Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / ceph / caps.c
blob3c0a4bd7499645ca8bf90fd1a6ba16f6831c164c
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/fs.h>
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <linux/wait.h>
9 #include <linux/writeback.h>
11 #include "super.h"
12 #include "mds_client.h"
13 #include "cache.h"
14 #include <linux/ceph/decode.h>
15 #include <linux/ceph/messenger.h>
18 * Capability management
20 * The Ceph metadata servers control client access to inode metadata
21 * and file data by issuing capabilities, granting clients permission
22 * to read and/or write both inode field and file data to OSDs
23 * (storage nodes). Each capability consists of a set of bits
24 * indicating which operations are allowed.
26 * If the client holds a *_SHARED cap, the client has a coherent value
27 * that can be safely read from the cached inode.
29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
30 * client is allowed to change inode attributes (e.g., file size,
31 * mtime), note its dirty state in the ceph_cap, and asynchronously
32 * flush that metadata change to the MDS.
34 * In the event of a conflicting operation (perhaps by another
35 * client), the MDS will revoke the conflicting client capabilities.
37 * In order for a client to cache an inode, it must hold a capability
38 * with at least one MDS server. When inodes are released, release
39 * notifications are batched and periodically sent en masse to the MDS
40 * cluster to release server state.
45 * Generate readable cap strings for debugging output.
47 #define MAX_CAP_STR 20
48 static char cap_str[MAX_CAP_STR][40];
49 static DEFINE_SPINLOCK(cap_str_lock);
50 static int last_cap_str;
52 static char *gcap_string(char *s, int c)
54 if (c & CEPH_CAP_GSHARED)
55 *s++ = 's';
56 if (c & CEPH_CAP_GEXCL)
57 *s++ = 'x';
58 if (c & CEPH_CAP_GCACHE)
59 *s++ = 'c';
60 if (c & CEPH_CAP_GRD)
61 *s++ = 'r';
62 if (c & CEPH_CAP_GWR)
63 *s++ = 'w';
64 if (c & CEPH_CAP_GBUFFER)
65 *s++ = 'b';
66 if (c & CEPH_CAP_GLAZYIO)
67 *s++ = 'l';
68 return s;
71 const char *ceph_cap_string(int caps)
73 int i;
74 char *s;
75 int c;
77 spin_lock(&cap_str_lock);
78 i = last_cap_str++;
79 if (last_cap_str == MAX_CAP_STR)
80 last_cap_str = 0;
81 spin_unlock(&cap_str_lock);
83 s = cap_str[i];
85 if (caps & CEPH_CAP_PIN)
86 *s++ = 'p';
88 c = (caps >> CEPH_CAP_SAUTH) & 3;
89 if (c) {
90 *s++ = 'A';
91 s = gcap_string(s, c);
94 c = (caps >> CEPH_CAP_SLINK) & 3;
95 if (c) {
96 *s++ = 'L';
97 s = gcap_string(s, c);
100 c = (caps >> CEPH_CAP_SXATTR) & 3;
101 if (c) {
102 *s++ = 'X';
103 s = gcap_string(s, c);
106 c = caps >> CEPH_CAP_SFILE;
107 if (c) {
108 *s++ = 'F';
109 s = gcap_string(s, c);
112 if (s == cap_str[i])
113 *s++ = '-';
114 *s = 0;
115 return cap_str[i];
118 void ceph_caps_init(struct ceph_mds_client *mdsc)
120 INIT_LIST_HEAD(&mdsc->caps_list);
121 spin_lock_init(&mdsc->caps_list_lock);
124 void ceph_caps_finalize(struct ceph_mds_client *mdsc)
126 struct ceph_cap *cap;
128 spin_lock(&mdsc->caps_list_lock);
129 while (!list_empty(&mdsc->caps_list)) {
130 cap = list_first_entry(&mdsc->caps_list,
131 struct ceph_cap, caps_item);
132 list_del(&cap->caps_item);
133 kmem_cache_free(ceph_cap_cachep, cap);
135 mdsc->caps_total_count = 0;
136 mdsc->caps_avail_count = 0;
137 mdsc->caps_use_count = 0;
138 mdsc->caps_reserve_count = 0;
139 mdsc->caps_min_count = 0;
140 spin_unlock(&mdsc->caps_list_lock);
143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta)
145 spin_lock(&mdsc->caps_list_lock);
146 mdsc->caps_min_count += delta;
147 BUG_ON(mdsc->caps_min_count < 0);
148 spin_unlock(&mdsc->caps_list_lock);
151 void ceph_reserve_caps(struct ceph_mds_client *mdsc,
152 struct ceph_cap_reservation *ctx, int need)
154 int i;
155 struct ceph_cap *cap;
156 int have;
157 int alloc = 0;
158 LIST_HEAD(newcaps);
160 dout("reserve caps ctx=%p need=%d\n", ctx, need);
162 /* first reserve any caps that are already allocated */
163 spin_lock(&mdsc->caps_list_lock);
164 if (mdsc->caps_avail_count >= need)
165 have = need;
166 else
167 have = mdsc->caps_avail_count;
168 mdsc->caps_avail_count -= have;
169 mdsc->caps_reserve_count += have;
170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
171 mdsc->caps_reserve_count +
172 mdsc->caps_avail_count);
173 spin_unlock(&mdsc->caps_list_lock);
175 for (i = have; i < need; i++) {
176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
177 if (!cap)
178 break;
179 list_add(&cap->caps_item, &newcaps);
180 alloc++;
182 /* we didn't manage to reserve as much as we needed */
183 if (have + alloc != need)
184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
185 ctx, need, have + alloc);
187 spin_lock(&mdsc->caps_list_lock);
188 mdsc->caps_total_count += alloc;
189 mdsc->caps_reserve_count += alloc;
190 list_splice(&newcaps, &mdsc->caps_list);
192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
193 mdsc->caps_reserve_count +
194 mdsc->caps_avail_count);
195 spin_unlock(&mdsc->caps_list_lock);
197 ctx->count = need;
198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
199 ctx, mdsc->caps_total_count, mdsc->caps_use_count,
200 mdsc->caps_reserve_count, mdsc->caps_avail_count);
203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc,
204 struct ceph_cap_reservation *ctx)
206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
207 if (ctx->count) {
208 spin_lock(&mdsc->caps_list_lock);
209 BUG_ON(mdsc->caps_reserve_count < ctx->count);
210 mdsc->caps_reserve_count -= ctx->count;
211 mdsc->caps_avail_count += ctx->count;
212 ctx->count = 0;
213 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
214 mdsc->caps_total_count, mdsc->caps_use_count,
215 mdsc->caps_reserve_count, mdsc->caps_avail_count);
216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
217 mdsc->caps_reserve_count +
218 mdsc->caps_avail_count);
219 spin_unlock(&mdsc->caps_list_lock);
221 return 0;
224 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc,
225 struct ceph_cap_reservation *ctx)
227 struct ceph_cap *cap = NULL;
229 /* temporary, until we do something about cap import/export */
230 if (!ctx) {
231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
232 if (cap) {
233 spin_lock(&mdsc->caps_list_lock);
234 mdsc->caps_use_count++;
235 mdsc->caps_total_count++;
236 spin_unlock(&mdsc->caps_list_lock);
238 return cap;
241 spin_lock(&mdsc->caps_list_lock);
242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
244 mdsc->caps_reserve_count, mdsc->caps_avail_count);
245 BUG_ON(!ctx->count);
246 BUG_ON(ctx->count > mdsc->caps_reserve_count);
247 BUG_ON(list_empty(&mdsc->caps_list));
249 ctx->count--;
250 mdsc->caps_reserve_count--;
251 mdsc->caps_use_count++;
253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
254 list_del(&cap->caps_item);
256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
257 mdsc->caps_reserve_count + mdsc->caps_avail_count);
258 spin_unlock(&mdsc->caps_list_lock);
259 return cap;
262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
264 spin_lock(&mdsc->caps_list_lock);
265 dout("put_cap %p %d = %d used + %d resv + %d avail\n",
266 cap, mdsc->caps_total_count, mdsc->caps_use_count,
267 mdsc->caps_reserve_count, mdsc->caps_avail_count);
268 mdsc->caps_use_count--;
270 * Keep some preallocated caps around (ceph_min_count), to
271 * avoid lots of free/alloc churn.
273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
274 mdsc->caps_min_count) {
275 mdsc->caps_total_count--;
276 kmem_cache_free(ceph_cap_cachep, cap);
277 } else {
278 mdsc->caps_avail_count++;
279 list_add(&cap->caps_item, &mdsc->caps_list);
282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
283 mdsc->caps_reserve_count + mdsc->caps_avail_count);
284 spin_unlock(&mdsc->caps_list_lock);
287 void ceph_reservation_status(struct ceph_fs_client *fsc,
288 int *total, int *avail, int *used, int *reserved,
289 int *min)
291 struct ceph_mds_client *mdsc = fsc->mdsc;
293 if (total)
294 *total = mdsc->caps_total_count;
295 if (avail)
296 *avail = mdsc->caps_avail_count;
297 if (used)
298 *used = mdsc->caps_use_count;
299 if (reserved)
300 *reserved = mdsc->caps_reserve_count;
301 if (min)
302 *min = mdsc->caps_min_count;
306 * Find ceph_cap for given mds, if any.
308 * Called with i_ceph_lock held.
310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
312 struct ceph_cap *cap;
313 struct rb_node *n = ci->i_caps.rb_node;
315 while (n) {
316 cap = rb_entry(n, struct ceph_cap, ci_node);
317 if (mds < cap->mds)
318 n = n->rb_left;
319 else if (mds > cap->mds)
320 n = n->rb_right;
321 else
322 return cap;
324 return NULL;
327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
329 struct ceph_cap *cap;
331 spin_lock(&ci->i_ceph_lock);
332 cap = __get_cap_for_mds(ci, mds);
333 spin_unlock(&ci->i_ceph_lock);
334 return cap;
338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1.
340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci)
342 struct ceph_cap *cap;
343 int mds = -1;
344 struct rb_node *p;
346 /* prefer mds with WR|BUFFER|EXCL caps */
347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
348 cap = rb_entry(p, struct ceph_cap, ci_node);
349 mds = cap->mds;
350 if (cap->issued & (CEPH_CAP_FILE_WR |
351 CEPH_CAP_FILE_BUFFER |
352 CEPH_CAP_FILE_EXCL))
353 break;
355 return mds;
358 int ceph_get_cap_mds(struct inode *inode)
360 struct ceph_inode_info *ci = ceph_inode(inode);
361 int mds;
362 spin_lock(&ci->i_ceph_lock);
363 mds = __ceph_get_cap_mds(ceph_inode(inode));
364 spin_unlock(&ci->i_ceph_lock);
365 return mds;
369 * Called under i_ceph_lock.
371 static void __insert_cap_node(struct ceph_inode_info *ci,
372 struct ceph_cap *new)
374 struct rb_node **p = &ci->i_caps.rb_node;
375 struct rb_node *parent = NULL;
376 struct ceph_cap *cap = NULL;
378 while (*p) {
379 parent = *p;
380 cap = rb_entry(parent, struct ceph_cap, ci_node);
381 if (new->mds < cap->mds)
382 p = &(*p)->rb_left;
383 else if (new->mds > cap->mds)
384 p = &(*p)->rb_right;
385 else
386 BUG();
389 rb_link_node(&new->ci_node, parent, p);
390 rb_insert_color(&new->ci_node, &ci->i_caps);
394 * (re)set cap hold timeouts, which control the delayed release
395 * of unused caps back to the MDS. Should be called on cap use.
397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
398 struct ceph_inode_info *ci)
400 struct ceph_mount_options *ma = mdsc->fsc->mount_options;
402 ci->i_hold_caps_min = round_jiffies(jiffies +
403 ma->caps_wanted_delay_min * HZ);
404 ci->i_hold_caps_max = round_jiffies(jiffies +
405 ma->caps_wanted_delay_max * HZ);
406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
411 * (Re)queue cap at the end of the delayed cap release list.
413 * If I_FLUSH is set, leave the inode at the front of the list.
415 * Caller holds i_ceph_lock
416 * -> we take mdsc->cap_delay_lock
418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
419 struct ceph_inode_info *ci)
421 __cap_set_timeouts(mdsc, ci);
422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
423 ci->i_ceph_flags, ci->i_hold_caps_max);
424 if (!mdsc->stopping) {
425 spin_lock(&mdsc->cap_delay_lock);
426 if (!list_empty(&ci->i_cap_delay_list)) {
427 if (ci->i_ceph_flags & CEPH_I_FLUSH)
428 goto no_change;
429 list_del_init(&ci->i_cap_delay_list);
431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
432 no_change:
433 spin_unlock(&mdsc->cap_delay_lock);
438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
439 * indicating we should send a cap message to flush dirty metadata
440 * asap, and move to the front of the delayed cap list.
