Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / btrfs / extent-tree.c
blob45d98d01028f7cdac43461a7acd42f5e17599f32
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
39 #undef SCRAMBLE_DELAYED_REFS
42 * control flags for do_chunk_alloc's force field
43 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
44 * if we really need one.
46 * CHUNK_ALLOC_LIMITED means to only try and allocate one
47 * if we have very few chunks already allocated. This is
48 * used as part of the clustering code to help make sure
49 * we have a good pool of storage to cluster in, without
50 * filling the FS with empty chunks
52 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 enum {
56 CHUNK_ALLOC_NO_FORCE = 0,
57 CHUNK_ALLOC_LIMITED = 1,
58 CHUNK_ALLOC_FORCE = 2,
62 * Control how reservations are dealt with.
64 * RESERVE_FREE - freeing a reservation.
65 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
66 * ENOSPC accounting
67 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
68 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 enum {
71 RESERVE_FREE = 0,
72 RESERVE_ALLOC = 1,
73 RESERVE_ALLOC_NO_ACCOUNT = 2,
76 static int update_block_group(struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 u64 bytenr, u64 num_bytes, u64 parent,
81 u64 root_objectid, u64 owner_objectid,
82 u64 owner_offset, int refs_to_drop,
83 struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 struct extent_buffer *leaf,
86 struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 struct btrfs_root *root,
89 u64 parent, u64 root_objectid,
90 u64 flags, u64 owner, u64 offset,
91 struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 struct btrfs_root *root,
94 u64 parent, u64 root_objectid,
95 u64 flags, struct btrfs_disk_key *key,
96 int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 struct btrfs_root *extent_root, u64 flags,
99 int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 u64 num_bytes, int reserve);
106 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
107 u64 num_bytes);
108 int btrfs_pin_extent(struct btrfs_root *root,
109 u64 bytenr, u64 num_bytes, int reserved);
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 return (cache->flags & bits) == bits;
124 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 atomic_inc(&cache->count);
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
174 spin_unlock(&info->block_group_cache_lock);
176 return 0;
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
220 spin_unlock(&info->block_group_cache_lock);
222 return ret;
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
233 return 0;
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
239 u64 start, end;
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE, GFP_NOFS);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
275 while (nr--) {
276 u64 start, len;
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
303 kfree(logical);
305 return 0;
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
311 struct btrfs_caching_control *ctl;
313 spin_lock(&cache->lock);
314 if (cache->cached != BTRFS_CACHE_STARTED) {
315 spin_unlock(&cache->lock);
316 return NULL;
319 /* We're loading it the fast way, so we don't have a caching_ctl. */
320 if (!cache->caching_ctl) {
321 spin_unlock(&cache->lock);
322 return NULL;
325 ctl = cache->caching_ctl;
326 atomic_inc(&ctl->count);
327 spin_unlock(&cache->lock);
328 return ctl;
331 static void put_caching_control(struct btrfs_caching_control *ctl)
333 if (atomic_dec_and_test(&ctl->count))
334 kfree(ctl);
338 * this is only called by cache_block_group, since we could have freed extents
339 * we need to check the pinned_extents for any extents that can't be used yet
340 * since their free space will be released as soon as the transaction commits.
342 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
343 struct btrfs_fs_info *info, u64 start, u64 end)
345 u64 extent_start, extent_end, size, total_added = 0;
346 int ret;
348 while (start < end) {
349 ret = find_first_extent_bit(info->pinned_extents, start,
350 &extent_start, &extent_end,
351 EXTENT_DIRTY | EXTENT_UPTODATE,
352 NULL);
353 if (ret)
354 break;
356 if (extent_start <= start) {
357 start = extent_end + 1;
358 } else if (extent_start > start && extent_start < end) {
359 size = extent_start - start;
360 total_added += size;
361 ret = btrfs_add_free_space(block_group, start,
362 size);
363 BUG_ON(ret); /* -ENOMEM or logic error */
364 start = extent_end + 1;
365 } else {
366 break;
370 if (start < end) {
371 size = end - start;
372 total_added += size;
373 ret = btrfs_add_free_space(block_group, start, size);
374 BUG_ON(ret); /* -ENOMEM or logic error */
377 return total_added;
380 static noinline void caching_thread(struct btrfs_work *work)
382 struct btrfs_block_group_cache *block_group;
383 struct btrfs_fs_info *fs_info;
384 struct btrfs_caching_control *caching_ctl;
385 struct btrfs_root *extent_root;
386 struct btrfs_path *path;
387 struct extent_buffer *leaf;
388 struct btrfs_key key;
389 u64 total_found = 0;
390 u64 last = 0;
391 u32 nritems;
392 int ret = -ENOMEM;
394 caching_ctl = container_of(work, struct btrfs_caching_control, work);
395 block_group = caching_ctl->block_group;
396 fs_info = block_group->fs_info;
397 extent_root = fs_info->extent_root;
399 path = btrfs_alloc_path();
400 if (!path)
401 goto out;
403 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
406 * We don't want to deadlock with somebody trying to allocate a new
407 * extent for the extent root while also trying to search the extent
408 * root to add free space. So we skip locking and search the commit
409 * root, since its read-only
411 path->skip_locking = 1;
412 path->search_commit_root = 1;
413 path->reada = 1;
415 key.objectid = last;
416 key.offset = 0;
417 key.type = BTRFS_EXTENT_ITEM_KEY;
418 again:
419 mutex_lock(&caching_ctl->mutex);
420 /* need to make sure the commit_root doesn't disappear */
421 down_read(&fs_info->extent_commit_sem);
423 next:
424 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
425 if (ret < 0)
426 goto err;
428 leaf = path->nodes[0];
429 nritems = btrfs_header_nritems(leaf);
431 while (1) {
432 if (btrfs_fs_closing(fs_info) > 1) {
433 last = (u64)-1;
434 break;
437 if (path->slots[0] < nritems) {
438 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
439 } else {
440 ret = find_next_key(path, 0, &key);
441 if (ret)
442 break;
444 if (need_resched()) {
445 caching_ctl->progress = last;
446 btrfs_release_path(path);
447 up_read(&fs_info->extent_commit_sem);
448 mutex_unlock(&caching_ctl->mutex);
449 cond_resched();
450 goto again;
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
475 continue;
478 if (key.objectid >= block_group->key.objectid +
479 block_group->key.offset)
480 break;
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
489 fs_info->tree_root->leafsize;
490 else
491 last = key.objectid + key.offset;
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
498 path->slots[0]++;
500 ret = 0;
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
505 caching_ctl->progress = (u64)-1;
507 spin_lock(&block_group->lock);
508 block_group->caching_ctl = NULL;
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
512 err:
513 btrfs_free_path(path);
514 up_read(&fs_info->extent_commit_sem);
516 free_excluded_extents(extent_root, block_group);
518 mutex_unlock(&caching_ctl->mutex);
519 out:
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
526 wake_up(&caching_ctl->wait);
528 put_caching_control(caching_ctl);
529 btrfs_put_block_group(block_group);
532 static int cache_block_group(struct btrfs_block_group_cache *cache,
533 int load_cache_only)
535 DEFINE_WAIT(wait);
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 int ret = 0;
540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
541 if (!caching_ctl)
542 return -ENOMEM;
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
550 caching_ctl->work.func = caching_thread;
552 spin_lock(&cache->lock);
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
573 schedule();
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
583 return 0;
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 ret = load_free_space_cache(fs_info, cache);
593 spin_lock(&cache->lock);
594 if (ret == 1) {
595 cache->caching_ctl = NULL;
596 cache->cached = BTRFS_CACHE_FINISHED;
597 cache->last_byte_to_unpin = (u64)-1;
598 } else {
599 if (load_cache_only) {
600 cache->caching_ctl = NULL;
601 cache->cached = BTRFS_CACHE_NO;
602 } else {
603 cache->cached = BTRFS_CACHE_STARTED;
606 spin_unlock(&cache->lock);
607 wake_up(&caching_ctl->wait);
608 if (ret == 1) {
609 put_caching_control(caching_ctl);
610 free_excluded_extents(fs_info->extent_root, cache);
611 return 0;
613 } else {
615 * We are not going to do the fast caching, set cached to the
616 * appropriate value and wakeup any waiters.
