Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / ceph / mds_client.c
blobd90861f452107cc47b7242e8ea66dc1257f7c235
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
10 #include "super.h"
11 #include "mds_client.h"
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
21 * A cluster of MDS (metadata server) daemons is responsible for
22 * managing the file system namespace (the directory hierarchy and
23 * inodes) and for coordinating shared access to storage. Metadata is
24 * partitioning hierarchically across a number of servers, and that
25 * partition varies over time as the cluster adjusts the distribution
26 * in order to balance load.
28 * The MDS client is primarily responsible to managing synchronous
29 * metadata requests for operations like open, unlink, and so forth.
30 * If there is a MDS failure, we find out about it when we (possibly
31 * request and) receive a new MDS map, and can resubmit affected
32 * requests.
34 * For the most part, though, we take advantage of a lossless
35 * communications channel to the MDS, and do not need to worry about
36 * timing out or resubmitting requests.
38 * We maintain a stateful "session" with each MDS we interact with.
39 * Within each session, we sent periodic heartbeat messages to ensure
40 * any capabilities or leases we have been issues remain valid. If
41 * the session times out and goes stale, our leases and capabilities
42 * are no longer valid.
45 struct ceph_reconnect_state {
46 int nr_caps;
47 struct ceph_pagelist *pagelist;
48 bool flock;
51 static void __wake_requests(struct ceph_mds_client *mdsc,
52 struct list_head *head);
54 static const struct ceph_connection_operations mds_con_ops;
58 * mds reply parsing
62 * parse individual inode info
64 static int parse_reply_info_in(void **p, void *end,
65 struct ceph_mds_reply_info_in *info,
66 int features)
68 int err = -EIO;
70 info->in = *p;
71 *p += sizeof(struct ceph_mds_reply_inode) +
72 sizeof(*info->in->fragtree.splits) *
73 le32_to_cpu(info->in->fragtree.nsplits);
75 ceph_decode_32_safe(p, end, info->symlink_len, bad);
76 ceph_decode_need(p, end, info->symlink_len, bad);
77 info->symlink = *p;
78 *p += info->symlink_len;
80 if (features & CEPH_FEATURE_DIRLAYOUTHASH)
81 ceph_decode_copy_safe(p, end, &info->dir_layout,
82 sizeof(info->dir_layout), bad);
83 else
84 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
86 ceph_decode_32_safe(p, end, info->xattr_len, bad);
87 ceph_decode_need(p, end, info->xattr_len, bad);
88 info->xattr_data = *p;
89 *p += info->xattr_len;
90 return 0;
91 bad:
92 return err;
96 * parse a normal reply, which may contain a (dir+)dentry and/or a
97 * target inode.
99 static int parse_reply_info_trace(void **p, void *end,
100 struct ceph_mds_reply_info_parsed *info,
101 int features)
103 int err;
105 if (info->head->is_dentry) {
106 err = parse_reply_info_in(p, end, &info->diri, features);
107 if (err < 0)
108 goto out_bad;
110 if (unlikely(*p + sizeof(*info->dirfrag) > end))
111 goto bad;
112 info->dirfrag = *p;
113 *p += sizeof(*info->dirfrag) +
114 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
115 if (unlikely(*p > end))
116 goto bad;
118 ceph_decode_32_safe(p, end, info->dname_len, bad);
119 ceph_decode_need(p, end, info->dname_len, bad);
120 info->dname = *p;
121 *p += info->dname_len;
122 info->dlease = *p;
123 *p += sizeof(*info->dlease);
126 if (info->head->is_target) {
127 err = parse_reply_info_in(p, end, &info->targeti, features);
128 if (err < 0)
129 goto out_bad;
132 if (unlikely(*p != end))
133 goto bad;
134 return 0;
136 bad:
137 err = -EIO;
138 out_bad:
139 pr_err("problem parsing mds trace %d\n", err);
140 return err;
144 * parse readdir results
146 static int parse_reply_info_dir(void **p, void *end,
147 struct ceph_mds_reply_info_parsed *info,
148 int features)
150 u32 num, i = 0;
151 int err;
153 info->dir_dir = *p;
154 if (*p + sizeof(*info->dir_dir) > end)
155 goto bad;
156 *p += sizeof(*info->dir_dir) +
157 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
158 if (*p > end)
159 goto bad;
161 ceph_decode_need(p, end, sizeof(num) + 2, bad);
162 num = ceph_decode_32(p);
163 info->dir_end = ceph_decode_8(p);
164 info->dir_complete = ceph_decode_8(p);
165 if (num == 0)
166 goto done;
168 /* alloc large array */
169 info->dir_nr = num;
170 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
171 sizeof(*info->dir_dname) +
172 sizeof(*info->dir_dname_len) +
173 sizeof(*info->dir_dlease),
174 GFP_NOFS);
175 if (info->dir_in == NULL) {
176 err = -ENOMEM;
177 goto out_bad;
179 info->dir_dname = (void *)(info->dir_in + num);
180 info->dir_dname_len = (void *)(info->dir_dname + num);
181 info->dir_dlease = (void *)(info->dir_dname_len + num);
183 while (num) {
184 /* dentry */
185 ceph_decode_need(p, end, sizeof(u32)*2, bad);
186 info->dir_dname_len[i] = ceph_decode_32(p);
187 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
188 info->dir_dname[i] = *p;
189 *p += info->dir_dname_len[i];
190 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
191 info->dir_dname[i]);
192 info->dir_dlease[i] = *p;
193 *p += sizeof(struct ceph_mds_reply_lease);
195 /* inode */
196 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
197 if (err < 0)
198 goto out_bad;
199 i++;
200 num--;
203 done:
204 if (*p != end)
205 goto bad;
206 return 0;
208 bad:
209 err = -EIO;
210 out_bad:
211 pr_err("problem parsing dir contents %d\n", err);
212 return err;
216 * parse fcntl F_GETLK results
218 static int parse_reply_info_filelock(void **p, void *end,
219 struct ceph_mds_reply_info_parsed *info,
220 int features)
222 if (*p + sizeof(*info->filelock_reply) > end)
223 goto bad;
225 info->filelock_reply = *p;
226 *p += sizeof(*info->filelock_reply);
228 if (unlikely(*p != end))
229 goto bad;
230 return 0;
232 bad:
233 return -EIO;
237 * parse create results
239 static int parse_reply_info_create(void **p, void *end,
240 struct ceph_mds_reply_info_parsed *info,
241 int features)
243 if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
244 if (*p == end) {
245 info->has_create_ino = false;
246 } else {
247 info->has_create_ino = true;
248 info->ino = ceph_decode_64(p);
252 if (unlikely(*p != end))
253 goto bad;
254 return 0;
256 bad:
257 return -EIO;
261 * parse extra results
263 static int parse_reply_info_extra(void **p, void *end,
264 struct ceph_mds_reply_info_parsed *info,
265 int features)
267 if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
268 return parse_reply_info_filelock(p, end, info, features);
269 else if (info->head->op == CEPH_MDS_OP_READDIR ||
270 info->head->op == CEPH_MDS_OP_LSSNAP)
271 return parse_reply_info_dir(p, end, info, features);
272 else if (info->head->op == CEPH_MDS_OP_CREATE)
273 return parse_reply_info_create(p, end, info, features);
274 else
275 return -EIO;
279 * parse entire mds reply
281 static int parse_reply_info(struct ceph_msg *msg,
282 struct ceph_mds_reply_info_parsed *info,
283 int features)
285 void *p, *end;
286 u32 len;
287 int err;
289 info->head = msg->front.iov_base;
290 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
291 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
293 /* trace */
294 ceph_decode_32_safe(&p, end, len, bad);
295 if (len > 0) {
296 ceph_decode_need(&p, end, len, bad);
297 err = parse_reply_info_trace(&p, p+len, info, features);
298 if (err < 0)
299 goto out_bad;
302 /* extra */
303 ceph_decode_32_safe(&p, end, len, bad);
304 if (len > 0) {
305 ceph_decode_need(&p, end, len, bad);
306 err = parse_reply_info_extra(&p, p+len, info, features);
307 if (err < 0)
308 goto out_bad;
311 /* snap blob */
312 ceph_decode_32_safe(&p, end, len, bad);
313 info->snapblob_len = len;
314 info->snapblob = p;
315 p += len;
317 if (p != end)
318 goto bad;
319 return 0;
321 bad:
322 err = -EIO;
323 out_bad:
324 pr_err("mds parse_reply err %d\n", err);
325 return err;
328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
330 kfree(info->dir_in);
335 * sessions
337 static const char *session_state_name(int s)
339 switch (s) {
340 case CEPH_MDS_SESSION_NEW: return "new";
341 case CEPH_MDS_SESSION_OPENING: return "opening";
342 case CEPH_MDS_SESSION_OPEN: return "open";
343 case CEPH_MDS_SESSION_HUNG: return "hung";
344 case CEPH_MDS_SESSION_CLOSING: return "closing";
345 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
346 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
347 default: return "???";
351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
353 if (atomic_inc_not_zero(&s->s_ref)) {
354 dout("mdsc get_session %p %d -> %d\n", s,
355 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
356 return s;
357 } else {
358 dout("mdsc get_session %p 0 -- FAIL", s);
359 return NULL;
363 void ceph_put_mds_session(struct ceph_mds_session *s)
365 dout("mdsc put_session %p %d -> %d\n", s,
366 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
367 if (atomic_dec_and_test(&s->s_ref)) {
368 if (s->s_auth.authorizer)
369 ceph_auth_destroy_authorizer(
370 s->s_mdsc->fsc->client->monc.auth,
371 s->s_auth.authorizer);
372 kfree(s);
377 * called under mdsc->mutex
379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
380 int mds)
382 struct ceph_mds_session *session;
384 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
385 return NULL;
386 session = mdsc->sessions[mds];
387 dout("lookup_mds_session %p %d\n", session,
388 atomic_read(&session->s_ref));
389 get_session(session);
390 return session;
393 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
395 if (mds >= mdsc->max_sessions)
396 return false;
397 return mdsc->sessions[mds];
400 static int __verify_registered_session(struct ceph_mds_client *mdsc,
401 struct ceph_mds_session *s)
403 if (s->s_mds >= mdsc->max_sessions ||
404 mdsc->sessions[s->s_mds] != s)
405 return -ENOENT;
406 return 0;
410 * create+register a new session for given mds.
411 * called under mdsc->mutex.
413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
414 int mds)
416 struct ceph_mds_session *s;
418 if (mds >= mdsc->mdsmap->m_max_mds)
419 return ERR_PTR(-EINVAL);
421 s = kzalloc(sizeof(*s), GFP_NOFS);
422 if (!s)
423 return ERR_PTR(-ENOMEM);
424 s->s_mdsc = mdsc;
425 s->s_mds = mds;
426 s->s_state = CEPH_MDS_SESSION_NEW;
427 s->s_ttl = 0;
428 s->s_seq = 0;
429 mutex_init(&s->s_mutex);
431 ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
433 spin_lock_init(&s->s_gen_ttl_lock);
434 s->s_cap_gen = 0;
435 s->s_cap_ttl = jiffies - 1;
437 spin_lock_init(&s->s_cap_lock);
438 s->s_renew_requested = 0;
439 s->s_renew_seq = 0;
440 INIT_LIST_HEAD(&s->s_caps);
441 s->s_nr_caps = 0;
442 s->s_trim_caps = 0;
443 atomic_set(&s->s_ref, 1);
444 INIT_LIST_HEAD(&s->s_waiting);
445 INIT_LIST_HEAD(&s->s_unsafe);
446 s->s_num_cap_releases = 0;
447 s->s_cap_reconnect = 0;
448 s->s_cap_iterator = NULL;
449 INIT_LIST_HEAD(&s->s_cap_releases);
450 INIT_LIST_HEAD(&s->s_cap_releases_done);
451 INIT_LIST_HEAD(&s->s_cap_flushing);
452 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
454 dout("register_session mds%d\n", mds);
455 if (mds >= mdsc->max_sessions) {
456 int newmax = 1 << get_count_order(mds+1);
457 struct ceph_mds_session **sa;
459 dout("register_session realloc to %d\n", newmax);
460 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
461 if (sa == NULL)
462 goto fail_realloc;
463 if (mdsc->sessions) {
464 memcpy(sa, mdsc->sessions,
465 mdsc->max_sessions * sizeof(void *));
466 kfree(mdsc->sessions);
468 mdsc->sessions = sa;
469 mdsc->max_sessions = newmax;
471 mdsc->sessions[mds] = s;
472 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
474 ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
475 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
477 return s;
479 fail_realloc:
480 kfree(s);
481 return ERR_PTR(-ENOMEM);
485 * called under mdsc->mutex
487 static void __unregister_session(struct ceph_mds_client *mdsc,
488 struct ceph_mds_session *s)
490 dout("__unregister_session mds%d %p\n", s->s_mds, s);
491 BUG_ON(mdsc->sessions[s->s_mds] != s);
492 mdsc->sessions[s->s_mds] = NULL;
493 ceph_con_close(&s->s_con);
494 ceph_put_mds_session(s);
498 * drop session refs in request.
