Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / f2fs / checkpoint.c
blob5716e5eb4e8ec7ab2c63c69079259e2c5d772918
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
29 * We guarantee no failure on the returned page.
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 struct address_space *mapping = sbi->meta_inode->i_mapping;
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
49 * We guarantee no failure on the returned page.
51 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
53 struct address_space *mapping = sbi->meta_inode->i_mapping;
54 struct page *page;
55 repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
61 if (PageUptodate(page))
62 goto out;
64 if (f2fs_readpage(sbi, page, index, READ_SYNC))
65 goto repeat;
67 lock_page(page);
68 if (page->mapping != mapping) {
69 f2fs_put_page(page, 1);
70 goto repeat;
72 out:
73 mark_page_accessed(page);
74 return page;
77 static int f2fs_write_meta_page(struct page *page,
78 struct writeback_control *wbc)
80 struct inode *inode = page->mapping->host;
81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
83 /* Should not write any meta pages, if any IO error was occurred */
84 if (wbc->for_reclaim || sbi->por_doing ||
85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 dec_page_count(sbi, F2FS_DIRTY_META);
87 wbc->pages_skipped++;
88 set_page_dirty(page);
89 return AOP_WRITEPAGE_ACTIVATE;
92 wait_on_page_writeback(page);
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
100 static int f2fs_write_meta_pages(struct address_space *mapping,
101 struct writeback_control *wbc)
103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 struct block_device *bdev = sbi->sb->s_bdev;
105 long written;
107 if (wbc->for_kupdate)
108 return 0;
110 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 return 0;
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi->cp_mutex);
115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 mutex_unlock(&sbi->cp_mutex);
117 wbc->nr_to_write -= written;
118 return 0;
121 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 long nr_to_write)
124 struct address_space *mapping = sbi->meta_inode->i_mapping;
125 pgoff_t index = 0, end = LONG_MAX;
126 struct pagevec pvec;
127 long nwritten = 0;
128 struct writeback_control wbc = {
129 .for_reclaim = 0,
132 pagevec_init(&pvec, 0);
134 while (index <= end) {
135 int i, nr_pages;
136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 PAGECACHE_TAG_DIRTY,
138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 if (nr_pages == 0)
140 break;
142 for (i = 0; i < nr_pages; i++) {
143 struct page *page = pvec.pages[i];
144 lock_page(page);
145 f2fs_bug_on(page->mapping != mapping);
146 f2fs_bug_on(!PageDirty(page));
147 clear_page_dirty_for_io(page);
148 if (f2fs_write_meta_page(page, &wbc)) {
149 unlock_page(page);
150 break;
152 if (nwritten++ >= nr_to_write)
153 break;
155 pagevec_release(&pvec);
156 cond_resched();
159 if (nwritten)
160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
162 return nwritten;
165 static int f2fs_set_meta_page_dirty(struct page *page)
167 struct address_space *mapping = page->mapping;
168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
170 trace_f2fs_set_page_dirty(page, META);
172 SetPageUptodate(page);
173 if (!PageDirty(page)) {
174 __set_page_dirty_nobuffers(page);
175 inc_page_count(sbi, F2FS_DIRTY_META);
176 return 1;
178 return 0;
181 const struct address_space_operations f2fs_meta_aops = {
182 .writepage = f2fs_write_meta_page,
183 .writepages = f2fs_write_meta_pages,
184 .set_page_dirty = f2fs_set_meta_page_dirty,
187 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
189 unsigned int max_orphans;
190 int err = 0;
193 * considering 512 blocks in a segment 5 blocks are needed for cp
194 * and log segment summaries. Remaining blocks are used to keep
195 * orphan entries with the limitation one reserved segment
196 * for cp pack we can have max 1020*507 orphan entries
198 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
199 mutex_lock(&sbi->orphan_inode_mutex);
200 if (sbi->n_orphans >= max_orphans)
201 err = -ENOSPC;
202 else
203 sbi->n_orphans++;
204 mutex_unlock(&sbi->orphan_inode_mutex);
205 return err;
208 void release_orphan_inode(struct f2fs_sb_info *sbi)
210 mutex_lock(&sbi->orphan_inode_mutex);
211 f2fs_bug_on(sbi->n_orphans == 0);
212 sbi->n_orphans--;
