Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / btrfs / transaction.c
blobc6a872a8a46862948e93c343cdd0c7479caf3883
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(transaction->delayed_refs.root.rb_node);
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
78 static noinline void switch_commit_root(struct btrfs_root *root)
80 free_extent_buffer(root->commit_root);
81 root->commit_root = btrfs_root_node(root);
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 unsigned int type)
87 if (type & TRANS_EXTWRITERS)
88 atomic_inc(&trans->num_extwriters);
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 unsigned int type)
94 if (type & TRANS_EXTWRITERS)
95 atomic_dec(&trans->num_extwriters);
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 unsigned int type)
101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
106 return atomic_read(&trans->num_extwriters);
110 * either allocate a new transaction or hop into the existing one
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
114 struct btrfs_transaction *cur_trans;
115 struct btrfs_fs_info *fs_info = root->fs_info;
117 spin_lock(&fs_info->trans_lock);
118 loop:
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 spin_unlock(&fs_info->trans_lock);
122 return -EROFS;
125 cur_trans = fs_info->running_transaction;
126 if (cur_trans) {
127 if (cur_trans->aborted) {
128 spin_unlock(&fs_info->trans_lock);
129 return cur_trans->aborted;
131 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EBUSY;
135 atomic_inc(&cur_trans->use_count);
136 atomic_inc(&cur_trans->num_writers);
137 extwriter_counter_inc(cur_trans, type);
138 spin_unlock(&fs_info->trans_lock);
139 return 0;
141 spin_unlock(&fs_info->trans_lock);
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
147 if (type == TRANS_ATTACH)
148 return -ENOENT;
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
154 BUG_ON(type == TRANS_JOIN_NOLOCK);
156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 if (!cur_trans)
158 return -ENOMEM;
160 spin_lock(&fs_info->trans_lock);
161 if (fs_info->running_transaction) {
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
166 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 goto loop;
168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 spin_unlock(&fs_info->trans_lock);
170 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 return -EROFS;
174 atomic_set(&cur_trans->num_writers, 1);
175 extwriter_counter_init(cur_trans, type);
176 init_waitqueue_head(&cur_trans->writer_wait);
177 init_waitqueue_head(&cur_trans->commit_wait);
178 cur_trans->state = TRANS_STATE_RUNNING;
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
183 atomic_set(&cur_trans->use_count, 2);
184 cur_trans->start_time = get_seconds();
186 cur_trans->delayed_refs.root = RB_ROOT;
187 cur_trans->delayed_refs.num_entries = 0;
188 cur_trans->delayed_refs.num_heads_ready = 0;
189 cur_trans->delayed_refs.num_heads = 0;
190 cur_trans->delayed_refs.flushing = 0;
191 cur_trans->delayed_refs.run_delayed_start = 0;
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
197 smp_mb();
198 if (!list_empty(&fs_info->tree_mod_seq_list))
199 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info->tree_mod_seq, 0);
206 spin_lock_init(&cur_trans->delayed_refs.lock);
207 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209 init_waitqueue_head(&cur_trans->delayed_refs.wait);
211 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212 INIT_LIST_HEAD(&cur_trans->ordered_operations);
213 INIT_LIST_HEAD(&cur_trans->pending_chunks);
214 list_add_tail(&cur_trans->list, &fs_info->trans_list);
215 extent_io_tree_init(&cur_trans->dirty_pages,
216 fs_info->btree_inode->i_mapping);
217 fs_info->generation++;
218 cur_trans->transid = fs_info->generation;
219 fs_info->running_transaction = cur_trans;
220 cur_trans->aborted = 0;
221 spin_unlock(&fs_info->trans_lock);
223 return 0;
227 * this does all the record keeping required to make sure that a reference
228 * counted root is properly recorded in a given transaction. This is required
229 * to make sure the old root from before we joined the transaction is deleted
230 * when the transaction commits
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233 struct btrfs_root *root)
235 if (root->ref_cows && root->last_trans < trans->transid) {
236 WARN_ON(root == root->fs_info->extent_root);
237 WARN_ON(root->commit_root != root->node);
240 * see below for in_trans_setup usage rules
241 * we have the reloc mutex held now, so there
242 * is only one writer in this function
244 root->in_trans_setup = 1;
246 /* make sure readers find in_trans_setup before
247 * they find our root->last_trans update
249 smp_wmb();
251 spin_lock(&root->fs_info->fs_roots_radix_lock);
252 if (root->last_trans == trans->transid) {
253 spin_unlock(&root->fs_info->fs_roots_radix_lock);
254 return 0;
256 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257 (unsigned long)root->root_key.objectid,
258 BTRFS_ROOT_TRANS_TAG);
259 spin_unlock(&root->fs_info->fs_roots_radix_lock);
260 root->last_trans = trans->transid;
262 /* this is pretty tricky. We don't want to
263 * take the relocation lock in btrfs_record_root_in_trans
264 * unless we're really doing the first setup for this root in
265 * this transaction.
267 * Normally we'd use root->last_trans as a flag to decide
268 * if we want to take the expensive mutex.
270 * But, we have to set root->last_trans before we
271 * init the relocation root, otherwise, we trip over warnings
272 * in ctree.c. The solution used here is to flag ourselves
273 * with root->in_trans_setup. When this is 1, we're still
274 * fixing up the reloc trees and everyone must wait.
276 * When this is zero, they can trust root->last_trans and fly
277 * through btrfs_record_root_in_trans without having to take the
278 * lock. smp_wmb() makes sure that all the writes above are
279 * done before we pop in the zero below
281 btrfs_init_reloc_root(trans, root);
282 smp_wmb();
283 root->in_trans_setup = 0;
285 return 0;
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290 struct btrfs_root *root)
292 if (!root->ref_cows)
293 return 0;
296 * see record_root_in_trans for comments about in_trans_setup usage
297 * and barriers
299 smp_rmb();
300 if (root->last_trans == trans->transid &&
301 !root->in_trans_setup)
302 return 0;
304 mutex_lock(&root->fs_info->reloc_mutex);
305 record_root_in_trans(trans, root);
306 mutex_unlock(&root->fs_info->reloc_mutex);
308 return 0;
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
313 return (trans->state >= TRANS_STATE_BLOCKED &&
314 trans->state < TRANS_STATE_UNBLOCKED &&
315 !trans->aborted);
318 /* wait for commit against the current transaction to become unblocked
319 * when this is done, it is safe to start a new transaction, but the current
320 * transaction might not be fully on disk.