500 * should be last request ref, or hold mdsc->mutex
502 static void put_request_session(struct ceph_mds_request *req)
504 if (req->r_session) {
505 ceph_put_mds_session(req->r_session);
506 req->r_session = NULL;
510 void ceph_mdsc_release_request(struct kref *kref)
512 struct ceph_mds_request *req = container_of(kref,
513 struct ceph_mds_request,
514 r_kref);
515 if (req->r_request)
516 ceph_msg_put(req->r_request);
517 if (req->r_reply) {
518 ceph_msg_put(req->r_reply);
519 destroy_reply_info(&req->r_reply_info);
521 if (req->r_inode) {
522 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
523 iput(req->r_inode);
525 if (req->r_locked_dir)
526 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
527 if (req->r_target_inode)
528 iput(req->r_target_inode);
529 if (req->r_dentry)
530 dput(req->r_dentry);
531 if (req->r_old_dentry) {
533 * track (and drop pins for) r_old_dentry_dir
534 * separately, since r_old_dentry's d_parent may have
535 * changed between the dir mutex being dropped and
536 * this request being freed.
538 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
539 CEPH_CAP_PIN);
540 dput(req->r_old_dentry);
541 iput(req->r_old_dentry_dir);
543 kfree(req->r_path1);
544 kfree(req->r_path2);
545 put_request_session(req);
546 ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
547 kfree(req);
551 * lookup session, bump ref if found.
553 * called under mdsc->mutex.
555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
556 u64 tid)
558 struct ceph_mds_request *req;
559 struct rb_node *n = mdsc->request_tree.rb_node;
561 while (n) {
562 req = rb_entry(n, struct ceph_mds_request, r_node);
563 if (tid < req->r_tid)
564 n = n->rb_left;
565 else if (tid > req->r_tid)
566 n = n->rb_right;
567 else {
568 ceph_mdsc_get_request(req);
569 return req;
572 return NULL;
575 static void __insert_request(struct ceph_mds_client *mdsc,
576 struct ceph_mds_request *new)
578 struct rb_node **p = &mdsc->request_tree.rb_node;
579 struct rb_node *parent = NULL;
580 struct ceph_mds_request *req = NULL;
582 while (*p) {
583 parent = *p;
584 req = rb_entry(parent, struct ceph_mds_request, r_node);
585 if (new->r_tid < req->r_tid)
586 p = &(*p)->rb_left;
587 else if (new->r_tid > req->r_tid)
588 p = &(*p)->rb_right;
589 else
590 BUG();
593 rb_link_node(&new->r_node, parent, p);
594 rb_insert_color(&new->r_node, &mdsc->request_tree);
598 * Register an in-flight request, and assign a tid. Link to directory
599 * are modifying (if any).
601 * Called under mdsc->mutex.
603 static void __register_request(struct ceph_mds_client *mdsc,
604 struct ceph_mds_request *req,
605 struct inode *dir)
607 req->r_tid = ++mdsc->last_tid;
608 if (req->r_num_caps)
609 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610 req->r_num_caps);
611 dout("__register_request %p tid %lld\n", req, req->r_tid);
612 ceph_mdsc_get_request(req);
613 __insert_request(mdsc, req);
615 req->r_uid = current_fsuid();
616 req->r_gid = current_fsgid();
618 if (dir) {
619 struct ceph_inode_info *ci = ceph_inode(dir);
621 ihold(dir);
622 spin_lock(&ci->i_unsafe_lock);
623 req->r_unsafe_dir = dir;
624 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
625 spin_unlock(&ci->i_unsafe_lock);
629 static void __unregister_request(struct ceph_mds_client *mdsc,
630 struct ceph_mds_request *req)
632 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
633 rb_erase(&req->r_node, &mdsc->request_tree);
634 RB_CLEAR_NODE(&req->r_node);
636 if (req->r_unsafe_dir) {
637 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
639 spin_lock(&ci->i_unsafe_lock);
640 list_del_init(&req->r_unsafe_dir_item);
641 spin_unlock(&ci->i_unsafe_lock);
643 iput(req->r_unsafe_dir);
644 req->r_unsafe_dir = NULL;
647 complete_all(&req->r_safe_completion);
649 ceph_mdsc_put_request(req);
653 * Choose mds to send request to next. If there is a hint set in the
654 * request (e.g., due to a prior forward hint from the mds), use that.
655 * Otherwise, consult frag tree and/or caps to identify the
656 * appropriate mds. If all else fails, choose randomly.
658 * Called under mdsc->mutex.
660 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
663 * we don't need to worry about protecting the d_parent access
664 * here because we never renaming inside the snapped namespace
665 * except to resplice to another snapdir, and either the old or new
666 * result is a valid result.
668 while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
669 dentry = dentry->d_parent;
670 return dentry;
673 static int __choose_mds(struct ceph_mds_client *mdsc,
674 struct ceph_mds_request *req)
676 struct inode *inode;
677 struct ceph_inode_info *ci;
678 struct ceph_cap *cap;
679 int mode = req->r_direct_mode;
680 int mds = -1;
681 u32 hash = req->r_direct_hash;
682 bool is_hash = req->r_direct_is_hash;
685 * is there a specific mds we should try? ignore hint if we have
686 * no session and the mds is not up (active or recovering).
688 if (req->r_resend_mds >= 0 &&
689 (__have_session(mdsc, req->r_resend_mds) ||
690 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
691 dout("choose_mds using resend_mds mds%d\n",
692 req->r_resend_mds);
693 return req->r_resend_mds;
696 if (mode == USE_RANDOM_MDS)
697 goto random;
699 inode = NULL;
700 if (req->r_inode) {
701 inode = req->r_inode;
702 } else if (req->r_dentry) {
703 /* ignore race with rename; old or new d_parent is okay */
704 struct dentry *parent = req->r_dentry->d_parent;
705 struct inode *dir = parent->d_inode;
707 if (dir->i_sb != mdsc->fsc->sb) {
708 /* not this fs! */
709 inode = req->r_dentry->d_inode;
710 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
711 /* direct snapped/virtual snapdir requests
712 * based on parent dir inode */
713 struct dentry *dn = get_nonsnap_parent(parent);
714 inode = dn->d_inode;
715 dout("__choose_mds using nonsnap parent %p\n", inode);
716 } else if (req->r_dentry->d_inode) {
717 /* dentry target */
718 inode = req->r_dentry->d_inode;
719 } else {
720 /* dir + name */
721 inode = dir;
722 hash = ceph_dentry_hash(dir, req->r_dentry);
723 is_hash = true;
727 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
728 (int)hash, mode);
729 if (!inode)
730 goto random;
731 ci = ceph_inode(inode);
733 if (is_hash && S_ISDIR(inode->i_mode)) {
734 struct ceph_inode_frag frag;
735 int found;
737 ceph_choose_frag(ci, hash, &frag, &found);
738 if (found) {
739 if (mode == USE_ANY_MDS && frag.ndist > 0) {
740 u8 r;
742 /* choose a random replica */
743 get_random_bytes(&r, 1);
744 r %= frag.ndist;
745 mds = frag.dist[r];
746 dout("choose_mds %p %llx.%llx "
747 "frag %u mds%d (%d/%d)\n",
748 inode, ceph_vinop(inode),
749 frag.frag, mds,
750 (int)r, frag.ndist);
751 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
752 CEPH_MDS_STATE_ACTIVE)
753 return mds;
756 /* since this file/dir wasn't known to be
757 * replicated, then we want to look for the
758 * authoritative mds. */
759 mode = USE_AUTH_MDS;
760 if (frag.mds >= 0) {
761 /* choose auth mds */
762 mds = frag.mds;
763 dout("choose_mds %p %llx.%llx "
764 "frag %u mds%d (auth)\n",
765 inode, ceph_vinop(inode), frag.frag, mds);
766 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
767 CEPH_MDS_STATE_ACTIVE)
768 return mds;
773 spin_lock(&ci->i_ceph_lock);
774 cap = NULL;
775 if (mode == USE_AUTH_MDS)
776 cap = ci->i_auth_cap;
777 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
778 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
779 if (!cap) {
780 spin_unlock(&ci->i_ceph_lock);
781 goto random;
783 mds = cap->session->s_mds;
784 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
785 inode, ceph_vinop(inode), mds,
786 cap == ci->i_auth_cap ? "auth " : "", cap);
787 spin_unlock(&ci->i_ceph_lock);
788 return mds;
790 random:
791 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
792 dout("choose_mds chose random mds%d\n", mds);
793 return mds;
798 * session messages
800 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
802 struct ceph_msg *msg;
803 struct ceph_mds_session_head *h;
805 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
806 false);
807 if (!msg) {
808 pr_err("create_session_msg ENOMEM creating msg\n");
809 return NULL;
811 h = msg->front.iov_base;
812 h->op = cpu_to_le32(op);
813 h->seq = cpu_to_le64(seq);
814 return msg;
818 * send session open request.
820 * called under mdsc->mutex
822 static int __open_session(struct ceph_mds_client *mdsc,
823 struct ceph_mds_session *session)
825 struct ceph_msg *msg;
826 int mstate;
827 int mds = session->s_mds;
829 /* wait for mds to go active? */
830 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
831 dout("open_session to mds%d (%s)\n", mds,
832 ceph_mds_state_name(mstate));
833 session->s_state = CEPH_MDS_SESSION_OPENING;
834 session->s_renew_requested = jiffies;
836 /* send connect message */
837 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
838 if (!msg)
839 return -ENOMEM;
840 ceph_con_send(&session->s_con, msg);
841 return 0;
845 * open sessions for any export targets for the given mds
847 * called under mdsc->mutex
849 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
850 struct ceph_mds_session *session)
852 struct ceph_mds_info *mi;
853 struct ceph_mds_session *ts;
854 int i, mds = session->s_mds;
855 int target;
857 if (mds >= mdsc->mdsmap->m_max_mds)
858 return;
859 mi = &mdsc->mdsmap->m_info[mds];
860 dout("open_export_target_sessions for mds%d (%d targets)\n",
861 session->s_mds, mi->num_export_targets);
863 for (i = 0; i < mi->num_export_targets; i++) {
864 target = mi->export_targets[i];
865 ts = __ceph_lookup_mds_session(mdsc, target);
866 if (!ts) {
867 ts = register_session(mdsc, target);
868 if (IS_ERR(ts))
869 return;
871 if (session->s_state == CEPH_MDS_SESSION_NEW ||
872 session->s_state == CEPH_MDS_SESSION_CLOSING)
873 __open_session(mdsc, session);
874 else
875 dout(" mds%d target mds%d %p is %s\n", session->s_mds,
876 i, ts, session_state_name(ts->s_state));
877 ceph_put_mds_session(ts);
881 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
882 struct ceph_mds_session *session)
884 mutex_lock(&mdsc->mutex);
885 __open_export_target_sessions(mdsc, session);
886 mutex_unlock(&mdsc->mutex);
890 * session caps
894 * Free preallocated cap messages assigned to this session
896 static void cleanup_cap_releases(struct ceph_mds_session *session)
898 struct ceph_msg *msg;
900 spin_lock(&session->s_cap_lock);
901 while (!list_empty(&session->s_cap_releases)) {
902 msg = list_first_entry(&session->s_cap_releases,
903 struct ceph_msg, list_head);
904 list_del_init(&msg->list_head);
905 ceph_msg_put(msg);
907 while (!list_empty(&session->s_cap_releases_done)) {
908 msg = list_first_entry(&session->s_cap_releases_done,
909 struct ceph_msg, list_head);
910 list_del_init(&msg->list_head);
911 ceph_msg_put(msg);
913 spin_unlock(&session->s_cap_lock);
917 * Helper to safely iterate over all caps associated with a session, with
918 * special care taken to handle a racing __ceph_remove_cap().
920 * Caller must hold session s_mutex.