213 mutex_unlock(&sbi->orphan_inode_mutex);
216 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
218 struct list_head *head, *this;
219 struct orphan_inode_entry *new = NULL, *orphan = NULL;
221 mutex_lock(&sbi->orphan_inode_mutex);
222 head = &sbi->orphan_inode_list;
223 list_for_each(this, head) {
224 orphan = list_entry(this, struct orphan_inode_entry, list);
225 if (orphan->ino == ino)
226 goto out;
227 if (orphan->ino > ino)
228 break;
229 orphan = NULL;
232 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
233 new->ino = ino;
235 /* add new_oentry into list which is sorted by inode number */
236 if (orphan)
237 list_add(&new->list, this->prev);
238 else
239 list_add_tail(&new->list, head);
240 out:
241 mutex_unlock(&sbi->orphan_inode_mutex);
244 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
246 struct list_head *head;
247 struct orphan_inode_entry *orphan;
249 mutex_lock(&sbi->orphan_inode_mutex);
250 head = &sbi->orphan_inode_list;
251 list_for_each_entry(orphan, head, list) {
252 if (orphan->ino == ino) {
253 list_del(&orphan->list);
254 kmem_cache_free(orphan_entry_slab, orphan);
255 f2fs_bug_on(sbi->n_orphans == 0);
256 sbi->n_orphans--;
257 break;
260 mutex_unlock(&sbi->orphan_inode_mutex);
263 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
265 struct inode *inode = f2fs_iget(sbi->sb, ino);
266 f2fs_bug_on(IS_ERR(inode));
267 clear_nlink(inode);
269 /* truncate all the data during iput */
270 iput(inode);
273 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
275 block_t start_blk, orphan_blkaddr, i, j;
277 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
278 return 0;
280 sbi->por_doing = true;
281 start_blk = __start_cp_addr(sbi) + 1;
282 orphan_blkaddr = __start_sum_addr(sbi) - 1;
284 for (i = 0; i < orphan_blkaddr; i++) {
285 struct page *page = get_meta_page(sbi, start_blk + i);
286 struct f2fs_orphan_block *orphan_blk;
288 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
289 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
290 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
291 recover_orphan_inode(sbi, ino);
293 f2fs_put_page(page, 1);
295 /* clear Orphan Flag */
296 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
297 sbi->por_doing = false;
298 return 0;
301 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
303 struct list_head *head, *this, *next;
304 struct f2fs_orphan_block *orphan_blk = NULL;
305 struct page *page = NULL;
306 unsigned int nentries = 0;
307 unsigned short index = 1;
308 unsigned short orphan_blocks;
310 orphan_blocks = (unsigned short)((sbi->n_orphans +
311 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
313 mutex_lock(&sbi->orphan_inode_mutex);
314 head = &sbi->orphan_inode_list;
316 /* loop for each orphan inode entry and write them in Jornal block */
317 list_for_each_safe(this, next, head) {
318 struct orphan_inode_entry *orphan;
320 orphan = list_entry(this, struct orphan_inode_entry, list);
322 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
324 * an orphan block is full of 1020 entries,
325 * then we need to flush current orphan blocks
326 * and bring another one in memory
328 orphan_blk->blk_addr = cpu_to_le16(index);
329 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
330 orphan_blk->entry_count = cpu_to_le32(nentries);
331 set_page_dirty(page);
332 f2fs_put_page(page, 1);
333 index++;
334 start_blk++;
335 nentries = 0;
336 page = NULL;
338 if (page)
339 goto page_exist;
341 page = grab_meta_page(sbi, start_blk);
342 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
343 memset(orphan_blk, 0, sizeof(*orphan_blk));
344 page_exist:
345 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
347 if (!page)
348 goto end;
350 orphan_blk->blk_addr = cpu_to_le16(index);
351 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
352 orphan_blk->entry_count = cpu_to_le32(nentries);
353 set_page_dirty(page);
354 f2fs_put_page(page, 1);
355 end:
356 mutex_unlock(&sbi->orphan_inode_mutex);
359 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
360 block_t cp_addr, unsigned long long *version)
362 struct page *cp_page_1, *cp_page_2 = NULL;
363 unsigned long blk_size = sbi->blocksize;
364 struct f2fs_checkpoint *cp_block;
365 unsigned long long cur_version = 0, pre_version = 0;
366 size_t crc_offset;
367 __u32 crc = 0;
369 /* Read the 1st cp block in this CP pack */