618 spin_lock(&cache->lock);
619 if (load_cache_only) {
620 cache->caching_ctl = NULL;
621 cache->cached = BTRFS_CACHE_NO;
622 } else {
623 cache->cached = BTRFS_CACHE_STARTED;
625 spin_unlock(&cache->lock);
626 wake_up(&caching_ctl->wait);
629 if (load_cache_only) {
630 put_caching_control(caching_ctl);
631 return 0;
634 down_write(&fs_info->extent_commit_sem);
635 atomic_inc(&caching_ctl->count);
636 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
637 up_write(&fs_info->extent_commit_sem);
639 btrfs_get_block_group(cache);
641 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643 return ret;
647 * return the block group that starts at or after bytenr
649 static struct btrfs_block_group_cache *
650 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 struct btrfs_block_group_cache *cache;
654 cache = block_group_cache_tree_search(info, bytenr, 0);
656 return cache;
660 * return the block group that contains the given bytenr
662 struct btrfs_block_group_cache *btrfs_lookup_block_group(
663 struct btrfs_fs_info *info,
664 u64 bytenr)
666 struct btrfs_block_group_cache *cache;
668 cache = block_group_cache_tree_search(info, bytenr, 1);
670 return cache;
673 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
674 u64 flags)
676 struct list_head *head = &info->space_info;
677 struct btrfs_space_info *found;
679 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681 rcu_read_lock();
682 list_for_each_entry_rcu(found, head, list) {
683 if (found->flags & flags) {
684 rcu_read_unlock();
685 return found;
688 rcu_read_unlock();
689 return NULL;
693 * after adding space to the filesystem, we need to clear the full flags
694 * on all the space infos.
696 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 struct list_head *head = &info->space_info;
699 struct btrfs_space_info *found;
701 rcu_read_lock();
702 list_for_each_entry_rcu(found, head, list)
703 found->full = 0;
704 rcu_read_unlock();
707 /* simple helper to search for an existing extent at a given offset */
708 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 int ret;
711 struct btrfs_key key;
712 struct btrfs_path *path;
714 path = btrfs_alloc_path();
715 if (!path)
716 return -ENOMEM;
718 key.objectid = start;
719 key.offset = len;
720 key.type = BTRFS_EXTENT_ITEM_KEY;
721 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
722 0, 0);
723 if (ret > 0) {
724 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
725 if (key.objectid == start &&
726 key.type == BTRFS_METADATA_ITEM_KEY)
727 ret = 0;
729 btrfs_free_path(path);
730 return ret;
734 * helper function to lookup reference count and flags of a tree block.
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
744 u64 offset, int metadata, u64 *refs, u64 *flags)
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 offset = root->leafsize;
763 metadata = 0;
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
770 if (metadata) {
771 key.objectid = bytenr;
772 key.type = BTRFS_METADATA_ITEM_KEY;
773 key.offset = offset;
774 } else {
775 key.objectid = bytenr;
776 key.type = BTRFS_EXTENT_ITEM_KEY;
777 key.offset = offset;
780 if (!trans) {
781 path->skip_locking = 1;
782 path->search_commit_root = 1;
784 again:
785 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
786 &key, path, 0, 0);
787 if (ret < 0)
788 goto out_free;
790 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
791 metadata = 0;
792 if (path->slots[0]) {
793 path->slots[0]--;
794 btrfs_item_key_to_cpu(path->nodes[0], &key,
795 path->slots[0]);
796 if (key.objectid == bytenr &&
797 key.type == BTRFS_EXTENT_ITEM_KEY &&
798 key.offset == root->leafsize)
799 ret = 0;
801 if (ret) {
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = root->leafsize;
805 btrfs_release_path(path);
806 goto again;
810 if (ret == 0) {
811 leaf = path->nodes[0];
812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 if (item_size >= sizeof(*ei)) {
814 ei = btrfs_item_ptr(leaf, path->slots[0],
815 struct btrfs_extent_item);
816 num_refs = btrfs_extent_refs(leaf, ei);
817 extent_flags = btrfs_extent_flags(leaf, ei);
818 } else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 struct btrfs_extent_item_v0 *ei0;
821 BUG_ON(item_size != sizeof(*ei0));
822 ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 struct btrfs_extent_item_v0);
824 num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 /* FIXME: this isn't correct for data */
826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 BUG();
829 #endif
831 BUG_ON(num_refs == 0);
832 } else {
833 num_refs = 0;
834 extent_flags = 0;
835 ret = 0;
838 if (!trans)
839 goto out;
841 delayed_refs = &trans->transaction->delayed_refs;
842 spin_lock(&delayed_refs->lock);
843 head = btrfs_find_delayed_ref_head(trans, bytenr);
844 if (head) {
845 if (!mutex_trylock(&head->mutex)) {
846 atomic_inc(&head->node.refs);
847 spin_unlock(&delayed_refs->lock);
849 btrfs_release_path(path);
852 * Mutex was contended, block until it's released and try
853 * again
855 mutex_lock(&head->mutex);
856 mutex_unlock(&head->mutex);
857 btrfs_put_delayed_ref(&head->node);
858 goto again;
860 if (head->extent_op && head->extent_op->update_flags)
861 extent_flags |= head->extent_op->flags_to_set;
862 else
863 BUG_ON(num_refs == 0);
865 num_refs += head->node.ref_mod;
866 mutex_unlock(&head->mutex);
868 spin_unlock(&delayed_refs->lock);
869 out:
870 WARN_ON(num_refs == 0);
871 if (refs)
872 *refs = num_refs;
873 if (flags)
874 *flags = extent_flags;
875 out_free:
876 btrfs_free_path(path);
877 return ret;
881 * Back reference rules. Back refs have three main goals:
883 * 1) differentiate between all holders of references to an extent so that
884 * when a reference is dropped we can make sure it was a valid reference
885 * before freeing the extent.
887 * 2) Provide enough information to quickly find the holders of an extent
888 * if we notice a given block is corrupted or bad.
890 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
891 * maintenance. This is actually the same as #2, but with a slightly
892 * different use case.
894 * There are two kinds of back refs. The implicit back refs is optimized
895 * for pointers in non-shared tree blocks. For a given pointer in a block,
896 * back refs of this kind provide information about the block's owner tree
897 * and the pointer's key. These information allow us to find the block by
898 * b-tree searching. The full back refs is for pointers in tree blocks not
899 * referenced by their owner trees. The location of tree block is recorded
900 * in the back refs. Actually the full back refs is generic, and can be
901 * used in all cases the implicit back refs is used. The major shortcoming
902 * of the full back refs is its overhead. Every time a tree block gets
903 * COWed, we have to update back refs entry for all pointers in it.
905 * For a newly allocated tree block, we use implicit back refs for
906 * pointers in it. This means most tree related operations only involve
907 * implicit back refs. For a tree block created in old transaction, the
908 * only way to drop a reference to it is COW it. So we can detect the
909 * event that tree block loses its owner tree's reference and do the
910 * back refs conversion.
912 * When a tree block is COW'd through a tree, there are four cases:
914 * The reference count of the block is one and the tree is the block's
915 * owner tree. Nothing to do in this case.
917 * The reference count of the block is one and the tree is not the
918 * block's owner tree. In this case, full back refs is used for pointers
919 * in the block. Remove these full back refs, add implicit back refs for
920 * every pointers in the new block.