322 static void wait_current_trans(struct btrfs_root *root)
324 struct btrfs_transaction *cur_trans;
326 spin_lock(&root->fs_info->trans_lock);
327 cur_trans = root->fs_info->running_transaction;
328 if (cur_trans && is_transaction_blocked(cur_trans)) {
329 atomic_inc(&cur_trans->use_count);
330 spin_unlock(&root->fs_info->trans_lock);
332 wait_event(root->fs_info->transaction_wait,
333 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334 cur_trans->aborted);
335 btrfs_put_transaction(cur_trans);
336 } else {
337 spin_unlock(&root->fs_info->trans_lock);
341 static int may_wait_transaction(struct btrfs_root *root, int type)
343 if (root->fs_info->log_root_recovering)
344 return 0;
346 if (type == TRANS_USERSPACE)
347 return 1;
349 if (type == TRANS_START &&
350 !atomic_read(&root->fs_info->open_ioctl_trans))
351 return 1;
353 return 0;
356 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
358 if (!root->fs_info->reloc_ctl ||
359 !root->ref_cows ||
360 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
361 root->reloc_root)
362 return false;
364 return true;
367 static struct btrfs_trans_handle *
368 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
369 enum btrfs_reserve_flush_enum flush)
371 struct btrfs_trans_handle *h;
372 struct btrfs_transaction *cur_trans;
373 u64 num_bytes = 0;
374 u64 qgroup_reserved = 0;
375 bool reloc_reserved = false;
376 int ret;
378 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
379 return ERR_PTR(-EROFS);
381 if (current->journal_info) {
382 WARN_ON(type & TRANS_EXTWRITERS);
383 h = current->journal_info;
384 h->use_count++;
385 WARN_ON(h->use_count > 2);
386 h->orig_rsv = h->block_rsv;
387 h->block_rsv = NULL;
388 goto got_it;
392 * Do the reservation before we join the transaction so we can do all
393 * the appropriate flushing if need be.
395 if (num_items > 0 && root != root->fs_info->chunk_root) {
396 if (root->fs_info->quota_enabled &&
397 is_fstree(root->root_key.objectid)) {
398 qgroup_reserved = num_items * root->leafsize;
399 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
400 if (ret)
401 return ERR_PTR(ret);
404 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
406 * Do the reservation for the relocation root creation
408 if (unlikely(need_reserve_reloc_root(root))) {
409 num_bytes += root->nodesize;
410 reloc_reserved = true;
413 ret = btrfs_block_rsv_add(root,
414 &root->fs_info->trans_block_rsv,
415 num_bytes, flush);
416 if (ret)
417 goto reserve_fail;
419 again:
420 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
421 if (!h) {
422 ret = -ENOMEM;
423 goto alloc_fail;
427 * If we are JOIN_NOLOCK we're already committing a transaction and
428 * waiting on this guy, so we don't need to do the sb_start_intwrite
429 * because we're already holding a ref. We need this because we could
430 * have raced in and did an fsync() on a file which can kick a commit
431 * and then we deadlock with somebody doing a freeze.
433 * If we are ATTACH, it means we just want to catch the current
434 * transaction and commit it, so we needn't do sb_start_intwrite().
436 if (type & __TRANS_FREEZABLE)
437 sb_start_intwrite(root->fs_info->sb);
439 if (may_wait_transaction(root, type))
440 wait_current_trans(root);
442 do {
443 ret = join_transaction(root, type);
444 if (ret == -EBUSY) {
445 wait_current_trans(root);
446 if (unlikely(type == TRANS_ATTACH))
447 ret = -ENOENT;
449 } while (ret == -EBUSY);
451 if (ret < 0) {
452 /* We must get the transaction if we are JOIN_NOLOCK. */
453 BUG_ON(type == TRANS_JOIN_NOLOCK);
454 goto join_fail;
457 cur_trans = root->fs_info->running_transaction;
459 h->transid = cur_trans->transid;
460 h->transaction = cur_trans;
461 h->blocks_used = 0;
462 h->bytes_reserved = 0;
463 h->root = root;
464 h->delayed_ref_updates = 0;
465 h->use_count = 1;
466 h->adding_csums = 0;
467 h->block_rsv = NULL;
468 h->orig_rsv = NULL;
469 h->aborted = 0;
470 h->qgroup_reserved = 0;
471 h->delayed_ref_elem.seq = 0;
472 h->type = type;
473 h->allocating_chunk = false;
474 h->reloc_reserved = false;
475 INIT_LIST_HEAD(&h->qgroup_ref_list);
476 INIT_LIST_HEAD(&h->new_bgs);
478 smp_mb();
479 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
480 may_wait_transaction(root, type)) {
481 btrfs_commit_transaction(h, root);
482 goto again;
485 if (num_bytes) {
486 trace_btrfs_space_reservation(root->fs_info, "transaction",
487 h->transid, num_bytes, 1);
488 h->block_rsv = &root->fs_info->trans_block_rsv;
489 h->bytes_reserved = num_bytes;
490 h->reloc_reserved = reloc_reserved;
492 h->qgroup_reserved = qgroup_reserved;
494 got_it:
495 btrfs_record_root_in_trans(h, root);
497 if (!current->journal_info && type != TRANS_USERSPACE)
498 current->journal_info = h;
499 return h;
501 join_fail:
502 if (type & __TRANS_FREEZABLE)
503 sb_end_intwrite(root->fs_info->sb);
504 kmem_cache_free(btrfs_trans_handle_cachep, h);
505 alloc_fail:
506 if (num_bytes)
507 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
508 num_bytes);
509 reserve_fail:
510 if (qgroup_reserved)
511 btrfs_qgroup_free(root, qgroup_reserved);
512 return ERR_PTR(ret);
515 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
516 int num_items)
518 return start_transaction(root, num_items, TRANS_START,
519 BTRFS_RESERVE_FLUSH_ALL);
522 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
523 struct btrfs_root *root, int num_items)
525 return start_transaction(root, num_items, TRANS_START,
526 BTRFS_RESERVE_FLUSH_LIMIT);
529 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
531 return start_transaction(root, 0, TRANS_JOIN, 0);
534 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
536 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
539 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
541 return start_transaction(root, 0, TRANS_USERSPACE, 0);
545 * btrfs_attach_transaction() - catch the running transaction
547 * It is used when we want to commit the current the transaction, but
548 * don't want to start a new one.
550 * Note: If this function return -ENOENT, it just means there is no
551 * running transaction. But it is possible that the inactive transaction
552 * is still in the memory, not fully on disk. If you hope there is no
553 * inactive transaction in the fs when -ENOENT is returned, you should
554 * invoke
555 * btrfs_attach_transaction_barrier()
557 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
559 return start_transaction(root, 0, TRANS_ATTACH, 0);
563 * btrfs_attach_transaction_barrier() - catch the running transaction
565 * It is similar to the above function, the differentia is this one
566 * will wait for all the inactive transactions until they fully
567 * complete.