442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
443 struct ceph_inode_info *ci)
445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
446 spin_lock(&mdsc->cap_delay_lock);
447 ci->i_ceph_flags |= CEPH_I_FLUSH;
448 if (!list_empty(&ci->i_cap_delay_list))
449 list_del_init(&ci->i_cap_delay_list);
450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
451 spin_unlock(&mdsc->cap_delay_lock);
455 * Cancel delayed work on cap.
457 * Caller must hold i_ceph_lock.
459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
460 struct ceph_inode_info *ci)
462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
463 if (list_empty(&ci->i_cap_delay_list))
464 return;
465 spin_lock(&mdsc->cap_delay_lock);
466 list_del_init(&ci->i_cap_delay_list);
467 spin_unlock(&mdsc->cap_delay_lock);
471 * Common issue checks for add_cap, handle_cap_grant.
473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
474 unsigned issued)
476 unsigned had = __ceph_caps_issued(ci, NULL);
479 * Each time we receive FILE_CACHE anew, we increment
480 * i_rdcache_gen.
482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
484 ci->i_rdcache_gen++;
488 * if we are newly issued FILE_SHARED, mark dir not complete; we
489 * don't know what happened to this directory while we didn't
490 * have the cap.
492 if ((issued & CEPH_CAP_FILE_SHARED) &&
493 (had & CEPH_CAP_FILE_SHARED) == 0) {
494 ci->i_shared_gen++;
495 if (S_ISDIR(ci->vfs_inode.i_mode)) {
496 dout(" marking %p NOT complete\n", &ci->vfs_inode);
497 __ceph_dir_clear_complete(ci);
503 * Add a capability under the given MDS session.
505 * Caller should hold session snap_rwsem (read) and s_mutex.
507 * @fmode is the open file mode, if we are opening a file, otherwise
508 * it is < 0. (This is so we can atomically add the cap and add an
509 * open file reference to it.)
511 int ceph_add_cap(struct inode *inode,
512 struct ceph_mds_session *session, u64 cap_id,
513 int fmode, unsigned issued, unsigned wanted,
514 unsigned seq, unsigned mseq, u64 realmino, int flags,
515 struct ceph_cap_reservation *caps_reservation)
517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
518 struct ceph_inode_info *ci = ceph_inode(inode);
519 struct ceph_cap *new_cap = NULL;
520 struct ceph_cap *cap;
521 int mds = session->s_mds;
522 int actual_wanted;
524 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
525 session->s_mds, cap_id, ceph_cap_string(issued), seq);
528 * If we are opening the file, include file mode wanted bits
529 * in wanted.
531 if (fmode >= 0)
532 wanted |= ceph_caps_for_mode(fmode);
534 retry:
535 spin_lock(&ci->i_ceph_lock);
536 cap = __get_cap_for_mds(ci, mds);
537 if (!cap) {
538 if (new_cap) {
539 cap = new_cap;
540 new_cap = NULL;
541 } else {
542 spin_unlock(&ci->i_ceph_lock);
543 new_cap = get_cap(mdsc, caps_reservation);
544 if (new_cap == NULL)
545 return -ENOMEM;
546 goto retry;
549 cap->issued = 0;
550 cap->implemented = 0;
551 cap->mds = mds;
552 cap->mds_wanted = 0;
553 cap->mseq = 0;
555 cap->ci = ci;
556 __insert_cap_node(ci, cap);
558 /* clear out old exporting info? (i.e. on cap import) */
559 if (ci->i_cap_exporting_mds == mds) {
560 ci->i_cap_exporting_issued = 0;
561 ci->i_cap_exporting_mseq = 0;
562 ci->i_cap_exporting_mds = -1;
565 /* add to session cap list */
566 cap->session = session;
567 spin_lock(&session->s_cap_lock);
568 list_add_tail(&cap->session_caps, &session->s_caps);
569 session->s_nr_caps++;
570 spin_unlock(&session->s_cap_lock);
571 } else if (new_cap)
572 ceph_put_cap(mdsc, new_cap);
574 if (!ci->i_snap_realm) {
576 * add this inode to the appropriate snap realm
578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
579 realmino);
580 if (realm) {
581 ceph_get_snap_realm(mdsc, realm);
582 spin_lock(&realm->inodes_with_caps_lock);
583 ci->i_snap_realm = realm;
584 list_add(&ci->i_snap_realm_item,
585 &realm->inodes_with_caps);
586 spin_unlock(&realm->inodes_with_caps_lock);
587 } else {
588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
589 realmino);
590 WARN_ON(!realm);
594 __check_cap_issue(ci, cap, issued);
597 * If we are issued caps we don't want, or the mds' wanted
598 * value appears to be off, queue a check so we'll release
599 * later and/or update the mds wanted value.
601 actual_wanted = __ceph_caps_wanted(ci);
602 if ((wanted & ~actual_wanted) ||
603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
604 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
605 ceph_cap_string(issued), ceph_cap_string(wanted),
606 ceph_cap_string(actual_wanted));
607 __cap_delay_requeue(mdsc, ci);
610 if (flags & CEPH_CAP_FLAG_AUTH) {
611 if (ci->i_auth_cap == NULL ||
612 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0)
613 ci->i_auth_cap = cap;
614 } else if (ci->i_auth_cap == cap) {
615 ci->i_auth_cap = NULL;
616 spin_lock(&mdsc->cap_dirty_lock);
617 if (!list_empty(&ci->i_dirty_item)) {
618 dout(" moving %p to cap_dirty_migrating\n", inode);
619 list_move(&ci->i_dirty_item,
620 &mdsc->cap_dirty_migrating);
622 spin_unlock(&mdsc->cap_dirty_lock);
625 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
626 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
627 ceph_cap_string(issued|cap->issued), seq, mds);
628 cap->cap_id = cap_id;
629 cap->issued = issued;
630 cap->implemented |= issued;
631 if (mseq > cap->mseq)
632 cap->mds_wanted = wanted;
633 else
634 cap->mds_wanted |= wanted;
635 cap->seq = seq;
636 cap->issue_seq = seq;
637 cap->mseq = mseq;
638 cap->cap_gen = session->s_cap_gen;
640 if (fmode >= 0)
641 __ceph_get_fmode(ci, fmode);
642 spin_unlock(&ci->i_ceph_lock);
643 wake_up_all(&ci->i_cap_wq);
644 return 0;
648 * Return true if cap has not timed out and belongs to the current
649 * generation of the MDS session (i.e. has not gone 'stale' due to
650 * us losing touch with the mds).
652 static int __cap_is_valid(struct ceph_cap *cap)
654 unsigned long ttl;
655 u32 gen;
657 spin_lock(&cap->session->s_gen_ttl_lock);
658 gen = cap->session->s_cap_gen;
659 ttl = cap->session->s_cap_ttl;
660 spin_unlock(&cap->session->s_gen_ttl_lock);
662 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
663 dout("__cap_is_valid %p cap %p issued %s "
664 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
665 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
666 return 0;
669 return 1;
673 * Return set of valid cap bits issued to us. Note that caps time
674 * out, and may be invalidated in bulk if the client session times out
675 * and session->s_cap_gen is bumped.
677 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
679 int have = ci->i_snap_caps | ci->i_cap_exporting_issued;
680 struct ceph_cap *cap;
681 struct rb_node *p;
683 if (implemented)
684 *implemented = 0;
685 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
686 cap = rb_entry(p, struct ceph_cap, ci_node);
687 if (!__cap_is_valid(cap))
688 continue;
689 dout("__ceph_caps_issued %p cap %p issued %s\n",
690 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
691 have |= cap->issued;
692 if (implemented)
693 *implemented |= cap->implemented;
696 * exclude caps issued by non-auth MDS, but are been revoking
697 * by the auth MDS. The non-auth MDS should be revoking/exporting
698 * these caps, but the message is delayed.
700 if (ci->i_auth_cap) {
701 cap = ci->i_auth_cap;
702 have &= ~cap->implemented | cap->issued;
704 return have;
708 * Get cap bits issued by caps other than @ocap
710 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
712 int have = ci->i_snap_caps;
713 struct ceph_cap *cap;
714 struct rb_node *p;
716 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
717 cap = rb_entry(p, struct ceph_cap, ci_node);
718 if (cap == ocap)
719 continue;
720 if (!__cap_is_valid(cap))
721 continue;
722 have |= cap->issued;
724 return have;
728 * Move a cap to the end of the LRU (oldest caps at list head, newest
729 * at list tail).
731 static void __touch_cap(struct ceph_cap *cap)
733 struct ceph_mds_session *s = cap->session;
735 spin_lock(&s->s_cap_lock);
736 if (s->s_cap_iterator == NULL) {
737 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
738 s->s_mds);
739 list_move_tail(&cap->session_caps, &s->s_caps);
740 } else {
741 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
742 &cap->ci->vfs_inode, cap, s->s_mds);
744 spin_unlock(&s->s_cap_lock);
748 * Check if we hold the given mask. If so, move the cap(s) to the
749 * front of their respective LRUs. (This is the preferred way for
750 * callers to check for caps they want.)
752 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
754 struct ceph_cap *cap;
755 struct rb_node *p;
756 int have = ci->i_snap_caps;
758 if ((have & mask) == mask) {
759 dout("__ceph_caps_issued_mask %p snap issued %s"
760 " (mask %s)\n", &ci->vfs_inode,
761 ceph_cap_string(have),
762 ceph_cap_string(mask));
763 return 1;
766 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
767 cap = rb_entry(p, struct ceph_cap, ci_node);
768 if (!__cap_is_valid(cap))
769 continue;
770 if ((cap->issued & mask) == mask) {
771 dout("__ceph_caps_issued_mask %p cap %p issued %s"
772 " (mask %s)\n", &ci->vfs_inode, cap,
773 ceph_cap_string(cap->issued),
774 ceph_cap_string(mask));
775 if (touch)
776 __touch_cap(cap);
777 return 1;
780 /* does a combination of caps satisfy mask? */
781 have |= cap->issued;
782 if ((have & mask) == mask) {
783 dout("__ceph_caps_issued_mask %p combo issued %s"
784 " (mask %s)\n", &ci->vfs_inode,
785 ceph_cap_string(cap->issued),
786 ceph_cap_string(mask));
787 if (touch) {
788 struct rb_node *q;
790 /* touch this + preceding caps */
791 __touch_cap(cap);
792 for (q = rb_first(&ci->i_caps); q != p;
793 q = rb_next(q)) {
794 cap = rb_entry(q, struct ceph_cap,
795 ci_node);
796 if (!__cap_is_valid(cap))
797 continue;
798 __touch_cap(cap);
801 return 1;
805 return 0;
809 * Return true if mask caps are currently being revoked by an MDS.
811 int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
812 struct ceph_cap *ocap, int mask)
814 struct ceph_cap *cap;
815 struct rb_node *p;
817 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
818 cap = rb_entry(p, struct ceph_cap, ci_node);
819 if (cap != ocap && __cap_is_valid(cap) &&
820 (cap->implemented & ~cap->issued & mask))
821 return 1;
823 return 0;
826 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
828 struct inode *inode = &ci->vfs_inode;
829 int ret;
831 spin_lock(&ci->i_ceph_lock);
832 ret = __ceph_caps_revoking_other(ci, NULL, mask);
833 spin_unlock(&ci->i_ceph_lock);
834 dout("ceph_caps_revoking %p %s = %d\n", inode,
835 ceph_cap_string(mask), ret);
836 return ret;
839 int __ceph_caps_used(struct ceph_inode_info *ci)
841 int used = 0;
842 if (ci->i_pin_ref)
843 used |= CEPH_CAP_PIN;
844 if (ci->i_rd_ref)
845 used |= CEPH_CAP_FILE_RD;
846 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages)
847 used |= CEPH_CAP_FILE_CACHE;
848 if (ci->i_wr_ref)
849 used |= CEPH_CAP_FILE_WR;
850 if (ci->i_wb_ref || ci->i_wrbuffer_ref)
851 used |= CEPH_CAP_FILE_BUFFER;
852 return used;
856 * wanted, by virtue of open file modes
858 int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
860 int want = 0;
861 int mode;
862 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++)
863 if (ci->i_nr_by_mode[mode])
864 want |= ceph_caps_for_mode(mode);
865 return want;
869 * Return caps we have registered with the MDS(s) as 'wanted'.