922 * The reference count of the block is greater than one and the tree is
923 * the block's owner tree. In this case, implicit back refs is used for
924 * pointers in the block. Add full back refs for every pointers in the
925 * block, increase lower level extents' reference counts. The original
926 * implicit back refs are entailed to the new block.
928 * The reference count of the block is greater than one and the tree is
929 * not the block's owner tree. Add implicit back refs for every pointer in
930 * the new block, increase lower level extents' reference count.
932 * Back Reference Key composing:
934 * The key objectid corresponds to the first byte in the extent,
935 * The key type is used to differentiate between types of back refs.
936 * There are different meanings of the key offset for different types
937 * of back refs.
939 * File extents can be referenced by:
941 * - multiple snapshots, subvolumes, or different generations in one subvol
942 * - different files inside a single subvolume
943 * - different offsets inside a file (bookend extents in file.c)
945 * The extent ref structure for the implicit back refs has fields for:
947 * - Objectid of the subvolume root
948 * - objectid of the file holding the reference
949 * - original offset in the file
950 * - how many bookend extents
952 * The key offset for the implicit back refs is hash of the first
953 * three fields.
955 * The extent ref structure for the full back refs has field for:
957 * - number of pointers in the tree leaf
959 * The key offset for the implicit back refs is the first byte of
960 * the tree leaf
962 * When a file extent is allocated, The implicit back refs is used.
963 * the fields are filled in:
965 * (root_key.objectid, inode objectid, offset in file, 1)
967 * When a file extent is removed file truncation, we find the
968 * corresponding implicit back refs and check the following fields:
970 * (btrfs_header_owner(leaf), inode objectid, offset in file)
972 * Btree extents can be referenced by:
974 * - Different subvolumes
976 * Both the implicit back refs and the full back refs for tree blocks
977 * only consist of key. The key offset for the implicit back refs is
978 * objectid of block's owner tree. The key offset for the full back refs
979 * is the first byte of parent block.
981 * When implicit back refs is used, information about the lowest key and
982 * level of the tree block are required. These information are stored in
983 * tree block info structure.
986 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
987 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
988 struct btrfs_root *root,
989 struct btrfs_path *path,
990 u64 owner, u32 extra_size)
992 struct btrfs_extent_item *item;
993 struct btrfs_extent_item_v0 *ei0;
994 struct btrfs_extent_ref_v0 *ref0;
995 struct btrfs_tree_block_info *bi;
996 struct extent_buffer *leaf;
997 struct btrfs_key key;
998 struct btrfs_key found_key;
999 u32 new_size = sizeof(*item);
1000 u64 refs;
1001 int ret;
1003 leaf = path->nodes[0];
1004 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1007 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1008 struct btrfs_extent_item_v0);
1009 refs = btrfs_extent_refs_v0(leaf, ei0);
1011 if (owner == (u64)-1) {
1012 while (1) {
1013 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1014 ret = btrfs_next_leaf(root, path);
1015 if (ret < 0)
1016 return ret;
1017 BUG_ON(ret > 0); /* Corruption */
1018 leaf = path->nodes[0];
1020 btrfs_item_key_to_cpu(leaf, &found_key,
1021 path->slots[0]);
1022 BUG_ON(key.objectid != found_key.objectid);
1023 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1024 path->slots[0]++;
1025 continue;
1027 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1028 struct btrfs_extent_ref_v0);
1029 owner = btrfs_ref_objectid_v0(leaf, ref0);
1030 break;
1033 btrfs_release_path(path);
1035 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1036 new_size += sizeof(*bi);
1038 new_size -= sizeof(*ei0);
1039 ret = btrfs_search_slot(trans, root, &key, path,
1040 new_size + extra_size, 1);
1041 if (ret < 0)
1042 return ret;
1043 BUG_ON(ret); /* Corruption */
1045 btrfs_extend_item(root, path, new_size);
1047 leaf = path->nodes[0];
1048 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1049 btrfs_set_extent_refs(leaf, item, refs);
1050 /* FIXME: get real generation */
1051 btrfs_set_extent_generation(leaf, item, 0);
1052 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1053 btrfs_set_extent_flags(leaf, item,
1054 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1055 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1056 bi = (struct btrfs_tree_block_info *)(item + 1);
1057 /* FIXME: get first key of the block */
1058 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1059 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1060 } else {
1061 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063 btrfs_mark_buffer_dirty(leaf);
1064 return 0;
1066 #endif
1068 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 u32 high_crc = ~(u32)0;
1071 u32 low_crc = ~(u32)0;
1072 __le64 lenum;
1074 lenum = cpu_to_le64(root_objectid);
1075 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1076 lenum = cpu_to_le64(owner);
1077 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1078 lenum = cpu_to_le64(offset);
1079 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081 return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref)
1087 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1088 btrfs_extent_data_ref_objectid(leaf, ref),
1089 btrfs_extent_data_ref_offset(leaf, ref));
1092 static int match_extent_data_ref(struct extent_buffer *leaf,
1093 struct btrfs_extent_data_ref *ref,
1094 u64 root_objectid, u64 owner, u64 offset)
1096 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1097 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1098 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1099 return 0;
1100 return 1;
1103 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 bytenr, u64 parent,
1107 u64 root_objectid,
1108 u64 owner, u64 offset)
1110 struct btrfs_key key;
1111 struct btrfs_extent_data_ref *ref;
1112 struct extent_buffer *leaf;
1113 u32 nritems;
1114 int ret;
1115 int recow;
1116 int err = -ENOENT;
1118 key.objectid = bytenr;
1119 if (parent) {
1120 key.type = BTRFS_SHARED_DATA_REF_KEY;
1121 key.offset = parent;
1122 } else {
1123 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1124 key.offset = hash_extent_data_ref(root_objectid,
1125 owner, offset);
1127 again:
1128 recow = 0;
1129 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1130 if (ret < 0) {
1131 err = ret;
1132 goto fail;
1135 if (parent) {
1136 if (!ret)
1137 return 0;
1138 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1139 key.type = BTRFS_EXTENT_REF_V0_KEY;
1140 btrfs_release_path(path);
1141 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1142 if (ret < 0) {
1143 err = ret;
1144 goto fail;
1146 if (!ret)
1147 return 0;
1148 #endif
1149 goto fail;
1152 leaf = path->nodes[0];
1153 nritems = btrfs_header_nritems(leaf);
1154 while (1) {
1155 if (path->slots[0] >= nritems) {
1156 ret = btrfs_next_leaf(root, path);
1157 if (ret < 0)
1158 err = ret;
1159 if (ret)
1160 goto fail;
1162 leaf = path->nodes[0];
1163 nritems = btrfs_header_nritems(leaf);
1164 recow = 1;
1167 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1168 if (key.objectid != bytenr ||
1169 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1170 goto fail;
1172 ref = btrfs_item_ptr(leaf, path->slots[0],
1173 struct btrfs_extent_data_ref);
1175 if (match_extent_data_ref(leaf, ref, root_objectid,
1176 owner, offset)) {
1177 if (recow) {
1178 btrfs_release_path(path);
1179 goto again;
1181 err = 0;
1182 break;
1184 path->slots[0]++;
1186 fail:
1187 return err;
1190 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1191 struct btrfs_root *root,
1192 struct btrfs_path *path,
1193 u64 bytenr, u64 parent,
1194 u64 root_objectid, u64 owner,
1195 u64 offset, int refs_to_add)
1197 struct btrfs_key key;
1198 struct extent_buffer *leaf;
1199 u32 size;
1200 u32 num_refs;
1201 int ret;
1203 key.objectid = bytenr;
1204 if (parent) {
1205 key.type = BTRFS_SHARED_DATA_REF_KEY;
1206 key.offset = parent;
1207 size = sizeof(struct btrfs_shared_data_ref);
1208 } else {
1209 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1210 key.offset = hash_extent_data_ref(root_objectid,
1211 owner, offset);
1212 size = sizeof(struct btrfs_extent_data_ref);
1215 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1216 if (ret && ret != -EEXIST)