569 struct btrfs_trans_handle *
570 btrfs_attach_transaction_barrier(struct btrfs_root *root)
572 struct btrfs_trans_handle *trans;
574 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
575 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
576 btrfs_wait_for_commit(root, 0);
578 return trans;
581 /* wait for a transaction commit to be fully complete */
582 static noinline void wait_for_commit(struct btrfs_root *root,
583 struct btrfs_transaction *commit)
585 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
588 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
590 struct btrfs_transaction *cur_trans = NULL, *t;
591 int ret = 0;
593 if (transid) {
594 if (transid <= root->fs_info->last_trans_committed)
595 goto out;
597 ret = -EINVAL;
598 /* find specified transaction */
599 spin_lock(&root->fs_info->trans_lock);
600 list_for_each_entry(t, &root->fs_info->trans_list, list) {
601 if (t->transid == transid) {
602 cur_trans = t;
603 atomic_inc(&cur_trans->use_count);
604 ret = 0;
605 break;
607 if (t->transid > transid) {
608 ret = 0;
609 break;
612 spin_unlock(&root->fs_info->trans_lock);
613 /* The specified transaction doesn't exist */
614 if (!cur_trans)
615 goto out;
616 } else {
617 /* find newest transaction that is committing | committed */
618 spin_lock(&root->fs_info->trans_lock);
619 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
620 list) {
621 if (t->state >= TRANS_STATE_COMMIT_START) {
622 if (t->state == TRANS_STATE_COMPLETED)
623 break;
624 cur_trans = t;
625 atomic_inc(&cur_trans->use_count);
626 break;
629 spin_unlock(&root->fs_info->trans_lock);
630 if (!cur_trans)
631 goto out; /* nothing committing|committed */
634 wait_for_commit(root, cur_trans);
635 btrfs_put_transaction(cur_trans);
636 out:
637 return ret;
640 void btrfs_throttle(struct btrfs_root *root)
642 if (!atomic_read(&root->fs_info->open_ioctl_trans))
643 wait_current_trans(root);
646 static int should_end_transaction(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root)
649 if (root->fs_info->global_block_rsv.space_info->full &&
650 btrfs_should_throttle_delayed_refs(trans, root))
651 return 1;
653 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
656 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root)
659 struct btrfs_transaction *cur_trans = trans->transaction;
660 int updates;
661 int err;
663 smp_mb();
664 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
665 cur_trans->delayed_refs.flushing)
666 return 1;
668 updates = trans->delayed_ref_updates;
669 trans->delayed_ref_updates = 0;
670 if (updates) {
671 err = btrfs_run_delayed_refs(trans, root, updates);
672 if (err) /* Error code will also eval true */
673 return err;
676 return should_end_transaction(trans, root);
679 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root, int throttle)
682 struct btrfs_transaction *cur_trans = trans->transaction;
683 struct btrfs_fs_info *info = root->fs_info;
684 unsigned long cur = trans->delayed_ref_updates;
685 int lock = (trans->type != TRANS_JOIN_NOLOCK);
686 int err = 0;
688 if (--trans->use_count) {
689 trans->block_rsv = trans->orig_rsv;
690 return 0;
694 * do the qgroup accounting as early as possible
696 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
698 btrfs_trans_release_metadata(trans, root);
699 trans->block_rsv = NULL;
701 if (trans->qgroup_reserved) {
703 * the same root has to be passed here between start_transaction
704 * and end_transaction. Subvolume quota depends on this.
706 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
707 trans->qgroup_reserved = 0;
710 if (!list_empty(&trans->new_bgs))
711 btrfs_create_pending_block_groups(trans, root);
713 trans->delayed_ref_updates = 0;
714 if (btrfs_should_throttle_delayed_refs(trans, root)) {
715 cur = max_t(unsigned long, cur, 1);
716 trans->delayed_ref_updates = 0;
717 btrfs_run_delayed_refs(trans, root, cur);
720 btrfs_trans_release_metadata(trans, root);
721 trans->block_rsv = NULL;
723 if (!list_empty(&trans->new_bgs))
724 btrfs_create_pending_block_groups(trans, root);
726 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
727 should_end_transaction(trans, root) &&
728 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
729 spin_lock(&info->trans_lock);
730 if (cur_trans->state == TRANS_STATE_RUNNING)
731 cur_trans->state = TRANS_STATE_BLOCKED;
732 spin_unlock(&info->trans_lock);
735 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
736 if (throttle) {
738 * We may race with somebody else here so end up having
739 * to call end_transaction on ourselves again, so inc
740 * our use_count.
742 trans->use_count++;
743 return btrfs_commit_transaction(trans, root);
744 } else {
745 wake_up_process(info->transaction_kthread);
749 if (trans->type & __TRANS_FREEZABLE)
750 sb_end_intwrite(root->fs_info->sb);
752 WARN_ON(cur_trans != info->running_transaction);
753 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
754 atomic_dec(&cur_trans->num_writers);
755 extwriter_counter_dec(cur_trans, trans->type);
757 smp_mb();
758 if (waitqueue_active(&cur_trans->writer_wait))
759 wake_up(&cur_trans->writer_wait);
760 btrfs_put_transaction(cur_trans);
762 if (current->journal_info == trans)
763 current->journal_info = NULL;
765 if (throttle)
766 btrfs_run_delayed_iputs(root);
768 if (trans->aborted ||
769 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
770 wake_up_process(info->transaction_kthread);
771 err = -EIO;
773 assert_qgroups_uptodate(trans);
775 kmem_cache_free(btrfs_trans_handle_cachep, trans);
776 return err;
779 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
780 struct btrfs_root *root)
782 return __btrfs_end_transaction(trans, root, 0);
785 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
786 struct btrfs_root *root)
788 return __btrfs_end_transaction(trans, root, 1);
791 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
792 struct btrfs_root *root)
794 return __btrfs_end_transaction(trans, root, 1);
798 * when btree blocks are allocated, they have some corresponding bits set for
799 * them in one of two extent_io trees. This is used to make sure all of
800 * those extents are sent to disk but does not wait on them
802 int btrfs_write_marked_extents(struct btrfs_root *root,
803 struct extent_io_tree *dirty_pages, int mark)
805 int err = 0;
806 int werr = 0;
807 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
808 struct extent_state *cached_state = NULL;
809 u64 start = 0;
810 u64 end;
812 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
813 mark, &cached_state)) {
814 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
815 mark, &cached_state, GFP_NOFS);
816 cached_state = NULL;
817 err = filemap_fdatawrite_range(mapping, start, end);
818 if (err)
819 werr = err;
820 cond_resched();
821 start = end + 1;
823 if (err)
824 werr = err;
825 return werr;
829 * when btree blocks are allocated, they have some corresponding bits set for
830 * them in one of two extent_io trees. This is used to make sure all of
831 * those extents are on disk for transaction or log commit. We wait
832 * on all the pages and clear them from the dirty pages state tree
834 int btrfs_wait_marked_extents(struct btrfs_root *root,
835 struct extent_io_tree *dirty_pages, int mark)
837 int err = 0;
838 int werr = 0;
839 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
840 struct extent_state *cached_state = NULL;
841 u64 start = 0;
842 u64 end;
844 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
845 EXTENT_NEED_WAIT, &cached_state)) {
846 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
847 0, 0, &cached_state, GFP_NOFS);
848 err = filemap_fdatawait_range(mapping, start, end);
849 if (err)
850 werr = err;
851 cond_resched();
852 start = end + 1;
854 if (err)
855 werr = err;
856 return werr;
860 * when btree blocks are allocated, they have some corresponding bits set for
861 * them in one of two extent_io trees. This is used to make sure all of
862 * those extents are on disk for transaction or log commit
864 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
865 struct extent_io_tree *dirty_pages, int mark)
867 int ret;
868 int ret2;
869 struct blk_plug plug;
871 blk_start_plug(&plug);
872 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
873 blk_finish_plug(&plug);
874 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
876 if (ret)
877 return ret;
878 if (ret2)
879 return ret2;
880 return 0;
883 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
884 struct btrfs_root *root)
886 if (!trans || !trans->transaction) {
887 struct inode *btree_inode;
888 btree_inode = root->fs_info->btree_inode;
889 return filemap_write_and_wait(btree_inode->i_mapping);
891 return btrfs_write_and_wait_marked_extents(root,
892 &trans->transaction->dirty_pages,
893 EXTENT_DIRTY);
897 * this is used to update the root pointer in the tree of tree roots.