922 static int iterate_session_caps(struct ceph_mds_session *session,
923 int (*cb)(struct inode *, struct ceph_cap *,
924 void *), void *arg)
926 struct list_head *p;
927 struct ceph_cap *cap;
928 struct inode *inode, *last_inode = NULL;
929 struct ceph_cap *old_cap = NULL;
930 int ret;
932 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
933 spin_lock(&session->s_cap_lock);
934 p = session->s_caps.next;
935 while (p != &session->s_caps) {
936 cap = list_entry(p, struct ceph_cap, session_caps);
937 inode = igrab(&cap->ci->vfs_inode);
938 if (!inode) {
939 p = p->next;
940 continue;
942 session->s_cap_iterator = cap;
943 spin_unlock(&session->s_cap_lock);
945 if (last_inode) {
946 iput(last_inode);
947 last_inode = NULL;
949 if (old_cap) {
950 ceph_put_cap(session->s_mdsc, old_cap);
951 old_cap = NULL;
954 ret = cb(inode, cap, arg);
955 last_inode = inode;
957 spin_lock(&session->s_cap_lock);
958 p = p->next;
959 if (cap->ci == NULL) {
960 dout("iterate_session_caps finishing cap %p removal\n",
961 cap);
962 BUG_ON(cap->session != session);
963 list_del_init(&cap->session_caps);
964 session->s_nr_caps--;
965 cap->session = NULL;
966 old_cap = cap; /* put_cap it w/o locks held */
968 if (ret < 0)
969 goto out;
971 ret = 0;
972 out:
973 session->s_cap_iterator = NULL;
974 spin_unlock(&session->s_cap_lock);
976 if (last_inode)
977 iput(last_inode);
978 if (old_cap)
979 ceph_put_cap(session->s_mdsc, old_cap);
981 return ret;
984 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
985 void *arg)
987 struct ceph_inode_info *ci = ceph_inode(inode);
988 int drop = 0;
990 dout("removing cap %p, ci is %p, inode is %p\n",
991 cap, ci, &ci->vfs_inode);
992 spin_lock(&ci->i_ceph_lock);
993 __ceph_remove_cap(cap, false);
994 if (!__ceph_is_any_real_caps(ci)) {
995 struct ceph_mds_client *mdsc =
996 ceph_sb_to_client(inode->i_sb)->mdsc;
998 spin_lock(&mdsc->cap_dirty_lock);
999 if (!list_empty(&ci->i_dirty_item)) {
1000 pr_info(" dropping dirty %s state for %p %lld\n",
1001 ceph_cap_string(ci->i_dirty_caps),
1002 inode, ceph_ino(inode));
1003 ci->i_dirty_caps = 0;
1004 list_del_init(&ci->i_dirty_item);
1005 drop = 1;
1007 if (!list_empty(&ci->i_flushing_item)) {
1008 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1009 ceph_cap_string(ci->i_flushing_caps),
1010 inode, ceph_ino(inode));
1011 ci->i_flushing_caps = 0;
1012 list_del_init(&ci->i_flushing_item);
1013 mdsc->num_cap_flushing--;
1014 drop = 1;
1016 if (drop && ci->i_wrbuffer_ref) {
1017 pr_info(" dropping dirty data for %p %lld\n",
1018 inode, ceph_ino(inode));
1019 ci->i_wrbuffer_ref = 0;
1020 ci->i_wrbuffer_ref_head = 0;
1021 drop++;
1023 spin_unlock(&mdsc->cap_dirty_lock);
1025 spin_unlock(&ci->i_ceph_lock);
1026 while (drop--)
1027 iput(inode);
1028 return 0;
1032 * caller must hold session s_mutex
1034 static void remove_session_caps(struct ceph_mds_session *session)
1036 dout("remove_session_caps on %p\n", session);
1037 iterate_session_caps(session, remove_session_caps_cb, NULL);
1039 spin_lock(&session->s_cap_lock);
1040 if (session->s_nr_caps > 0) {
1041 struct super_block *sb = session->s_mdsc->fsc->sb;
1042 struct inode *inode;
1043 struct ceph_cap *cap, *prev = NULL;
1044 struct ceph_vino vino;
1046 * iterate_session_caps() skips inodes that are being
1047 * deleted, we need to wait until deletions are complete.
1048 * __wait_on_freeing_inode() is designed for the job,
1049 * but it is not exported, so use lookup inode function
1050 * to access it.
1052 while (!list_empty(&session->s_caps)) {
1053 cap = list_entry(session->s_caps.next,
1054 struct ceph_cap, session_caps);
1055 if (cap == prev)
1056 break;
1057 prev = cap;
1058 vino = cap->ci->i_vino;
1059 spin_unlock(&session->s_cap_lock);
1061 inode = ceph_find_inode(sb, vino);
1062 iput(inode);
1064 spin_lock(&session->s_cap_lock);
1067 spin_unlock(&session->s_cap_lock);
1069 BUG_ON(session->s_nr_caps > 0);
1070 BUG_ON(!list_empty(&session->s_cap_flushing));
1071 cleanup_cap_releases(session);
1075 * wake up any threads waiting on this session's caps. if the cap is
1076 * old (didn't get renewed on the client reconnect), remove it now.
1078 * caller must hold s_mutex.
1080 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1081 void *arg)
1083 struct ceph_inode_info *ci = ceph_inode(inode);
1085 wake_up_all(&ci->i_cap_wq);
1086 if (arg) {
1087 spin_lock(&ci->i_ceph_lock);
1088 ci->i_wanted_max_size = 0;
1089 ci->i_requested_max_size = 0;
1090 spin_unlock(&ci->i_ceph_lock);
1092 return 0;
1095 static void wake_up_session_caps(struct ceph_mds_session *session,
1096 int reconnect)
1098 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1099 iterate_session_caps(session, wake_up_session_cb,
1100 (void *)(unsigned long)reconnect);
1104 * Send periodic message to MDS renewing all currently held caps. The
1105 * ack will reset the expiration for all caps from this session.
1107 * caller holds s_mutex
1109 static int send_renew_caps(struct ceph_mds_client *mdsc,
1110 struct ceph_mds_session *session)
1112 struct ceph_msg *msg;
1113 int state;
1115 if (time_after_eq(jiffies, session->s_cap_ttl) &&
1116 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1117 pr_info("mds%d caps stale\n", session->s_mds);
1118 session->s_renew_requested = jiffies;
1120 /* do not try to renew caps until a recovering mds has reconnected
1121 * with its clients. */
1122 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1123 if (state < CEPH_MDS_STATE_RECONNECT) {
1124 dout("send_renew_caps ignoring mds%d (%s)\n",
1125 session->s_mds, ceph_mds_state_name(state));
1126 return 0;
1129 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1130 ceph_mds_state_name(state));
1131 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1132 ++session->s_renew_seq);
1133 if (!msg)
1134 return -ENOMEM;
1135 ceph_con_send(&session->s_con, msg);
1136 return 0;
1140 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1142 * Called under session->s_mutex
1144 static void renewed_caps(struct ceph_mds_client *mdsc,
1145 struct ceph_mds_session *session, int is_renew)
1147 int was_stale;
1148 int wake = 0;
1150 spin_lock(&session->s_cap_lock);
1151 was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1153 session->s_cap_ttl = session->s_renew_requested +
1154 mdsc->mdsmap->m_session_timeout*HZ;
1156 if (was_stale) {
1157 if (time_before(jiffies, session->s_cap_ttl)) {
1158 pr_info("mds%d caps renewed\n", session->s_mds);
1159 wake = 1;
1160 } else {
1161 pr_info("mds%d caps still stale\n", session->s_mds);
1164 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1165 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1166 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1167 spin_unlock(&session->s_cap_lock);
1169 if (wake)
1170 wake_up_session_caps(session, 0);
1174 * send a session close request
1176 static int request_close_session(struct ceph_mds_client *mdsc,
1177 struct ceph_mds_session *session)
1179 struct ceph_msg *msg;
1181 dout("request_close_session mds%d state %s seq %lld\n",
1182 session->s_mds, session_state_name(session->s_state),
1183 session->s_seq);
1184 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1185 if (!msg)
1186 return -ENOMEM;
1187 ceph_con_send(&session->s_con, msg);
1188 return 0;
1192 * Called with s_mutex held.
1194 static int __close_session(struct ceph_mds_client *mdsc,
1195 struct ceph_mds_session *session)
1197 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1198 return 0;
1199 session->s_state = CEPH_MDS_SESSION_CLOSING;
1200 return request_close_session(mdsc, session);
1204 * Trim old(er) caps.
1206 * Because we can't cache an inode without one or more caps, we do
1207 * this indirectly: if a cap is unused, we prune its aliases, at which
1208 * point the inode will hopefully get dropped to.
1210 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1211 * memory pressure from the MDS, though, so it needn't be perfect.
1213 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1215 struct ceph_mds_session *session = arg;
1216 struct ceph_inode_info *ci = ceph_inode(inode);
1217 int used, oissued, mine;
1219 if (session->s_trim_caps <= 0)
1220 return -1;
1222 spin_lock(&ci->i_ceph_lock);
1223 mine = cap->issued | cap->implemented;
1224 used = __ceph_caps_used(ci);
1225 oissued = __ceph_caps_issued_other(ci, cap);
1227 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1228 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1229 ceph_cap_string(used));
1230 if (ci->i_dirty_caps)
1231 goto out; /* dirty caps */
1232 if ((used & ~oissued) & mine)
1233 goto out; /* we need these caps */
1235 session->s_trim_caps--;
1236 if (oissued) {
1237 /* we aren't the only cap.. just remove us */
1238 __ceph_remove_cap(cap, true);
1239 } else {
1240 /* try to drop referring dentries */
1241 spin_unlock(&ci->i_ceph_lock);
1242 d_prune_aliases(inode);
1243 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1244 inode, cap, atomic_read(&inode->i_count));
1245 return 0;
1248 out:
1249 spin_unlock(&ci->i_ceph_lock);
1250 return 0;
1254 * Trim session cap count down to some max number.
1256 static int trim_caps(struct ceph_mds_client *mdsc,
1257 struct ceph_mds_session *session,
1258 int max_caps)
1260 int trim_caps = session->s_nr_caps - max_caps;
1262 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1263 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1264 if (trim_caps > 0) {
1265 session->s_trim_caps = trim_caps;
1266 iterate_session_caps(session, trim_caps_cb, session);
1267 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1268 session->s_mds, session->s_nr_caps, max_caps,
1269 trim_caps - session->s_trim_caps);
1270 session->s_trim_caps = 0;
1272 return 0;
1276 * Allocate cap_release messages. If there is a partially full message
1277 * in the queue, try to allocate enough to cover it's remainder, so that
1278 * we can send it immediately.
1280 * Called under s_mutex.
1282 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1283 struct ceph_mds_session *session)
1285 struct ceph_msg *msg, *partial = NULL;
1286 struct ceph_mds_cap_release *head;
1287 int err = -ENOMEM;
1288 int extra = mdsc->fsc->mount_options->cap_release_safety;
1289 int num;
1291 dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1292 extra);
1294 spin_lock(&session->s_cap_lock);
1296 if (!list_empty(&session->s_cap_releases)) {
1297 msg = list_first_entry(&session->s_cap_releases,
1298 struct ceph_msg,
1299 list_head);
1300 head = msg->front.iov_base;
1301 num = le32_to_cpu(head->num);
1302 if (num) {
1303 dout(" partial %p with (%d/%d)\n", msg, num,
1304 (int)CEPH_CAPS_PER_RELEASE);
1305 extra += CEPH_CAPS_PER_RELEASE - num;
1306 partial = msg;
1309 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1310 spin_unlock(&session->s_cap_lock);
1311 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1312 GFP_NOFS, false);
1313 if (!msg)
1314 goto out_unlocked;
1315 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1316 (int)msg->front.iov_len);
1317 head = msg->front.iov_base;
1318 head->num = cpu_to_le32(0);
1319 msg->front.iov_len = sizeof(*head);
1320 spin_lock(&session->s_cap_lock);
1321 list_add(&msg->list_head, &session->s_cap_releases);
1322 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1325 if (partial) {
1326 head = partial->front.iov_base;
1327 num = le32_to_cpu(head->num);
1328 dout(" queueing partial %p with %d/%d\n", partial, num,
1329 (int)CEPH_CAPS_PER_RELEASE);
1330 list_move_tail(&partial->list_head,
1331 &session->s_cap_releases_done);
1332 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1334 err = 0;
1335 spin_unlock(&session->s_cap_lock);
1336 out_unlocked:
1337 return err;
1341 * flush all dirty inode data to disk.