1217 goto fail;
1219 leaf = path->nodes[0];
1220 if (parent) {
1221 struct btrfs_shared_data_ref *ref;
1222 ref = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_shared_data_ref);
1224 if (ret == 0) {
1225 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1226 } else {
1227 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1228 num_refs += refs_to_add;
1229 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231 } else {
1232 struct btrfs_extent_data_ref *ref;
1233 while (ret == -EEXIST) {
1234 ref = btrfs_item_ptr(leaf, path->slots[0],
1235 struct btrfs_extent_data_ref);
1236 if (match_extent_data_ref(leaf, ref, root_objectid,
1237 owner, offset))
1238 break;
1239 btrfs_release_path(path);
1240 key.offset++;
1241 ret = btrfs_insert_empty_item(trans, root, path, &key,
1242 size);
1243 if (ret && ret != -EEXIST)
1244 goto fail;
1246 leaf = path->nodes[0];
1248 ref = btrfs_item_ptr(leaf, path->slots[0],
1249 struct btrfs_extent_data_ref);
1250 if (ret == 0) {
1251 btrfs_set_extent_data_ref_root(leaf, ref,
1252 root_objectid);
1253 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1254 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1255 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1256 } else {
1257 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1258 num_refs += refs_to_add;
1259 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 btrfs_mark_buffer_dirty(leaf);
1263 ret = 0;
1264 fail:
1265 btrfs_release_path(path);
1266 return ret;
1269 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1270 struct btrfs_root *root,
1271 struct btrfs_path *path,
1272 int refs_to_drop)
1274 struct btrfs_key key;
1275 struct btrfs_extent_data_ref *ref1 = NULL;
1276 struct btrfs_shared_data_ref *ref2 = NULL;
1277 struct extent_buffer *leaf;
1278 u32 num_refs = 0;
1279 int ret = 0;
1281 leaf = path->nodes[0];
1282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1285 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1286 struct btrfs_extent_data_ref);
1287 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1288 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1289 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1291 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1292 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1293 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1294 struct btrfs_extent_ref_v0 *ref0;
1295 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1296 struct btrfs_extent_ref_v0);
1297 num_refs = btrfs_ref_count_v0(leaf, ref0);
1298 #endif
1299 } else {
1300 BUG();
1303 BUG_ON(num_refs < refs_to_drop);
1304 num_refs -= refs_to_drop;
1306 if (num_refs == 0) {
1307 ret = btrfs_del_item(trans, root, path);
1308 } else {
1309 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1310 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1311 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1312 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1313 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1314 else {
1315 struct btrfs_extent_ref_v0 *ref0;
1316 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1317 struct btrfs_extent_ref_v0);
1318 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320 #endif
1321 btrfs_mark_buffer_dirty(leaf);
1323 return ret;
1326 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1327 struct btrfs_path *path,
1328 struct btrfs_extent_inline_ref *iref)
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 struct btrfs_extent_data_ref *ref1;
1333 struct btrfs_shared_data_ref *ref2;
1334 u32 num_refs = 0;
1336 leaf = path->nodes[0];
1337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1338 if (iref) {
1339 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1340 BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1342 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1343 } else {
1344 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1345 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1348 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_extent_data_ref);
1350 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1351 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1352 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_shared_data_ref);
1354 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1355 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1356 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1357 struct btrfs_extent_ref_v0 *ref0;
1358 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1359 struct btrfs_extent_ref_v0);
1360 num_refs = btrfs_ref_count_v0(leaf, ref0);
1361 #endif
1362 } else {
1363 WARN_ON(1);
1365 return num_refs;
1368 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1372 u64 root_objectid)
1374 struct btrfs_key key;
1375 int ret;
1377 key.objectid = bytenr;
1378 if (parent) {
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1381 } else {
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1390 if (ret == -ENOENT && parent) {
1391 btrfs_release_path(path);
1392 key.type = BTRFS_EXTENT_REF_V0_KEY;
1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 if (ret > 0)
1395 ret = -ENOENT;
1397 #endif
1398 return ret;
1401 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_path *path,
1404 u64 bytenr, u64 parent,
1405 u64 root_objectid)
1407 struct btrfs_key key;
1408 int ret;
1410 key.objectid = bytenr;
1411 if (parent) {
1412 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1413 key.offset = parent;
1414 } else {
1415 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1416 key.offset = root_objectid;
1419 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1420 btrfs_release_path(path);
1421 return ret;
1424 static inline int extent_ref_type(u64 parent, u64 owner)
1426 int type;
1427 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1428 if (parent > 0)
1429 type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 else
1431 type = BTRFS_TREE_BLOCK_REF_KEY;
1432 } else {
1433 if (parent > 0)
1434 type = BTRFS_SHARED_DATA_REF_KEY;
1435 else
1436 type = BTRFS_EXTENT_DATA_REF_KEY;
1438 return type;
1441 static int find_next_key(struct btrfs_path *path, int level,
1442 struct btrfs_key *key)
1445 for (; level < BTRFS_MAX_LEVEL; level++) {
1446 if (!path->nodes[level])
1447 break;
1448 if (path->slots[level] + 1 >=
1449 btrfs_header_nritems(path->nodes[level]))
1450 continue;
1451 if (level == 0)
1452 btrfs_item_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 else
1455 btrfs_node_key_to_cpu(path->nodes[level], key,
1456 path->slots[level] + 1);
1457 return 0;
1459 return 1;
1463 * look for inline back ref. if back ref is found, *ref_ret is set
1464 * to the address of inline back ref, and 0 is returned.
1466 * if back ref isn't found, *ref_ret is set to the address where it
1467 * should be inserted, and -ENOENT is returned.
1469 * if insert is true and there are too many inline back refs, the path
1470 * points to the extent item, and -EAGAIN is returned.
1472 * NOTE: inline back refs are ordered in the same way that back ref
1473 * items in the tree are ordered.
1475 static noinline_for_stack
1476 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1477 struct btrfs_root *root,
1478 struct btrfs_path *path,
1479 struct btrfs_extent_inline_ref **ref_ret,
1480 u64 bytenr, u64 num_bytes,
1481 u64 parent, u64 root_objectid,
1482 u64 owner, u64 offset, int insert)
1484 struct btrfs_key key;
1485 struct extent_buffer *leaf;
1486 struct btrfs_extent_item *ei;
1487 struct btrfs_extent_inline_ref *iref;
1488 u64 flags;
1489 u64 item_size;
1490 unsigned long ptr;
1491 unsigned long end;
1492 int extra_size;
1493 int type;
1494 int want;
1495 int ret;
1496 int err = 0;
1497 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1498 SKINNY_METADATA);
1500 key.objectid = bytenr;
1501 key.type = BTRFS_EXTENT_ITEM_KEY;
1502 key.offset = num_bytes;
1504 want = extent_ref_type(parent, owner);
1505 if (insert) {
1506 extra_size = btrfs_extent_inline_ref_size(want);
1507 path->keep_locks = 1;
1508 } else
1509 extra_size = -1;
1512 * Owner is our parent level, so we can just add one to get the level
1513 * for the block we are interested in.
1515 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1516 key.type = BTRFS_METADATA_ITEM_KEY;
1517 key.offset = owner;
1520 again:
1521 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1522 if (ret < 0) {
1523 err = ret;
1524 goto out;
1528 * We may be a newly converted file system which still has the old fat
1529 * extent entries for metadata, so try and see if we have one of those.
