 __set_sit_entry_type(sbi, type, curseg->segno, modified);
435 * Allocate a current working segment.
436 * This function always allocates a free segment in LFS manner.
438 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
440 struct curseg_info *curseg = CURSEG_I(sbi, type);
441 unsigned int segno = curseg->segno;
442 int dir = ALLOC_LEFT;
444 write_sum_page(sbi, curseg->sum_blk,
445 GET_SUM_BLOCK(sbi, segno));
446 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
447 dir = ALLOC_RIGHT;
449 if (test_opt(sbi, NOHEAP))
450 dir = ALLOC_RIGHT;
452 get_new_segment(sbi, &segno, new_sec, dir);
453 curseg->next_segno = segno;
454 reset_curseg(sbi, type, 1);
455 curseg->alloc_type = LFS;
458 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
459 struct curseg_info *seg, block_t start)
461 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
462 block_t ofs;
463 for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
464 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
465 && !f2fs_test_bit(ofs, se->cur_valid_map))
466 break;
468 seg->next_blkoff = ofs;
472 * If a segment is written by LFS manner, next block offset is just obtained
473 * by increasing the current block offset. However, if a segment is written by
474 * SSR manner, next block offset obtained by calling __next_free_blkoff
476 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
477 struct curseg_info *seg)
479 if (seg->alloc_type == SSR)
480 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
481 else
482 seg->next_blkoff++;
486 * This function always allocates a used segment (from dirty seglist) by SSR
487 * manner, so it should recover the existing segment information of valid blocks
489 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
491 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
492 struct curseg_info *curseg = CURSEG_I(sbi, type);
493 unsigned int new_segno = curseg->next_segno;
494 struct f2fs_summary_block *sum_node;
495 struct page *sum_page;
497 write_sum_page(sbi, curseg->sum_blk,
498 GET_SUM_BLOCK(sbi, curseg->segno));
499 __set_test_and_inuse(sbi, new_segno);
501 mutex_lock(&dirty_i->seglist_lock);
502 __remove_dirty_segment(sbi, new_segno, PRE);
503 __remove_dirty_segment(sbi, new_segno, DIRTY);
504 mutex_unlock(&dirty_i->seglist_lock);
506 reset_curseg(sbi, type, 1);
507 curseg->alloc_type = SSR;
508 __next_free_blkoff(sbi, curseg, 0);
510 if (reuse) {
511 sum_page = get_sum_page(sbi, new_segno);
512 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
513 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
514 f2fs_put_page(sum_page, 1);
518 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
520 struct curseg_info *curseg = CURSEG_I(sbi, type);
521 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
523 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
524 return v_ops->get_victim(sbi,
525 &(curseg)->next_segno, BG_GC, type, SSR);
527 /* For data segments, let's do SSR more intensively */
528 for (; type >= CURSEG_HOT_DATA; type--)
529 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
530 BG_GC, type, SSR))
531 return 1;
532 return 0;
536 * flush out current segment and replace it with new segment
537 * This function should be returned with success, otherwise BUG
539 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
540 int type, bool force)
542 struct curseg_info *curseg = CURSEG_I(sbi, type);
544 if (force)
545 new_curseg(sbi, type, true);
546 else if (type == CURSEG_WARM_NODE)
547 new_curseg(sbi, type, false);
548 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
549 new_curseg(sbi, type, false);
550 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
551 change_curseg(sbi, type, true);
552 else
553 new_curseg(sbi, type, false);
555 stat_inc_seg_type(sbi, curseg);
558 void allocate_new_segments(struct f2fs_sb_info *sbi)
560 struct curseg_info *curseg;
561 unsigned int old_curseg;
562 int i;
564 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565 curseg = CURSEG_I(sbi, i);
566 old_curseg = curseg->segno;
567 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568 locate_dirty_segment(sbi, old_curseg);
572 static const struct segment_allocation default_salloc_ops = {
573 .allocate_segment = allocate_segment_by_default,
576 static void f2fs_end_io_write(struct bio *bio, int err)
578 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580 struct bio_private *p = bio->bi_private;
582 do {
583 struct page *page = bvec->bv_page;
585 if (--bvec >= bio->bi_io_vec)
586 prefetchw(&bvec->bv_page->flags);
587 if (!uptodate) {
588 SetPageError(page);
589 if (page->mapping)
590 set_bit(AS_EIO, &page->mapping->flags);
591 set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592 p->sbi->sb->s_flags |= MS_RDONLY;
594 end_page_writeback(page);
595 dec_page_count(p->sbi, F2FS_WRITEBACK);
596 } while (bvec >= bio->bi_io_vec);
598 if (p->is_sync)
599 complete(p->wait);
601 if (!get_pages(p->sbi, F2FS_WRITEBACK) &&
602 !list_empty(&p->sbi->cp_wait.task_list))