871 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
873 struct ceph_cap *cap;
874 struct rb_node *p;
875 int mds_wanted = 0;
877 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
878 cap = rb_entry(p, struct ceph_cap, ci_node);
879 if (!__cap_is_valid(cap))
880 continue;
881 mds_wanted |= cap->mds_wanted;
883 return mds_wanted;
887 * called under i_ceph_lock
889 static int __ceph_is_any_caps(struct ceph_inode_info *ci)
891 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
895 * Remove a cap. Take steps to deal with a racing iterate_session_caps.
897 * caller should hold i_ceph_lock.
898 * caller will not hold session s_mutex if called from destroy_inode.
900 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
902 struct ceph_mds_session *session = cap->session;
903 struct ceph_inode_info *ci = cap->ci;
904 struct ceph_mds_client *mdsc =
905 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
906 int removed = 0;
908 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
910 /* remove from session list */
911 spin_lock(&session->s_cap_lock);
913 * s_cap_reconnect is protected by s_cap_lock. no one changes
914 * s_cap_gen while session is in the reconnect state.
916 if (queue_release &&
917 (!session->s_cap_reconnect ||
918 cap->cap_gen == session->s_cap_gen))
919 __queue_cap_release(session, ci->i_vino.ino, cap->cap_id,
920 cap->mseq, cap->issue_seq);
922 if (session->s_cap_iterator == cap) {
923 /* not yet, we are iterating over this very cap */
924 dout("__ceph_remove_cap delaying %p removal from session %p\n",
925 cap, cap->session);
926 } else {
927 list_del_init(&cap->session_caps);
928 session->s_nr_caps--;
929 cap->session = NULL;
930 removed = 1;
932 /* protect backpointer with s_cap_lock: see iterate_session_caps */
933 cap->ci = NULL;
934 spin_unlock(&session->s_cap_lock);
936 /* remove from inode list */
937 rb_erase(&cap->ci_node, &ci->i_caps);
938 if (ci->i_auth_cap == cap)
939 ci->i_auth_cap = NULL;
941 if (removed)
942 ceph_put_cap(mdsc, cap);
944 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
945 struct ceph_snap_realm *realm = ci->i_snap_realm;
946 spin_lock(&realm->inodes_with_caps_lock);
947 list_del_init(&ci->i_snap_realm_item);
948 ci->i_snap_realm_counter++;
949 ci->i_snap_realm = NULL;
950 spin_unlock(&realm->inodes_with_caps_lock);
951 ceph_put_snap_realm(mdsc, realm);
953 if (!__ceph_is_any_real_caps(ci))
954 __cap_delay_cancel(mdsc, ci);
958 * Build and send a cap message to the given MDS.
960 * Caller should be holding s_mutex.
962 static int send_cap_msg(struct ceph_mds_session *session,
963 u64 ino, u64 cid, int op,
964 int caps, int wanted, int dirty,
965 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
966 u64 size, u64 max_size,
967 struct timespec *mtime, struct timespec *atime,
968 u64 time_warp_seq,
969 kuid_t uid, kgid_t gid, umode_t mode,
970 u64 xattr_version,
971 struct ceph_buffer *xattrs_buf,
972 u64 follows)
974 struct ceph_mds_caps *fc;
975 struct ceph_msg *msg;
977 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
978 " seq %u/%u mseq %u follows %lld size %llu/%llu"
979 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
980 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
981 ceph_cap_string(dirty),
982 seq, issue_seq, mseq, follows, size, max_size,
983 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
985 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS, false);
986 if (!msg)
987 return -ENOMEM;
989 msg->hdr.tid = cpu_to_le64(flush_tid);
991 fc = msg->front.iov_base;
992 memset(fc, 0, sizeof(*fc));
994 fc->cap_id = cpu_to_le64(cid);
995 fc->op = cpu_to_le32(op);
996 fc->seq = cpu_to_le32(seq);
997 fc->issue_seq = cpu_to_le32(issue_seq);
998 fc->migrate_seq = cpu_to_le32(mseq);
999 fc->caps = cpu_to_le32(caps);
1000 fc->wanted = cpu_to_le32(wanted);
1001 fc->dirty = cpu_to_le32(dirty);
1002 fc->ino = cpu_to_le64(ino);
1003 fc->snap_follows = cpu_to_le64(follows);
1005 fc->size = cpu_to_le64(size);
1006 fc->max_size = cpu_to_le64(max_size);
1007 if (mtime)
1008 ceph_encode_timespec(&fc->mtime, mtime);
1009 if (atime)
1010 ceph_encode_timespec(&fc->atime, atime);
1011 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
1013 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid));
1014 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid));
1015 fc->mode = cpu_to_le32(mode);
1017 fc->xattr_version = cpu_to_le64(xattr_version);
1018 if (xattrs_buf) {
1019 msg->middle = ceph_buffer_get(xattrs_buf);
1020 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1021 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
1024 ceph_con_send(&session->s_con, msg);
1025 return 0;
1028 void __queue_cap_release(struct ceph_mds_session *session,
1029 u64 ino, u64 cap_id, u32 migrate_seq,
1030 u32 issue_seq)
1032 struct ceph_msg *msg;
1033 struct ceph_mds_cap_release *head;
1034 struct ceph_mds_cap_item *item;
1036 BUG_ON(!session->s_num_cap_releases);
1037 msg = list_first_entry(&session->s_cap_releases,
1038 struct ceph_msg, list_head);
1040 dout(" adding %llx release to mds%d msg %p (%d left)\n",
1041 ino, session->s_mds, msg, session->s_num_cap_releases);
1043 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
1044 head = msg->front.iov_base;
1045 le32_add_cpu(&head->num, 1);
1046 item = msg->front.iov_base + msg->front.iov_len;
1047 item->ino = cpu_to_le64(ino);
1048 item->cap_id = cpu_to_le64(cap_id);
1049 item->migrate_seq = cpu_to_le32(migrate_seq);
1050 item->seq = cpu_to_le32(issue_seq);
1052 session->s_num_cap_releases--;
1054 msg->front.iov_len += sizeof(*item);
1055 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1056 dout(" release msg %p full\n", msg);
1057 list_move_tail(&msg->list_head, &session->s_cap_releases_done);
1058 } else {
1059 dout(" release msg %p at %d/%d (%d)\n", msg,
1060 (int)le32_to_cpu(head->num),
1061 (int)CEPH_CAPS_PER_RELEASE,
1062 (int)msg->front.iov_len);
1067 * Queue cap releases when an inode is dropped from our cache. Since
1068 * inode is about to be destroyed, there is no need for i_ceph_lock.
1070 void ceph_queue_caps_release(struct inode *inode)
1072 struct ceph_inode_info *ci = ceph_inode(inode);
1073 struct rb_node *p;
1075 p = rb_first(&ci->i_caps);
1076 while (p) {
1077 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
1078 p = rb_next(p);
1079 __ceph_remove_cap(cap, true);
1084 * Send a cap msg on the given inode. Update our caps state, then
1085 * drop i_ceph_lock and send the message.
1087 * Make note of max_size reported/requested from mds, revoked caps
1088 * that have now been implemented.
1090 * Make half-hearted attempt ot to invalidate page cache if we are
1091 * dropping RDCACHE. Note that this will leave behind locked pages
1092 * that we'll then need to deal with elsewhere.
1094 * Return non-zero if delayed release, or we experienced an error
1095 * such that the caller should requeue + retry later.
1097 * called with i_ceph_lock, then drops it.
1098 * caller should hold snap_rwsem (read), s_mutex.
1100 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1101 int op, int used, int want, int retain, int flushing,
1102 unsigned *pflush_tid)
1103 __releases(cap->ci->i_ceph_lock)
1105 struct ceph_inode_info *ci = cap->ci;
1106 struct inode *inode = &ci->vfs_inode;
1107 u64 cap_id = cap->cap_id;
1108 int held, revoking, dropping, keep;
1109 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1110 u64 size, max_size;
1111 struct timespec mtime, atime;
1112 int wake = 0;
1113 umode_t mode;
1114 kuid_t uid;
1115 kgid_t gid;
1116 struct ceph_mds_session *session;
1117 u64 xattr_version = 0;
1118 struct ceph_buffer *xattr_blob = NULL;
1119 int delayed = 0;
1120 u64 flush_tid = 0;
1121 int i;
1122 int ret;
1124 held = cap->issued | cap->implemented;
1125 revoking = cap->implemented & ~cap->issued;
1126 retain &= ~revoking;
1127 dropping = cap->issued & ~retain;
1129 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1130 inode, cap, cap->session,
1131 ceph_cap_string(held), ceph_cap_string(held & retain),
1132 ceph_cap_string(revoking));
1133 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1135 session = cap->session;
1137 /* don't release wanted unless we've waited a bit. */
1138 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1139 time_before(jiffies, ci->i_hold_caps_min)) {
1140 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1141 ceph_cap_string(cap->issued),
1142 ceph_cap_string(cap->issued & retain),
1143 ceph_cap_string(cap->mds_wanted),
1144 ceph_cap_string(want));
1145 want |= cap->mds_wanted;
1146 retain |= cap->issued;
1147 delayed = 1;
1149 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1151 cap->issued &= retain; /* drop bits we don't want */
1152 if (cap->implemented & ~cap->issued) {
1154 * Wake up any waiters on wanted -> needed transition.
1155 * This is due to the weird transition from buffered
1156 * to sync IO... we need to flush dirty pages _before_
1157 * allowing sync writes to avoid reordering.
1159 wake = 1;
1161 cap->implemented &= cap->issued | used;
1162 cap->mds_wanted = want;
1164 if (flushing) {
1166 * assign a tid for flush operations so we can avoid
1167 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1168 * clean type races. track latest tid for every bit
1169 * so we can handle flush AxFw, flush Fw, and have the
1170 * first ack clean Ax.
1172 flush_tid = ++ci->i_cap_flush_last_tid;
1173 if (pflush_tid)
1174 *pflush_tid = flush_tid;
1175 dout(" cap_flush_tid %d\n", (int)flush_tid);
1176 for (i = 0; i < CEPH_CAP_BITS; i++)
1177 if (flushing & (1 << i))
1178 ci->i_cap_flush_tid[i] = flush_tid;
1180 follows = ci->i_head_snapc->seq;
1181 } else {
1182 follows = 0;
1185 keep = cap->implemented;
1186 seq = cap->seq;
1187 issue_seq = cap->issue_seq;
1188 mseq = cap->mseq;
1189 size = inode->i_size;
1190 ci->i_reported_size = size;
1191 max_size = ci->i_wanted_max_size;
1192 ci->i_requested_max_size = max_size;
1193 mtime = inode->i_mtime;
1194 atime = inode->i_atime;
1195 time_warp_seq = ci->i_time_warp_seq;
1196 uid = inode->i_uid;
1197 gid = inode->i_gid;
1198 mode = inode->i_mode;
1200 if (flushing & CEPH_CAP_XATTR_EXCL) {
1201 __ceph_build_xattrs_blob(ci);
1202 xattr_blob = ci->i_xattrs.blob;
1203 xattr_version = ci->i_xattrs.version;
1206 spin_unlock(&ci->i_ceph_lock);
1208 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1209 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1210 size, max_size, &mtime, &atime, time_warp_seq,
1211 uid, gid, mode, xattr_version, xattr_blob,
1212 follows);
1213 if (ret < 0) {
1214 dout("error sending cap msg, must requeue %p\n", inode);
1215 delayed = 1;
1218 if (wake)
1219 wake_up_all(&ci->i_cap_wq);
1221 return delayed;
1225 * When a snapshot is taken, clients accumulate dirty metadata on
1226 * inodes with capabilities in ceph_cap_snaps to describe the file
1227 * state at the time the snapshot was taken. This must be flushed
1228 * asynchronously back to the MDS once sync writes complete and dirty
1229 * data is written out.
1231 * Unless @again is true, skip cap_snaps that were already sent to
1232 * the MDS (i.e., during this session).
1234 * Called under i_ceph_lock. Takes s_mutex as needed.
1236 void __ceph_flush_snaps(struct ceph_inode_info *ci,
1237 struct ceph_mds_session **psession,
1238 int again)
1239 __releases(ci->i_ceph_lock)
1240 __acquires(ci->i_ceph_lock)
1242 struct inode *inode = &ci->vfs_inode;
1243 int mds;
1244 struct ceph_cap_snap *capsnap;
1245 u32 mseq;
1246 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
1247 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1248 session->s_mutex */
1249 u64 next_follows = 0; /* keep track of how far we've gotten through the
1250 i_cap_snaps list, and skip these entries next time
1251 around to avoid an infinite loop */
1253 if (psession)
1254 session = *psession;
1256 dout("__flush_snaps %p\n", inode);
1257 retry:
1258 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1259 /* avoid an infiniute loop after retry */
1260 if (capsnap->follows < next_follows)
1261 continue;
1263 * we need to wait for sync writes to complete and for dirty
1264 * pages to be written out.