1531 if (ret > 0 && skinny_metadata) {
1532 skinny_metadata = false;
1533 if (path->slots[0]) {
1534 path->slots[0]--;
1535 btrfs_item_key_to_cpu(path->nodes[0], &key,
1536 path->slots[0]);
1537 if (key.objectid == bytenr &&
1538 key.type == BTRFS_EXTENT_ITEM_KEY &&
1539 key.offset == num_bytes)
1540 ret = 0;
1542 if (ret) {
1543 key.type = BTRFS_EXTENT_ITEM_KEY;
1544 key.offset = num_bytes;
1545 btrfs_release_path(path);
1546 goto again;
1550 if (ret && !insert) {
1551 err = -ENOENT;
1552 goto out;
1553 } else if (WARN_ON(ret)) {
1554 err = -EIO;
1555 goto out;
1558 leaf = path->nodes[0];
1559 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1560 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1561 if (item_size < sizeof(*ei)) {
1562 if (!insert) {
1563 err = -ENOENT;
1564 goto out;
1566 ret = convert_extent_item_v0(trans, root, path, owner,
1567 extra_size);
1568 if (ret < 0) {
1569 err = ret;
1570 goto out;
1572 leaf = path->nodes[0];
1573 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1575 #endif
1576 BUG_ON(item_size < sizeof(*ei));
1578 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1579 flags = btrfs_extent_flags(leaf, ei);
1581 ptr = (unsigned long)(ei + 1);
1582 end = (unsigned long)ei + item_size;
1584 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1585 ptr += sizeof(struct btrfs_tree_block_info);
1586 BUG_ON(ptr > end);
1589 err = -ENOENT;
1590 while (1) {
1591 if (ptr >= end) {
1592 WARN_ON(ptr > end);
1593 break;
1595 iref = (struct btrfs_extent_inline_ref *)ptr;
1596 type = btrfs_extent_inline_ref_type(leaf, iref);
1597 if (want < type)
1598 break;
1599 if (want > type) {
1600 ptr += btrfs_extent_inline_ref_size(type);
1601 continue;
1604 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1605 struct btrfs_extent_data_ref *dref;
1606 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1607 if (match_extent_data_ref(leaf, dref, root_objectid,
1608 owner, offset)) {
1609 err = 0;
1610 break;
1612 if (hash_extent_data_ref_item(leaf, dref) <
1613 hash_extent_data_ref(root_objectid, owner, offset))
1614 break;
1615 } else {
1616 u64 ref_offset;
1617 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1618 if (parent > 0) {
1619 if (parent == ref_offset) {
1620 err = 0;
1621 break;
1623 if (ref_offset < parent)
1624 break;
1625 } else {
1626 if (root_objectid == ref_offset) {
1627 err = 0;
1628 break;
1630 if (ref_offset < root_objectid)
1631 break;
1634 ptr += btrfs_extent_inline_ref_size(type);
1636 if (err == -ENOENT && insert) {
1637 if (item_size + extra_size >=
1638 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1639 err = -EAGAIN;
1640 goto out;
1643 * To add new inline back ref, we have to make sure
1644 * there is no corresponding back ref item.
1645 * For simplicity, we just do not add new inline back
1646 * ref if there is any kind of item for this block
1648 if (find_next_key(path, 0, &key) == 0 &&
1649 key.objectid == bytenr &&
1650 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1651 err = -EAGAIN;
1652 goto out;
1655 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1656 out:
1657 if (insert) {
1658 path->keep_locks = 0;
1659 btrfs_unlock_up_safe(path, 1);
1661 return err;
1665 * helper to add new inline back ref
1667 static noinline_for_stack
1668 void setup_inline_extent_backref(struct btrfs_root *root,
1669 struct btrfs_path *path,
1670 struct btrfs_extent_inline_ref *iref,
1671 u64 parent, u64 root_objectid,
1672 u64 owner, u64 offset, int refs_to_add,
1673 struct btrfs_delayed_extent_op *extent_op)
1675 struct extent_buffer *leaf;
1676 struct btrfs_extent_item *ei;
1677 unsigned long ptr;
1678 unsigned long end;
1679 unsigned long item_offset;
1680 u64 refs;
1681 int size;
1682 int type;
1684 leaf = path->nodes[0];
1685 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1686 item_offset = (unsigned long)iref - (unsigned long)ei;
1688 type = extent_ref_type(parent, owner);
1689 size = btrfs_extent_inline_ref_size(type);
1691 btrfs_extend_item(root, path, size);
1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 refs = btrfs_extent_refs(leaf, ei);
1695 refs += refs_to_add;
1696 btrfs_set_extent_refs(leaf, ei, refs);
1697 if (extent_op)
1698 __run_delayed_extent_op(extent_op, leaf, ei);
1700 ptr = (unsigned long)ei + item_offset;
1701 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1702 if (ptr < end - size)
1703 memmove_extent_buffer(leaf, ptr + size, ptr,
1704 end - size - ptr);
1706 iref = (struct btrfs_extent_inline_ref *)ptr;
1707 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1708 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1709 struct btrfs_extent_data_ref *dref;
1710 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1711 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1712 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1713 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1714 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1715 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1716 struct btrfs_shared_data_ref *sref;
1717 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1718 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 } else {
1723 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1725 btrfs_mark_buffer_dirty(leaf);
1728 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1729 struct btrfs_root *root,
1730 struct btrfs_path *path,
1731 struct btrfs_extent_inline_ref **ref_ret,
1732 u64 bytenr, u64 num_bytes, u64 parent,
1733 u64 root_objectid, u64 owner, u64 offset)
1735 int ret;
1737 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1738 bytenr, num_bytes, parent,
1739 root_objectid, owner, offset, 0);
1740 if (ret != -ENOENT)
1741 return ret;
1743 btrfs_release_path(path);
1744 *ref_ret = NULL;
1746 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1747 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1748 root_objectid);
1749 } else {
1750 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1751 root_objectid, owner, offset);
1753 return ret;
1757 * helper to update/remove inline back ref
1759 static noinline_for_stack
1760 void update_inline_extent_backref(struct btrfs_root *root,
1761 struct btrfs_path *path,
1762 struct btrfs_extent_inline_ref *iref,
1763 int refs_to_mod,
1764 struct btrfs_delayed_extent_op *extent_op)
1766 struct extent_buffer *leaf;
1767 struct btrfs_extent_item *ei;
1768 struct btrfs_extent_data_ref *dref = NULL;
1769 struct btrfs_shared_data_ref *sref = NULL;
1770 unsigned long ptr;
1771 unsigned long end;
1772 u32 item_size;
1773 int size;
1774 int type;
1775 u64 refs;
1777 leaf = path->nodes[0];
1778 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1779 refs = btrfs_extent_refs(leaf, ei);
1780 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1781 refs += refs_to_mod;
1782 btrfs_set_extent_refs(leaf, ei, refs);
1783 if (extent_op)
1784 __run_delayed_extent_op(extent_op, leaf, ei);
1786 type = btrfs_extent_inline_ref_type(leaf, iref);
1788 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1789 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1790 refs = btrfs_extent_data_ref_count(leaf, dref);
1791 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1792 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1793 refs = btrfs_shared_data_ref_count(leaf, sref);
1794 } else {
1795 refs = 1;
1796 BUG_ON(refs_to_mod != -1);
1799 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1800 refs += refs_to_mod;
1802 if (refs > 0) {
1803 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1804 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1805 else
1806 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1807 } else {
1808 size = btrfs_extent_inline_ref_size(type);
1809 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1810 ptr = (unsigned long)iref;