603 wake_up(&p->sbi->cp_wait);
605 kfree(p);
606 bio_put(bio);
609 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
611 struct bio *bio;
613 /* No failure on bio allocation */
614 bio = bio_alloc(GFP_NOIO, npages);
615 bio->bi_bdev = bdev;
616 bio->bi_private = NULL;
618 return bio;
621 static void do_submit_bio(struct f2fs_sb_info *sbi,
622 enum page_type type, bool sync)
624 int rw = sync ? WRITE_SYNC : WRITE;
625 enum page_type btype = type > META ? META : type;
627 if (type >= META_FLUSH)
628 rw = WRITE_FLUSH_FUA;
630 if (btype == META)
631 rw |= REQ_META;
633 if (sbi->bio[btype]) {
634 struct bio_private *p = sbi->bio[btype]->bi_private;
635 p->sbi = sbi;
636 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
638 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
640 if (type == META_FLUSH) {
641 DECLARE_COMPLETION_ONSTACK(wait);
642 p->is_sync = true;
643 p->wait = &wait;
644 submit_bio(rw, sbi->bio[btype]);
645 wait_for_completion(&wait);
646 } else {
647 p->is_sync = false;
648 submit_bio(rw, sbi->bio[btype]);
650 sbi->bio[btype] = NULL;
654 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
656 down_write(&sbi->bio_sem);
657 do_submit_bio(sbi, type, sync);
658 up_write(&sbi->bio_sem);
661 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
662 block_t blk_addr, enum page_type type)
664 struct block_device *bdev = sbi->sb->s_bdev;
665 int bio_blocks;
667 verify_block_addr(sbi, blk_addr);
669 down_write(&sbi->bio_sem);
671 inc_page_count(sbi, F2FS_WRITEBACK);
673 if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
674 do_submit_bio(sbi, type, false);
675 alloc_new:
676 if (sbi->bio[type] == NULL) {
677 struct bio_private *priv;
678 retry:
679 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
680 if (!priv) {
681 cond_resched();
682 goto retry;
685 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
686 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
687 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
688 sbi->bio[type]->bi_private = priv;
690 * The end_io will be assigned at the sumbission phase.
691 * Until then, let bio_add_page() merge consecutive IOs as much
692 * as possible.
696 if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
697 PAGE_CACHE_SIZE) {
698 do_submit_bio(sbi, type, false);
699 goto alloc_new;
702 sbi->last_block_in_bio[type] = blk_addr;
704 up_write(&sbi->bio_sem);
705 trace_f2fs_submit_write_page(page, blk_addr, type);
708 void f2fs_wait_on_page_writeback(struct page *page,
709 enum page_type type, bool sync)
711 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
712 if (PageWriteback(page)) {
713 f2fs_submit_bio(sbi, type, sync);
714 wait_on_page_writeback(page);
718 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
720 struct curseg_info *curseg = CURSEG_I(sbi, type);
721 if (curseg->next_blkoff < sbi->blocks_per_seg)
722 return true;
723 return false;
726 static int __get_segment_type_2(struct page *page, enum page_type p_type)
728 if (p_type == DATA)
729 return CURSEG_HOT_DATA;
730 else
731 return CURSEG_HOT_NODE;
734 static int __get_segment_type_4(struct page *page, enum page_type p_type)
736 if (p_type == DATA) {
737 struct inode *inode = page->mapping->host;
739 if (S_ISDIR(inode->i_mode))
740 return CURSEG_HOT_DATA;
741 else
742 return CURSEG_COLD_DATA;
743 } else {
744 if (IS_DNODE(page) && !is_cold_node(page))
745 return CURSEG_HOT_NODE;
746 else
747 return CURSEG_COLD_NODE;
751 static int __get_segment_type_6(struct page *page, enum page_type p_type)
753 if (p_type == DATA) {
754 struct inode *inode = page->mapping->host;
756 if (S_ISDIR(inode->i_mode))
757 return CURSEG_HOT_DATA;
758 else if (is_cold_data(page) || file_is_cold(inode))
759 return CURSEG_COLD_DATA;
760 else
761 return CURSEG_WARM_DATA;
762 } else {
763 if (IS_DNODE(page))
764 return is_cold_node(page) ? CURSEG_WARM_NODE :
765 CURSEG_HOT_NODE;
766 else
767 return CURSEG_COLD_NODE;
771 static int __get_segment_type(struct page *page, enum page_type p_type)
773 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
774 switch (sbi->active_logs) {
775 case 2:
776 return __get_segment_type_2(page, p_type);
777 case 4:
778 return __get_segment_type_4(page, p_type);
780 /* NR_CURSEG_TYPE(6) logs by default */
781 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
782 return __get_segment_type_6(page, p_type);
785 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
786 block_t old_blkaddr, block_t *new_blkaddr,
787 struct f2fs_summary *sum, enum page_type p_type)
789 struct sit_info *sit_i = SIT_I(sbi);
790 struct curseg_info *curseg;
791 unsigned int old_cursegno;
792 int type;
794 type = __get_segment_type(page, p_type);
795 curseg = CURSEG_I(sbi, type);
797 mutex_lock(&curseg->curseg_mutex);
799 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
800 old_cursegno = curseg->segno;
803 * __add_sum_entry should be resided under the curseg_mutex
804 * because, this function updates a summary entry in the
805 * current summary block.