370 cp_page_1 = get_meta_page(sbi, cp_addr);
372 /* get the version number */
373 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
374 crc_offset = le32_to_cpu(cp_block->checksum_offset);
375 if (crc_offset >= blk_size)
376 goto invalid_cp1;
378 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
379 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
380 goto invalid_cp1;
382 pre_version = cur_cp_version(cp_block);
384 /* Read the 2nd cp block in this CP pack */
385 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
386 cp_page_2 = get_meta_page(sbi, cp_addr);
388 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
389 crc_offset = le32_to_cpu(cp_block->checksum_offset);
390 if (crc_offset >= blk_size)
391 goto invalid_cp2;
393 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
394 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
395 goto invalid_cp2;
397 cur_version = cur_cp_version(cp_block);
399 if (cur_version == pre_version) {
400 *version = cur_version;
401 f2fs_put_page(cp_page_2, 1);
402 return cp_page_1;
404 invalid_cp2:
405 f2fs_put_page(cp_page_2, 1);
406 invalid_cp1:
407 f2fs_put_page(cp_page_1, 1);
408 return NULL;
411 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
413 struct f2fs_checkpoint *cp_block;
414 struct f2fs_super_block *fsb = sbi->raw_super;
415 struct page *cp1, *cp2, *cur_page;
416 unsigned long blk_size = sbi->blocksize;
417 unsigned long long cp1_version = 0, cp2_version = 0;
418 unsigned long long cp_start_blk_no;
420 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
421 if (!sbi->ckpt)
422 return -ENOMEM;
424 * Finding out valid cp block involves read both
425 * sets( cp pack1 and cp pack 2)
427 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
428 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
430 /* The second checkpoint pack should start at the next segment */
431 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
432 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
434 if (cp1 && cp2) {
435 if (ver_after(cp2_version, cp1_version))
436 cur_page = cp2;
437 else
438 cur_page = cp1;
439 } else if (cp1) {
440 cur_page = cp1;
441 } else if (cp2) {
442 cur_page = cp2;
443 } else {
444 goto fail_no_cp;
447 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
448 memcpy(sbi->ckpt, cp_block, blk_size);
450 f2fs_put_page(cp1, 1);
451 f2fs_put_page(cp2, 1);
452 return 0;
454 fail_no_cp:
455 kfree(sbi->ckpt);
456 return -EINVAL;
459 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
461 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
462 struct list_head *head = &sbi->dir_inode_list;
463 struct list_head *this;
465 list_for_each(this, head) {
466 struct dir_inode_entry *entry;
467 entry = list_entry(this, struct dir_inode_entry, list);
468 if (entry->inode == inode)
469 return -EEXIST;
471 list_add_tail(&new->list, head);
472 stat_inc_dirty_dir(sbi);
473 return 0;
476 void set_dirty_dir_page(struct inode *inode, struct page *page)
478 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
479 struct dir_inode_entry *new;
481 if (!S_ISDIR(inode->i_mode))
482 return;
484 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
485 new->inode = inode;
486 INIT_LIST_HEAD(&new->list);
488 spin_lock(&sbi->dir_inode_lock);
489 if (__add_dirty_inode(inode, new))
490 kmem_cache_free(inode_entry_slab, new);
492 inc_page_count(sbi, F2FS_DIRTY_DENTS);
493 inode_inc_dirty_dents(inode);
494 SetPagePrivate(page);
495 spin_unlock(&sbi->dir_inode_lock);
498 void add_dirty_dir_inode(struct inode *inode)
500 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
501 struct dir_inode_entry *new =
502 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
504 new->inode = inode;
505 INIT_LIST_HEAD(&new->list);
507 spin_lock(&sbi->dir_inode_lock);
508 if (__add_dirty_inode(inode, new))
509 kmem_cache_free(inode_entry_slab, new);
510 spin_unlock(&sbi->dir_inode_lock);
513 void remove_dirty_dir_inode(struct inode *inode)
515 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
516 struct list_head *head = &sbi->dir_inode_list;
517 struct list_head *this;
519 if (!S_ISDIR(inode->i_mode))
520 return;
522 spin_lock(&sbi->dir_inode_lock);
523 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
524 spin_unlock(&sbi->dir_inode_lock);
525 return;
528 list_for_each(this, head) {
529 struct dir_inode_entry *entry;