1266 if (capsnap->dirty_pages || capsnap->writing)
1267 break;
1270 * if cap writeback already occurred, we should have dropped
1271 * the capsnap in ceph_put_wrbuffer_cap_refs.
1273 BUG_ON(capsnap->dirty == 0);
1275 /* pick mds, take s_mutex */
1276 if (ci->i_auth_cap == NULL) {
1277 dout("no auth cap (migrating?), doing nothing\n");
1278 goto out;
1281 /* only flush each capsnap once */
1282 if (!again && !list_empty(&capsnap->flushing_item)) {
1283 dout("already flushed %p, skipping\n", capsnap);
1284 continue;
1287 mds = ci->i_auth_cap->session->s_mds;
1288 mseq = ci->i_auth_cap->mseq;
1290 if (session && session->s_mds != mds) {
1291 dout("oops, wrong session %p mutex\n", session);
1292 mutex_unlock(&session->s_mutex);
1293 ceph_put_mds_session(session);
1294 session = NULL;
1296 if (!session) {
1297 spin_unlock(&ci->i_ceph_lock);
1298 mutex_lock(&mdsc->mutex);
1299 session = __ceph_lookup_mds_session(mdsc, mds);
1300 mutex_unlock(&mdsc->mutex);
1301 if (session) {
1302 dout("inverting session/ino locks on %p\n",
1303 session);
1304 mutex_lock(&session->s_mutex);
1307 * if session == NULL, we raced against a cap
1308 * deletion or migration. retry, and we'll
1309 * get a better @mds value next time.
1311 spin_lock(&ci->i_ceph_lock);
1312 goto retry;
1315 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1316 atomic_inc(&capsnap->nref);
1317 if (!list_empty(&capsnap->flushing_item))
1318 list_del_init(&capsnap->flushing_item);
1319 list_add_tail(&capsnap->flushing_item,
1320 &session->s_cap_snaps_flushing);
1321 spin_unlock(&ci->i_ceph_lock);
1323 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n",
1324 inode, capsnap, capsnap->follows, capsnap->flush_tid);
1325 send_cap_msg(session, ceph_vino(inode).ino, 0,
1326 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1327 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1328 capsnap->size, 0,
1329 &capsnap->mtime, &capsnap->atime,
1330 capsnap->time_warp_seq,
1331 capsnap->uid, capsnap->gid, capsnap->mode,
1332 capsnap->xattr_version, capsnap->xattr_blob,
1333 capsnap->follows);
1335 next_follows = capsnap->follows + 1;
1336 ceph_put_cap_snap(capsnap);
1338 spin_lock(&ci->i_ceph_lock);
1339 goto retry;
1342 /* we flushed them all; remove this inode from the queue */
1343 spin_lock(&mdsc->snap_flush_lock);
1344 list_del_init(&ci->i_snap_flush_item);
1345 spin_unlock(&mdsc->snap_flush_lock);
1347 out:
1348 if (psession)
1349 *psession = session;
1350 else if (session) {
1351 mutex_unlock(&session->s_mutex);
1352 ceph_put_mds_session(session);
1356 static void ceph_flush_snaps(struct ceph_inode_info *ci)
1358 spin_lock(&ci->i_ceph_lock);
1359 __ceph_flush_snaps(ci, NULL, 0);
1360 spin_unlock(&ci->i_ceph_lock);
1364 * Mark caps dirty. If inode is newly dirty, return the dirty flags.
1365 * Caller is then responsible for calling __mark_inode_dirty with the
1366 * returned flags value.
1368 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1370 struct ceph_mds_client *mdsc =
1371 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc;
1372 struct inode *inode = &ci->vfs_inode;
1373 int was = ci->i_dirty_caps;
1374 int dirty = 0;
1376 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1377 ceph_cap_string(mask), ceph_cap_string(was),
1378 ceph_cap_string(was | mask));
1379 ci->i_dirty_caps |= mask;
1380 if (was == 0) {
1381 if (!ci->i_head_snapc)
1382 ci->i_head_snapc = ceph_get_snap_context(
1383 ci->i_snap_realm->cached_context);
1384 dout(" inode %p now dirty snapc %p auth cap %p\n",
1385 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap);
1386 BUG_ON(!list_empty(&ci->i_dirty_item));
1387 spin_lock(&mdsc->cap_dirty_lock);
1388 if (ci->i_auth_cap)
1389 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1390 else
1391 list_add(&ci->i_dirty_item,
1392 &mdsc->cap_dirty_migrating);
1393 spin_unlock(&mdsc->cap_dirty_lock);
1394 if (ci->i_flushing_caps == 0) {
1395 ihold(inode);
1396 dirty |= I_DIRTY_SYNC;
1399 BUG_ON(list_empty(&ci->i_dirty_item));
1400 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1401 (mask & CEPH_CAP_FILE_BUFFER))
1402 dirty |= I_DIRTY_DATASYNC;
1403 __cap_delay_requeue(mdsc, ci);
1404 return dirty;
1408 * Add dirty inode to the flushing list. Assigned a seq number so we
1409 * can wait for caps to flush without starving.
1411 * Called under i_ceph_lock.
1413 static int __mark_caps_flushing(struct inode *inode,
1414 struct ceph_mds_session *session)
1416 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1417 struct ceph_inode_info *ci = ceph_inode(inode);
1418 int flushing;
1420 BUG_ON(ci->i_dirty_caps == 0);
1421 BUG_ON(list_empty(&ci->i_dirty_item));
1423 flushing = ci->i_dirty_caps;
1424 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1425 ceph_cap_string(flushing),
1426 ceph_cap_string(ci->i_flushing_caps),
1427 ceph_cap_string(ci->i_flushing_caps | flushing));
1428 ci->i_flushing_caps |= flushing;
1429 ci->i_dirty_caps = 0;
1430 dout(" inode %p now !dirty\n", inode);
1432 spin_lock(&mdsc->cap_dirty_lock);
1433 list_del_init(&ci->i_dirty_item);
1435 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
1436 if (list_empty(&ci->i_flushing_item)) {
1437 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1438 mdsc->num_cap_flushing++;
1439 dout(" inode %p now flushing seq %lld\n", inode,
1440 ci->i_cap_flush_seq);
1441 } else {
1442 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1443 dout(" inode %p now flushing (more) seq %lld\n", inode,
1444 ci->i_cap_flush_seq);
1446 spin_unlock(&mdsc->cap_dirty_lock);
1448 return flushing;
1452 * try to invalidate mapping pages without blocking.
1454 static int try_nonblocking_invalidate(struct inode *inode)
1456 struct ceph_inode_info *ci = ceph_inode(inode);
1457 u32 invalidating_gen = ci->i_rdcache_gen;
1459 spin_unlock(&ci->i_ceph_lock);
1460 invalidate_mapping_pages(&inode->i_data, 0, -1);
1461 spin_lock(&ci->i_ceph_lock);
1463 if (inode->i_data.nrpages == 0 &&
1464 invalidating_gen == ci->i_rdcache_gen) {
1465 /* success. */
1466 dout("try_nonblocking_invalidate %p success\n", inode);
1467 /* save any racing async invalidate some trouble */
1468 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
1469 return 0;
1471 dout("try_nonblocking_invalidate %p failed\n", inode);
1472 return -1;
1476 * Swiss army knife function to examine currently used and wanted
1477 * versus held caps. Release, flush, ack revoked caps to mds as
1478 * appropriate.
1480 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1481 * cap release further.
1482 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1483 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1484 * further delay.
1486 void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1487 struct ceph_mds_session *session)
1489 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode);
1490 struct ceph_mds_client *mdsc = fsc->mdsc;
1491 struct inode *inode = &ci->vfs_inode;
1492 struct ceph_cap *cap;
1493 int file_wanted, used, cap_used;
1494 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1495 int issued, implemented, want, retain, revoking, flushing = 0;
1496 int mds = -1; /* keep track of how far we've gone through i_caps list
1497 to avoid an infinite loop on retry */
1498 struct rb_node *p;
1499 int tried_invalidate = 0;
1500 int delayed = 0, sent = 0, force_requeue = 0, num;
1501 int queue_invalidate = 0;
1502 int is_delayed = flags & CHECK_CAPS_NODELAY;
1504 /* if we are unmounting, flush any unused caps immediately. */
1505 if (mdsc->stopping)
1506 is_delayed = 1;
1508 spin_lock(&ci->i_ceph_lock);
1510 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1511 flags |= CHECK_CAPS_FLUSH;
1513 /* flush snaps first time around only */
1514 if (!list_empty(&ci->i_cap_snaps))
1515 __ceph_flush_snaps(ci, &session, 0);
1516 goto retry_locked;
1517 retry:
1518 spin_lock(&ci->i_ceph_lock);
1519 retry_locked:
1520 file_wanted = __ceph_caps_file_wanted(ci);
1521 used = __ceph_caps_used(ci);
1522 want = file_wanted | used;
1523 issued = __ceph_caps_issued(ci, &implemented);
1524 revoking = implemented & ~issued;
1526 retain = want | CEPH_CAP_PIN;
1527 if (!mdsc->stopping && inode->i_nlink > 0) {
1528 if (want) {
1529 retain |= CEPH_CAP_ANY; /* be greedy */
1530 } else {
1531 retain |= CEPH_CAP_ANY_SHARED;
1533 * keep RD only if we didn't have the file open RW,
1534 * because then the mds would revoke it anyway to
1535 * journal max_size=0.
1537 if (ci->i_max_size == 0)
1538 retain |= CEPH_CAP_ANY_RD;
1542 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
1543 " issued %s revoking %s retain %s %s%s%s\n", inode,
1544 ceph_cap_string(file_wanted),
1545 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1546 ceph_cap_string(ci->i_flushing_caps),
1547 ceph_cap_string(issued), ceph_cap_string(revoking),
1548 ceph_cap_string(retain),
1549 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1550 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1551 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1554 * If we no longer need to hold onto old our caps, and we may
1555 * have cached pages, but don't want them, then try to invalidate.
1556 * If we fail, it's because pages are locked.... try again later.
1558 if ((!is_delayed || mdsc->stopping) &&
1559 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1560 inode->i_data.nrpages && /* have cached pages */
1561 (file_wanted == 0 || /* no open files */
1562 (revoking & (CEPH_CAP_FILE_CACHE|
1563 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */
1564 !tried_invalidate) {
1565 dout("check_caps trying to invalidate on %p\n", inode);
1566 if (try_nonblocking_invalidate(inode) < 0) {
1567 if (revoking & (CEPH_CAP_FILE_CACHE|
1568 CEPH_CAP_FILE_LAZYIO)) {
1569 dout("check_caps queuing invalidate\n");
1570 queue_invalidate = 1;
1571 ci->i_rdcache_revoking = ci->i_rdcache_gen;
1572 } else {
1573 dout("check_caps failed to invalidate pages\n");
1574 /* we failed to invalidate pages. check these
1575 caps again later. */
1576 force_requeue = 1;
1577 __cap_set_timeouts(mdsc, ci);
1580 tried_invalidate = 1;
1581 goto retry_locked;
1584 num = 0;
1585 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1586 cap = rb_entry(p, struct ceph_cap, ci_node);
1587 num++;
1589 /* avoid looping forever */
1590 if (mds >= cap->mds ||
1591 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1592 continue;
1594 /* NOTE: no side-effects allowed, until we take s_mutex */
1596 cap_used = used;
1597 if (ci->i_auth_cap && cap != ci->i_auth_cap)
1598 cap_used &= ~ci->i_auth_cap->issued;
1600 revoking = cap->implemented & ~cap->issued;
1601 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
1602 cap->mds, cap, ceph_cap_string(cap->issued),
1603 ceph_cap_string(cap_used),
1604 ceph_cap_string(cap->implemented),
1605 ceph_cap_string(revoking));
1607 if (cap == ci->i_auth_cap &&
1608 (cap->issued & CEPH_CAP_FILE_WR)) {
1609 /* request larger max_size from MDS? */
1610 if (ci->i_wanted_max_size > ci->i_max_size &&
1611 ci->i_wanted_max_size > ci->i_requested_max_size) {
1612 dout("requesting new max_size\n");
1613 goto ack;
1616 /* approaching file_max? */
1617 if ((inode->i_size << 1) >= ci->i_max_size &&
1618 (ci->i_reported_size << 1) < ci->i_max_size) {
1619 dout("i_size approaching max_size\n");
1620 goto ack;
1623 /* flush anything dirty? */
1624 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1625 ci->i_dirty_caps) {
1626 dout("flushing dirty caps\n");
1627 goto ack;
1630 /* completed revocation? going down and there are no caps? */
1631 if (revoking && (revoking & cap_used) == 0) {
1632 dout("completed revocation of %s\n",
1633 ceph_cap_string(cap->implemented & ~cap->issued));
1634 goto ack;
1637 /* want more caps from mds? */
1638 if (want & ~(cap->mds_wanted | cap->issued))
1639 goto ack;
1641 /* things we might delay */
1642 if ((cap->issued & ~retain) == 0 &&
1643 cap->mds_wanted == want)
1644 continue; /* nope, all good */
1646 if (is_delayed)
1647 goto ack;
1649 /* delay? */
1650 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1651 time_before(jiffies, ci->i_hold_caps_max)) {
1652 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1653 ceph_cap_string(cap->issued),
1654 ceph_cap_string(cap->issued & retain),
1655 ceph_cap_string(cap->mds_wanted),
1656 ceph_cap_string(want));
1657 delayed++;
1658 continue;
1661 ack:
1662 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1663 dout(" skipping %p I_NOFLUSH set\n", inode);
1664 continue;
1667 if (session && session != cap->session) {
1668 dout("oops, wrong session %p mutex\n", session);
1669 mutex_unlock(&session->s_mutex);
1670 session = NULL;
1672 if (!session) {
1673 session = cap->session;
1674 if (mutex_trylock(&session->s_mutex) == 0) {
1675 dout("inverting session/ino locks on %p\n",
1676 session);
1677 spin_unlock(&ci->i_ceph_lock);
1678 if (took_snap_rwsem) {
1679 up_read(&mdsc->snap_rwsem);
1680 took_snap_rwsem = 0;
1682 mutex_lock(&session->s_mutex);
1683 goto retry;
1686 /* take snap_rwsem after session mutex */
1687 if (!took_snap_rwsem) {
1688 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1689 dout("inverting snap/in locks on %p\n",
1690 inode);
1691 spin_unlock(&ci->i_ceph_lock);
1692 down_read(&mdsc->snap_rwsem);
1693 took_snap_rwsem = 1;
1694 goto retry;
1696 took_snap_rwsem = 1;
1699 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1700 flushing = __mark_caps_flushing(inode, session);
1701 else
1702 flushing = 0;
1704 mds = cap->mds; /* remember mds, so we don't repeat */
1705 sent++;
1707 /* __send_cap drops i_ceph_lock */
1708 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used,
1709 want, retain, flushing, NULL);
1710 goto retry; /* retake i_ceph_lock and restart our cap scan. */
1714 * Reschedule delayed caps release if we delayed anything,
1715 * otherwise cancel.