807 __add_sum_entry(sbi, type, sum);
809 mutex_lock(&sit_i->sentry_lock);
810 __refresh_next_blkoff(sbi, curseg);
812 stat_inc_block_count(sbi, curseg);
815 * SIT information should be updated before segment allocation,
816 * since SSR needs latest valid block information.
818 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
820 if (!__has_curseg_space(sbi, type))
821 sit_i->s_ops->allocate_segment(sbi, type, false);
823 locate_dirty_segment(sbi, old_cursegno);
824 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
825 mutex_unlock(&sit_i->sentry_lock);
827 if (p_type == NODE)
828 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
830 /* writeout dirty page into bdev */
831 submit_write_page(sbi, page, *new_blkaddr, p_type);
833 mutex_unlock(&curseg->curseg_mutex);
836 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
838 set_page_writeback(page);
839 submit_write_page(sbi, page, page->index, META);
842 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
843 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
845 struct f2fs_summary sum;
846 set_summary(&sum, nid, 0, 0);
847 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
850 void write_data_page(struct inode *inode, struct page *page,
851 struct dnode_of_data *dn, block_t old_blkaddr,
852 block_t *new_blkaddr)
854 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
855 struct f2fs_summary sum;
856 struct node_info ni;
858 f2fs_bug_on(old_blkaddr == NULL_ADDR);
859 get_node_info(sbi, dn->nid, &ni);
860 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
862 do_write_page(sbi, page, old_blkaddr,
863 new_blkaddr, &sum, DATA);
866 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
867 block_t old_blk_addr)
869 submit_write_page(sbi, page, old_blk_addr, DATA);
872 void recover_data_page(struct f2fs_sb_info *sbi,
873 struct page *page, struct f2fs_summary *sum,
874 block_t old_blkaddr, block_t new_blkaddr)
876 struct sit_info *sit_i = SIT_I(sbi);
877 struct curseg_info *curseg;
878 unsigned int segno, old_cursegno;
879 struct seg_entry *se;
880 int type;
882 segno = GET_SEGNO(sbi, new_blkaddr);
883 se = get_seg_entry(sbi, segno);
884 type = se->type;
886 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
887 if (old_blkaddr == NULL_ADDR)
888 type = CURSEG_COLD_DATA;
889 else
890 type = CURSEG_WARM_DATA;
892 curseg = CURSEG_I(sbi, type);
894 mutex_lock(&curseg->curseg_mutex);
895 mutex_lock(&sit_i->sentry_lock);
897 old_cursegno = curseg->segno;
899 /* change the current segment */
900 if (segno != curseg->segno) {
901 curseg->next_segno = segno;
902 change_curseg(sbi, type, true);
905 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
906 (sbi->blocks_per_seg - 1);
907 __add_sum_entry(sbi, type, sum);
909 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
911 locate_dirty_segment(sbi, old_cursegno);
912 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
914 mutex_unlock(&sit_i->sentry_lock);
915 mutex_unlock(&curseg->curseg_mutex);
918 void rewrite_node_page(struct f2fs_sb_info *sbi,
919 struct page *page, struct f2fs_summary *sum,
920 block_t old_blkaddr, block_t new_blkaddr)
922 struct sit_info *sit_i = SIT_I(sbi);
923 int type = CURSEG_WARM_NODE;
924 struct curseg_info *curseg;
925 unsigned int segno, old_cursegno;
926 block_t next_blkaddr = next_blkaddr_of_node(page);
927 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
929 curseg = CURSEG_I(sbi, type);
931 mutex_lock(&curseg->curseg_mutex);
932 mutex_lock(&sit_i->sentry_lock);
934 segno = GET_SEGNO(sbi, new_blkaddr);
935 old_cursegno = curseg->segno;
937 /* change the current segment */
938 if (segno != curseg->segno) {
939 curseg->next_segno = segno;
940 change_curseg(sbi, type, true);
942 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
943 (sbi->blocks_per_seg - 1);
944 __add_sum_entry(sbi, type, sum);
946 /* change the current log to the next block addr in advance */
947 if (next_segno != segno) {
948 curseg->next_segno = next_segno;
949 change_curseg(sbi, type, true);
951 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
952 (sbi->blocks_per_seg - 1);
954 /* rewrite node page */
955 set_page_writeback(page);
956 submit_write_page(sbi, page, new_blkaddr, NODE);
957 f2fs_submit_bio(sbi, NODE, true);
958 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
960 locate_dirty_segment(sbi, old_cursegno);
961 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