530 entry = list_entry(this, struct dir_inode_entry, list);
531 if (entry->inode == inode) {
532 list_del(&entry->list);
533 kmem_cache_free(inode_entry_slab, entry);
534 stat_dec_dirty_dir(sbi);
535 break;
538 spin_unlock(&sbi->dir_inode_lock);
540 /* Only from the recovery routine */
541 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
542 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
543 iput(inode);
547 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
549 struct list_head *head = &sbi->dir_inode_list;
550 struct list_head *this;
551 struct inode *inode = NULL;
553 spin_lock(&sbi->dir_inode_lock);
554 list_for_each(this, head) {
555 struct dir_inode_entry *entry;
556 entry = list_entry(this, struct dir_inode_entry, list);
557 if (entry->inode->i_ino == ino) {
558 inode = entry->inode;
559 break;
562 spin_unlock(&sbi->dir_inode_lock);
563 return inode;
566 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
568 struct list_head *head = &sbi->dir_inode_list;
569 struct dir_inode_entry *entry;
570 struct inode *inode;
571 retry:
572 spin_lock(&sbi->dir_inode_lock);
573 if (list_empty(head)) {
574 spin_unlock(&sbi->dir_inode_lock);
575 return;
577 entry = list_entry(head->next, struct dir_inode_entry, list);
578 inode = igrab(entry->inode);
579 spin_unlock(&sbi->dir_inode_lock);
580 if (inode) {
581 filemap_flush(inode->i_mapping);
582 iput(inode);
583 } else {
585 * We should submit bio, since it exists several
586 * wribacking dentry pages in the freeing inode.
588 f2fs_submit_bio(sbi, DATA, true);
590 goto retry;
594 * Freeze all the FS-operations for checkpoint.
596 static void block_operations(struct f2fs_sb_info *sbi)
598 struct writeback_control wbc = {
599 .sync_mode = WB_SYNC_ALL,
600 .nr_to_write = LONG_MAX,
601 .for_reclaim = 0,
603 struct blk_plug plug;
605 blk_start_plug(&plug);
607 retry_flush_dents:
608 f2fs_lock_all(sbi);
609 /* write all the dirty dentry pages */
610 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
611 f2fs_unlock_all(sbi);
612 sync_dirty_dir_inodes(sbi);
613 goto retry_flush_dents;
617 * POR: we should ensure that there is no dirty node pages
618 * until finishing nat/sit flush.
620 retry_flush_nodes:
621 mutex_lock(&sbi->node_write);
623 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
624 mutex_unlock(&sbi->node_write);
625 sync_node_pages(sbi, 0, &wbc);
626 goto retry_flush_nodes;
628 blk_finish_plug(&plug);
631 static void unblock_operations(struct f2fs_sb_info *sbi)
633 mutex_unlock(&sbi->node_write);
634 f2fs_unlock_all(sbi);
637 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
639 DEFINE_WAIT(wait);
641 for (;;) {
642 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
644 if (!get_pages(sbi, F2FS_WRITEBACK))
645 break;
647 io_schedule();
649 finish_wait(&sbi->cp_wait, &wait);
652 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
654 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
655 nid_t last_nid = 0;
656 block_t start_blk;
657 struct page *cp_page;
658 unsigned int data_sum_blocks, orphan_blocks;
659 __u32 crc32 = 0;
660 void *kaddr;
661 int i;
663 /* Flush all the NAT/SIT pages */
664 while (get_pages(sbi, F2FS_DIRTY_META))
665 sync_meta_pages(sbi, META, LONG_MAX);
667 next_free_nid(sbi, &last_nid);
670 * modify checkpoint
671 * version number is already updated
673 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
674 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
675 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
676 for (i = 0; i < 3; i++) {
677 ckpt->cur_node_segno[i] =
678 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
679 ckpt->cur_node_blkoff[i] =
680 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
681 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
682 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
684 for (i = 0; i < 3; i++) {
685 ckpt->cur_data_segno[i] =
686 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
687 ckpt->cur_data_blkoff[i] =
688 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
689 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
690 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
693 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
694 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
695 ckpt->next_free_nid = cpu_to_le32(last_nid);
697 /* 2 cp + n data seg summary + orphan inode blocks */