1717 if (delayed && is_delayed)
1718 force_requeue = 1; /* __send_cap delayed release; requeue */
1719 if (!delayed && !is_delayed)
1720 __cap_delay_cancel(mdsc, ci);
1721 else if (!is_delayed || force_requeue)
1722 __cap_delay_requeue(mdsc, ci);
1724 spin_unlock(&ci->i_ceph_lock);
1726 if (queue_invalidate)
1727 ceph_queue_invalidate(inode);
1729 if (session)
1730 mutex_unlock(&session->s_mutex);
1731 if (took_snap_rwsem)
1732 up_read(&mdsc->snap_rwsem);
1736 * Try to flush dirty caps back to the auth mds.
1738 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1739 unsigned *flush_tid)
1741 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
1742 struct ceph_inode_info *ci = ceph_inode(inode);
1743 int unlock_session = session ? 0 : 1;
1744 int flushing = 0;
1746 retry:
1747 spin_lock(&ci->i_ceph_lock);
1748 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) {
1749 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode);
1750 goto out;
1752 if (ci->i_dirty_caps && ci->i_auth_cap) {
1753 struct ceph_cap *cap = ci->i_auth_cap;
1754 int used = __ceph_caps_used(ci);
1755 int want = __ceph_caps_wanted(ci);
1756 int delayed;
1758 if (!session) {
1759 spin_unlock(&ci->i_ceph_lock);
1760 session = cap->session;
1761 mutex_lock(&session->s_mutex);
1762 goto retry;
1764 BUG_ON(session != cap->session);
1765 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1766 goto out;
1768 flushing = __mark_caps_flushing(inode, session);
1770 /* __send_cap drops i_ceph_lock */
1771 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1772 cap->issued | cap->implemented, flushing,
1773 flush_tid);
1774 if (!delayed)
1775 goto out_unlocked;
1777 spin_lock(&ci->i_ceph_lock);
1778 __cap_delay_requeue(mdsc, ci);
1780 out:
1781 spin_unlock(&ci->i_ceph_lock);
1782 out_unlocked:
1783 if (session && unlock_session)
1784 mutex_unlock(&session->s_mutex);
1785 return flushing;
1789 * Return true if we've flushed caps through the given flush_tid.
1791 static int caps_are_flushed(struct inode *inode, unsigned tid)
1793 struct ceph_inode_info *ci = ceph_inode(inode);
1794 int i, ret = 1;
1796 spin_lock(&ci->i_ceph_lock);
1797 for (i = 0; i < CEPH_CAP_BITS; i++)
1798 if ((ci->i_flushing_caps & (1 << i)) &&
1799 ci->i_cap_flush_tid[i] <= tid) {
1800 /* still flushing this bit */
1801 ret = 0;
1802 break;
1804 spin_unlock(&ci->i_ceph_lock);
1805 return ret;
1809 * Wait on any unsafe replies for the given inode. First wait on the
1810 * newest request, and make that the upper bound. Then, if there are
1811 * more requests, keep waiting on the oldest as long as it is still older
1812 * than the original request.
1814 static void sync_write_wait(struct inode *inode)
1816 struct ceph_inode_info *ci = ceph_inode(inode);
1817 struct list_head *head = &ci->i_unsafe_writes;
1818 struct ceph_osd_request *req;
1819 u64 last_tid;
1821 spin_lock(&ci->i_unsafe_lock);
1822 if (list_empty(head))
1823 goto out;
1825 /* set upper bound as _last_ entry in chain */
1826 req = list_entry(head->prev, struct ceph_osd_request,
1827 r_unsafe_item);
1828 last_tid = req->r_tid;
1830 do {
1831 ceph_osdc_get_request(req);
1832 spin_unlock(&ci->i_unsafe_lock);
1833 dout("sync_write_wait on tid %llu (until %llu)\n",
1834 req->r_tid, last_tid);
1835 wait_for_completion(&req->r_safe_completion);
1836 spin_lock(&ci->i_unsafe_lock);
1837 ceph_osdc_put_request(req);
1840 * from here on look at first entry in chain, since we
1841 * only want to wait for anything older than last_tid
1843 if (list_empty(head))
1844 break;
1845 req = list_entry(head->next, struct ceph_osd_request,
1846 r_unsafe_item);
1847 } while (req->r_tid < last_tid);
1848 out:
1849 spin_unlock(&ci->i_unsafe_lock);
1852 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1854 struct inode *inode = file->f_mapping->host;
1855 struct ceph_inode_info *ci = ceph_inode(inode);
1856 unsigned flush_tid;
1857 int ret;
1858 int dirty;
1860 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1861 sync_write_wait(inode);
1863 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
1864 if (ret < 0)
1865 return ret;
1866 mutex_lock(&inode->i_mutex);
1868 dirty = try_flush_caps(inode, NULL, &flush_tid);
1869 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1872 * only wait on non-file metadata writeback (the mds
1873 * can recover size and mtime, so we don't need to
1874 * wait for that)
1876 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1877 dout("fsync waiting for flush_tid %u\n", flush_tid);
1878 ret = wait_event_interruptible(ci->i_cap_wq,
1879 caps_are_flushed(inode, flush_tid));
1882 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1883 mutex_unlock(&inode->i_mutex);
1884 return ret;
1888 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1889 * queue inode for flush but don't do so immediately, because we can
1890 * get by with fewer MDS messages if we wait for data writeback to
1891 * complete first.
1893 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
1895 struct ceph_inode_info *ci = ceph_inode(inode);
1896 unsigned flush_tid;
1897 int err = 0;
1898 int dirty;
1899 int wait = wbc->sync_mode == WB_SYNC_ALL;
1901 dout("write_inode %p wait=%d\n", inode, wait);
1902 if (wait) {
1903 dirty = try_flush_caps(inode, NULL, &flush_tid);
1904 if (dirty)
1905 err = wait_event_interruptible(ci->i_cap_wq,
1906 caps_are_flushed(inode, flush_tid));
1907 } else {
1908 struct ceph_mds_client *mdsc =
1909 ceph_sb_to_client(inode->i_sb)->mdsc;
1911 spin_lock(&ci->i_ceph_lock);
1912 if (__ceph_caps_dirty(ci))
1913 __cap_delay_requeue_front(mdsc, ci);
1914 spin_unlock(&ci->i_ceph_lock);
1916 return err;
1920 * After a recovering MDS goes active, we need to resend any caps
1921 * we were flushing.
1923 * Caller holds session->s_mutex.
1925 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1926 struct ceph_mds_session *session)
1928 struct ceph_cap_snap *capsnap;
1930 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1931 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1932 flushing_item) {
1933 struct ceph_inode_info *ci = capsnap->ci;
1934 struct inode *inode = &ci->vfs_inode;
1935 struct ceph_cap *cap;
1937 spin_lock(&ci->i_ceph_lock);
1938 cap = ci->i_auth_cap;
1939 if (cap && cap->session == session) {
1940 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1941 cap, capsnap);
1942 __ceph_flush_snaps(ci, &session, 1);
1943 } else {
1944 pr_err("%p auth cap %p not mds%d ???\n", inode,
1945 cap, session->s_mds);
1947 spin_unlock(&ci->i_ceph_lock);
1951 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1952 struct ceph_mds_session *session)
1954 struct ceph_inode_info *ci;
1956 kick_flushing_capsnaps(mdsc, session);
1958 dout("kick_flushing_caps mds%d\n", session->s_mds);
1959 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1960 struct inode *inode = &ci->vfs_inode;
1961 struct ceph_cap *cap;
1962 int delayed = 0;
1964 spin_lock(&ci->i_ceph_lock);
1965 cap = ci->i_auth_cap;
1966 if (cap && cap->session == session) {
1967 dout("kick_flushing_caps %p cap %p %s\n", inode,
1968 cap, ceph_cap_string(ci->i_flushing_caps));
1969 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1970 __ceph_caps_used(ci),
1971 __ceph_caps_wanted(ci),
1972 cap->issued | cap->implemented,
1973 ci->i_flushing_caps, NULL);
1974 if (delayed) {
1975 spin_lock(&ci->i_ceph_lock);
1976 __cap_delay_requeue(mdsc, ci);
1977 spin_unlock(&ci->i_ceph_lock);
1979 } else {
1980 pr_err("%p auth cap %p not mds%d ???\n", inode,
1981 cap, session->s_mds);
1982 spin_unlock(&ci->i_ceph_lock);
1987 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc,
1988 struct ceph_mds_session *session,
1989 struct inode *inode)
1991 struct ceph_inode_info *ci = ceph_inode(inode);
1992 struct ceph_cap *cap;
1993 int delayed = 0;
1995 spin_lock(&ci->i_ceph_lock);
1996 cap = ci->i_auth_cap;
1997 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode,
1998 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq);
2000 __ceph_flush_snaps(ci, &session, 1);
2002 if (ci->i_flushing_caps) {
2003 spin_lock(&mdsc->cap_dirty_lock);
2004 list_move_tail(&ci->i_flushing_item,
2005 &cap->session->s_cap_flushing);
2006 spin_unlock(&mdsc->cap_dirty_lock);
2008 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
2009 __ceph_caps_used(ci),
2010 __ceph_caps_wanted(ci),
2011 cap->issued | cap->implemented,
2012 ci->i_flushing_caps, NULL);
2013 if (delayed) {
2014 spin_lock(&ci->i_ceph_lock);
2015 __cap_delay_requeue(mdsc, ci);
2016 spin_unlock(&ci->i_ceph_lock);
2018 } else {
2019 spin_unlock(&ci->i_ceph_lock);
2025 * Take references to capabilities we hold, so that we don't release
2026 * them to the MDS prematurely.
2028 * Protected by i_ceph_lock.
2030 static void __take_cap_refs(struct ceph_inode_info *ci, int got)
2032 if (got & CEPH_CAP_PIN)
2033 ci->i_pin_ref++;
2034 if (got & CEPH_CAP_FILE_RD)
2035 ci->i_rd_ref++;
2036 if (got & CEPH_CAP_FILE_CACHE)
2037 ci->i_rdcache_ref++;
2038 if (got & CEPH_CAP_FILE_WR)
2039 ci->i_wr_ref++;
2040 if (got & CEPH_CAP_FILE_BUFFER) {
2041 if (ci->i_wb_ref == 0)
2042 ihold(&ci->vfs_inode);
2043 ci->i_wb_ref++;
2044 dout("__take_cap_refs %p wb %d -> %d (?)\n",
2045 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref);
2050 * Try to grab cap references. Specify those refs we @want, and the
2051 * minimal set we @need. Also include the larger offset we are writing
2052 * to (when applicable), and check against max_size here as well.