963 mutex_unlock(&sit_i->sentry_lock);
964 mutex_unlock(&curseg->curseg_mutex);
967 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
969 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
970 struct curseg_info *seg_i;
971 unsigned char *kaddr;
972 struct page *page;
973 block_t start;
974 int i, j, offset;
976 start = start_sum_block(sbi);
978 page = get_meta_page(sbi, start++);
979 kaddr = (unsigned char *)page_address(page);
981 /* Step 1: restore nat cache */
982 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
983 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
985 /* Step 2: restore sit cache */
986 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
987 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
988 SUM_JOURNAL_SIZE);
989 offset = 2 * SUM_JOURNAL_SIZE;
991 /* Step 3: restore summary entries */
992 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
993 unsigned short blk_off;
994 unsigned int segno;
996 seg_i = CURSEG_I(sbi, i);
997 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
998 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
999 seg_i->next_segno = segno;
1000 reset_curseg(sbi, i, 0);
1001 seg_i->alloc_type = ckpt->alloc_type[i];
1002 seg_i->next_blkoff = blk_off;
1004 if (seg_i->alloc_type == SSR)
1005 blk_off = sbi->blocks_per_seg;
1007 for (j = 0; j < blk_off; j++) {
1008 struct f2fs_summary *s;
1009 s = (struct f2fs_summary *)(kaddr + offset);
1010 seg_i->sum_blk->entries[j] = *s;
1011 offset += SUMMARY_SIZE;
1012 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1013 SUM_FOOTER_SIZE)
1014 continue;
1016 f2fs_put_page(page, 1);
1017 page = NULL;
1019 page = get_meta_page(sbi, start++);
1020 kaddr = (unsigned char *)page_address(page);
1021 offset = 0;
1024 f2fs_put_page(page, 1);
1025 return 0;
1028 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1030 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1031 struct f2fs_summary_block *sum;
1032 struct curseg_info *curseg;
1033 struct page *new;
1034 unsigned short blk_off;
1035 unsigned int segno = 0;
1036 block_t blk_addr = 0;
1038 /* get segment number and block addr */
1039 if (IS_DATASEG(type)) {
1040 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1041 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1042 CURSEG_HOT_DATA]);
1043 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1044 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1045 else
1046 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1047 } else {
1048 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1049 CURSEG_HOT_NODE]);
1050 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1051 CURSEG_HOT_NODE]);
1052 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1053 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1054 type - CURSEG_HOT_NODE);
1055 else
1056 blk_addr = GET_SUM_BLOCK(sbi, segno);
1059 new = get_meta_page(sbi, blk_addr);
1060 sum = (struct f2fs_summary_block *)page_address(new);
1062 if (IS_NODESEG(type)) {
1063 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1064 struct f2fs_summary *ns = &sum->entries[0];
1065 int i;
1066 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1067 ns->version = 0;
1068 ns->ofs_in_node = 0;
1070 } else {
1071 if (restore_node_summary(sbi, segno, sum)) {
1072 f2fs_put_page(new, 1);
1073 return -EINVAL;
1078 /* set uncompleted segment to curseg */
1079 curseg = CURSEG_I(sbi, type);
1080 mutex_lock(&curseg->curseg_mutex);
1081 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1082 curseg->next_segno = segno;
1083 reset_curseg(sbi, type, 0);
1084 curseg->alloc_type = ckpt->alloc_type[type];
1085 curseg->next_blkoff = blk_off;
1086 mutex_unlock(&curseg->curseg_mutex);
1087 f2fs_put_page(new, 1);
1088 return 0;
1091 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1093 int type = CURSEG_HOT_DATA;
1095 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1096 /* restore for compacted data summary */
1097 if (read_compacted_summaries(sbi))
1098 return -EINVAL;
1099 type = CURSEG_HOT_NODE;
1102 for (; type <= CURSEG_COLD_NODE; type++)
1103 if (read_normal_summaries(sbi, type))
1104 return -EINVAL;
1105 return 0;
1108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1110 struct page *page;
1111 unsigned char *kaddr;
1112 struct f2fs_summary *summary;
1113 struct curseg_info *seg_i;
1114 int written_size = 0;
1115 int i, j;