1343 * returns true if we've flushed through want_flush_seq
1345 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1347 int mds, ret = 1;
1349 dout("check_cap_flush want %lld\n", want_flush_seq);
1350 mutex_lock(&mdsc->mutex);
1351 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1352 struct ceph_mds_session *session = mdsc->sessions[mds];
1354 if (!session)
1355 continue;
1356 get_session(session);
1357 mutex_unlock(&mdsc->mutex);
1359 mutex_lock(&session->s_mutex);
1360 if (!list_empty(&session->s_cap_flushing)) {
1361 struct ceph_inode_info *ci =
1362 list_entry(session->s_cap_flushing.next,
1363 struct ceph_inode_info,
1364 i_flushing_item);
1365 struct inode *inode = &ci->vfs_inode;
1367 spin_lock(&ci->i_ceph_lock);
1368 if (ci->i_cap_flush_seq <= want_flush_seq) {
1369 dout("check_cap_flush still flushing %p "
1370 "seq %lld <= %lld to mds%d\n", inode,
1371 ci->i_cap_flush_seq, want_flush_seq,
1372 session->s_mds);
1373 ret = 0;
1375 spin_unlock(&ci->i_ceph_lock);
1377 mutex_unlock(&session->s_mutex);
1378 ceph_put_mds_session(session);
1380 if (!ret)
1381 return ret;
1382 mutex_lock(&mdsc->mutex);
1385 mutex_unlock(&mdsc->mutex);
1386 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1387 return ret;
1391 * called under s_mutex
1393 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1394 struct ceph_mds_session *session)
1396 struct ceph_msg *msg;
1398 dout("send_cap_releases mds%d\n", session->s_mds);
1399 spin_lock(&session->s_cap_lock);
1400 while (!list_empty(&session->s_cap_releases_done)) {
1401 msg = list_first_entry(&session->s_cap_releases_done,
1402 struct ceph_msg, list_head);
1403 list_del_init(&msg->list_head);
1404 spin_unlock(&session->s_cap_lock);
1405 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1406 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1407 ceph_con_send(&session->s_con, msg);
1408 spin_lock(&session->s_cap_lock);
1410 spin_unlock(&session->s_cap_lock);
1413 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1414 struct ceph_mds_session *session)
1416 struct ceph_msg *msg;
1417 struct ceph_mds_cap_release *head;
1418 unsigned num;
1420 dout("discard_cap_releases mds%d\n", session->s_mds);
1422 /* zero out the in-progress message */
1423 msg = list_first_entry(&session->s_cap_releases,
1424 struct ceph_msg, list_head);
1425 head = msg->front.iov_base;
1426 num = le32_to_cpu(head->num);
1427 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1428 head->num = cpu_to_le32(0);
1429 msg->front.iov_len = sizeof(*head);
1430 session->s_num_cap_releases += num;
1432 /* requeue completed messages */
1433 while (!list_empty(&session->s_cap_releases_done)) {
1434 msg = list_first_entry(&session->s_cap_releases_done,
1435 struct ceph_msg, list_head);
1436 list_del_init(&msg->list_head);
1438 head = msg->front.iov_base;
1439 num = le32_to_cpu(head->num);
1440 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1441 num);
1442 session->s_num_cap_releases += num;
1443 head->num = cpu_to_le32(0);
1444 msg->front.iov_len = sizeof(*head);
1445 list_add(&msg->list_head, &session->s_cap_releases);
1450 * requests
1454 * Create an mds request.
1456 struct ceph_mds_request *
1457 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1459 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1461 if (!req)
1462 return ERR_PTR(-ENOMEM);
1464 mutex_init(&req->r_fill_mutex);
1465 req->r_mdsc = mdsc;
1466 req->r_started = jiffies;
1467 req->r_resend_mds = -1;
1468 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1469 req->r_fmode = -1;
1470 kref_init(&req->r_kref);
1471 INIT_LIST_HEAD(&req->r_wait);
1472 init_completion(&req->r_completion);
1473 init_completion(&req->r_safe_completion);
1474 INIT_LIST_HEAD(&req->r_unsafe_item);
1476 req->r_op = op;
1477 req->r_direct_mode = mode;
1478 return req;
1482 * return oldest (lowest) request, tid in request tree, 0 if none.
1484 * called under mdsc->mutex.
1486 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1488 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1489 return NULL;
1490 return rb_entry(rb_first(&mdsc->request_tree),
1491 struct ceph_mds_request, r_node);
1494 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1496 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1498 if (req)
1499 return req->r_tid;
1500 return 0;
1504 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1505 * on build_path_from_dentry in fs/cifs/dir.c.
1507 * If @stop_on_nosnap, generate path relative to the first non-snapped
1508 * inode.
1510 * Encode hidden .snap dirs as a double /, i.e.
1511 * foo/.snap/bar -> foo//bar
1513 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1514 int stop_on_nosnap)
1516 struct dentry *temp;
1517 char *path;
1518 int len, pos;
1519 unsigned seq;
1521 if (dentry == NULL)
1522 return ERR_PTR(-EINVAL);
1524 retry:
1525 len = 0;
1526 seq = read_seqbegin(&rename_lock);
1527 rcu_read_lock();
1528 for (temp = dentry; !IS_ROOT(temp);) {
1529 struct inode *inode = temp->d_inode;
1530 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1531 len++; /* slash only */
1532 else if (stop_on_nosnap && inode &&
1533 ceph_snap(inode) == CEPH_NOSNAP)
1534 break;
1535 else
1536 len += 1 + temp->d_name.len;
1537 temp = temp->d_parent;
1539 rcu_read_unlock();
1540 if (len)
1541 len--; /* no leading '/' */
1543 path = kmalloc(len+1, GFP_NOFS);
1544 if (path == NULL)
1545 return ERR_PTR(-ENOMEM);
1546 pos = len;
1547 path[pos] = 0; /* trailing null */
1548 rcu_read_lock();
1549 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1550 struct inode *inode;
1552 spin_lock(&temp->d_lock);
1553 inode = temp->d_inode;
1554 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1555 dout("build_path path+%d: %p SNAPDIR\n",
1556 pos, temp);
1557 } else if (stop_on_nosnap && inode &&
1558 ceph_snap(inode) == CEPH_NOSNAP) {
1559 spin_unlock(&temp->d_lock);
1560 break;
1561 } else {
1562 pos -= temp->d_name.len;
1563 if (pos < 0) {
1564 spin_unlock(&temp->d_lock);
1565 break;
1567 strncpy(path + pos, temp->d_name.name,
1568 temp->d_name.len);
1570 spin_unlock(&temp->d_lock);
1571 if (pos)
1572 path[--pos] = '/';
1573 temp = temp->d_parent;
1575 rcu_read_unlock();
1576 if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1577 pr_err("build_path did not end path lookup where "
1578 "expected, namelen is %d, pos is %d\n", len, pos);
1579 /* presumably this is only possible if racing with a
1580 rename of one of the parent directories (we can not
1581 lock the dentries above us to prevent this, but
1582 retrying should be harmless) */
1583 kfree(path);
1584 goto retry;
1587 *base = ceph_ino(temp->d_inode);
1588 *plen = len;
1589 dout("build_path on %p %d built %llx '%.*s'\n",
1590 dentry, d_count(dentry), *base, len, path);
1591 return path;
1594 static int build_dentry_path(struct dentry *dentry,
1595 const char **ppath, int *ppathlen, u64 *pino,
1596 int *pfreepath)
1598 char *path;
1600 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1601 *pino = ceph_ino(dentry->d_parent->d_inode);
1602 *ppath = dentry->d_name.name;
1603 *ppathlen = dentry->d_name.len;
1604 return 0;
1606 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1607 if (IS_ERR(path))
1608 return PTR_ERR(path);
1609 *ppath = path;
1610 *pfreepath = 1;
1611 return 0;
1614 static int build_inode_path(struct inode *inode,
1615 const char **ppath, int *ppathlen, u64 *pino,
1616 int *pfreepath)
1618 struct dentry *dentry;
1619 char *path;
1621 if (ceph_snap(inode) == CEPH_NOSNAP) {
1622 *pino = ceph_ino(inode);
1623 *ppathlen = 0;
1624 return 0;
1626 dentry = d_find_alias(inode);
1627 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1628 dput(dentry);
1629 if (IS_ERR(path))
1630 return PTR_ERR(path);
1631 *ppath = path;
1632 *pfreepath = 1;
1633 return 0;
1637 * request arguments may be specified via an inode *, a dentry *, or
1638 * an explicit ino+path.
1640 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1641 const char *rpath, u64 rino,
1642 const char **ppath, int *pathlen,
1643 u64 *ino, int *freepath)
1645 int r = 0;
1647 if (rinode) {
1648 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1649 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1650 ceph_snap(rinode));
1651 } else if (rdentry) {
1652 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1653 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1654 *ppath);
1655 } else if (rpath || rino) {
1656 *ino = rino;
1657 *ppath = rpath;
1658 *pathlen = rpath ? strlen(rpath) : 0;
1659 dout(" path %.*s\n", *pathlen, rpath);
1662 return r;
1666 * called under mdsc->mutex
1668 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1669 struct ceph_mds_request *req,
1670 int mds)
1672 struct ceph_msg *msg;
1673 struct ceph_mds_request_head *head;
1674 const char *path1 = NULL;
1675 const char *path2 = NULL;
1676 u64 ino1 = 0, ino2 = 0;
1677 int pathlen1 = 0, pathlen2 = 0;
1678 int freepath1 = 0, freepath2 = 0;
1679 int len;
1680 u16 releases;
1681 void *p, *end;
1682 int ret;
1684 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1685 req->r_path1, req->r_ino1.ino,
1686 &path1, &pathlen1, &ino1, &freepath1);
1687 if (ret < 0) {
1688 msg = ERR_PTR(ret);
1689 goto out;
1692 ret = set_request_path_attr(NULL, req->r_old_dentry,
1693 req->r_path2, req->r_ino2.ino,
1694 &path2, &pathlen2, &ino2, &freepath2);
1695 if (ret < 0) {
1696 msg = ERR_PTR(ret);
1697 goto out_free1;
1700 len = sizeof(*head) +
1701 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1703 /* calculate (max) length for cap releases */
1704 len += sizeof(struct ceph_mds_request_release) *
1705 (!!req->r_inode_drop + !!req->r_dentry_drop +
1706 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1707 if (req->r_dentry_drop)
1708 len += req->r_dentry->d_name.len;
1709 if (req->r_old_dentry_drop)
1710 len += req->r_old_dentry->d_name.len;
1712 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1713 if (!msg) {
1714 msg = ERR_PTR(-ENOMEM);
1715 goto out_free2;
1718 msg->hdr.tid = cpu_to_le64(req->r_tid);
1720 head = msg->front.iov_base;
1721 p = msg->front.iov_base + sizeof(*head);
1722 end = msg->front.iov_base + msg->front.iov_len;
1724 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1725 head->op = cpu_to_le32(req->r_op);
1726 head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1727 head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1728 head->args = req->r_args;
1730 ceph_encode_filepath(&p, end, ino1, path1);
1731 ceph_encode_filepath(&p, end, ino2, path2);
1733 /* make note of release offset, in case we need to replay */
1734 req->r_request_release_offset = p - msg->front.iov_base;
1736 /* cap releases */
1737 releases = 0;
1738 if (req->r_inode_drop)
1739 releases += ceph_encode_inode_release(&p,
1740 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1741 mds, req->r_inode_drop, req->r_inode_unless, 0);
1742 if (req->r_dentry_drop)
1743 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1744 mds, req->r_dentry_drop, req->r_dentry_unless);
1745 if (req->r_old_dentry_drop)
1746 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1747 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1748 if (req->r_old_inode_drop)
1749 releases += ceph_encode_inode_release(&p,
1750 req->r_old_dentry->d_inode,
1751 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1752 head->num_releases = cpu_to_le16(releases);
1754 BUG_ON(p > end);
1755 msg->front.iov_len = p - msg->front.iov_base;
1756 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1758 if (req->r_data_len) {
1759 /* outbound data set only by ceph_sync_setxattr() */
1760 BUG_ON(!req->r_pages);
1761 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1764 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1765 msg->hdr.data_off = cpu_to_le16(0);
1767 out_free2:
1768 if (freepath2)
1769 kfree((char *)path2);
1770 out_free1:
1771 if (freepath1)
1772 kfree((char *)path1);
1773 out:
1774 return msg;
1778 * called under mdsc->mutex if error, under no mutex if
1779 * success.
1781 static void complete_request(struct ceph_mds_client *mdsc,
1782 struct ceph_mds_request *req)
1784 if (req->r_callback)
1785 req->r_callback(mdsc, req);
1786 else
1787 complete_all(&req->r_completion);
1791 * called under mdsc->mutex
1793 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1794 struct ceph_mds_request *req,
1795 int mds)
1797 struct ceph_mds_request_head *rhead;
1798 struct ceph_msg *msg;
1799 int flags = 0;
1801 req->r_attempts++;
1802 if (req->r_inode) {
1803 struct ceph_cap *cap =
1804 ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1806 if (cap)
1807 req->r_sent_on_mseq = cap->mseq;
1808 else
1809 req->r_sent_on_mseq = -1;
1811 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1812 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1814 if (req->r_got_unsafe) {
1816 * Replay. Do not regenerate message (and rebuild
1817 * paths, etc.); just use the original message.
1818 * Rebuilding paths will break for renames because
1819 * d_move mangles the src name.
1821 msg = req->r_request;
1822 rhead = msg->front.iov_base;
1824 flags = le32_to_cpu(rhead->flags);
1825 flags |= CEPH_MDS_FLAG_REPLAY;
1826 rhead->flags = cpu_to_le32(flags);
1828 if (req->r_target_inode)
1829 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1831 rhead->num_retry = req->r_attempts - 1;
1833 /* remove cap/dentry releases from message */
1834 rhead->num_releases = 0;
1835 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1836 msg->front.iov_len = req->r_request_release_offset;
1837 return 0;
1840 if (req->r_request) {
1841 ceph_msg_put(req->r_request);
1842 req->r_request = NULL;
1844 msg = create_request_message(mdsc, req, mds);
1845 if (IS_ERR(msg)) {
1846 req->r_err = PTR_ERR(msg);
1847 complete_request(mdsc, req);
1848 return PTR_ERR(msg);
1850 req->r_request = msg;
1852 rhead = msg->front.iov_base;
1853 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1854 if (req->r_got_unsafe)
1855 flags |= CEPH_MDS_FLAG_REPLAY;
1856 if (req->r_locked_dir)
1857 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1858 rhead->flags = cpu_to_le32(flags);
1859 rhead->num_fwd = req->r_num_fwd;
1860 rhead->num_retry = req->r_attempts - 1;
1861 rhead->ino = 0;
1863 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1864 return 0;
1868 * send request, or put it on the appropriate wait list.