1811 end = (unsigned long)ei + item_size;
1812 if (ptr + size < end)
1813 memmove_extent_buffer(leaf, ptr, ptr + size,
1814 end - ptr - size);
1815 item_size -= size;
1816 btrfs_truncate_item(root, path, item_size, 1);
1818 btrfs_mark_buffer_dirty(leaf);
1821 static noinline_for_stack
1822 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root,
1824 struct btrfs_path *path,
1825 u64 bytenr, u64 num_bytes, u64 parent,
1826 u64 root_objectid, u64 owner,
1827 u64 offset, int refs_to_add,
1828 struct btrfs_delayed_extent_op *extent_op)
1830 struct btrfs_extent_inline_ref *iref;
1831 int ret;
1833 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1834 bytenr, num_bytes, parent,
1835 root_objectid, owner, offset, 1);
1836 if (ret == 0) {
1837 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1838 update_inline_extent_backref(root, path, iref,
1839 refs_to_add, extent_op);
1840 } else if (ret == -ENOENT) {
1841 setup_inline_extent_backref(root, path, iref, parent,
1842 root_objectid, owner, offset,
1843 refs_to_add, extent_op);
1844 ret = 0;
1846 return ret;
1849 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1850 struct btrfs_root *root,
1851 struct btrfs_path *path,
1852 u64 bytenr, u64 parent, u64 root_objectid,
1853 u64 owner, u64 offset, int refs_to_add)
1855 int ret;
1856 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1857 BUG_ON(refs_to_add != 1);
1858 ret = insert_tree_block_ref(trans, root, path, bytenr,
1859 parent, root_objectid);
1860 } else {
1861 ret = insert_extent_data_ref(trans, root, path, bytenr,
1862 parent, root_objectid,
1863 owner, offset, refs_to_add);
1865 return ret;
1868 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1869 struct btrfs_root *root,
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
1872 int refs_to_drop, int is_data)
1874 int ret = 0;
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
1878 update_inline_extent_backref(root, path, iref,
1879 -refs_to_drop, NULL);
1880 } else if (is_data) {
1881 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1882 } else {
1883 ret = btrfs_del_item(trans, root, path);
1885 return ret;
1888 static int btrfs_issue_discard(struct block_device *bdev,
1889 u64 start, u64 len)
1891 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1895 u64 num_bytes, u64 *actual_bytes)
1897 int ret;
1898 u64 discarded_bytes = 0;
1899 struct btrfs_bio *bbio = NULL;
1902 /* Tell the block device(s) that the sectors can be discarded */
1903 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1904 bytenr, &num_bytes, &bbio, 0);
1905 /* Error condition is -ENOMEM */
1906 if (!ret) {
1907 struct btrfs_bio_stripe *stripe = bbio->stripes;
1908 int i;
1911 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1912 if (!stripe->dev->can_discard)
1913 continue;
1915 ret = btrfs_issue_discard(stripe->dev->bdev,
1916 stripe->physical,
1917 stripe->length);
1918 if (!ret)
1919 discarded_bytes += stripe->length;
1920 else if (ret != -EOPNOTSUPP)
1921 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924 * Just in case we get back EOPNOTSUPP for some reason,
1925 * just ignore the return value so we don't screw up
1926 * people calling discard_extent.
1928 ret = 0;
1930 kfree(bbio);
1933 if (actual_bytes)
1934 *actual_bytes = discarded_bytes;
1937 if (ret == -EOPNOTSUPP)
1938 ret = 0;
1939 return ret;
1942 /* Can return -ENOMEM */
1943 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1944 struct btrfs_root *root,
1945 u64 bytenr, u64 num_bytes, u64 parent,
1946 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1948 int ret;
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
1957 parent, root_objectid, (int)owner,
1958 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1959 } else {
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
1962 parent, root_objectid, owner, offset,
1963 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1965 return ret;
1968 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
1973 struct btrfs_delayed_extent_op *extent_op)
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
1978 u64 refs;
1979 int ret;
1981 path = btrfs_alloc_path();
1982 if (!path)
1983 return -ENOMEM;
1985 path->reada = 1;
1986 path->leave_spinning = 1;
1987 /* this will setup the path even if it fails to insert the back ref */
1988 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1989 path, bytenr, num_bytes, parent,
1990 root_objectid, owner, offset,
1991 refs_to_add, extent_op);
1992 if (ret != -EAGAIN)
1993 goto out;
1995 leaf = path->nodes[0];
1996 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1997 refs = btrfs_extent_refs(leaf, item);
1998 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1999 if (extent_op)
2000 __run_delayed_extent_op(extent_op, leaf, item);
2002 btrfs_mark_buffer_dirty(leaf);
2003 btrfs_release_path(path);
2005 path->reada = 1;
2006 path->leave_spinning = 1;
2008 /* now insert the actual backref */
2009 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2010 path, bytenr, parent, root_objectid,
2011 owner, offset, refs_to_add);
2012 if (ret)
2013 btrfs_abort_transaction(trans, root, ret);
2014 out:
2015 btrfs_free_path(path);
2016 return ret;
2019 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2020 struct btrfs_root *root,
2021 struct btrfs_delayed_ref_node *node,
2022 struct btrfs_delayed_extent_op *extent_op,
2023 int insert_reserved)
2025 int ret = 0;
2026 struct btrfs_delayed_data_ref *ref;
2027 struct btrfs_key ins;
2028 u64 parent = 0;
2029 u64 ref_root = 0;
2030 u64 flags = 0;
2032 ins.objectid = node->bytenr;
2033 ins.offset = node->num_bytes;
2034 ins.type = BTRFS_EXTENT_ITEM_KEY;
2036 ref = btrfs_delayed_node_to_data_ref(node);
2037 trace_run_delayed_data_ref(node, ref, node->action);
2039 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2040 parent = ref->parent;
2041 else
2042 ref_root = ref->root;
2044 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2045 if (extent_op)
2046 flags |= extent_op->flags_to_set;
2047 ret = alloc_reserved_file_extent(trans, root,
2048 parent, ref_root, flags,
2049 ref->objectid, ref->offset,
2050 &ins, node->ref_mod);
2051 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2052 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2053 node->num_bytes, parent,
2054 ref_root, ref->objectid,
2055 ref->offset, node->ref_mod,
2056 extent_op);
2057 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2058 ret = __btrfs_free_extent(trans, root, node->bytenr,
2059 node->num_bytes, parent,
2060 ref_root, ref->objectid,
2061 ref->offset, node->ref_mod,
2062 extent_op);
2063 } else {
2064 BUG();
2066 return ret;
2069 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2070 struct extent_buffer *leaf,
2071 struct btrfs_extent_item *ei)
2073 u64 flags = btrfs_extent_flags(leaf, ei);
2074 if (extent_op->update_flags) {
2075 flags |= extent_op->flags_to_set;
2076 btrfs_set_extent_flags(leaf, ei, flags);
2079 if (extent_op->update_key) {
2080 struct btrfs_tree_block_info *bi;
2081 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2082 bi = (struct btrfs_tree_block_info *)(ei + 1);
2083 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2087 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2088 struct btrfs_root *root,
2089 struct btrfs_delayed_ref_node *node,
2090 struct btrfs_delayed_extent_op *extent_op)
2092 struct btrfs_key key;
2093 struct btrfs_path *path;
2094 struct btrfs_extent_item *ei;
2095 struct extent_buffer *leaf;
2096 u32 item_size;
2097 int ret;
2098 int err = 0;
2099 int metadata = !extent_op->is_data;
2101 if (trans->aborted)
2102 return 0;
2104 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2105 metadata = 0;
2107 path = btrfs_alloc_path();
2108 if (!path)
2109 return -ENOMEM;
2111 key.objectid = node->bytenr;