1117 page = grab_meta_page(sbi, blkaddr++);
1118 kaddr = (unsigned char *)page_address(page);
1120 /* Step 1: write nat cache */
1121 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1122 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1123 written_size += SUM_JOURNAL_SIZE;
1125 /* Step 2: write sit cache */
1126 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1127 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1128 SUM_JOURNAL_SIZE);
1129 written_size += SUM_JOURNAL_SIZE;
1131 /* Step 3: write summary entries */
1132 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1133 unsigned short blkoff;
1134 seg_i = CURSEG_I(sbi, i);
1135 if (sbi->ckpt->alloc_type[i] == SSR)
1136 blkoff = sbi->blocks_per_seg;
1137 else
1138 blkoff = curseg_blkoff(sbi, i);
1140 for (j = 0; j < blkoff; j++) {
1141 if (!page) {
1142 page = grab_meta_page(sbi, blkaddr++);
1143 kaddr = (unsigned char *)page_address(page);
1144 written_size = 0;
1146 summary = (struct f2fs_summary *)(kaddr + written_size);
1147 *summary = seg_i->sum_blk->entries[j];
1148 written_size += SUMMARY_SIZE;
1150 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1151 SUM_FOOTER_SIZE)
1152 continue;
1154 set_page_dirty(page);
1155 f2fs_put_page(page, 1);
1156 page = NULL;
1159 if (page) {
1160 set_page_dirty(page);
1161 f2fs_put_page(page, 1);
1165 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1166 block_t blkaddr, int type)
1168 int i, end;
1169 if (IS_DATASEG(type))
1170 end = type + NR_CURSEG_DATA_TYPE;
1171 else
1172 end = type + NR_CURSEG_NODE_TYPE;
1174 for (i = type; i < end; i++) {
1175 struct curseg_info *sum = CURSEG_I(sbi, i);
1176 mutex_lock(&sum->curseg_mutex);
1177 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1178 mutex_unlock(&sum->curseg_mutex);
1182 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1184 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1185 write_compacted_summaries(sbi, start_blk);
1186 else
1187 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1190 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1192 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1193 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1196 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1197 unsigned int val, int alloc)
1199 int i;
1201 if (type == NAT_JOURNAL) {
1202 for (i = 0; i < nats_in_cursum(sum); i++) {
1203 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1204 return i;
1206 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1207 return update_nats_in_cursum(sum, 1);
1208 } else if (type == SIT_JOURNAL) {
1209 for (i = 0; i < sits_in_cursum(sum); i++)
1210 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1211 return i;
1212 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1213 return update_sits_in_cursum(sum, 1);
1215 return -1;
1218 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1219 unsigned int segno)
1221 struct sit_info *sit_i = SIT_I(sbi);
1222 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1223 block_t blk_addr = sit_i->sit_base_addr + offset;
1225 check_seg_range(sbi, segno);
1227 /* calculate sit block address */
1228 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1229 blk_addr += sit_i->sit_blocks;
1231 return get_meta_page(sbi, blk_addr);
1234 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1235 unsigned int start)
1237 struct sit_info *sit_i = SIT_I(sbi);
1238 struct page *src_page, *dst_page;
1239 pgoff_t src_off, dst_off;
1240 void *src_addr, *dst_addr;
1242 src_off = current_sit_addr(sbi, start);
1243 dst_off = next_sit_addr(sbi, src_off);
1245 /* get current sit block page without lock */
1246 src_page = get_meta_page(sbi, src_off);
1247 dst_page = grab_meta_page(sbi, dst_off);
1248 f2fs_bug_on(PageDirty(src_page));
1250 src_addr = page_address(src_page);
1251 dst_addr = page_address(dst_page);
1252 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1254 set_page_dirty(dst_page);
1255 f2fs_put_page(src_page, 1);
1257 set_to_next_sit(sit_i, start);
1259 return dst_page;
1262 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1264 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1265 struct f2fs_summary_block *sum = curseg->sum_blk;
1266 int i;
1269 * If the journal area in the current summary is full of sit entries,
1270 * all the sit entries will be flushed. Otherwise the sit entries
1271 * are not able to replace with newly hot sit entries.