1870 static int __do_request(struct ceph_mds_client *mdsc,
1871 struct ceph_mds_request *req)
1873 struct ceph_mds_session *session = NULL;
1874 int mds = -1;
1875 int err = -EAGAIN;
1877 if (req->r_err || req->r_got_result) {
1878 if (req->r_aborted)
1879 __unregister_request(mdsc, req);
1880 goto out;
1883 if (req->r_timeout &&
1884 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1885 dout("do_request timed out\n");
1886 err = -EIO;
1887 goto finish;
1890 put_request_session(req);
1892 mds = __choose_mds(mdsc, req);
1893 if (mds < 0 ||
1894 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1895 dout("do_request no mds or not active, waiting for map\n");
1896 list_add(&req->r_wait, &mdsc->waiting_for_map);
1897 goto out;
1900 /* get, open session */
1901 session = __ceph_lookup_mds_session(mdsc, mds);
1902 if (!session) {
1903 session = register_session(mdsc, mds);
1904 if (IS_ERR(session)) {
1905 err = PTR_ERR(session);
1906 goto finish;
1909 req->r_session = get_session(session);
1911 dout("do_request mds%d session %p state %s\n", mds, session,
1912 session_state_name(session->s_state));
1913 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1914 session->s_state != CEPH_MDS_SESSION_HUNG) {
1915 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1916 session->s_state == CEPH_MDS_SESSION_CLOSING)
1917 __open_session(mdsc, session);
1918 list_add(&req->r_wait, &session->s_waiting);
1919 goto out_session;
1922 /* send request */
1923 req->r_resend_mds = -1; /* forget any previous mds hint */
1925 if (req->r_request_started == 0) /* note request start time */
1926 req->r_request_started = jiffies;
1928 err = __prepare_send_request(mdsc, req, mds);
1929 if (!err) {
1930 ceph_msg_get(req->r_request);
1931 ceph_con_send(&session->s_con, req->r_request);
1934 out_session:
1935 ceph_put_mds_session(session);
1936 out:
1937 return err;
1939 finish:
1940 req->r_err = err;
1941 complete_request(mdsc, req);
1942 goto out;
1946 * called under mdsc->mutex
1948 static void __wake_requests(struct ceph_mds_client *mdsc,
1949 struct list_head *head)
1951 struct ceph_mds_request *req;
1952 LIST_HEAD(tmp_list);
1954 list_splice_init(head, &tmp_list);
1956 while (!list_empty(&tmp_list)) {
1957 req = list_entry(tmp_list.next,
1958 struct ceph_mds_request, r_wait);
1959 list_del_init(&req->r_wait);
1960 dout(" wake request %p tid %llu\n", req, req->r_tid);
1961 __do_request(mdsc, req);
1966 * Wake up threads with requests pending for @mds, so that they can
1967 * resubmit their requests to a possibly different mds.
1969 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1971 struct ceph_mds_request *req;
1972 struct rb_node *p;
1974 dout("kick_requests mds%d\n", mds);
1975 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1976 req = rb_entry(p, struct ceph_mds_request, r_node);
1977 if (req->r_got_unsafe)
1978 continue;
1979 if (req->r_session &&
1980 req->r_session->s_mds == mds) {
1981 dout(" kicking tid %llu\n", req->r_tid);
1982 __do_request(mdsc, req);
1987 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1988 struct ceph_mds_request *req)
1990 dout("submit_request on %p\n", req);
1991 mutex_lock(&mdsc->mutex);
1992 __register_request(mdsc, req, NULL);
1993 __do_request(mdsc, req);
1994 mutex_unlock(&mdsc->mutex);
1998 * Synchrously perform an mds request. Take care of all of the
1999 * session setup, forwarding, retry details.
2001 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2002 struct inode *dir,
2003 struct ceph_mds_request *req)
2005 int err;
2007 dout("do_request on %p\n", req);
2009 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2010 if (req->r_inode)
2011 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2012 if (req->r_locked_dir)
2013 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2014 if (req->r_old_dentry)
2015 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2016 CEPH_CAP_PIN);
2018 /* issue */
2019 mutex_lock(&mdsc->mutex);
2020 __register_request(mdsc, req, dir);
2021 __do_request(mdsc, req);
2023 if (req->r_err) {
2024 err = req->r_err;
2025 __unregister_request(mdsc, req);
2026 dout("do_request early error %d\n", err);
2027 goto out;
2030 /* wait */
2031 mutex_unlock(&mdsc->mutex);
2032 dout("do_request waiting\n");
2033 if (req->r_timeout) {
2034 err = (long)wait_for_completion_killable_timeout(
2035 &req->r_completion, req->r_timeout);
2036 if (err == 0)
2037 err = -EIO;
2038 } else {
2039 err = wait_for_completion_killable(&req->r_completion);
2041 dout("do_request waited, got %d\n", err);
2042 mutex_lock(&mdsc->mutex);
2044 /* only abort if we didn't race with a real reply */
2045 if (req->r_got_result) {
2046 err = le32_to_cpu(req->r_reply_info.head->result);
2047 } else if (err < 0) {
2048 dout("aborted request %lld with %d\n", req->r_tid, err);
2051 * ensure we aren't running concurrently with
2052 * ceph_fill_trace or ceph_readdir_prepopulate, which
2053 * rely on locks (dir mutex) held by our caller.
2055 mutex_lock(&req->r_fill_mutex);
2056 req->r_err = err;
2057 req->r_aborted = true;
2058 mutex_unlock(&req->r_fill_mutex);
2060 if (req->r_locked_dir &&
2061 (req->r_op & CEPH_MDS_OP_WRITE))
2062 ceph_invalidate_dir_request(req);
2063 } else {
2064 err = req->r_err;
2067 out:
2068 mutex_unlock(&mdsc->mutex);
2069 dout("do_request %p done, result %d\n", req, err);
2070 return err;
2074 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2075 * namespace request.
2077 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2079 struct inode *inode = req->r_locked_dir;
2081 dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2083 ceph_dir_clear_complete(inode);
2084 if (req->r_dentry)
2085 ceph_invalidate_dentry_lease(req->r_dentry);
2086 if (req->r_old_dentry)
2087 ceph_invalidate_dentry_lease(req->r_old_dentry);
2091 * Handle mds reply.
2093 * We take the session mutex and parse and process the reply immediately.
2094 * This preserves the logical ordering of replies, capabilities, etc., sent
2095 * by the MDS as they are applied to our local cache.
2097 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2099 struct ceph_mds_client *mdsc = session->s_mdsc;
2100 struct ceph_mds_request *req;
2101 struct ceph_mds_reply_head *head = msg->front.iov_base;
2102 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
2103 u64 tid;
2104 int err, result;
2105 int mds = session->s_mds;
2107 if (msg->front.iov_len < sizeof(*head)) {
2108 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2109 ceph_msg_dump(msg);
2110 return;
2113 /* get request, session */
2114 tid = le64_to_cpu(msg->hdr.tid);
2115 mutex_lock(&mdsc->mutex);
2116 req = __lookup_request(mdsc, tid);
2117 if (!req) {
2118 dout("handle_reply on unknown tid %llu\n", tid);
2119 mutex_unlock(&mdsc->mutex);
2120 return;
2122 dout("handle_reply %p\n", req);
2124 /* correct session? */
2125 if (req->r_session != session) {
2126 pr_err("mdsc_handle_reply got %llu on session mds%d"
2127 " not mds%d\n", tid, session->s_mds,
2128 req->r_session ? req->r_session->s_mds : -1);
2129 mutex_unlock(&mdsc->mutex);
2130 goto out;
2133 /* dup? */
2134 if ((req->r_got_unsafe && !head->safe) ||
2135 (req->r_got_safe && head->safe)) {
2136 pr_warning("got a dup %s reply on %llu from mds%d\n",
2137 head->safe ? "safe" : "unsafe", tid, mds);
2138 mutex_unlock(&mdsc->mutex);
2139 goto out;
2141 if (req->r_got_safe && !head->safe) {
2142 pr_warning("got unsafe after safe on %llu from mds%d\n",
2143 tid, mds);
2144 mutex_unlock(&mdsc->mutex);
2145 goto out;
2148 result = le32_to_cpu(head->result);
2151 * Handle an ESTALE
2152 * if we're not talking to the authority, send to them
2153 * if the authority has changed while we weren't looking,
2154 * send to new authority
2155 * Otherwise we just have to return an ESTALE
2157 if (result == -ESTALE) {
2158 dout("got ESTALE on request %llu", req->r_tid);
2159 if (!req->r_inode) {
2160 /* do nothing; not an authority problem */
2161 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2162 dout("not using auth, setting for that now");
2163 req->r_direct_mode = USE_AUTH_MDS;
2164 __do_request(mdsc, req);
2165 mutex_unlock(&mdsc->mutex);
2166 goto out;
2167 } else {
2168 struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2169 struct ceph_cap *cap = NULL;
2171 if (req->r_session)
2172 cap = ceph_get_cap_for_mds(ci,
2173 req->r_session->s_mds);
2175 dout("already using auth");
2176 if ((!cap || cap != ci->i_auth_cap) ||
2177 (cap->mseq != req->r_sent_on_mseq)) {
2178 dout("but cap changed, so resending");
2179 __do_request(mdsc, req);
2180 mutex_unlock(&mdsc->mutex);
2181 goto out;
2184 dout("have to return ESTALE on request %llu", req->r_tid);
2188 if (head->safe) {
2189 req->r_got_safe = true;
2190 __unregister_request(mdsc, req);
2192 if (req->r_got_unsafe) {
2194 * We already handled the unsafe response, now do the
2195 * cleanup. No need to examine the response; the MDS
2196 * doesn't include any result info in the safe
2197 * response. And even if it did, there is nothing
2198 * useful we could do with a revised return value.
2200 dout("got safe reply %llu, mds%d\n", tid, mds);
2201 list_del_init(&req->r_unsafe_item);
2203 /* last unsafe request during umount? */
2204 if (mdsc->stopping && !__get_oldest_req(mdsc))
2205 complete_all(&mdsc->safe_umount_waiters);
2206 mutex_unlock(&mdsc->mutex);
2207 goto out;
2209 } else {
2210 req->r_got_unsafe = true;
2211 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2214 dout("handle_reply tid %lld result %d\n", tid, result);
2215 rinfo = &req->r_reply_info;
2216 err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2217 mutex_unlock(&mdsc->mutex);
2219 mutex_lock(&session->s_mutex);
2220 if (err < 0) {
2221 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2222 ceph_msg_dump(msg);
2223 goto out_err;
2226 /* snap trace */
2227 if (rinfo->snapblob_len) {
2228 down_write(&mdsc->snap_rwsem);
2229 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2230 rinfo->snapblob + rinfo->snapblob_len,
2231 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2232 downgrade_write(&mdsc->snap_rwsem);
2233 } else {
2234 down_read(&mdsc->snap_rwsem);
2237 /* insert trace into our cache */
2238 mutex_lock(&req->r_fill_mutex);
2239 err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2240 if (err == 0) {
2241 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2242 req->r_op == CEPH_MDS_OP_LSSNAP))
2243 ceph_readdir_prepopulate(req, req->r_session);
2244 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2246 mutex_unlock(&req->r_fill_mutex);
2248 up_read(&mdsc->snap_rwsem);
2249 out_err:
2250 mutex_lock(&mdsc->mutex);
2251 if (!req->r_aborted) {
2252 if (err) {
2253 req->r_err = err;
2254 } else {
2255 req->r_reply = msg;
2256 ceph_msg_get(msg);
2257 req->r_got_result = true;
2259 } else {
2260 dout("reply arrived after request %lld was aborted\n", tid);
2262 mutex_unlock(&mdsc->mutex);
2264 ceph_add_cap_releases(mdsc, req->r_session);
2265 mutex_unlock(&session->s_mutex);
2267 /* kick calling process */
2268 complete_request(mdsc, req);
2269 out:
2270 ceph_mdsc_put_request(req);
2271 return;
2277 * handle mds notification that our request has been forwarded.