899 * But, in the case of the extent allocation tree, updating the root
900 * pointer may allocate blocks which may change the root of the extent
901 * allocation tree.
903 * So, this loops and repeats and makes sure the cowonly root didn't
904 * change while the root pointer was being updated in the metadata.
906 static int update_cowonly_root(struct btrfs_trans_handle *trans,
907 struct btrfs_root *root)
909 int ret;
910 u64 old_root_bytenr;
911 u64 old_root_used;
912 struct btrfs_root *tree_root = root->fs_info->tree_root;
914 old_root_used = btrfs_root_used(&root->root_item);
915 btrfs_write_dirty_block_groups(trans, root);
917 while (1) {
918 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
919 if (old_root_bytenr == root->node->start &&
920 old_root_used == btrfs_root_used(&root->root_item))
921 break;
923 btrfs_set_root_node(&root->root_item, root->node);
924 ret = btrfs_update_root(trans, tree_root,
925 &root->root_key,
926 &root->root_item);
927 if (ret)
928 return ret;
930 old_root_used = btrfs_root_used(&root->root_item);
931 ret = btrfs_write_dirty_block_groups(trans, root);
932 if (ret)
933 return ret;
936 if (root != root->fs_info->extent_root)
937 switch_commit_root(root);
939 return 0;
943 * update all the cowonly tree roots on disk
945 * The error handling in this function may not be obvious. Any of the
946 * failures will cause the file system to go offline. We still need
947 * to clean up the delayed refs.
949 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
950 struct btrfs_root *root)
952 struct btrfs_fs_info *fs_info = root->fs_info;
953 struct list_head *next;
954 struct extent_buffer *eb;
955 int ret;
957 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
958 if (ret)
959 return ret;
961 eb = btrfs_lock_root_node(fs_info->tree_root);
962 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
963 0, &eb);
964 btrfs_tree_unlock(eb);
965 free_extent_buffer(eb);
967 if (ret)
968 return ret;
970 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
971 if (ret)
972 return ret;
974 ret = btrfs_run_dev_stats(trans, root->fs_info);
975 if (ret)
976 return ret;
977 ret = btrfs_run_dev_replace(trans, root->fs_info);
978 if (ret)
979 return ret;
980 ret = btrfs_run_qgroups(trans, root->fs_info);
981 if (ret)
982 return ret;
984 /* run_qgroups might have added some more refs */
985 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
986 if (ret)
987 return ret;
989 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
990 next = fs_info->dirty_cowonly_roots.next;
991 list_del_init(next);
992 root = list_entry(next, struct btrfs_root, dirty_list);
994 ret = update_cowonly_root(trans, root);
995 if (ret)
996 return ret;
999 down_write(&fs_info->extent_commit_sem);
1000 switch_commit_root(fs_info->extent_root);
1001 up_write(&fs_info->extent_commit_sem);
1003 btrfs_after_dev_replace_commit(fs_info);
1005 return 0;
1009 * dead roots are old snapshots that need to be deleted. This allocates
1010 * a dirty root struct and adds it into the list of dead roots that need to
1011 * be deleted
1013 void btrfs_add_dead_root(struct btrfs_root *root)
1015 spin_lock(&root->fs_info->trans_lock);
1016 if (list_empty(&root->root_list))
1017 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1018 spin_unlock(&root->fs_info->trans_lock);
1022 * update all the cowonly tree roots on disk
1024 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1025 struct btrfs_root *root)
1027 struct btrfs_root *gang[8];
1028 struct btrfs_fs_info *fs_info = root->fs_info;
1029 int i;
1030 int ret;
1031 int err = 0;
1033 spin_lock(&fs_info->fs_roots_radix_lock);
1034 while (1) {
1035 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1036 (void **)gang, 0,
1037 ARRAY_SIZE(gang),
1038 BTRFS_ROOT_TRANS_TAG);
1039 if (ret == 0)
1040 break;
1041 for (i = 0; i < ret; i++) {
1042 root = gang[i];
1043 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1044 (unsigned long)root->root_key.objectid,
1045 BTRFS_ROOT_TRANS_TAG);
1046 spin_unlock(&fs_info->fs_roots_radix_lock);
1048 btrfs_free_log(trans, root);
1049 btrfs_update_reloc_root(trans, root);
1050 btrfs_orphan_commit_root(trans, root);
1052 btrfs_save_ino_cache(root, trans);
1054 /* see comments in should_cow_block() */
1055 root->force_cow = 0;
1056 smp_wmb();
1058 if (root->commit_root != root->node) {
1059 mutex_lock(&root->fs_commit_mutex);
1060 switch_commit_root(root);
1061 btrfs_unpin_free_ino(root);
1062 mutex_unlock(&root->fs_commit_mutex);
1064 btrfs_set_root_node(&root->root_item,
1065 root->node);
1068 err = btrfs_update_root(trans, fs_info->tree_root,
1069 &root->root_key,
1070 &root->root_item);
1071 spin_lock(&fs_info->fs_roots_radix_lock);
1072 if (err)
1073 break;
1076 spin_unlock(&fs_info->fs_roots_radix_lock);
1077 return err;
1081 * defrag a given btree.
1082 * Every leaf in the btree is read and defragged.