2113 if (metadata) {
2114 key.type = BTRFS_METADATA_ITEM_KEY;
2115 key.offset = extent_op->level;
2116 } else {
2117 key.type = BTRFS_EXTENT_ITEM_KEY;
2118 key.offset = node->num_bytes;
2121 again:
2122 path->reada = 1;
2123 path->leave_spinning = 1;
2124 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2125 path, 0, 1);
2126 if (ret < 0) {
2127 err = ret;
2128 goto out;
2130 if (ret > 0) {
2131 if (metadata) {
2132 if (path->slots[0] > 0) {
2133 path->slots[0]--;
2134 btrfs_item_key_to_cpu(path->nodes[0], &key,
2135 path->slots[0]);
2136 if (key.objectid == node->bytenr &&
2137 key.type == BTRFS_EXTENT_ITEM_KEY &&
2138 key.offset == node->num_bytes)
2139 ret = 0;
2141 if (ret > 0) {
2142 btrfs_release_path(path);
2143 metadata = 0;
2145 key.objectid = node->bytenr;
2146 key.offset = node->num_bytes;
2147 key.type = BTRFS_EXTENT_ITEM_KEY;
2148 goto again;
2150 } else {
2151 err = -EIO;
2152 goto out;
2156 leaf = path->nodes[0];
2157 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2158 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2159 if (item_size < sizeof(*ei)) {
2160 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2161 path, (u64)-1, 0);
2162 if (ret < 0) {
2163 err = ret;
2164 goto out;
2166 leaf = path->nodes[0];
2167 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2169 #endif
2170 BUG_ON(item_size < sizeof(*ei));
2171 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2172 __run_delayed_extent_op(extent_op, leaf, ei);
2174 btrfs_mark_buffer_dirty(leaf);
2175 out:
2176 btrfs_free_path(path);
2177 return err;
2180 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_delayed_ref_node *node,
2183 struct btrfs_delayed_extent_op *extent_op,
2184 int insert_reserved)
2186 int ret = 0;
2187 struct btrfs_delayed_tree_ref *ref;
2188 struct btrfs_key ins;
2189 u64 parent = 0;
2190 u64 ref_root = 0;
2191 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2192 SKINNY_METADATA);
2194 ref = btrfs_delayed_node_to_tree_ref(node);
2195 trace_run_delayed_tree_ref(node, ref, node->action);
2197 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2198 parent = ref->parent;
2199 else
2200 ref_root = ref->root;
2202 ins.objectid = node->bytenr;
2203 if (skinny_metadata) {
2204 ins.offset = ref->level;
2205 ins.type = BTRFS_METADATA_ITEM_KEY;
2206 } else {
2207 ins.offset = node->num_bytes;
2208 ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 BUG_ON(node->ref_mod != 1);
2212 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2213 BUG_ON(!extent_op || !extent_op->update_flags);
2214 ret = alloc_reserved_tree_block(trans, root,
2215 parent, ref_root,
2216 extent_op->flags_to_set,
2217 &extent_op->key,
2218 ref->level, &ins);
2219 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2220 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2221 node->num_bytes, parent, ref_root,
2222 ref->level, 0, 1, extent_op);
2223 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2224 ret = __btrfs_free_extent(trans, root, node->bytenr,
2225 node->num_bytes, parent, ref_root,
2226 ref->level, 0, 1, extent_op);
2227 } else {
2228 BUG();
2230 return ret;
2233 /* helper function to actually process a single delayed ref entry */
2234 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2235 struct btrfs_root *root,
2236 struct btrfs_delayed_ref_node *node,
2237 struct btrfs_delayed_extent_op *extent_op,
2238 int insert_reserved)
2240 int ret = 0;
2242 if (trans->aborted) {
2243 if (insert_reserved)
2244 btrfs_pin_extent(root, node->bytenr,
2245 node->num_bytes, 1);
2246 return 0;
2249 if (btrfs_delayed_ref_is_head(node)) {
2250 struct btrfs_delayed_ref_head *head;
2252 * we've hit the end of the chain and we were supposed
2253 * to insert this extent into the tree. But, it got
2254 * deleted before we ever needed to insert it, so all
2255 * we have to do is clean up the accounting
2257 BUG_ON(extent_op);
2258 head = btrfs_delayed_node_to_head(node);
2259 trace_run_delayed_ref_head(node, head, node->action);
2261 if (insert_reserved) {
2262 btrfs_pin_extent(root, node->bytenr,
2263 node->num_bytes, 1);
2264 if (head->is_data) {
2265 ret = btrfs_del_csums(trans, root,
2266 node->bytenr,
2267 node->num_bytes);
2270 return ret;
2273 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2274 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2275 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2276 insert_reserved);
2277 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2278 node->type == BTRFS_SHARED_DATA_REF_KEY)
2279 ret = run_delayed_data_ref(trans, root, node, extent_op,
2280 insert_reserved);
2281 else
2282 BUG();
2283 return ret;
2286 static noinline struct btrfs_delayed_ref_node *
2287 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2289 struct rb_node *node;
2290 struct btrfs_delayed_ref_node *ref;
2291 int action = BTRFS_ADD_DELAYED_REF;
2292 again:
2294 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2295 * this prevents ref count from going down to zero when
2296 * there still are pending delayed ref.
2298 node = rb_prev(&head->node.rb_node);
2299 while (1) {
2300 if (!node)
2301 break;
2302 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2303 rb_node);
2304 if (ref->bytenr != head->node.bytenr)
2305 break;
2306 if (ref->action == action)
2307 return ref;
2308 node = rb_prev(node);
2310 if (action == BTRFS_ADD_DELAYED_REF) {
2311 action = BTRFS_DROP_DELAYED_REF;
2312 goto again;
2314 return NULL;
2318 * Returns 0 on success or if called with an already aborted transaction.
2319 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2321 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2322 struct btrfs_root *root,
2323 struct list_head *cluster)
2325 struct btrfs_delayed_ref_root *delayed_refs;
2326 struct btrfs_delayed_ref_node *ref;
2327 struct btrfs_delayed_ref_head *locked_ref = NULL;
2328 struct btrfs_delayed_extent_op *extent_op;
2329 struct btrfs_fs_info *fs_info = root->fs_info;
2330 int ret;
2331 int count = 0;
2332 int must_insert_reserved = 0;
2334 delayed_refs = &trans->transaction->delayed_refs;
2335 while (1) {
2336 if (!locked_ref) {
2337 /* pick a new head ref from the cluster list */
2338 if (list_empty(cluster))
2339 break;
2341 locked_ref = list_entry(cluster->next,
2342 struct btrfs_delayed_ref_head, cluster);
2344 /* grab the lock that says we are going to process
2345 * all the refs for this head */
2346 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2349 * we may have dropped the spin lock to get the head
2350 * mutex lock, and that might have given someone else
2351 * time to free the head. If that's true, it has been
2352 * removed from our list and we can move on.
2354 if (ret == -EAGAIN) {
2355 locked_ref = NULL;
2356 count++;
2357 continue;
2362 * We need to try and merge add/drops of the same ref since we
2363 * can run into issues with relocate dropping the implicit ref
2364 * and then it being added back again before the drop can
2365 * finish. If we merged anything we need to re-loop so we can
2366 * get a good ref.
2368 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2369 locked_ref);
2372 * locked_ref is the head node, so we have to go one
2373 * node back for any delayed ref updates
2375 ref = select_delayed_ref(locked_ref);
2377 if (ref && ref->seq &&
2378 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 * there are still refs with lower seq numbers in the
2381 * process of being added. Don't run this ref yet.
2383 list_del_init(&locked_ref->cluster);
2384 btrfs_delayed_ref_unlock(locked_ref);
2385 locked_ref = NULL;
2386 delayed_refs->num_heads_ready++;
2387 spin_unlock(&delayed_refs->lock);
2388 cond_resched();
2389 spin_lock(&delayed_refs->lock);
2390 continue;
2394 * record the must insert reserved flag before we
2395 * drop the spin lock.