2279 static void handle_forward(struct ceph_mds_client *mdsc,
2280 struct ceph_mds_session *session,
2281 struct ceph_msg *msg)
2283 struct ceph_mds_request *req;
2284 u64 tid = le64_to_cpu(msg->hdr.tid);
2285 u32 next_mds;
2286 u32 fwd_seq;
2287 int err = -EINVAL;
2288 void *p = msg->front.iov_base;
2289 void *end = p + msg->front.iov_len;
2291 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2292 next_mds = ceph_decode_32(&p);
2293 fwd_seq = ceph_decode_32(&p);
2295 mutex_lock(&mdsc->mutex);
2296 req = __lookup_request(mdsc, tid);
2297 if (!req) {
2298 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2299 goto out; /* dup reply? */
2302 if (req->r_aborted) {
2303 dout("forward tid %llu aborted, unregistering\n", tid);
2304 __unregister_request(mdsc, req);
2305 } else if (fwd_seq <= req->r_num_fwd) {
2306 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2307 tid, next_mds, req->r_num_fwd, fwd_seq);
2308 } else {
2309 /* resend. forward race not possible; mds would drop */
2310 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2311 BUG_ON(req->r_err);
2312 BUG_ON(req->r_got_result);
2313 req->r_num_fwd = fwd_seq;
2314 req->r_resend_mds = next_mds;
2315 put_request_session(req);
2316 __do_request(mdsc, req);
2318 ceph_mdsc_put_request(req);
2319 out:
2320 mutex_unlock(&mdsc->mutex);
2321 return;
2323 bad:
2324 pr_err("mdsc_handle_forward decode error err=%d\n", err);
2328 * handle a mds session control message
2330 static void handle_session(struct ceph_mds_session *session,
2331 struct ceph_msg *msg)
2333 struct ceph_mds_client *mdsc = session->s_mdsc;
2334 u32 op;
2335 u64 seq;
2336 int mds = session->s_mds;
2337 struct ceph_mds_session_head *h = msg->front.iov_base;
2338 int wake = 0;
2340 /* decode */
2341 if (msg->front.iov_len != sizeof(*h))
2342 goto bad;
2343 op = le32_to_cpu(h->op);
2344 seq = le64_to_cpu(h->seq);
2346 mutex_lock(&mdsc->mutex);
2347 if (op == CEPH_SESSION_CLOSE)
2348 __unregister_session(mdsc, session);
2349 /* FIXME: this ttl calculation is generous */
2350 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2351 mutex_unlock(&mdsc->mutex);
2353 mutex_lock(&session->s_mutex);
2355 dout("handle_session mds%d %s %p state %s seq %llu\n",
2356 mds, ceph_session_op_name(op), session,
2357 session_state_name(session->s_state), seq);
2359 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2360 session->s_state = CEPH_MDS_SESSION_OPEN;
2361 pr_info("mds%d came back\n", session->s_mds);
2364 switch (op) {
2365 case CEPH_SESSION_OPEN:
2366 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2367 pr_info("mds%d reconnect success\n", session->s_mds);
2368 session->s_state = CEPH_MDS_SESSION_OPEN;
2369 renewed_caps(mdsc, session, 0);
2370 wake = 1;
2371 if (mdsc->stopping)
2372 __close_session(mdsc, session);
2373 break;
2375 case CEPH_SESSION_RENEWCAPS:
2376 if (session->s_renew_seq == seq)
2377 renewed_caps(mdsc, session, 1);
2378 break;
2380 case CEPH_SESSION_CLOSE:
2381 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2382 pr_info("mds%d reconnect denied\n", session->s_mds);
2383 remove_session_caps(session);
2384 wake = 1; /* for good measure */
2385 wake_up_all(&mdsc->session_close_wq);
2386 kick_requests(mdsc, mds);
2387 break;
2389 case CEPH_SESSION_STALE:
2390 pr_info("mds%d caps went stale, renewing\n",
2391 session->s_mds);
2392 spin_lock(&session->s_gen_ttl_lock);
2393 session->s_cap_gen++;
2394 session->s_cap_ttl = jiffies - 1;
2395 spin_unlock(&session->s_gen_ttl_lock);
2396 send_renew_caps(mdsc, session);
2397 break;
2399 case CEPH_SESSION_RECALL_STATE:
2400 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2401 break;
2403 default:
2404 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2405 WARN_ON(1);
2408 mutex_unlock(&session->s_mutex);
2409 if (wake) {
2410 mutex_lock(&mdsc->mutex);
2411 __wake_requests(mdsc, &session->s_waiting);
2412 mutex_unlock(&mdsc->mutex);
2414 return;
2416 bad:
2417 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2418 (int)msg->front.iov_len);
2419 ceph_msg_dump(msg);
2420 return;
2425 * called under session->mutex.
2427 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2428 struct ceph_mds_session *session)
2430 struct ceph_mds_request *req, *nreq;
2431 int err;
2433 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2435 mutex_lock(&mdsc->mutex);
2436 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2437 err = __prepare_send_request(mdsc, req, session->s_mds);
2438 if (!err) {
2439 ceph_msg_get(req->r_request);
2440 ceph_con_send(&session->s_con, req->r_request);
2443 mutex_unlock(&mdsc->mutex);
2447 * Encode information about a cap for a reconnect with the MDS.
2449 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2450 void *arg)
2452 union {
2453 struct ceph_mds_cap_reconnect v2;
2454 struct ceph_mds_cap_reconnect_v1 v1;
2455 } rec;
2456 size_t reclen;
2457 struct ceph_inode_info *ci;
2458 struct ceph_reconnect_state *recon_state = arg;
2459 struct ceph_pagelist *pagelist = recon_state->pagelist;
2460 char *path;
2461 int pathlen, err;
2462 u64 pathbase;
2463 struct dentry *dentry;
2465 ci = cap->ci;
2467 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2468 inode, ceph_vinop(inode), cap, cap->cap_id,
2469 ceph_cap_string(cap->issued));
2470 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2471 if (err)
2472 return err;
2474 dentry = d_find_alias(inode);
2475 if (dentry) {
2476 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2477 if (IS_ERR(path)) {
2478 err = PTR_ERR(path);
2479 goto out_dput;
2481 } else {
2482 path = NULL;
2483 pathlen = 0;
2485 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2486 if (err)
2487 goto out_free;
2489 spin_lock(&ci->i_ceph_lock);
2490 cap->seq = 0; /* reset cap seq */
2491 cap->issue_seq = 0; /* and issue_seq */
2492 cap->mseq = 0; /* and migrate_seq */
2493 cap->cap_gen = cap->session->s_cap_gen;
2495 if (recon_state->flock) {
2496 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2497 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2498 rec.v2.issued = cpu_to_le32(cap->issued);
2499 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2500 rec.v2.pathbase = cpu_to_le64(pathbase);
2501 rec.v2.flock_len = 0;
2502 reclen = sizeof(rec.v2);
2503 } else {
2504 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2505 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2506 rec.v1.issued = cpu_to_le32(cap->issued);
2507 rec.v1.size = cpu_to_le64(inode->i_size);
2508 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2509 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2510 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2511 rec.v1.pathbase = cpu_to_le64(pathbase);
2512 reclen = sizeof(rec.v1);
2514 spin_unlock(&ci->i_ceph_lock);
2516 if (recon_state->flock) {
2517 int num_fcntl_locks, num_flock_locks;
2518 struct ceph_filelock *flocks;
2520 encode_again:
2521 spin_lock(&inode->i_lock);
2522 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2523 spin_unlock(&inode->i_lock);
2524 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2525 sizeof(struct ceph_filelock), GFP_NOFS);
2526 if (!flocks) {
2527 err = -ENOMEM;
2528 goto out_free;
2530 spin_lock(&inode->i_lock);
2531 err = ceph_encode_locks_to_buffer(inode, flocks,
2532 num_fcntl_locks,
2533 num_flock_locks);
2534 spin_unlock(&inode->i_lock);
2535 if (err) {
2536 kfree(flocks);
2537 if (err == -ENOSPC)
2538 goto encode_again;
2539 goto out_free;
2542 * number of encoded locks is stable, so copy to pagelist
2544 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2545 (num_fcntl_locks+num_flock_locks) *
2546 sizeof(struct ceph_filelock));
2547 err = ceph_pagelist_append(pagelist, &rec, reclen);
2548 if (!err)
2549 err = ceph_locks_to_pagelist(flocks, pagelist,
2550 num_fcntl_locks,
2551 num_flock_locks);
2552 kfree(flocks);
2553 } else {
2554 err = ceph_pagelist_append(pagelist, &rec, reclen);
2557 recon_state->nr_caps++;
2558 out_free:
2559 kfree(path);
2560 out_dput:
2561 dput(dentry);
2562 return err;
2567 * If an MDS fails and recovers, clients need to reconnect in order to
2568 * reestablish shared state. This includes all caps issued through
2569 * this session _and_ the snap_realm hierarchy. Because it's not
2570 * clear which snap realms the mds cares about, we send everything we
2571 * know about.. that ensures we'll then get any new info the
2572 * recovering MDS might have.
2574 * This is a relatively heavyweight operation, but it's rare.
2576 * called with mdsc->mutex held.
2578 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2579 struct ceph_mds_session *session)
2581 struct ceph_msg *reply;
2582 struct rb_node *p;
2583 int mds = session->s_mds;
2584 int err = -ENOMEM;
2585 int s_nr_caps;
2586 struct ceph_pagelist *pagelist;
2587 struct ceph_reconnect_state recon_state;
2589 pr_info("mds%d reconnect start\n", mds);
2591 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2592 if (!pagelist)
2593 goto fail_nopagelist;
2594 ceph_pagelist_init(pagelist);
2596 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2597 if (!reply)
2598 goto fail_nomsg;
2600 mutex_lock(&session->s_mutex);
2601 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2602 session->s_seq = 0;
2604 ceph_con_close(&session->s_con);
2605 ceph_con_open(&session->s_con,
2606 CEPH_ENTITY_TYPE_MDS, mds,
2607 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2609 /* replay unsafe requests */
2610 replay_unsafe_requests(mdsc, session);
2612 down_read(&mdsc->snap_rwsem);
2614 dout("session %p state %s\n", session,
2615 session_state_name(session->s_state));
2617 spin_lock(&session->s_gen_ttl_lock);
2618 session->s_cap_gen++;
2619 spin_unlock(&session->s_gen_ttl_lock);
2621 spin_lock(&session->s_cap_lock);
2623 * notify __ceph_remove_cap() that we are composing cap reconnect.
2624 * If a cap get released before being added to the cap reconnect,
2625 * __ceph_remove_cap() should skip queuing cap release.
2627 session->s_cap_reconnect = 1;
2628 /* drop old cap expires; we're about to reestablish that state */
2629 discard_cap_releases(mdsc, session);
2630 spin_unlock(&session->s_cap_lock);
2632 /* traverse this session's caps */
2633 s_nr_caps = session->s_nr_caps;
2634 err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2635 if (err)
2636 goto fail;
2638 recon_state.nr_caps = 0;
2639 recon_state.pagelist = pagelist;
2640 recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2641 err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2642 if (err < 0)
2643 goto fail;
2645 spin_lock(&session->s_cap_lock);
2646 session->s_cap_reconnect = 0;
2647 spin_unlock(&session->s_cap_lock);
2650 * snaprealms. we provide mds with the ino, seq (version), and
2651 * parent for all of our realms. If the mds has any newer info,
2652 * it will tell us.
2654 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2655 struct ceph_snap_realm *realm =
2656 rb_entry(p, struct ceph_snap_realm, node);
2657 struct ceph_mds_snaprealm_reconnect sr_rec;
2659 dout(" adding snap realm %llx seq %lld parent %llx\n",
2660 realm->ino, realm->seq, realm->parent_ino);
2661 sr_rec.ino = cpu_to_le64(realm->ino);
2662 sr_rec.seq = cpu_to_le64(realm->seq);
2663 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2664 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2665 if (err)
2666 goto fail;
2669 if (recon_state.flock)
2670 reply->hdr.version = cpu_to_le16(2);
2672 /* raced with cap release? */
2673 if (s_nr_caps != recon_state.nr_caps) {
2674 struct page *page = list_first_entry(&pagelist->head,
2675 struct page, lru);
2676 __le32 *addr = kmap_atomic(page);
2677 *addr = cpu_to_le32(recon_state.nr_caps);
2678 kunmap_atomic(addr);
2681 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2682 ceph_msg_data_add_pagelist(reply, pagelist);
2683 ceph_con_send(&session->s_con, reply);
2685 mutex_unlock(&session->s_mutex);
2687 mutex_lock(&mdsc->mutex);
2688 __wake_requests(mdsc, &session->s_waiting);
2689 mutex_unlock(&mdsc->mutex);
2691 up_read(&mdsc->snap_rwsem);
2692 return;
2694 fail:
2695 ceph_msg_put(reply);
2696 up_read(&mdsc->snap_rwsem);
2697 mutex_unlock(&session->s_mutex);
2698 fail_nomsg:
2699 ceph_pagelist_release(pagelist);
2700 kfree(pagelist);
2701 fail_nopagelist:
2702 pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2703 return;
2708 * compare old and new mdsmaps, kicking requests
2709 * and closing out old connections as necessary
2711 * called under mdsc->mutex.