1084 int btrfs_defrag_root(struct btrfs_root *root)
1086 struct btrfs_fs_info *info = root->fs_info;
1087 struct btrfs_trans_handle *trans;
1088 int ret;
1090 if (xchg(&root->defrag_running, 1))
1091 return 0;
1093 while (1) {
1094 trans = btrfs_start_transaction(root, 0);
1095 if (IS_ERR(trans))
1096 return PTR_ERR(trans);
1098 ret = btrfs_defrag_leaves(trans, root);
1100 btrfs_end_transaction(trans, root);
1101 btrfs_btree_balance_dirty(info->tree_root);
1102 cond_resched();
1104 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1105 break;
1107 if (btrfs_defrag_cancelled(root->fs_info)) {
1108 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1109 ret = -EAGAIN;
1110 break;
1113 root->defrag_running = 0;
1114 return ret;
1118 * new snapshots need to be created at a very specific time in the
1119 * transaction commit. This does the actual creation.
1121 * Note:
1122 * If the error which may affect the commitment of the current transaction
1123 * happens, we should return the error number. If the error which just affect
1124 * the creation of the pending snapshots, just return 0.
1126 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1127 struct btrfs_fs_info *fs_info,
1128 struct btrfs_pending_snapshot *pending)
1130 struct btrfs_key key;
1131 struct btrfs_root_item *new_root_item;
1132 struct btrfs_root *tree_root = fs_info->tree_root;
1133 struct btrfs_root *root = pending->root;
1134 struct btrfs_root *parent_root;
1135 struct btrfs_block_rsv *rsv;
1136 struct inode *parent_inode;
1137 struct btrfs_path *path;
1138 struct btrfs_dir_item *dir_item;
1139 struct dentry *dentry;
1140 struct extent_buffer *tmp;
1141 struct extent_buffer *old;
1142 struct timespec cur_time = CURRENT_TIME;
1143 int ret = 0;
1144 u64 to_reserve = 0;
1145 u64 index = 0;
1146 u64 objectid;
1147 u64 root_flags;
1148 uuid_le new_uuid;
1150 path = btrfs_alloc_path();
1151 if (!path) {
1152 pending->error = -ENOMEM;
1153 return 0;
1156 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1157 if (!new_root_item) {
1158 pending->error = -ENOMEM;
1159 goto root_item_alloc_fail;
1162 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1163 if (pending->error)
1164 goto no_free_objectid;
1166 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1168 if (to_reserve > 0) {
1169 pending->error = btrfs_block_rsv_add(root,
1170 &pending->block_rsv,
1171 to_reserve,
1172 BTRFS_RESERVE_NO_FLUSH);
1173 if (pending->error)
1174 goto no_free_objectid;
1177 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1178 root->root_key.objectid,
1179 objectid, pending->inherit);
1180 if (pending->error)
1181 goto no_free_objectid;
1183 key.objectid = objectid;
1184 key.offset = (u64)-1;
1185 key.type = BTRFS_ROOT_ITEM_KEY;
1187 rsv = trans->block_rsv;
1188 trans->block_rsv = &pending->block_rsv;
1189 trans->bytes_reserved = trans->block_rsv->reserved;
1191 dentry = pending->dentry;
1192 parent_inode = pending->dir;
1193 parent_root = BTRFS_I(parent_inode)->root;
1194 record_root_in_trans(trans, parent_root);
1197 * insert the directory item
1199 ret = btrfs_set_inode_index(parent_inode, &index);
1200 BUG_ON(ret); /* -ENOMEM */
1202 /* check if there is a file/dir which has the same name. */
1203 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1204 btrfs_ino(parent_inode),
1205 dentry->d_name.name,
1206 dentry->d_name.len, 0);
1207 if (dir_item != NULL && !IS_ERR(dir_item)) {
1208 pending->error = -EEXIST;
1209 goto dir_item_existed;
1210 } else if (IS_ERR(dir_item)) {
1211 ret = PTR_ERR(dir_item);
1212 btrfs_abort_transaction(trans, root, ret);
1213 goto fail;
1215 btrfs_release_path(path);
1218 * pull in the delayed directory update
1219 * and the delayed inode item
1220 * otherwise we corrupt the FS during
1221 * snapshot
1223 ret = btrfs_run_delayed_items(trans, root);
1224 if (ret) { /* Transaction aborted */
1225 btrfs_abort_transaction(trans, root, ret);
1226 goto fail;
1229 record_root_in_trans(trans, root);
1230 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1231 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1232 btrfs_check_and_init_root_item(new_root_item);
1234 root_flags = btrfs_root_flags(new_root_item);
1235 if (pending->readonly)
1236 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1237 else
1238 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1239 btrfs_set_root_flags(new_root_item, root_flags);
1241 btrfs_set_root_generation_v2(new_root_item,
1242 trans->transid);
1243 uuid_le_gen(&new_uuid);
1244 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1245 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1246 BTRFS_UUID_SIZE);
1247 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1248 memset(new_root_item->received_uuid, 0,
1249 sizeof(new_root_item->received_uuid));
1250 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1251 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1252 btrfs_set_root_stransid(new_root_item, 0);
1253 btrfs_set_root_rtransid(new_root_item, 0);
1255 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1256 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1257 btrfs_set_root_otransid(new_root_item, trans->transid);
1259 old = btrfs_lock_root_node(root);
1260 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1261 if (ret) {
1262 btrfs_tree_unlock(old);
1263 free_extent_buffer(old);
1264 btrfs_abort_transaction(trans, root, ret);
1265 goto fail;
1268 btrfs_set_lock_blocking(old);
1270 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1271 /* clean up in any case */
1272 btrfs_tree_unlock(old);
1273 free_extent_buffer(old);
1274 if (ret) {
1275 btrfs_abort_transaction(trans, root, ret);
1276 goto fail;
1279 /* see comments in should_cow_block() */
1280 root->force_cow = 1;
1281 smp_wmb();
1283 btrfs_set_root_node(new_root_item, tmp);
1284 /* record when the snapshot was created in key.offset */
1285 key.offset = trans->transid;
1286 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1287 btrfs_tree_unlock(tmp);
1288 free_extent_buffer(tmp);
1289 if (ret) {
1290 btrfs_abort_transaction(trans, root, ret);
1291 goto fail;
1295 * insert root back/forward references
1297 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1298 parent_root->root_key.objectid,
1299 btrfs_ino(parent_inode), index,
1300 dentry->d_name.name, dentry->d_name.len);
1301 if (ret) {
1302 btrfs_abort_transaction(trans, root, ret);
1303 goto fail;
1306 key.offset = (u64)-1;
1307 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1308 if (IS_ERR(pending->snap)) {
1309 ret = PTR_ERR(pending->snap);
1310 btrfs_abort_transaction(trans, root, ret);
1311 goto fail;
1314 ret = btrfs_reloc_post_snapshot(trans, pending);
1315 if (ret) {