2053 * Note that caller is responsible for ensuring max_size increases are
2054 * requested from the MDS.
2056 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
2057 int *got, loff_t endoff, int *check_max, int *err)
2059 struct inode *inode = &ci->vfs_inode;
2060 int ret = 0;
2061 int have, implemented;
2062 int file_wanted;
2064 dout("get_cap_refs %p need %s want %s\n", inode,
2065 ceph_cap_string(need), ceph_cap_string(want));
2066 spin_lock(&ci->i_ceph_lock);
2068 /* make sure file is actually open */
2069 file_wanted = __ceph_caps_file_wanted(ci);
2070 if ((file_wanted & need) == 0) {
2071 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n",
2072 ceph_cap_string(need), ceph_cap_string(file_wanted));
2073 *err = -EBADF;
2074 ret = 1;
2075 goto out;
2078 /* finish pending truncate */
2079 while (ci->i_truncate_pending) {
2080 spin_unlock(&ci->i_ceph_lock);
2081 __ceph_do_pending_vmtruncate(inode);
2082 spin_lock(&ci->i_ceph_lock);
2085 have = __ceph_caps_issued(ci, &implemented);
2087 if (have & need & CEPH_CAP_FILE_WR) {
2088 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
2089 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
2090 inode, endoff, ci->i_max_size);
2091 if (endoff > ci->i_requested_max_size) {
2092 *check_max = 1;
2093 ret = 1;
2095 goto out;
2098 * If a sync write is in progress, we must wait, so that we
2099 * can get a final snapshot value for size+mtime.
2101 if (__ceph_have_pending_cap_snap(ci)) {
2102 dout("get_cap_refs %p cap_snap_pending\n", inode);
2103 goto out;
2107 if ((have & need) == need) {
2109 * Look at (implemented & ~have & not) so that we keep waiting
2110 * on transition from wanted -> needed caps. This is needed
2111 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
2112 * going before a prior buffered writeback happens.
2114 int not = want & ~(have & need);
2115 int revoking = implemented & ~have;
2116 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
2117 inode, ceph_cap_string(have), ceph_cap_string(not),
2118 ceph_cap_string(revoking));
2119 if ((revoking & not) == 0) {
2120 *got = need | (have & want);
2121 __take_cap_refs(ci, *got);
2122 ret = 1;
2124 } else {
2125 dout("get_cap_refs %p have %s needed %s\n", inode,
2126 ceph_cap_string(have), ceph_cap_string(need));
2128 out:
2129 spin_unlock(&ci->i_ceph_lock);
2130 dout("get_cap_refs %p ret %d got %s\n", inode,
2131 ret, ceph_cap_string(*got));
2132 return ret;
2136 * Check the offset we are writing up to against our current
2137 * max_size. If necessary, tell the MDS we want to write to
2138 * a larger offset.
2140 static void check_max_size(struct inode *inode, loff_t endoff)
2142 struct ceph_inode_info *ci = ceph_inode(inode);
2143 int check = 0;
2145 /* do we need to explicitly request a larger max_size? */
2146 spin_lock(&ci->i_ceph_lock);
2147 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
2148 dout("write %p at large endoff %llu, req max_size\n",
2149 inode, endoff);
2150 ci->i_wanted_max_size = endoff;
2152 /* duplicate ceph_check_caps()'s logic */
2153 if (ci->i_auth_cap &&
2154 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
2155 ci->i_wanted_max_size > ci->i_max_size &&
2156 ci->i_wanted_max_size > ci->i_requested_max_size)
2157 check = 1;
2158 spin_unlock(&ci->i_ceph_lock);
2159 if (check)
2160 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2164 * Wait for caps, and take cap references. If we can't get a WR cap
2165 * due to a small max_size, make sure we check_max_size (and possibly
2166 * ask the mds) so we don't get hung up indefinitely.
2168 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
2169 loff_t endoff)
2171 int check_max, ret, err;
2173 retry:
2174 if (endoff > 0)
2175 check_max_size(&ci->vfs_inode, endoff);
2176 check_max = 0;
2177 err = 0;
2178 ret = wait_event_interruptible(ci->i_cap_wq,
2179 try_get_cap_refs(ci, need, want,
2180 got, endoff,
2181 &check_max, &err));
2182 if (err)
2183 ret = err;
2184 if (check_max)
2185 goto retry;
2186 return ret;
2190 * Take cap refs. Caller must already know we hold at least one ref
2191 * on the caps in question or we don't know this is safe.
2193 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2195 spin_lock(&ci->i_ceph_lock);
2196 __take_cap_refs(ci, caps);
2197 spin_unlock(&ci->i_ceph_lock);
2201 * Release cap refs.
2203 * If we released the last ref on any given cap, call ceph_check_caps
2204 * to release (or schedule a release).
2206 * If we are releasing a WR cap (from a sync write), finalize any affected
2207 * cap_snap, and wake up any waiters.
2209 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2211 struct inode *inode = &ci->vfs_inode;
2212 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2213 struct ceph_cap_snap *capsnap;
2215 spin_lock(&ci->i_ceph_lock);
2216 if (had & CEPH_CAP_PIN)
2217 --ci->i_pin_ref;
2218 if (had & CEPH_CAP_FILE_RD)
2219 if (--ci->i_rd_ref == 0)
2220 last++;
2221 if (had & CEPH_CAP_FILE_CACHE)
2222 if (--ci->i_rdcache_ref == 0)
2223 last++;
2224 if (had & CEPH_CAP_FILE_BUFFER) {
2225 if (--ci->i_wb_ref == 0) {
2226 last++;
2227 put++;
2229 dout("put_cap_refs %p wb %d -> %d (?)\n",
2230 inode, ci->i_wb_ref+1, ci->i_wb_ref);
2232 if (had & CEPH_CAP_FILE_WR)
2233 if (--ci->i_wr_ref == 0) {
2234 last++;
2235 if (!list_empty(&ci->i_cap_snaps)) {
2236 capsnap = list_first_entry(&ci->i_cap_snaps,
2237 struct ceph_cap_snap,
2238 ci_item);
2239 if (capsnap->writing) {
2240 capsnap->writing = 0;
2241 flushsnaps =
2242 __ceph_finish_cap_snap(ci,
2243 capsnap);
2244 wake = 1;
2248 spin_unlock(&ci->i_ceph_lock);
2250 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
2251 last ? " last" : "", put ? " put" : "");
2253 if (last && !flushsnaps)
2254 ceph_check_caps(ci, 0, NULL);
2255 else if (flushsnaps)
2256 ceph_flush_snaps(ci);
2257 if (wake)
2258 wake_up_all(&ci->i_cap_wq);
2259 if (put)
2260 iput(inode);
2264 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2265 * context. Adjust per-snap dirty page accounting as appropriate.
2266 * Once all dirty data for a cap_snap is flushed, flush snapped file
2267 * metadata back to the MDS. If we dropped the last ref, call
2268 * ceph_check_caps.
2270 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2271 struct ceph_snap_context *snapc)
2273 struct inode *inode = &ci->vfs_inode;
2274 int last = 0;
2275 int complete_capsnap = 0;
2276 int drop_capsnap = 0;
2277 int found = 0;
2278 struct ceph_cap_snap *capsnap = NULL;
2280 spin_lock(&ci->i_ceph_lock);
2281 ci->i_wrbuffer_ref -= nr;
2282 last = !ci->i_wrbuffer_ref;
2284 if (ci->i_head_snapc == snapc) {
2285 ci->i_wrbuffer_ref_head -= nr;
2286 if (ci->i_wrbuffer_ref_head == 0 &&
2287 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) {
2288 BUG_ON(!ci->i_head_snapc);
2289 ceph_put_snap_context(ci->i_head_snapc);
2290 ci->i_head_snapc = NULL;
2292 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2293 inode,
2294 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2295 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2296 last ? " LAST" : "");
2297 } else {
2298 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2299 if (capsnap->context == snapc) {
2300 found = 1;
2301 break;
2304 BUG_ON(!found);
2305 capsnap->dirty_pages -= nr;
2306 if (capsnap->dirty_pages == 0) {
2307 complete_capsnap = 1;
2308 if (capsnap->dirty == 0)
2309 /* cap writeback completed before we created
2310 * the cap_snap; no FLUSHSNAP is needed */
2311 drop_capsnap = 1;
2313 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2314 " snap %lld %d/%d -> %d/%d %s%s%s\n",
2315 inode, capsnap, capsnap->context->seq,
2316 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2317 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2318 last ? " (wrbuffer last)" : "",
2319 complete_capsnap ? " (complete capsnap)" : "",
2320 drop_capsnap ? " (drop capsnap)" : "");
2321 if (drop_capsnap) {
2322 ceph_put_snap_context(capsnap->context);
2323 list_del(&capsnap->ci_item);
2324 list_del(&capsnap->flushing_item);
2325 ceph_put_cap_snap(capsnap);
2329 spin_unlock(&ci->i_ceph_lock);
2331 if (last) {
2332 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2333 iput(inode);
2334 } else if (complete_capsnap) {
2335 ceph_flush_snaps(ci);
2336 wake_up_all(&ci->i_cap_wq);
2338 if (drop_capsnap)
2339 iput(inode);
2343 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
2345 static void invalidate_aliases(struct inode *inode)
2347 struct dentry *dn, *prev = NULL;
2349 dout("invalidate_aliases inode %p\n", inode);
2350 d_prune_aliases(inode);
2352 * For non-directory inode, d_find_alias() only returns
2353 * connected dentry. After calling d_invalidate(), the
2354 * dentry become disconnected.
2356 * For directory inode, d_find_alias() can return
2357 * disconnected dentry. But directory inode should have
2358 * one alias at most.
2360 while ((dn = d_find_alias(inode))) {
2361 if (dn == prev) {
2362 dput(dn);
2363 break;
2365 d_invalidate(dn);
2366 if (prev)
2367 dput(prev);
2368 prev = dn;
2370 if (prev)
2371 dput(prev);
2375 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2376 * actually be a revocation if it specifies a smaller cap set.)
2378 * caller holds s_mutex and i_ceph_lock, we drop both.
2380 * return value:
2381 * 0 - ok
2382 * 1 - check_caps on auth cap only (writeback)
2383 * 2 - check_caps (ack revoke)
2385 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2386 struct ceph_mds_session *session,
2387 struct ceph_cap *cap,
2388 struct ceph_buffer *xattr_buf)
2389 __releases(ci->i_ceph_lock)
2391 struct ceph_inode_info *ci = ceph_inode(inode);
2392 int mds = session->s_mds;
2393 int seq = le32_to_cpu(grant->seq);
2394 int newcaps = le32_to_cpu(grant->caps);
2395 int issued, implemented, used, wanted, dirty;
2396 u64 size = le64_to_cpu(grant->size);
2397 u64 max_size = le64_to_cpu(grant->max_size);
2398 struct timespec mtime, atime, ctime;
2399 int check_caps = 0;
2400 int wake = 0;
2401 int writeback = 0;
2402 int queue_invalidate = 0;
2403 int deleted_inode = 0;
2404 int queue_revalidate = 0;
2406 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2407 inode, cap, mds, seq, ceph_cap_string(newcaps));
2408 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2409 inode->i_size);
2412 * If CACHE is being revoked, and we have no dirty buffers,
2413 * try to invalidate (once). (If there are dirty buffers, we
2414 * will invalidate _after_ writeback.)