1273 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1274 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1275 unsigned int segno;
1276 segno = le32_to_cpu(segno_in_journal(sum, i));
1277 __mark_sit_entry_dirty(sbi, segno);
1279 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1280 return true;
1282 return false;
1286 * CP calls this function, which flushes SIT entries including sit_journal,
1287 * and moves prefree segs to free segs.
1289 void flush_sit_entries(struct f2fs_sb_info *sbi)
1291 struct sit_info *sit_i = SIT_I(sbi);
1292 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1293 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1294 struct f2fs_summary_block *sum = curseg->sum_blk;
1295 unsigned long nsegs = TOTAL_SEGS(sbi);
1296 struct page *page = NULL;
1297 struct f2fs_sit_block *raw_sit = NULL;
1298 unsigned int start = 0, end = 0;
1299 unsigned int segno = -1;
1300 bool flushed;
1302 mutex_lock(&curseg->curseg_mutex);
1303 mutex_lock(&sit_i->sentry_lock);
1306 * "flushed" indicates whether sit entries in journal are flushed
1307 * to the SIT area or not.
1309 flushed = flush_sits_in_journal(sbi);
1311 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1312 struct seg_entry *se = get_seg_entry(sbi, segno);
1313 int sit_offset, offset;
1315 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1317 if (flushed)
1318 goto to_sit_page;
1320 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1321 if (offset >= 0) {
1322 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1323 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1324 goto flush_done;
1326 to_sit_page:
1327 if (!page || (start > segno) || (segno > end)) {
1328 if (page) {
1329 f2fs_put_page(page, 1);
1330 page = NULL;
1333 start = START_SEGNO(sit_i, segno);
1334 end = start + SIT_ENTRY_PER_BLOCK - 1;
1336 /* read sit block that will be updated */
1337 page = get_next_sit_page(sbi, start);
1338 raw_sit = page_address(page);
1341 /* udpate entry in SIT block */
1342 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1343 flush_done:
1344 __clear_bit(segno, bitmap);
1345 sit_i->dirty_sentries--;
1347 mutex_unlock(&sit_i->sentry_lock);
1348 mutex_unlock(&curseg->curseg_mutex);
1350 /* writeout last modified SIT block */
1351 f2fs_put_page(page, 1);
1353 set_prefree_as_free_segments(sbi);
1356 static int build_sit_info(struct f2fs_sb_info *sbi)
1358 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1359 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1360 struct sit_info *sit_i;
1361 unsigned int sit_segs, start;
1362 char *src_bitmap, *dst_bitmap;
1363 unsigned int bitmap_size;
1365 /* allocate memory for SIT information */
1366 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1367 if (!sit_i)
1368 return -ENOMEM;
1370 SM_I(sbi)->sit_info = sit_i;
1372 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1373 if (!sit_i->sentries)
1374 return -ENOMEM;
1376 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1377 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1378 if (!sit_i->dirty_sentries_bitmap)
1379 return -ENOMEM;
1381 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1382 sit_i->sentries[start].cur_valid_map
1383 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1384 sit_i->sentries[start].ckpt_valid_map
1385 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1386 if (!sit_i->sentries[start].cur_valid_map
1387 || !sit_i->sentries[start].ckpt_valid_map)
1388 return -ENOMEM;
1391 if (sbi->segs_per_sec > 1) {
1392 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1393 sizeof(struct sec_entry));
1394 if (!sit_i->sec_entries)
1395 return -ENOMEM;
1398 /* get information related with SIT */
1399 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1401 /* setup SIT bitmap from ckeckpoint pack */
1402 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1403 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1405 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1406 if (!dst_bitmap)
1407 return -ENOMEM;
1409 /* init SIT information */
1410 sit_i->s_ops = &default_salloc_ops;
1412 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1413 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1414 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1415 sit_i->sit_bitmap = dst_bitmap;
1416 sit_i->bitmap_size = bitmap_size;
1417 sit_i->dirty_sentries = 0;
1418 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1419 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1420 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1421 mutex_init(&sit_i->sentry_lock);
1422 return 0;