1316 btrfs_abort_transaction(trans, root, ret);
1317 goto fail;
1320 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1321 if (ret) {
1322 btrfs_abort_transaction(trans, root, ret);
1323 goto fail;
1326 ret = btrfs_insert_dir_item(trans, parent_root,
1327 dentry->d_name.name, dentry->d_name.len,
1328 parent_inode, &key,
1329 BTRFS_FT_DIR, index);
1330 /* We have check then name at the beginning, so it is impossible. */
1331 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1332 if (ret) {
1333 btrfs_abort_transaction(trans, root, ret);
1334 goto fail;
1337 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1338 dentry->d_name.len * 2);
1339 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1340 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1341 if (ret) {
1342 btrfs_abort_transaction(trans, root, ret);
1343 goto fail;
1345 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1346 BTRFS_UUID_KEY_SUBVOL, objectid);
1347 if (ret) {
1348 btrfs_abort_transaction(trans, root, ret);
1349 goto fail;
1351 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1352 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1353 new_root_item->received_uuid,
1354 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1355 objectid);
1356 if (ret && ret != -EEXIST) {
1357 btrfs_abort_transaction(trans, root, ret);
1358 goto fail;
1361 fail:
1362 pending->error = ret;
1363 dir_item_existed:
1364 trans->block_rsv = rsv;
1365 trans->bytes_reserved = 0;
1366 no_free_objectid:
1367 kfree(new_root_item);
1368 root_item_alloc_fail:
1369 btrfs_free_path(path);
1370 return ret;
1374 * create all the snapshots we've scheduled for creation
1376 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1377 struct btrfs_fs_info *fs_info)
1379 struct btrfs_pending_snapshot *pending, *next;
1380 struct list_head *head = &trans->transaction->pending_snapshots;
1381 int ret = 0;
1383 list_for_each_entry_safe(pending, next, head, list) {
1384 list_del(&pending->list);
1385 ret = create_pending_snapshot(trans, fs_info, pending);
1386 if (ret)
1387 break;
1389 return ret;
1392 static void update_super_roots(struct btrfs_root *root)
1394 struct btrfs_root_item *root_item;
1395 struct btrfs_super_block *super;
1397 super = root->fs_info->super_copy;
1399 root_item = &root->fs_info->chunk_root->root_item;
1400 super->chunk_root = root_item->bytenr;
1401 super->chunk_root_generation = root_item->generation;
1402 super->chunk_root_level = root_item->level;
1404 root_item = &root->fs_info->tree_root->root_item;
1405 super->root = root_item->bytenr;
1406 super->generation = root_item->generation;
1407 super->root_level = root_item->level;
1408 if (btrfs_test_opt(root, SPACE_CACHE))
1409 super->cache_generation = root_item->generation;
1410 if (root->fs_info->update_uuid_tree_gen)
1411 super->uuid_tree_generation = root_item->generation;
1414 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1416 struct btrfs_transaction *trans;
1417 int ret = 0;
1419 spin_lock(&info->trans_lock);
1420 trans = info->running_transaction;
1421 if (trans)
1422 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1423 spin_unlock(&info->trans_lock);
1424 return ret;
1427 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1429 struct btrfs_transaction *trans;
1430 int ret = 0;
1432 spin_lock(&info->trans_lock);
1433 trans = info->running_transaction;
1434 if (trans)
1435 ret = is_transaction_blocked(trans);
1436 spin_unlock(&info->trans_lock);
1437 return ret;
1441 * wait for the current transaction commit to start and block subsequent
1442 * transaction joins
1444 static void wait_current_trans_commit_start(struct btrfs_root *root,
1445 struct btrfs_transaction *trans)
1447 wait_event(root->fs_info->transaction_blocked_wait,
1448 trans->state >= TRANS_STATE_COMMIT_START ||
1449 trans->aborted);
1453 * wait for the current transaction to start and then become unblocked.
1454 * caller holds ref.
1456 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1457 struct btrfs_transaction *trans)
1459 wait_event(root->fs_info->transaction_wait,
1460 trans->state >= TRANS_STATE_UNBLOCKED ||
1461 trans->aborted);
1465 * commit transactions asynchronously. once btrfs_commit_transaction_async
1466 * returns, any subsequent transaction will not be allowed to join.
1468 struct btrfs_async_commit {
1469 struct btrfs_trans_handle *newtrans;
1470 struct btrfs_root *root;
1471 struct work_struct work;
1474 static void do_async_commit(struct work_struct *work)
1476 struct btrfs_async_commit *ac =
1477 container_of(work, struct btrfs_async_commit, work);
1480 * We've got freeze protection passed with the transaction.
1481 * Tell lockdep about it.
1483 if (ac->newtrans->type & __TRANS_FREEZABLE)
1484 rwsem_acquire_read(
1485 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1486 0, 1, _THIS_IP_);
1488 current->journal_info = ac->newtrans;
1490 btrfs_commit_transaction(ac->newtrans, ac->root);
1491 kfree(ac);
1494 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1495 struct btrfs_root *root,
1496 int wait_for_unblock)
1498 struct btrfs_async_commit *ac;
1499 struct btrfs_transaction *cur_trans;
1501 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1502 if (!ac)
1503 return -ENOMEM;
1505 INIT_WORK(&ac->work, do_async_commit);
1506 ac->root = root;
1507 ac->newtrans = btrfs_join_transaction(root);
1508 if (IS_ERR(ac->newtrans)) {
1509 int err = PTR_ERR(ac->newtrans);
1510 kfree(ac);
1511 return err;
1514 /* take transaction reference */
1515 cur_trans = trans->transaction;
1516 atomic_inc(&cur_trans->use_count);
1518 btrfs_end_transaction(trans, root);
1521 * Tell lockdep we've released the freeze rwsem, since the
1522 * async commit thread will be the one to unlock it.
1524 if (ac->newtrans->type & __TRANS_FREEZABLE)
1525 rwsem_release(
1526 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1527 1, _THIS_IP_);
1529 schedule_work(&ac->work);
1531 /* wait for transaction to start and unblock */
1532 if (wait_for_unblock)
1533 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1534 else
1535 wait_current_trans_commit_start(root, cur_trans);
1537 if (current->journal_info == trans)
1538 current->journal_info = NULL;
1540 btrfs_put_transaction(cur_trans);
1541 return 0;
1545 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1546 struct btrfs_root *root, int err)
1548 struct btrfs_transaction *cur_trans = trans->transaction;
1549 DEFINE_WAIT(wait);
1551 WARN_ON(trans->use_count > 1);
1553 btrfs_abort_transaction(trans, root, err);
1555 spin_lock(&root->fs_info->trans_lock);
1558 * If the transaction is removed from the list, it means this
1559 * transaction has been committed successfully, so it is impossible
1560 * to call the cleanup function.