2713 static void check_new_map(struct ceph_mds_client *mdsc,
2714 struct ceph_mdsmap *newmap,
2715 struct ceph_mdsmap *oldmap)
2717 int i;
2718 int oldstate, newstate;
2719 struct ceph_mds_session *s;
2721 dout("check_new_map new %u old %u\n",
2722 newmap->m_epoch, oldmap->m_epoch);
2724 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2725 if (mdsc->sessions[i] == NULL)
2726 continue;
2727 s = mdsc->sessions[i];
2728 oldstate = ceph_mdsmap_get_state(oldmap, i);
2729 newstate = ceph_mdsmap_get_state(newmap, i);
2731 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2732 i, ceph_mds_state_name(oldstate),
2733 ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2734 ceph_mds_state_name(newstate),
2735 ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2736 session_state_name(s->s_state));
2738 if (i >= newmap->m_max_mds ||
2739 memcmp(ceph_mdsmap_get_addr(oldmap, i),
2740 ceph_mdsmap_get_addr(newmap, i),
2741 sizeof(struct ceph_entity_addr))) {
2742 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2743 /* the session never opened, just close it
2744 * out now */
2745 __wake_requests(mdsc, &s->s_waiting);
2746 __unregister_session(mdsc, s);
2747 } else {
2748 /* just close it */
2749 mutex_unlock(&mdsc->mutex);
2750 mutex_lock(&s->s_mutex);
2751 mutex_lock(&mdsc->mutex);
2752 ceph_con_close(&s->s_con);
2753 mutex_unlock(&s->s_mutex);
2754 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2757 /* kick any requests waiting on the recovering mds */
2758 kick_requests(mdsc, i);
2759 } else if (oldstate == newstate) {
2760 continue; /* nothing new with this mds */
2764 * send reconnect?
2766 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2767 newstate >= CEPH_MDS_STATE_RECONNECT) {
2768 mutex_unlock(&mdsc->mutex);
2769 send_mds_reconnect(mdsc, s);
2770 mutex_lock(&mdsc->mutex);
2774 * kick request on any mds that has gone active.
2776 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2777 newstate >= CEPH_MDS_STATE_ACTIVE) {
2778 if (oldstate != CEPH_MDS_STATE_CREATING &&
2779 oldstate != CEPH_MDS_STATE_STARTING)
2780 pr_info("mds%d recovery completed\n", s->s_mds);
2781 kick_requests(mdsc, i);
2782 ceph_kick_flushing_caps(mdsc, s);
2783 wake_up_session_caps(s, 1);
2787 for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2788 s = mdsc->sessions[i];
2789 if (!s)
2790 continue;
2791 if (!ceph_mdsmap_is_laggy(newmap, i))
2792 continue;
2793 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2794 s->s_state == CEPH_MDS_SESSION_HUNG ||
2795 s->s_state == CEPH_MDS_SESSION_CLOSING) {
2796 dout(" connecting to export targets of laggy mds%d\n",
2798 __open_export_target_sessions(mdsc, s);
2806 * leases
2810 * caller must hold session s_mutex, dentry->d_lock
2812 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2814 struct ceph_dentry_info *di = ceph_dentry(dentry);
2816 ceph_put_mds_session(di->lease_session);
2817 di->lease_session = NULL;
2820 static void handle_lease(struct ceph_mds_client *mdsc,
2821 struct ceph_mds_session *session,
2822 struct ceph_msg *msg)
2824 struct super_block *sb = mdsc->fsc->sb;
2825 struct inode *inode;
2826 struct dentry *parent, *dentry;
2827 struct ceph_dentry_info *di;
2828 int mds = session->s_mds;
2829 struct ceph_mds_lease *h = msg->front.iov_base;
2830 u32 seq;
2831 struct ceph_vino vino;
2832 struct qstr dname;
2833 int release = 0;
2835 dout("handle_lease from mds%d\n", mds);
2837 /* decode */
2838 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2839 goto bad;
2840 vino.ino = le64_to_cpu(h->ino);
2841 vino.snap = CEPH_NOSNAP;
2842 seq = le32_to_cpu(h->seq);
2843 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2844 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2845 if (dname.len != get_unaligned_le32(h+1))
2846 goto bad;
2848 mutex_lock(&session->s_mutex);
2849 session->s_seq++;
2851 /* lookup inode */
2852 inode = ceph_find_inode(sb, vino);
2853 dout("handle_lease %s, ino %llx %p %.*s\n",
2854 ceph_lease_op_name(h->action), vino.ino, inode,
2855 dname.len, dname.name);
2856 if (inode == NULL) {
2857 dout("handle_lease no inode %llx\n", vino.ino);
2858 goto release;
2861 /* dentry */
2862 parent = d_find_alias(inode);
2863 if (!parent) {
2864 dout("no parent dentry on inode %p\n", inode);
2865 WARN_ON(1);
2866 goto release; /* hrm... */
2868 dname.hash = full_name_hash(dname.name, dname.len);
2869 dentry = d_lookup(parent, &dname);
2870 dput(parent);
2871 if (!dentry)
2872 goto release;
2874 spin_lock(&dentry->d_lock);
2875 di = ceph_dentry(dentry);
2876 switch (h->action) {
2877 case CEPH_MDS_LEASE_REVOKE:
2878 if (di->lease_session == session) {
2879 if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2880 h->seq = cpu_to_le32(di->lease_seq);
2881 __ceph_mdsc_drop_dentry_lease(dentry);
2883 release = 1;
2884 break;
2886 case CEPH_MDS_LEASE_RENEW:
2887 if (di->lease_session == session &&
2888 di->lease_gen == session->s_cap_gen &&
2889 di->lease_renew_from &&
2890 di->lease_renew_after == 0) {
2891 unsigned long duration =
2892 le32_to_cpu(h->duration_ms) * HZ / 1000;
2894 di->lease_seq = seq;
2895 dentry->d_time = di->lease_renew_from + duration;
2896 di->lease_renew_after = di->lease_renew_from +
2897 (duration >> 1);
2898 di->lease_renew_from = 0;
2900 break;
2902 spin_unlock(&dentry->d_lock);
2903 dput(dentry);
2905 if (!release)
2906 goto out;
2908 release:
2909 /* let's just reuse the same message */
2910 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2911 ceph_msg_get(msg);
2912 ceph_con_send(&session->s_con, msg);
2914 out:
2915 iput(inode);
2916 mutex_unlock(&session->s_mutex);
2917 return;
2919 bad:
2920 pr_err("corrupt lease message\n");
2921 ceph_msg_dump(msg);
2924 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2925 struct inode *inode,
2926 struct dentry *dentry, char action,
2927 u32 seq)
2929 struct ceph_msg *msg;
2930 struct ceph_mds_lease *lease;
2931 int len = sizeof(*lease) + sizeof(u32);
2932 int dnamelen = 0;
2934 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2935 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2936 dnamelen = dentry->d_name.len;
2937 len += dnamelen;
2939 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2940 if (!msg)
2941 return;
2942 lease = msg->front.iov_base;
2943 lease->action = action;
2944 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2945 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2946 lease->seq = cpu_to_le32(seq);
2947 put_unaligned_le32(dnamelen, lease + 1);
2948 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2951 * if this is a preemptive lease RELEASE, no need to
2952 * flush request stream, since the actual request will
2953 * soon follow.
2955 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2957 ceph_con_send(&session->s_con, msg);
2961 * Preemptively release a lease we expect to invalidate anyway.
2962 * Pass @inode always, @dentry is optional.
2964 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2965 struct dentry *dentry)
2967 struct ceph_dentry_info *di;
2968 struct ceph_mds_session *session;
2969 u32 seq;
2971 BUG_ON(inode == NULL);
2972 BUG_ON(dentry == NULL);
2974 /* is dentry lease valid? */
2975 spin_lock(&dentry->d_lock);
2976 di = ceph_dentry(dentry);
2977 if (!di || !di->lease_session ||
2978 di->lease_session->s_mds < 0 ||
2979 di->lease_gen != di->lease_session->s_cap_gen ||
2980 !time_before(jiffies, dentry->d_time)) {
2981 dout("lease_release inode %p dentry %p -- "
2982 "no lease\n",
2983 inode, dentry);
2984 spin_unlock(&dentry->d_lock);
2985 return;
2988 /* we do have a lease on this dentry; note mds and seq */
2989 session = ceph_get_mds_session(di->lease_session);
2990 seq = di->lease_seq;
2991 __ceph_mdsc_drop_dentry_lease(dentry);
2992 spin_unlock(&dentry->d_lock);
2994 dout("lease_release inode %p dentry %p to mds%d\n",
2995 inode, dentry, session->s_mds);
2996 ceph_mdsc_lease_send_msg(session, inode, dentry,
2997 CEPH_MDS_LEASE_RELEASE, seq);
2998 ceph_put_mds_session(session);
3002 * drop all leases (and dentry refs) in preparation for umount
3004 static void drop_leases(struct ceph_mds_client *mdsc)
3006 int i;
3008 dout("drop_leases\n");
3009 mutex_lock(&mdsc->mutex);
3010 for (i = 0; i < mdsc->max_sessions; i++) {
3011 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3012 if (!s)
3013 continue;
3014 mutex_unlock(&mdsc->mutex);
3015 mutex_lock(&s->s_mutex);
3016 mutex_unlock(&s->s_mutex);
3017 ceph_put_mds_session(s);
3018 mutex_lock(&mdsc->mutex);
3020 mutex_unlock(&mdsc->mutex);
3026 * delayed work -- periodically trim expired leases, renew caps with mds
3028 static void schedule_delayed(struct ceph_mds_client *mdsc)
3030 int delay = 5;
3031 unsigned hz = round_jiffies_relative(HZ * delay);
3032 schedule_delayed_work(&mdsc->delayed_work, hz);
3035 static void delayed_work(struct work_struct *work)
3037 int i;
3038 struct ceph_mds_client *mdsc =
3039 container_of(work, struct ceph_mds_client, delayed_work.work);
3040 int renew_interval;
3041 int renew_caps;
3043 dout("mdsc delayed_work\n");
3044 ceph_check_delayed_caps(mdsc);
3046 mutex_lock(&mdsc->mutex);
3047 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3048 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3049 mdsc->last_renew_caps);
3050 if (renew_caps)
3051 mdsc->last_renew_caps = jiffies;
3053 for (i = 0; i < mdsc->max_sessions; i++) {
3054 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3055 if (s == NULL)
3056 continue;
3057 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3058 dout("resending session close request for mds%d\n",
3059 s->s_mds);
3060 request_close_session(mdsc, s);
3061 ceph_put_mds_session(s);
3062 continue;
3064 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3065 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3066 s->s_state = CEPH_MDS_SESSION_HUNG;
3067 pr_info("mds%d hung\n", s->s_mds);
3070 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3071 /* this mds is failed or recovering, just wait */
3072 ceph_put_mds_session(s);
3073 continue;
3075 mutex_unlock(&mdsc->mutex);
3077 mutex_lock(&s->s_mutex);
3078 if (renew_caps)
3079 send_renew_caps(mdsc, s);
3080 else
3081 ceph_con_keepalive(&s->s_con);
3082 ceph_add_cap_releases(mdsc, s);
3083 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3084 s->s_state == CEPH_MDS_SESSION_HUNG)
3085 ceph_send_cap_releases(mdsc, s);
3086 mutex_unlock(&s->s_mutex);
3087 ceph_put_mds_session(s);
3089 mutex_lock(&mdsc->mutex);
3091 mutex_unlock(&mdsc->mutex);
3093 schedule_delayed(mdsc);
3096 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3099 struct ceph_mds_client *mdsc;
3101 mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3102 if (!mdsc)
3103 return -ENOMEM;
3104 mdsc->fsc = fsc;
3105 fsc->mdsc = mdsc;
3106 mutex_init(&mdsc->mutex);
3107 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3108 if (mdsc->mdsmap == NULL) {
3109 kfree(mdsc);
3110 return -ENOMEM;
3113 init_completion(&mdsc->safe_umount_waiters);
3114 init_waitqueue_head(&mdsc->session_close_wq);
3115 INIT_LIST_HEAD(&mdsc->waiting_for_map);
3116 mdsc->sessions = NULL;
3117 mdsc->max_sessions = 0;
3118 mdsc->stopping = 0;
3119 init_rwsem(&mdsc->snap_rwsem);
3120 mdsc->snap_realms = RB_ROOT;
3121 INIT_LIST_HEAD(&mdsc->snap_empty);
3122 spin_lock_init(&mdsc->snap_empty_lock);
3123 mdsc->last_tid = 0;
3124 mdsc->request_tree = RB_ROOT;
3125 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3126 mdsc->last_renew_caps = jiffies;
3127 INIT_LIST_HEAD(&mdsc->cap_delay_list);
3128 spin_lock_init(&mdsc->cap_delay_lock);
3129 INIT_LIST_HEAD(&mdsc->snap_flush_list);
3130 spin_lock_init(&mdsc->snap_flush_lock);
3131 mdsc->cap_flush_seq = 0;
3132 INIT_LIST_HEAD(&mdsc->cap_dirty);
3133 INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3134 mdsc->num_cap_flushing = 0;
3135 spin_lock_init(&mdsc->cap_dirty_lock);
3136 init_waitqueue_head(&mdsc->cap_flushing_wq);
3137 spin_lock_init(&mdsc->dentry_lru_lock);
3138 INIT_LIST_HEAD(&mdsc->dentry_lru);
3140 ceph_caps_init(mdsc);
3141 ceph_adjust_min_caps(mdsc, fsc->min_caps);
3143 return 0;
3147 * Wait for safe replies on open mds requests. If we time out, drop
3148 * all requests from the tree to avoid dangling dentry refs.