1425 static int build_free_segmap(struct f2fs_sb_info *sbi)
1427 struct f2fs_sm_info *sm_info = SM_I(sbi);
1428 struct free_segmap_info *free_i;
1429 unsigned int bitmap_size, sec_bitmap_size;
1431 /* allocate memory for free segmap information */
1432 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1433 if (!free_i)
1434 return -ENOMEM;
1436 SM_I(sbi)->free_info = free_i;
1438 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1439 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1440 if (!free_i->free_segmap)
1441 return -ENOMEM;
1443 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1444 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1445 if (!free_i->free_secmap)
1446 return -ENOMEM;
1448 /* set all segments as dirty temporarily */
1449 memset(free_i->free_segmap, 0xff, bitmap_size);
1450 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1452 /* init free segmap information */
1453 free_i->start_segno =
1454 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1455 free_i->free_segments = 0;
1456 free_i->free_sections = 0;
1457 rwlock_init(&free_i->segmap_lock);
1458 return 0;
1461 static int build_curseg(struct f2fs_sb_info *sbi)
1463 struct curseg_info *array;
1464 int i;
1466 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1467 if (!array)
1468 return -ENOMEM;
1470 SM_I(sbi)->curseg_array = array;
1472 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1473 mutex_init(&array[i].curseg_mutex);
1474 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1475 if (!array[i].sum_blk)
1476 return -ENOMEM;
1477 array[i].segno = NULL_SEGNO;
1478 array[i].next_blkoff = 0;
1480 return restore_curseg_summaries(sbi);
1483 static void build_sit_entries(struct f2fs_sb_info *sbi)
1485 struct sit_info *sit_i = SIT_I(sbi);
1486 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1487 struct f2fs_summary_block *sum = curseg->sum_blk;
1488 unsigned int start;
1490 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1491 struct seg_entry *se = &sit_i->sentries[start];
1492 struct f2fs_sit_block *sit_blk;
1493 struct f2fs_sit_entry sit;
1494 struct page *page;
1495 int i;
1497 mutex_lock(&curseg->curseg_mutex);
1498 for (i = 0; i < sits_in_cursum(sum); i++) {
1499 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1500 sit = sit_in_journal(sum, i);
1501 mutex_unlock(&curseg->curseg_mutex);
1502 goto got_it;
1505 mutex_unlock(&curseg->curseg_mutex);
1506 page = get_current_sit_page(sbi, start);
1507 sit_blk = (struct f2fs_sit_block *)page_address(page);
1508 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1509 f2fs_put_page(page, 1);
1510 got_it:
1511 check_block_count(sbi, start, &sit);
1512 seg_info_from_raw_sit(se, &sit);
1513 if (sbi->segs_per_sec > 1) {
1514 struct sec_entry *e = get_sec_entry(sbi, start);
1515 e->valid_blocks += se->valid_blocks;
1520 static void init_free_segmap(struct f2fs_sb_info *sbi)
1522 unsigned int start;
1523 int type;
1525 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1526 struct seg_entry *sentry = get_seg_entry(sbi, start);
1527 if (!sentry->valid_blocks)
1528 __set_free(sbi, start);
1531 /* set use the current segments */
1532 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1533 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1534 __set_test_and_inuse(sbi, curseg_t->segno);
1538 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1540 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1541 struct free_segmap_info *free_i = FREE_I(sbi);
1542 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1543 unsigned short valid_blocks;
1545 while (1) {
1546 /* find dirty segment based on free segmap */
1547 segno = find_next_inuse(free_i, total_segs, offset);
1548 if (segno >= total_segs)
1549 break;
1550 offset = segno + 1;
1551 valid_blocks = get_valid_blocks(sbi, segno, 0);
1552 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1553 continue;
1554 mutex_lock(&dirty_i->seglist_lock);
1555 __locate_dirty_segment(sbi, segno, DIRTY);
1556 mutex_unlock(&dirty_i->seglist_lock);
1560 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1562 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1563 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1565 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1566 if (!dirty_i->victim_secmap)
1567 return -ENOMEM;
1568 return 0;
1571 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1573 struct dirty_seglist_info *dirty_i;
1574 unsigned int bitmap_size, i;
1576 /* allocate memory for dirty segments list information */
1577 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1578 if (!dirty_i)
1579 return -ENOMEM;