1562 BUG_ON(list_empty(&cur_trans->list));
1564 list_del_init(&cur_trans->list);
1565 if (cur_trans == root->fs_info->running_transaction) {
1566 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1567 spin_unlock(&root->fs_info->trans_lock);
1568 wait_event(cur_trans->writer_wait,
1569 atomic_read(&cur_trans->num_writers) == 1);
1571 spin_lock(&root->fs_info->trans_lock);
1573 spin_unlock(&root->fs_info->trans_lock);
1575 btrfs_cleanup_one_transaction(trans->transaction, root);
1577 spin_lock(&root->fs_info->trans_lock);
1578 if (cur_trans == root->fs_info->running_transaction)
1579 root->fs_info->running_transaction = NULL;
1580 spin_unlock(&root->fs_info->trans_lock);
1582 if (trans->type & __TRANS_FREEZABLE)
1583 sb_end_intwrite(root->fs_info->sb);
1584 btrfs_put_transaction(cur_trans);
1585 btrfs_put_transaction(cur_trans);
1587 trace_btrfs_transaction_commit(root);
1589 btrfs_scrub_continue(root);
1591 if (current->journal_info == trans)
1592 current->journal_info = NULL;
1594 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1597 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1598 struct btrfs_root *root)
1600 int ret;
1602 ret = btrfs_run_delayed_items(trans, root);
1604 * running the delayed items may have added new refs. account
1605 * them now so that they hinder processing of more delayed refs
1606 * as little as possible.
1608 if (ret) {
1609 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1610 return ret;
1613 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1614 if (ret)
1615 return ret;
1618 * rename don't use btrfs_join_transaction, so, once we
1619 * set the transaction to blocked above, we aren't going
1620 * to get any new ordered operations. We can safely run
1621 * it here and no for sure that nothing new will be added
1622 * to the list
1624 ret = btrfs_run_ordered_operations(trans, root, 1);
1626 return ret;
1629 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1631 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 return btrfs_start_delalloc_roots(fs_info, 1);
1633 return 0;
1636 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1638 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1639 btrfs_wait_ordered_roots(fs_info, -1);
1642 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1643 struct btrfs_root *root)
1645 struct btrfs_transaction *cur_trans = trans->transaction;
1646 struct btrfs_transaction *prev_trans = NULL;
1647 int ret;
1649 ret = btrfs_run_ordered_operations(trans, root, 0);
1650 if (ret) {
1651 btrfs_abort_transaction(trans, root, ret);
1652 btrfs_end_transaction(trans, root);
1653 return ret;
1656 /* Stop the commit early if ->aborted is set */
1657 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1658 ret = cur_trans->aborted;
1659 btrfs_end_transaction(trans, root);
1660 return ret;
1663 /* make a pass through all the delayed refs we have so far
1664 * any runnings procs may add more while we are here
1666 ret = btrfs_run_delayed_refs(trans, root, 0);
1667 if (ret) {
1668 btrfs_end_transaction(trans, root);
1669 return ret;
1672 btrfs_trans_release_metadata(trans, root);
1673 trans->block_rsv = NULL;
1674 if (trans->qgroup_reserved) {
1675 btrfs_qgroup_free(root, trans->qgroup_reserved);
1676 trans->qgroup_reserved = 0;
1679 cur_trans = trans->transaction;
1682 * set the flushing flag so procs in this transaction have to
1683 * start sending their work down.
1685 cur_trans->delayed_refs.flushing = 1;
1686 smp_wmb();
1688 if (!list_empty(&trans->new_bgs))
1689 btrfs_create_pending_block_groups(trans, root);
1691 ret = btrfs_run_delayed_refs(trans, root, 0);
1692 if (ret) {
1693 btrfs_end_transaction(trans, root);
1694 return ret;
1697 spin_lock(&root->fs_info->trans_lock);
1698 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1699 spin_unlock(&root->fs_info->trans_lock);
1700 atomic_inc(&cur_trans->use_count);
1701 ret = btrfs_end_transaction(trans, root);
1703 wait_for_commit(root, cur_trans);
1705 btrfs_put_transaction(cur_trans);
1707 return ret;
1710 cur_trans->state = TRANS_STATE_COMMIT_START;
1711 wake_up(&root->fs_info->transaction_blocked_wait);
1713 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1714 prev_trans = list_entry(cur_trans->list.prev,
1715 struct btrfs_transaction, list);
1716 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1717 atomic_inc(&prev_trans->use_count);
1718 spin_unlock(&root->fs_info->trans_lock);
1720 wait_for_commit(root, prev_trans);
1722 btrfs_put_transaction(prev_trans);
1723 } else {
1724 spin_unlock(&root->fs_info->trans_lock);
1726 } else {
1727 spin_unlock(&root->fs_info->trans_lock);
1730 extwriter_counter_dec(cur_trans, trans->type);
1732 ret = btrfs_start_delalloc_flush(root->fs_info);
1733 if (ret)
1734 goto cleanup_transaction;
1736 ret = btrfs_flush_all_pending_stuffs(trans, root);
1737 if (ret)
1738 goto cleanup_transaction;
1740 wait_event(cur_trans->writer_wait,
1741 extwriter_counter_read(cur_trans) == 0);
1743 /* some pending stuffs might be added after the previous flush. */
1744 ret = btrfs_flush_all_pending_stuffs(trans, root);
1745 if (ret)
1746 goto cleanup_transaction;
1748 btrfs_wait_delalloc_flush(root->fs_info);
1750 * Ok now we need to make sure to block out any other joins while we
1751 * commit the transaction. We could have started a join before setting
1752 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1754 spin_lock(&root->fs_info->trans_lock);
1755 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1756 spin_unlock(&root->fs_info->trans_lock);
1757 wait_event(cur_trans->writer_wait,
1758 atomic_read(&cur_trans->num_writers) == 1);
1760 /* ->aborted might be set after the previous check, so check it */
1761 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1762 ret = cur_trans->aborted;
1763 goto cleanup_transaction;
1766 * the reloc mutex makes sure that we stop
1767 * the balancing code from coming in and moving
1768 * extents around in the middle of the commit
1770 mutex_lock(&root->fs_info->reloc_mutex);
1773 * We needn't worry about the delayed items because we will
1774 * deal with them in create_pending_snapshot(), which is the
1775 * core function of the snapshot creation.
1777 ret = create_pending_snapshots(trans, root->fs_info);
1778 if (ret) {
1779 mutex_unlock(&root->fs_info->reloc_mutex);
1780 goto cleanup_transaction;
1784 * We insert the dir indexes of the snapshots and update the inode
1785 * of the snapshots' parents after the snapshot creation, so there
1786 * are some delayed items which are not dealt with. Now deal with
1787 * them.