3150 static void wait_requests(struct ceph_mds_client *mdsc)
3152 struct ceph_mds_request *req;
3153 struct ceph_fs_client *fsc = mdsc->fsc;
3155 mutex_lock(&mdsc->mutex);
3156 if (__get_oldest_req(mdsc)) {
3157 mutex_unlock(&mdsc->mutex);
3159 dout("wait_requests waiting for requests\n");
3160 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3161 fsc->client->options->mount_timeout * HZ);
3163 /* tear down remaining requests */
3164 mutex_lock(&mdsc->mutex);
3165 while ((req = __get_oldest_req(mdsc))) {
3166 dout("wait_requests timed out on tid %llu\n",
3167 req->r_tid);
3168 __unregister_request(mdsc, req);
3171 mutex_unlock(&mdsc->mutex);
3172 dout("wait_requests done\n");
3176 * called before mount is ro, and before dentries are torn down.
3177 * (hmm, does this still race with new lookups?)
3179 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3181 dout("pre_umount\n");
3182 mdsc->stopping = 1;
3184 drop_leases(mdsc);
3185 ceph_flush_dirty_caps(mdsc);
3186 wait_requests(mdsc);
3189 * wait for reply handlers to drop their request refs and
3190 * their inode/dcache refs
3192 ceph_msgr_flush();
3196 * wait for all write mds requests to flush.
3198 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3200 struct ceph_mds_request *req = NULL, *nextreq;
3201 struct rb_node *n;
3203 mutex_lock(&mdsc->mutex);
3204 dout("wait_unsafe_requests want %lld\n", want_tid);
3205 restart:
3206 req = __get_oldest_req(mdsc);
3207 while (req && req->r_tid <= want_tid) {
3208 /* find next request */
3209 n = rb_next(&req->r_node);
3210 if (n)
3211 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3212 else
3213 nextreq = NULL;
3214 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3215 /* write op */
3216 ceph_mdsc_get_request(req);
3217 if (nextreq)
3218 ceph_mdsc_get_request(nextreq);
3219 mutex_unlock(&mdsc->mutex);
3220 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3221 req->r_tid, want_tid);
3222 wait_for_completion(&req->r_safe_completion);
3223 mutex_lock(&mdsc->mutex);
3224 ceph_mdsc_put_request(req);
3225 if (!nextreq)
3226 break; /* next dne before, so we're done! */
3227 if (RB_EMPTY_NODE(&nextreq->r_node)) {
3228 /* next request was removed from tree */
3229 ceph_mdsc_put_request(nextreq);
3230 goto restart;
3232 ceph_mdsc_put_request(nextreq); /* won't go away */
3234 req = nextreq;
3236 mutex_unlock(&mdsc->mutex);
3237 dout("wait_unsafe_requests done\n");
3240 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3242 u64 want_tid, want_flush;
3244 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3245 return;
3247 dout("sync\n");
3248 mutex_lock(&mdsc->mutex);
3249 want_tid = mdsc->last_tid;
3250 want_flush = mdsc->cap_flush_seq;
3251 mutex_unlock(&mdsc->mutex);
3252 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3254 ceph_flush_dirty_caps(mdsc);
3256 wait_unsafe_requests(mdsc, want_tid);
3257 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3261 * true if all sessions are closed, or we force unmount
3263 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3265 int i, n = 0;
3267 if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3268 return true;
3270 mutex_lock(&mdsc->mutex);
3271 for (i = 0; i < mdsc->max_sessions; i++)
3272 if (mdsc->sessions[i])
3273 n++;
3274 mutex_unlock(&mdsc->mutex);
3275 return n == 0;
3279 * called after sb is ro.
3281 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3283 struct ceph_mds_session *session;
3284 int i;
3285 struct ceph_fs_client *fsc = mdsc->fsc;
3286 unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3288 dout("close_sessions\n");
3290 /* close sessions */
3291 mutex_lock(&mdsc->mutex);
3292 for (i = 0; i < mdsc->max_sessions; i++) {
3293 session = __ceph_lookup_mds_session(mdsc, i);
3294 if (!session)
3295 continue;
3296 mutex_unlock(&mdsc->mutex);
3297 mutex_lock(&session->s_mutex);
3298 __close_session(mdsc, session);
3299 mutex_unlock(&session->s_mutex);
3300 ceph_put_mds_session(session);
3301 mutex_lock(&mdsc->mutex);
3303 mutex_unlock(&mdsc->mutex);
3305 dout("waiting for sessions to close\n");
3306 wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3307 timeout);
3309 /* tear down remaining sessions */
3310 mutex_lock(&mdsc->mutex);
3311 for (i = 0; i < mdsc->max_sessions; i++) {
3312 if (mdsc->sessions[i]) {
3313 session = get_session(mdsc->sessions[i]);
3314 __unregister_session(mdsc, session);
3315 mutex_unlock(&mdsc->mutex);
3316 mutex_lock(&session->s_mutex);
3317 remove_session_caps(session);
3318 mutex_unlock(&session->s_mutex);
3319 ceph_put_mds_session(session);
3320 mutex_lock(&mdsc->mutex);
3323 WARN_ON(!list_empty(&mdsc->cap_delay_list));
3324 mutex_unlock(&mdsc->mutex);
3326 ceph_cleanup_empty_realms(mdsc);
3328 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3330 dout("stopped\n");
3333 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3335 dout("stop\n");
3336 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3337 if (mdsc->mdsmap)
3338 ceph_mdsmap_destroy(mdsc->mdsmap);
3339 kfree(mdsc->sessions);
3340 ceph_caps_finalize(mdsc);
3343 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3345 struct ceph_mds_client *mdsc = fsc->mdsc;
3347 dout("mdsc_destroy %p\n", mdsc);
3348 ceph_mdsc_stop(mdsc);
3350 /* flush out any connection work with references to us */
3351 ceph_msgr_flush();
3353 fsc->mdsc = NULL;
3354 kfree(mdsc);
3355 dout("mdsc_destroy %p done\n", mdsc);
3360 * handle mds map update.
3362 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3364 u32 epoch;
3365 u32 maplen;
3366 void *p = msg->front.iov_base;
3367 void *end = p + msg->front.iov_len;
3368 struct ceph_mdsmap *newmap, *oldmap;
3369 struct ceph_fsid fsid;
3370 int err = -EINVAL;
3372 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3373 ceph_decode_copy(&p, &fsid, sizeof(fsid));
3374 if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3375 return;
3376 epoch = ceph_decode_32(&p);
3377 maplen = ceph_decode_32(&p);
3378 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3380 /* do we need it? */
3381 ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3382 mutex_lock(&mdsc->mutex);
3383 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3384 dout("handle_map epoch %u <= our %u\n",
3385 epoch, mdsc->mdsmap->m_epoch);
3386 mutex_unlock(&mdsc->mutex);
3387 return;
3390 newmap = ceph_mdsmap_decode(&p, end);
3391 if (IS_ERR(newmap)) {
3392 err = PTR_ERR(newmap);
3393 goto bad_unlock;
3396 /* swap into place */
3397 if (mdsc->mdsmap) {
3398 oldmap = mdsc->mdsmap;
3399 mdsc->mdsmap = newmap;
3400 check_new_map(mdsc, newmap, oldmap);
3401 ceph_mdsmap_destroy(oldmap);
3402 } else {
3403 mdsc->mdsmap = newmap; /* first mds map */
3405 mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3407 __wake_requests(mdsc, &mdsc->waiting_for_map);
3409 mutex_unlock(&mdsc->mutex);
3410 schedule_delayed(mdsc);
3411 return;
3413 bad_unlock:
3414 mutex_unlock(&mdsc->mutex);
3415 bad:
3416 pr_err("error decoding mdsmap %d\n", err);
3417 return;
3420 static struct ceph_connection *con_get(struct ceph_connection *con)
3422 struct ceph_mds_session *s = con->private;
3424 if (get_session(s)) {
3425 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3426 return con;
3428 dout("mdsc con_get %p FAIL\n", s);
3429 return NULL;
3432 static void con_put(struct ceph_connection *con)
3434 struct ceph_mds_session *s = con->private;
3436 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3437 ceph_put_mds_session(s);
3441 * if the client is unresponsive for long enough, the mds will kill
3442 * the session entirely.
3444 static void peer_reset(struct ceph_connection *con)
3446 struct ceph_mds_session *s = con->private;
3447 struct ceph_mds_client *mdsc = s->s_mdsc;
3449 pr_warning("mds%d closed our session\n", s->s_mds);
3450 send_mds_reconnect(mdsc, s);
3453 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3455 struct ceph_mds_session *s = con->private;
3456 struct ceph_mds_client *mdsc = s->s_mdsc;
3457 int type = le16_to_cpu(msg->hdr.type);
3459 mutex_lock(&mdsc->mutex);
3460 if (__verify_registered_session(mdsc, s) < 0) {
3461 mutex_unlock(&mdsc->mutex);
3462 goto out;
3464 mutex_unlock(&mdsc->mutex);
3466 switch (type) {
3467 case CEPH_MSG_MDS_MAP:
3468 ceph_mdsc_handle_map(mdsc, msg);
3469 break;
3470 case CEPH_MSG_CLIENT_SESSION:
3471 handle_session(s, msg);
3472 break;
3473 case CEPH_MSG_CLIENT_REPLY:
3474 handle_reply(s, msg);
3475 break;
3476 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3477 handle_forward(mdsc, s, msg);
3478 break;
3479 case CEPH_MSG_CLIENT_CAPS:
3480 ceph_handle_caps(s, msg);
3481 break;
3482 case CEPH_MSG_CLIENT_SNAP:
3483 ceph_handle_snap(mdsc, s, msg);
3484 break;
3485 case CEPH_MSG_CLIENT_LEASE:
3486 handle_lease(mdsc, s, msg);
3487 break;
3489 default:
3490 pr_err("received unknown message type %d %s\n", type,
3491 ceph_msg_type_name(type));
3493 out:
3494 ceph_msg_put(msg);
3498 * authentication
3502 * Note: returned pointer is the address of a structure that's
3503 * managed separately. Caller must *not* attempt to free it.
3505 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3506 int *proto, int force_new)
3508 struct ceph_mds_session *s = con->private;
3509 struct ceph_mds_client *mdsc = s->s_mdsc;
3510 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3511 struct ceph_auth_handshake *auth = &s->s_auth;
3513 if (force_new && auth->authorizer) {
3514 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3515 auth->authorizer = NULL;
3517 if (!auth->authorizer) {
3518 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3519 auth);
3520 if (ret)
3521 return ERR_PTR(ret);
3522 } else {
3523 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3524 auth);
3525 if (ret)
3526 return ERR_PTR(ret);
3528 *proto = ac->protocol;
3530 return auth;
3534 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3536 struct ceph_mds_session *s = con->private;
3537 struct ceph_mds_client *mdsc = s->s_mdsc;
3538 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3540 return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3543 static int invalidate_authorizer(struct ceph_connection *con)
3545 struct ceph_mds_session *s = con->private;
3546 struct ceph_mds_client *mdsc = s->s_mdsc;
3547 struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3549 ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3551 return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3554 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3555 struct ceph_msg_header *hdr, int *skip)
3557 struct ceph_msg *msg;
3558 int type = (int) le16_to_cpu(hdr->type);
3559 int front_len = (int) le32_to_cpu(hdr->front_len);
3561 if (con->in_msg)
3562 return con->in_msg;
3564 *skip = 0;
3565 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3566 if (!msg) {
3567 pr_err("unable to allocate msg type %d len %d\n",
3568 type, front_len);
3569 return NULL;
3572 return msg;
3575 static const struct ceph_connection_operations mds_con_ops = {
3576 .get = con_get,
3577 .put = con_put,
3578 .dispatch = dispatch,
3579 .get_authorizer = get_authorizer,
3580 .verify_authorizer_reply = verify_authorizer_reply,
3581 .invalidate_authorizer = invalidate_authorizer,
3582 .peer_reset = peer_reset,
3583 .alloc_msg = mds_alloc_msg,
3586 /* eof */