1581 SM_I(sbi)->dirty_info = dirty_i;
1582 mutex_init(&dirty_i->seglist_lock);
1584 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1586 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1587 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1588 if (!dirty_i->dirty_segmap[i])
1589 return -ENOMEM;
1592 init_dirty_segmap(sbi);
1593 return init_victim_secmap(sbi);
1597 * Update min, max modified time for cost-benefit GC algorithm
1599 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1601 struct sit_info *sit_i = SIT_I(sbi);
1602 unsigned int segno;
1604 mutex_lock(&sit_i->sentry_lock);
1606 sit_i->min_mtime = LLONG_MAX;
1608 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1609 unsigned int i;
1610 unsigned long long mtime = 0;
1612 for (i = 0; i < sbi->segs_per_sec; i++)
1613 mtime += get_seg_entry(sbi, segno + i)->mtime;
1615 mtime = div_u64(mtime, sbi->segs_per_sec);
1617 if (sit_i->min_mtime > mtime)
1618 sit_i->min_mtime = mtime;
1620 sit_i->max_mtime = get_mtime(sbi);
1621 mutex_unlock(&sit_i->sentry_lock);
1624 int build_segment_manager(struct f2fs_sb_info *sbi)
1626 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1627 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1628 struct f2fs_sm_info *sm_info;
1629 int err;
1631 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1632 if (!sm_info)
1633 return -ENOMEM;
1635 /* init sm info */
1636 sbi->sm_info = sm_info;
1637 INIT_LIST_HEAD(&sm_info->wblist_head);
1638 spin_lock_init(&sm_info->wblist_lock);
1639 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1640 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1641 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1642 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1643 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1644 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1645 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1646 sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1648 err = build_sit_info(sbi);
1649 if (err)
1650 return err;
1651 err = build_free_segmap(sbi);
1652 if (err)
1653 return err;
1654 err = build_curseg(sbi);
1655 if (err)
1656 return err;
1658 /* reinit free segmap based on SIT */
1659 build_sit_entries(sbi);
1661 init_free_segmap(sbi);
1662 err = build_dirty_segmap(sbi);
1663 if (err)
1664 return err;
1666 init_min_max_mtime(sbi);
1667 return 0;
1670 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1671 enum dirty_type dirty_type)
1673 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1675 mutex_lock(&dirty_i->seglist_lock);
1676 kfree(dirty_i->dirty_segmap[dirty_type]);
1677 dirty_i->nr_dirty[dirty_type] = 0;
1678 mutex_unlock(&dirty_i->seglist_lock);
1681 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1683 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1684 kfree(dirty_i->victim_secmap);
1687 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1689 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1690 int i;
1692 if (!dirty_i)
1693 return;
1695 /* discard pre-free/dirty segments list */
1696 for (i = 0; i < NR_DIRTY_TYPE; i++)
1697 discard_dirty_segmap(sbi, i);
1699 destroy_victim_secmap(sbi);
1700 SM_I(sbi)->dirty_info = NULL;
1701 kfree(dirty_i);
1704 static void destroy_curseg(struct f2fs_sb_info *sbi)
1706 struct curseg_info *array = SM_I(sbi)->curseg_array;
1707 int i;
1709 if (!array)
1710 return;
1711 SM_I(sbi)->curseg_array = NULL;
1712 for (i = 0; i < NR_CURSEG_TYPE; i++)
1713 kfree(array[i].sum_blk);
1714 kfree(array);
1717 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1719 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1720 if (!free_i)
1721 return;
1722 SM_I(sbi)->free_info = NULL;
1723 kfree(free_i->free_segmap);
1724 kfree(free_i->free_secmap);
1725 kfree(free_i);
1728 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1730 struct sit_info *sit_i = SIT_I(sbi);
1731 unsigned int start;
1733 if (!sit_i)
1734 return;
1736 if (sit_i->sentries) {
1737 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1738 kfree(sit_i->sentries[start].cur_valid_map);
1739 kfree(sit_i->sentries[start].ckpt_valid_map);
1742 vfree(sit_i->sentries);
1743 vfree(sit_i->sec_entries);
1744 kfree(sit_i->dirty_sentries_bitmap);
1746 SM_I(sbi)->sit_info = NULL;
1747 kfree(sit_i->sit_bitmap);
1748 kfree(sit_i);
1751 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1753 struct f2fs_sm_info *sm_info = SM_I(sbi);
1754 if (!sm_info)
1755 return;
1756 destroy_dirty_segmap(sbi);
1757 destroy_curseg(sbi);
1758 destroy_free_segmap(sbi);
1759 destroy_sit_info(sbi);
1760 sbi->sm_info = NULL;
1761 kfree(sm_info);