1789 * We needn't worry that this operation will corrupt the snapshots,
1790 * because all the tree which are snapshoted will be forced to COW
1791 * the nodes and leaves.
1793 ret = btrfs_run_delayed_items(trans, root);
1794 if (ret) {
1795 mutex_unlock(&root->fs_info->reloc_mutex);
1796 goto cleanup_transaction;
1799 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1800 if (ret) {
1801 mutex_unlock(&root->fs_info->reloc_mutex);
1802 goto cleanup_transaction;
1806 * make sure none of the code above managed to slip in a
1807 * delayed item
1809 btrfs_assert_delayed_root_empty(root);
1811 WARN_ON(cur_trans != trans->transaction);
1813 btrfs_scrub_pause(root);
1814 /* btrfs_commit_tree_roots is responsible for getting the
1815 * various roots consistent with each other. Every pointer
1816 * in the tree of tree roots has to point to the most up to date
1817 * root for every subvolume and other tree. So, we have to keep
1818 * the tree logging code from jumping in and changing any
1819 * of the trees.
1821 * At this point in the commit, there can't be any tree-log
1822 * writers, but a little lower down we drop the trans mutex
1823 * and let new people in. By holding the tree_log_mutex
1824 * from now until after the super is written, we avoid races
1825 * with the tree-log code.
1827 mutex_lock(&root->fs_info->tree_log_mutex);
1829 ret = commit_fs_roots(trans, root);
1830 if (ret) {
1831 mutex_unlock(&root->fs_info->tree_log_mutex);
1832 mutex_unlock(&root->fs_info->reloc_mutex);
1833 goto cleanup_transaction;
1836 /* commit_fs_roots gets rid of all the tree log roots, it is now
1837 * safe to free the root of tree log roots
1839 btrfs_free_log_root_tree(trans, root->fs_info);
1841 ret = commit_cowonly_roots(trans, root);
1842 if (ret) {
1843 mutex_unlock(&root->fs_info->tree_log_mutex);
1844 mutex_unlock(&root->fs_info->reloc_mutex);
1845 goto cleanup_transaction;
1849 * The tasks which save the space cache and inode cache may also
1850 * update ->aborted, check it.
1852 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1853 ret = cur_trans->aborted;
1854 mutex_unlock(&root->fs_info->tree_log_mutex);
1855 mutex_unlock(&root->fs_info->reloc_mutex);
1856 goto cleanup_transaction;
1859 btrfs_prepare_extent_commit(trans, root);
1861 cur_trans = root->fs_info->running_transaction;
1863 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1864 root->fs_info->tree_root->node);
1865 switch_commit_root(root->fs_info->tree_root);
1867 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1868 root->fs_info->chunk_root->node);
1869 switch_commit_root(root->fs_info->chunk_root);
1871 assert_qgroups_uptodate(trans);
1872 update_super_roots(root);
1874 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1875 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1876 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1877 sizeof(*root->fs_info->super_copy));
1879 spin_lock(&root->fs_info->trans_lock);
1880 cur_trans->state = TRANS_STATE_UNBLOCKED;
1881 root->fs_info->running_transaction = NULL;
1882 spin_unlock(&root->fs_info->trans_lock);
1883 mutex_unlock(&root->fs_info->reloc_mutex);
1885 wake_up(&root->fs_info->transaction_wait);
1887 ret = btrfs_write_and_wait_transaction(trans, root);
1888 if (ret) {
1889 btrfs_error(root->fs_info, ret,
1890 "Error while writing out transaction");
1891 mutex_unlock(&root->fs_info->tree_log_mutex);
1892 goto cleanup_transaction;
1895 ret = write_ctree_super(trans, root, 0);
1896 if (ret) {
1897 mutex_unlock(&root->fs_info->tree_log_mutex);
1898 goto cleanup_transaction;
1902 * the super is written, we can safely allow the tree-loggers
1903 * to go about their business
1905 mutex_unlock(&root->fs_info->tree_log_mutex);
1907 btrfs_finish_extent_commit(trans, root);
1909 root->fs_info->last_trans_committed = cur_trans->transid;
1911 * We needn't acquire the lock here because there is no other task
1912 * which can change it.
1914 cur_trans->state = TRANS_STATE_COMPLETED;
1915 wake_up(&cur_trans->commit_wait);
1917 spin_lock(&root->fs_info->trans_lock);
1918 list_del_init(&cur_trans->list);
1919 spin_unlock(&root->fs_info->trans_lock);
1921 btrfs_put_transaction(cur_trans);
1922 btrfs_put_transaction(cur_trans);
1924 if (trans->type & __TRANS_FREEZABLE)
1925 sb_end_intwrite(root->fs_info->sb);
1927 trace_btrfs_transaction_commit(root);
1929 btrfs_scrub_continue(root);
1931 if (current->journal_info == trans)
1932 current->journal_info = NULL;
1934 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1936 if (current != root->fs_info->transaction_kthread)
1937 btrfs_run_delayed_iputs(root);
1939 return ret;
1941 cleanup_transaction:
1942 btrfs_trans_release_metadata(trans, root);
1943 trans->block_rsv = NULL;
1944 if (trans->qgroup_reserved) {
1945 btrfs_qgroup_free(root, trans->qgroup_reserved);
1946 trans->qgroup_reserved = 0;
1948 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1949 if (current->journal_info == trans)
1950 current->journal_info = NULL;
1951 cleanup_transaction(trans, root, ret);
1953 return ret;
1957 * return < 0 if error
1958 * 0 if there are no more dead_roots at the time of call
1959 * 1 there are more to be processed, call me again
1961 * The return value indicates there are certainly more snapshots to delete, but
1962 * if there comes a new one during processing, it may return 0. We don't mind,
1963 * because btrfs_commit_super will poke cleaner thread and it will process it a
1964 * few seconds later.
1966 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1968 int ret;
1969 struct btrfs_fs_info *fs_info = root->fs_info;
1971 spin_lock(&fs_info->trans_lock);
1972 if (list_empty(&fs_info->dead_roots)) {
1973 spin_unlock(&fs_info->trans_lock);
1974 return 0;
1976 root = list_first_entry(&fs_info->dead_roots,
1977 struct btrfs_root, root_list);
1978 list_del_init(&root->root_list);
1979 spin_unlock(&fs_info->trans_lock);
1981 pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1983 btrfs_kill_all_delayed_nodes(root);
1985 if (btrfs_header_backref_rev(root->node) <
1986 BTRFS_MIXED_BACKREF_REV)
1987 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1988 else
1989 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1991 * If we encounter a transaction abort during snapshot cleaning, we
1992 * don't want to crash here
1994 return (ret < 0) ? 0 : 1;