2416 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2417 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2418 !ci->i_wrbuffer_ref) {
2419 if (try_nonblocking_invalidate(inode)) {
2420 /* there were locked pages.. invalidate later
2421 in a separate thread. */
2422 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2423 queue_invalidate = 1;
2424 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2428 ceph_fscache_invalidate(inode);
2431 /* side effects now are allowed */
2433 issued = __ceph_caps_issued(ci, &implemented);
2434 issued |= implemented | __ceph_caps_dirty(ci);
2436 cap->cap_gen = session->s_cap_gen;
2438 __check_cap_issue(ci, cap, newcaps);
2440 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2441 inode->i_mode = le32_to_cpu(grant->mode);
2442 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
2443 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
2444 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2445 from_kuid(&init_user_ns, inode->i_uid),
2446 from_kgid(&init_user_ns, inode->i_gid));
2449 if ((issued & CEPH_CAP_LINK_EXCL) == 0) {
2450 set_nlink(inode, le32_to_cpu(grant->nlink));
2451 if (inode->i_nlink == 0 &&
2452 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL)))
2453 deleted_inode = 1;
2456 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2457 int len = le32_to_cpu(grant->xattr_len);
2458 u64 version = le64_to_cpu(grant->xattr_version);
2460 if (version > ci->i_xattrs.version) {
2461 dout(" got new xattrs v%llu on %p len %d\n",
2462 version, inode, len);
2463 if (ci->i_xattrs.blob)
2464 ceph_buffer_put(ci->i_xattrs.blob);
2465 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2466 ci->i_xattrs.version = version;
2470 /* Do we need to revalidate our fscache cookie. Don't bother on the
2471 * first cache cap as we already validate at cookie creation time. */
2472 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1)
2473 queue_revalidate = 1;
2475 /* size/ctime/mtime/atime? */
2476 ceph_fill_file_size(inode, issued,
2477 le32_to_cpu(grant->truncate_seq),
2478 le64_to_cpu(grant->truncate_size), size);
2479 ceph_decode_timespec(&mtime, &grant->mtime);
2480 ceph_decode_timespec(&atime, &grant->atime);
2481 ceph_decode_timespec(&ctime, &grant->ctime);
2482 ceph_fill_file_time(inode, issued,
2483 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2484 &atime);
2486 /* max size increase? */
2487 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) {
2488 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2489 ci->i_max_size = max_size;
2490 if (max_size >= ci->i_wanted_max_size) {
2491 ci->i_wanted_max_size = 0; /* reset */
2492 ci->i_requested_max_size = 0;
2494 wake = 1;
2497 /* check cap bits */
2498 wanted = __ceph_caps_wanted(ci);
2499 used = __ceph_caps_used(ci);
2500 dirty = __ceph_caps_dirty(ci);
2501 dout(" my wanted = %s, used = %s, dirty %s\n",
2502 ceph_cap_string(wanted),
2503 ceph_cap_string(used),
2504 ceph_cap_string(dirty));
2505 if (wanted != le32_to_cpu(grant->wanted)) {
2506 dout("mds wanted %s -> %s\n",
2507 ceph_cap_string(le32_to_cpu(grant->wanted)),
2508 ceph_cap_string(wanted));
2509 /* imported cap may not have correct mds_wanted */
2510 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT)
2511 check_caps = 1;
2514 cap->seq = seq;
2516 /* file layout may have changed */
2517 ci->i_layout = grant->layout;
2519 /* revocation, grant, or no-op? */
2520 if (cap->issued & ~newcaps) {
2521 int revoking = cap->issued & ~newcaps;
2523 dout("revocation: %s -> %s (revoking %s)\n",
2524 ceph_cap_string(cap->issued),
2525 ceph_cap_string(newcaps),
2526 ceph_cap_string(revoking));
2527 if (revoking & used & CEPH_CAP_FILE_BUFFER)
2528 writeback = 1; /* initiate writeback; will delay ack */
2529 else if (revoking == CEPH_CAP_FILE_CACHE &&
2530 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
2531 queue_invalidate)
2532 ; /* do nothing yet, invalidation will be queued */
2533 else if (cap == ci->i_auth_cap)
2534 check_caps = 1; /* check auth cap only */
2535 else
2536 check_caps = 2; /* check all caps */
2537 cap->issued = newcaps;
2538 cap->implemented |= newcaps;
2539 } else if (cap->issued == newcaps) {
2540 dout("caps unchanged: %s -> %s\n",
2541 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2542 } else {
2543 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2544 ceph_cap_string(newcaps));
2545 /* non-auth MDS is revoking the newly grant caps ? */
2546 if (cap == ci->i_auth_cap &&
2547 __ceph_caps_revoking_other(ci, cap, newcaps))
2548 check_caps = 2;
2550 cap->issued = newcaps;
2551 cap->implemented |= newcaps; /* add bits only, to
2552 * avoid stepping on a
2553 * pending revocation */
2554 wake = 1;
2556 BUG_ON(cap->issued & ~cap->implemented);
2558 spin_unlock(&ci->i_ceph_lock);
2560 if (writeback)
2562 * queue inode for writeback: we can't actually call
2563 * filemap_write_and_wait, etc. from message handler
2564 * context.
2566 ceph_queue_writeback(inode);
2567 if (queue_invalidate)
2568 ceph_queue_invalidate(inode);
2569 if (deleted_inode)
2570 invalidate_aliases(inode);
2571 if (queue_revalidate)
2572 ceph_queue_revalidate(inode);
2573 if (wake)
2574 wake_up_all(&ci->i_cap_wq);
2576 if (check_caps == 1)
2577 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2578 session);
2579 else if (check_caps == 2)
2580 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session);
2581 else
2582 mutex_unlock(&session->s_mutex);
2586 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2587 * MDS has been safely committed.
2589 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
2590 struct ceph_mds_caps *m,
2591 struct ceph_mds_session *session,
2592 struct ceph_cap *cap)
2593 __releases(ci->i_ceph_lock)
2595 struct ceph_inode_info *ci = ceph_inode(inode);
2596 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
2597 unsigned seq = le32_to_cpu(m->seq);
2598 int dirty = le32_to_cpu(m->dirty);
2599 int cleaned = 0;
2600 int drop = 0;
2601 int i;
2603 for (i = 0; i < CEPH_CAP_BITS; i++)
2604 if ((dirty & (1 << i)) &&
2605 flush_tid == ci->i_cap_flush_tid[i])
2606 cleaned |= 1 << i;
2608 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2609 " flushing %s -> %s\n",
2610 inode, session->s_mds, seq, ceph_cap_string(dirty),
2611 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2612 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2614 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2615 goto out;
2617 ci->i_flushing_caps &= ~cleaned;
2619 spin_lock(&mdsc->cap_dirty_lock);
2620 if (ci->i_flushing_caps == 0) {
2621 list_del_init(&ci->i_flushing_item);
2622 if (!list_empty(&session->s_cap_flushing))
2623 dout(" mds%d still flushing cap on %p\n",
2624 session->s_mds,
2625 &list_entry(session->s_cap_flushing.next,
2626 struct ceph_inode_info,
2627 i_flushing_item)->vfs_inode);
2628 mdsc->num_cap_flushing--;
2629 wake_up_all(&mdsc->cap_flushing_wq);
2630 dout(" inode %p now !flushing\n", inode);
2632 if (ci->i_dirty_caps == 0) {
2633 dout(" inode %p now clean\n", inode);
2634 BUG_ON(!list_empty(&ci->i_dirty_item));
2635 drop = 1;
2636 if (ci->i_wrbuffer_ref_head == 0) {
2637 BUG_ON(!ci->i_head_snapc);
2638 ceph_put_snap_context(ci->i_head_snapc);
2639 ci->i_head_snapc = NULL;
2641 } else {
2642 BUG_ON(list_empty(&ci->i_dirty_item));
2645 spin_unlock(&mdsc->cap_dirty_lock);
2646 wake_up_all(&ci->i_cap_wq);
2648 out:
2649 spin_unlock(&ci->i_ceph_lock);
2650 if (drop)
2651 iput(inode);
2655 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2656 * throw away our cap_snap.
2658 * Caller hold s_mutex.
2660 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
2661 struct ceph_mds_caps *m,
2662 struct ceph_mds_session *session)
2664 struct ceph_inode_info *ci = ceph_inode(inode);
2665 u64 follows = le64_to_cpu(m->snap_follows);
2666 struct ceph_cap_snap *capsnap;
2667 int drop = 0;
2669 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2670 inode, ci, session->s_mds, follows);
2672 spin_lock(&ci->i_ceph_lock);
2673 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2674 if (capsnap->follows == follows) {
2675 if (capsnap->flush_tid != flush_tid) {
2676 dout(" cap_snap %p follows %lld tid %lld !="
2677 " %lld\n", capsnap, follows,
2678 flush_tid, capsnap->flush_tid);
2679 break;
2681 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2682 dout(" removing %p cap_snap %p follows %lld\n",
2683 inode, capsnap, follows);
2684 ceph_put_snap_context(capsnap->context);
2685 list_del(&capsnap->ci_item);
2686 list_del(&capsnap->flushing_item);
2687 ceph_put_cap_snap(capsnap);
2688 drop = 1;
2689 break;
2690 } else {
2691 dout(" skipping cap_snap %p follows %lld\n",
2692 capsnap, capsnap->follows);
2695 spin_unlock(&ci->i_ceph_lock);
2696 if (drop)
2697 iput(inode);
2701 * Handle TRUNC from MDS, indicating file truncation.
2703 * caller hold s_mutex.
2705 static void handle_cap_trunc(struct inode *inode,
2706 struct ceph_mds_caps *trunc,
2707 struct ceph_mds_session *session)
2708 __releases(ci->i_ceph_lock)
2710 struct ceph_inode_info *ci = ceph_inode(inode);
2711 int mds = session->s_mds;
2712 int seq = le32_to_cpu(trunc->seq);
2713 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2714 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2715 u64 size = le64_to_cpu(trunc->size);
2716 int implemented = 0;
2717 int dirty = __ceph_caps_dirty(ci);
2718 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2719 int queue_trunc = 0;
2721 issued |= implemented | dirty;
2723 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2724 inode, mds, seq, truncate_size, truncate_seq);
2725 queue_trunc = ceph_fill_file_size(inode, issued,
2726 truncate_seq, truncate_size, size);
2727 spin_unlock(&ci->i_ceph_lock);
2729 if (queue_trunc) {
2730 ceph_queue_vmtruncate(inode);
2731 ceph_fscache_invalidate(inode);
2736 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2737 * different one. If we are the most recent migration we've seen (as
2738 * indicated by mseq), make note of the migrating cap bits for the
2739 * duration (until we see the corresponding IMPORT).
2741 * caller holds s_mutex
2743 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2744 struct ceph_mds_session *session,
2745 int *open_target_sessions)
2747 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
2748 struct ceph_inode_info *ci = ceph_inode(inode);
2749 int mds = session->s_mds;
2750 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2751 struct ceph_cap *cap = NULL, *t;
2752 struct rb_node *p;
2753 int remember = 1;
2755 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2756 inode, ci, mds, mseq);
2758 spin_lock(&ci->i_ceph_lock);
2760 /* make sure we haven't seen a higher mseq */
2761 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2762 t = rb_entry(p, struct ceph_cap, ci_node);
2763 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2764 dout(" higher mseq on cap from mds%d\n",
2765 t->session->s_mds);
2766 remember = 0;
2768 if (t->session->s_mds == mds)
2769 cap = t;
2772 if (cap) {
2773 if (remember) {
2774 /* make note */
2775 ci->i_cap_exporting_mds = mds;
2776 ci->i_cap_exporting_mseq = mseq;
2777 ci->i_cap_exporting_issued = cap->issued;
2780 * make sure we have open sessions with all possible
2781 * export targets, so that we get the matching IMPORT
2783 *open_target_sessions = 1;
2786 * we can't flush dirty caps that we've seen the
2787 * EXPORT but no IMPORT for
2789 spin_lock(&mdsc->cap_dirty_lock);
2790 if (!list_empty(&ci->i_dirty_item)) {
2791 dout(" moving %p to cap_dirty_migrating\n",
2792 inode);
2793 list_move(&ci->i_dirty_item,
2794 &mdsc->cap_dirty_migrating);
2796 spin_unlock(&mdsc->cap_dirty_lock);
2798 __ceph_remove_cap(cap, false);
2800 /* else, we already released it */
2802 spin_unlock(&ci->i_ceph_lock);
2806 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2807 * clean them up.
2809 * caller holds s_mutex.