698 data_sum_blocks = npages_for_summary_flush(sbi);
699 if (data_sum_blocks < 3)
700 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
701 else
702 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
704 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
705 / F2FS_ORPHANS_PER_BLOCK;
706 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
708 if (is_umount) {
709 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
710 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
711 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
712 } else {
713 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
714 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
715 data_sum_blocks + orphan_blocks);
718 if (sbi->n_orphans)
719 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
720 else
721 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
723 /* update SIT/NAT bitmap */
724 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
725 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
727 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
728 *((__le32 *)((unsigned char *)ckpt +
729 le32_to_cpu(ckpt->checksum_offset)))
730 = cpu_to_le32(crc32);
732 start_blk = __start_cp_addr(sbi);
734 /* write out checkpoint buffer at block 0 */
735 cp_page = grab_meta_page(sbi, start_blk++);
736 kaddr = page_address(cp_page);
737 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
738 set_page_dirty(cp_page);
739 f2fs_put_page(cp_page, 1);
741 if (sbi->n_orphans) {
742 write_orphan_inodes(sbi, start_blk);
743 start_blk += orphan_blocks;
746 write_data_summaries(sbi, start_blk);
747 start_blk += data_sum_blocks;
748 if (is_umount) {
749 write_node_summaries(sbi, start_blk);
750 start_blk += NR_CURSEG_NODE_TYPE;
753 /* writeout checkpoint block */
754 cp_page = grab_meta_page(sbi, start_blk);
755 kaddr = page_address(cp_page);
756 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
757 set_page_dirty(cp_page);
758 f2fs_put_page(cp_page, 1);
760 /* wait for previous submitted node/meta pages writeback */
761 wait_on_all_pages_writeback(sbi);
763 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
764 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
766 /* update user_block_counts */
767 sbi->last_valid_block_count = sbi->total_valid_block_count;
768 sbi->alloc_valid_block_count = 0;
770 /* Here, we only have one bio having CP pack */
771 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
773 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
774 clear_prefree_segments(sbi);
775 F2FS_RESET_SB_DIRT(sbi);
780 * We guarantee that this checkpoint procedure should not fail.
782 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
784 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
785 unsigned long long ckpt_ver;
787 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
789 mutex_lock(&sbi->cp_mutex);
790 block_operations(sbi);
792 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
794 f2fs_submit_bio(sbi, DATA, true);
795 f2fs_submit_bio(sbi, NODE, true);
796 f2fs_submit_bio(sbi, META, true);
799 * update checkpoint pack index
800 * Increase the version number so that
801 * SIT entries and seg summaries are written at correct place
803 ckpt_ver = cur_cp_version(ckpt);
804 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
806 /* write cached NAT/SIT entries to NAT/SIT area */
807 flush_nat_entries(sbi);
808 flush_sit_entries(sbi);
810 /* unlock all the fs_lock[] in do_checkpoint() */
811 do_checkpoint(sbi, is_umount);
813 unblock_operations(sbi);
814 mutex_unlock(&sbi->cp_mutex);
816 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
819 void init_orphan_info(struct f2fs_sb_info *sbi)
821 mutex_init(&sbi->orphan_inode_mutex);
822 INIT_LIST_HEAD(&sbi->orphan_inode_list);
823 sbi->n_orphans = 0;
826 int __init create_checkpoint_caches(void)
828 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
829 sizeof(struct orphan_inode_entry), NULL);
830 if (unlikely(!orphan_entry_slab))
831 return -ENOMEM;
832 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
833 sizeof(struct dir_inode_entry), NULL);
834 if (unlikely(!inode_entry_slab)) {
835 kmem_cache_destroy(orphan_entry_slab);
836 return -ENOMEM;
838 return 0;
841 void destroy_checkpoint_caches(void)
843 kmem_cache_destroy(orphan_entry_slab);
844 kmem_cache_destroy(inode_entry_slab);