2811 static void handle_cap_import(struct ceph_mds_client *mdsc,
2812 struct inode *inode, struct ceph_mds_caps *im,
2813 struct ceph_mds_session *session,
2814 void *snaptrace, int snaptrace_len)
2816 struct ceph_inode_info *ci = ceph_inode(inode);
2817 int mds = session->s_mds;
2818 unsigned issued = le32_to_cpu(im->caps);
2819 unsigned wanted = le32_to_cpu(im->wanted);
2820 unsigned seq = le32_to_cpu(im->seq);
2821 unsigned mseq = le32_to_cpu(im->migrate_seq);
2822 u64 realmino = le64_to_cpu(im->realm);
2823 u64 cap_id = le64_to_cpu(im->cap_id);
2825 if (ci->i_cap_exporting_mds >= 0 &&
2826 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2827 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2828 " - cleared exporting from mds%d\n",
2829 inode, ci, mds, mseq,
2830 ci->i_cap_exporting_mds);
2831 ci->i_cap_exporting_issued = 0;
2832 ci->i_cap_exporting_mseq = 0;
2833 ci->i_cap_exporting_mds = -1;
2835 spin_lock(&mdsc->cap_dirty_lock);
2836 if (!list_empty(&ci->i_dirty_item)) {
2837 dout(" moving %p back to cap_dirty\n", inode);
2838 list_move(&ci->i_dirty_item, &mdsc->cap_dirty);
2840 spin_unlock(&mdsc->cap_dirty_lock);
2841 } else {
2842 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2843 inode, ci, mds, mseq);
2846 down_write(&mdsc->snap_rwsem);
2847 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2848 false);
2849 downgrade_write(&mdsc->snap_rwsem);
2850 ceph_add_cap(inode, session, cap_id, -1,
2851 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2852 NULL /* no caps context */);
2853 kick_flushing_inode_caps(mdsc, session, inode);
2854 up_read(&mdsc->snap_rwsem);
2856 /* make sure we re-request max_size, if necessary */
2857 spin_lock(&ci->i_ceph_lock);
2858 ci->i_wanted_max_size = 0; /* reset */
2859 ci->i_requested_max_size = 0;
2860 spin_unlock(&ci->i_ceph_lock);
2864 * Handle a caps message from the MDS.
2866 * Identify the appropriate session, inode, and call the right handler
2867 * based on the cap op.
2869 void ceph_handle_caps(struct ceph_mds_session *session,
2870 struct ceph_msg *msg)
2872 struct ceph_mds_client *mdsc = session->s_mdsc;
2873 struct super_block *sb = mdsc->fsc->sb;
2874 struct inode *inode;
2875 struct ceph_inode_info *ci;
2876 struct ceph_cap *cap;
2877 struct ceph_mds_caps *h;
2878 int mds = session->s_mds;
2879 int op;
2880 u32 seq, mseq;
2881 struct ceph_vino vino;
2882 u64 cap_id;
2883 u64 size, max_size;
2884 u64 tid;
2885 void *snaptrace;
2886 size_t snaptrace_len;
2887 void *flock;
2888 u32 flock_len;
2889 int open_target_sessions = 0;
2891 dout("handle_caps from mds%d\n", mds);
2893 /* decode */
2894 tid = le64_to_cpu(msg->hdr.tid);
2895 if (msg->front.iov_len < sizeof(*h))
2896 goto bad;
2897 h = msg->front.iov_base;
2898 op = le32_to_cpu(h->op);
2899 vino.ino = le64_to_cpu(h->ino);
2900 vino.snap = CEPH_NOSNAP;
2901 cap_id = le64_to_cpu(h->cap_id);
2902 seq = le32_to_cpu(h->seq);
2903 mseq = le32_to_cpu(h->migrate_seq);
2904 size = le64_to_cpu(h->size);
2905 max_size = le64_to_cpu(h->max_size);
2907 snaptrace = h + 1;
2908 snaptrace_len = le32_to_cpu(h->snap_trace_len);
2910 if (le16_to_cpu(msg->hdr.version) >= 2) {
2911 void *p, *end;
2913 p = snaptrace + snaptrace_len;
2914 end = msg->front.iov_base + msg->front.iov_len;
2915 ceph_decode_32_safe(&p, end, flock_len, bad);
2916 flock = p;
2917 } else {
2918 flock = NULL;
2919 flock_len = 0;
2922 mutex_lock(&session->s_mutex);
2923 session->s_seq++;
2924 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2925 (unsigned)seq);
2927 if (op == CEPH_CAP_OP_IMPORT)
2928 ceph_add_cap_releases(mdsc, session);
2930 /* lookup ino */
2931 inode = ceph_find_inode(sb, vino);
2932 ci = ceph_inode(inode);
2933 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2934 vino.snap, inode);
2935 if (!inode) {
2936 dout(" i don't have ino %llx\n", vino.ino);
2938 if (op == CEPH_CAP_OP_IMPORT) {
2939 spin_lock(&session->s_cap_lock);
2940 __queue_cap_release(session, vino.ino, cap_id,
2941 mseq, seq);
2942 spin_unlock(&session->s_cap_lock);
2944 goto flush_cap_releases;
2947 /* these will work even if we don't have a cap yet */
2948 switch (op) {
2949 case CEPH_CAP_OP_FLUSHSNAP_ACK:
2950 handle_cap_flushsnap_ack(inode, tid, h, session);
2951 goto done;
2953 case CEPH_CAP_OP_EXPORT:
2954 handle_cap_export(inode, h, session, &open_target_sessions);
2955 goto done;
2957 case CEPH_CAP_OP_IMPORT:
2958 handle_cap_import(mdsc, inode, h, session,
2959 snaptrace, snaptrace_len);
2962 /* the rest require a cap */
2963 spin_lock(&ci->i_ceph_lock);
2964 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2965 if (!cap) {
2966 dout(" no cap on %p ino %llx.%llx from mds%d\n",
2967 inode, ceph_ino(inode), ceph_snap(inode), mds);
2968 spin_unlock(&ci->i_ceph_lock);
2969 goto flush_cap_releases;
2972 /* note that each of these drops i_ceph_lock for us */
2973 switch (op) {
2974 case CEPH_CAP_OP_REVOKE:
2975 case CEPH_CAP_OP_GRANT:
2976 case CEPH_CAP_OP_IMPORT:
2977 handle_cap_grant(inode, h, session, cap, msg->middle);
2978 goto done_unlocked;
2980 case CEPH_CAP_OP_FLUSH_ACK:
2981 handle_cap_flush_ack(inode, tid, h, session, cap);
2982 break;
2984 case CEPH_CAP_OP_TRUNC:
2985 handle_cap_trunc(inode, h, session);
2986 break;
2988 default:
2989 spin_unlock(&ci->i_ceph_lock);
2990 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2991 ceph_cap_op_name(op));
2994 goto done;
2996 flush_cap_releases:
2998 * send any full release message to try to move things
2999 * along for the mds (who clearly thinks we still have this
3000 * cap).
3002 ceph_add_cap_releases(mdsc, session);
3003 ceph_send_cap_releases(mdsc, session);
3005 done:
3006 mutex_unlock(&session->s_mutex);
3007 done_unlocked:
3008 if (inode)
3009 iput(inode);
3010 if (open_target_sessions)
3011 ceph_mdsc_open_export_target_sessions(mdsc, session);
3012 return;
3014 bad:
3015 pr_err("ceph_handle_caps: corrupt message\n");
3016 ceph_msg_dump(msg);
3017 return;
3021 * Delayed work handler to process end of delayed cap release LRU list.
3023 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
3025 struct ceph_inode_info *ci;
3026 int flags = CHECK_CAPS_NODELAY;
3028 dout("check_delayed_caps\n");
3029 while (1) {
3030 spin_lock(&mdsc->cap_delay_lock);
3031 if (list_empty(&mdsc->cap_delay_list))
3032 break;
3033 ci = list_first_entry(&mdsc->cap_delay_list,
3034 struct ceph_inode_info,
3035 i_cap_delay_list);
3036 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
3037 time_before(jiffies, ci->i_hold_caps_max))
3038 break;
3039 list_del_init(&ci->i_cap_delay_list);
3040 spin_unlock(&mdsc->cap_delay_lock);
3041 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
3042 ceph_check_caps(ci, flags, NULL);
3044 spin_unlock(&mdsc->cap_delay_lock);
3048 * Flush all dirty caps to the mds
3050 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
3052 struct ceph_inode_info *ci;
3053 struct inode *inode;
3055 dout("flush_dirty_caps\n");
3056 spin_lock(&mdsc->cap_dirty_lock);
3057 while (!list_empty(&mdsc->cap_dirty)) {
3058 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info,
3059 i_dirty_item);
3060 inode = &ci->vfs_inode;
3061 ihold(inode);
3062 dout("flush_dirty_caps %p\n", inode);
3063 spin_unlock(&mdsc->cap_dirty_lock);
3064 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL);
3065 iput(inode);
3066 spin_lock(&mdsc->cap_dirty_lock);
3068 spin_unlock(&mdsc->cap_dirty_lock);
3069 dout("flush_dirty_caps done\n");
3073 * Drop open file reference. If we were the last open file,
3074 * we may need to release capabilities to the MDS (or schedule
3075 * their delayed release).
3077 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
3079 struct inode *inode = &ci->vfs_inode;
3080 int last = 0;
3082 spin_lock(&ci->i_ceph_lock);
3083 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
3084 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
3085 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
3086 if (--ci->i_nr_by_mode[fmode] == 0)
3087 last++;
3088 spin_unlock(&ci->i_ceph_lock);
3090 if (last && ci->i_vino.snap == CEPH_NOSNAP)
3091 ceph_check_caps(ci, 0, NULL);
3095 * Helpers for embedding cap and dentry lease releases into mds
3096 * requests.
3098 * @force is used by dentry_release (below) to force inclusion of a
3099 * record for the directory inode, even when there aren't any caps to
3100 * drop.
3102 int ceph_encode_inode_release(void **p, struct inode *inode,
3103 int mds, int drop, int unless, int force)
3105 struct ceph_inode_info *ci = ceph_inode(inode);
3106 struct ceph_cap *cap;
3107 struct ceph_mds_request_release *rel = *p;
3108 int used, dirty;
3109 int ret = 0;
3111 spin_lock(&ci->i_ceph_lock);
3112 used = __ceph_caps_used(ci);
3113 dirty = __ceph_caps_dirty(ci);
3115 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
3116 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
3117 ceph_cap_string(unless));
3119 /* only drop unused, clean caps */
3120 drop &= ~(used | dirty);
3122 cap = __get_cap_for_mds(ci, mds);
3123 if (cap && __cap_is_valid(cap)) {
3124 if (force ||
3125 ((cap->issued & drop) &&
3126 (cap->issued & unless) == 0)) {
3127 if ((cap->issued & drop) &&
3128 (cap->issued & unless) == 0) {
3129 int wanted = __ceph_caps_wanted(ci);
3130 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0)
3131 wanted |= cap->mds_wanted;
3132 dout("encode_inode_release %p cap %p "
3133 "%s -> %s, wanted %s -> %s\n", inode, cap,
3134 ceph_cap_string(cap->issued),
3135 ceph_cap_string(cap->issued & ~drop),
3136 ceph_cap_string(cap->mds_wanted),
3137 ceph_cap_string(wanted));
3139 cap->issued &= ~drop;
3140 cap->implemented &= ~drop;
3141 cap->mds_wanted = wanted;
3142 } else {
3143 dout("encode_inode_release %p cap %p %s"
3144 " (force)\n", inode, cap,
3145 ceph_cap_string(cap->issued));
3148 rel->ino = cpu_to_le64(ceph_ino(inode));
3149 rel->cap_id = cpu_to_le64(cap->cap_id);
3150 rel->seq = cpu_to_le32(cap->seq);
3151 rel->issue_seq = cpu_to_le32(cap->issue_seq),
3152 rel->mseq = cpu_to_le32(cap->mseq);
3153 rel->caps = cpu_to_le32(cap->issued);
3154 rel->wanted = cpu_to_le32(cap->mds_wanted);
3155 rel->dname_len = 0;
3156 rel->dname_seq = 0;
3157 *p += sizeof(*rel);
3158 ret = 1;
3159 } else {
3160 dout("encode_inode_release %p cap %p %s\n",
3161 inode, cap, ceph_cap_string(cap->issued));
3164 spin_unlock(&ci->i_ceph_lock);
3165 return ret;
3168 int ceph_encode_dentry_release(void **p, struct dentry *dentry,
3169 int mds, int drop, int unless)
3171 struct inode *dir = dentry->d_parent->d_inode;
3172 struct ceph_mds_request_release *rel = *p;
3173 struct ceph_dentry_info *di = ceph_dentry(dentry);
3174 int force = 0;
3175 int ret;
3178 * force an record for the directory caps if we have a dentry lease.
3179 * this is racy (can't take i_ceph_lock and d_lock together), but it
3180 * doesn't have to be perfect; the mds will revoke anything we don't
3181 * release.
3183 spin_lock(&dentry->d_lock);
3184 if (di->lease_session && di->lease_session->s_mds == mds)
3185 force = 1;
3186 spin_unlock(&dentry->d_lock);
3188 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
3190 spin_lock(&dentry->d_lock);
3191 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
3192 dout("encode_dentry_release %p mds%d seq %d\n",
3193 dentry, mds, (int)di->lease_seq);
3194 rel->dname_len = cpu_to_le32(dentry->d_name.len);
3195 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
3196 *p += dentry->d_name.len;
3197 rel->dname_seq = cpu_to_le32(di->lease_seq);
3198 __ceph_mdsc_drop_dentry_lease(dentry);
3200 spin_unlock(&dentry->d_lock);
3201 return ret;