2397 must_insert_reserved = locked_ref->must_insert_reserved;
2398 locked_ref->must_insert_reserved = 0;
2400 extent_op = locked_ref->extent_op;
2401 locked_ref->extent_op = NULL;
2403 if (!ref) {
2404 /* All delayed refs have been processed, Go ahead
2405 * and send the head node to run_one_delayed_ref,
2406 * so that any accounting fixes can happen
2408 ref = &locked_ref->node;
2410 if (extent_op && must_insert_reserved) {
2411 btrfs_free_delayed_extent_op(extent_op);
2412 extent_op = NULL;
2415 if (extent_op) {
2416 spin_unlock(&delayed_refs->lock);
2418 ret = run_delayed_extent_op(trans, root,
2419 ref, extent_op);
2420 btrfs_free_delayed_extent_op(extent_op);
2422 if (ret) {
2424 * Need to reset must_insert_reserved if
2425 * there was an error so the abort stuff
2426 * can cleanup the reserved space
2427 * properly.
2429 if (must_insert_reserved)
2430 locked_ref->must_insert_reserved = 1;
2431 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2432 spin_lock(&delayed_refs->lock);
2433 btrfs_delayed_ref_unlock(locked_ref);
2434 return ret;
2437 goto next;
2441 ref->in_tree = 0;
2442 rb_erase(&ref->rb_node, &delayed_refs->root);
2443 delayed_refs->num_entries--;
2444 if (!btrfs_delayed_ref_is_head(ref)) {
2446 * when we play the delayed ref, also correct the
2447 * ref_mod on head
2449 switch (ref->action) {
2450 case BTRFS_ADD_DELAYED_REF:
2451 case BTRFS_ADD_DELAYED_EXTENT:
2452 locked_ref->node.ref_mod -= ref->ref_mod;
2453 break;
2454 case BTRFS_DROP_DELAYED_REF:
2455 locked_ref->node.ref_mod += ref->ref_mod;
2456 break;
2457 default:
2458 WARN_ON(1);
2460 } else {
2461 list_del_init(&locked_ref->cluster);
2463 spin_unlock(&delayed_refs->lock);
2465 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2466 must_insert_reserved);
2468 btrfs_free_delayed_extent_op(extent_op);
2469 if (ret) {
2470 btrfs_delayed_ref_unlock(locked_ref);
2471 btrfs_put_delayed_ref(ref);
2472 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2473 spin_lock(&delayed_refs->lock);
2474 return ret;
2478 * If this node is a head, that means all the refs in this head
2479 * have been dealt with, and we will pick the next head to deal
2480 * with, so we must unlock the head and drop it from the cluster
2481 * list before we release it.
2483 if (btrfs_delayed_ref_is_head(ref)) {
2484 btrfs_delayed_ref_unlock(locked_ref);
2485 locked_ref = NULL;
2487 btrfs_put_delayed_ref(ref);
2488 count++;
2489 next:
2490 cond_resched();
2491 spin_lock(&delayed_refs->lock);
2493 return count;
2496 #ifdef SCRAMBLE_DELAYED_REFS
2498 * Normally delayed refs get processed in ascending bytenr order. This
2499 * correlates in most cases to the order added. To expose dependencies on this
2500 * order, we start to process the tree in the middle instead of the beginning
2502 static u64 find_middle(struct rb_root *root)
2504 struct rb_node *n = root->rb_node;
2505 struct btrfs_delayed_ref_node *entry;
2506 int alt = 1;
2507 u64 middle;
2508 u64 first = 0, last = 0;
2510 n = rb_first(root);
2511 if (n) {
2512 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2513 first = entry->bytenr;
2515 n = rb_last(root);
2516 if (n) {
2517 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2518 last = entry->bytenr;
2520 n = root->rb_node;
2522 while (n) {
2523 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2524 WARN_ON(!entry->in_tree);
2526 middle = entry->bytenr;
2528 if (alt)
2529 n = n->rb_left;
2530 else
2531 n = n->rb_right;
2533 alt = 1 - alt;
2535 return middle;
2537 #endif
2539 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2540 struct btrfs_fs_info *fs_info)
2542 struct qgroup_update *qgroup_update;
2543 int ret = 0;
2545 if (list_empty(&trans->qgroup_ref_list) !=
2546 !trans->delayed_ref_elem.seq) {
2547 /* list without seq or seq without list */
2548 btrfs_err(fs_info,
2549 "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2550 list_empty(&trans->qgroup_ref_list) ? "" : " not",
2551 (u32)(trans->delayed_ref_elem.seq >> 32),
2552 (u32)trans->delayed_ref_elem.seq);
2553 BUG();
2556 if (!trans->delayed_ref_elem.seq)
2557 return 0;
2559 while (!list_empty(&trans->qgroup_ref_list)) {
2560 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2561 struct qgroup_update, list);
2562 list_del(&qgroup_update->list);
2563 if (!ret)
2564 ret = btrfs_qgroup_account_ref(
2565 trans, fs_info, qgroup_update->node,
2566 qgroup_update->extent_op);
2567 kfree(qgroup_update);
2570 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2572 return ret;
2575 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2576 int count)
2578 int val = atomic_read(&delayed_refs->ref_seq);
2580 if (val < seq || val >= seq + count)
2581 return 1;
2582 return 0;
2585 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2587 u64 num_bytes;
2589 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2590 sizeof(struct btrfs_extent_inline_ref));
2591 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2592 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2595 * We don't ever fill up leaves all the way so multiply by 2 just to be
2596 * closer to what we're really going to want to ouse.
2598 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2601 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2602 struct btrfs_root *root)
2604 struct btrfs_block_rsv *global_rsv;
2605 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2606 u64 num_bytes;
2607 int ret = 0;
2609 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2610 num_heads = heads_to_leaves(root, num_heads);
2611 if (num_heads > 1)
2612 num_bytes += (num_heads - 1) * root->leafsize;
2613 num_bytes <<= 1;
2614 global_rsv = &root->fs_info->global_block_rsv;
2617 * If we can't allocate any more chunks lets make sure we have _lots_ of
2618 * wiggle room since running delayed refs can create more delayed refs.
2620 if (global_rsv->space_info->full)
2621 num_bytes <<= 1;
2623 spin_lock(&global_rsv->lock);
2624 if (global_rsv->reserved <= num_bytes)
2625 ret = 1;
2626 spin_unlock(&global_rsv->lock);
2627 return ret;
2631 * this starts processing the delayed reference count updates and
2632 * extent insertions we have queued up so far. count can be
2633 * 0, which means to process everything in the tree at the start
2634 * of the run (but not newly added entries), or it can be some target
2635 * number you'd like to process.
2637 * Returns 0 on success or if called with an aborted transaction
2638 * Returns <0 on error and aborts the transaction
2640 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root, unsigned long count)
2643 struct rb_node *node;
2644 struct btrfs_delayed_ref_root *delayed_refs;
2645 struct btrfs_delayed_ref_node *ref;
2646 struct list_head cluster;
2647 int ret;
2648 u64 delayed_start;
2649 int run_all = count == (unsigned long)-1;
2650 int run_most = 0;
2651 int loops;
2653 /* We'll clean this up in btrfs_cleanup_transaction */
2654 if (trans->aborted)
2655 return 0;
2657 if (root == root->fs_info->extent_root)
2658 root = root->fs_info->tree_root;
2660 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2662 delayed_refs = &trans->transaction->delayed_refs;
2663 INIT_LIST_HEAD(&cluster);
2664 if (count == 0) {
2665 count = delayed_refs->num_entries * 2;
2666 run_most = 1;
2669 if (!run_all && !run_most) {
2670 int old;
2671 int seq = atomic_read(&delayed_refs->ref_seq);
2673 progress:
2674 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2675 if (old) {
2676 DEFINE_WAIT(__wait);
2677 if (delayed_refs->flushing ||
2678 !btrfs_should_throttle_delayed_refs(trans, root))
2679 return 0;
2681 prepare_to_wait(&delayed_refs->wait, &__wait,
2682 TASK_UNINTERRUPTIBLE);
2684 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2685 if (old) {
2686 schedule();
2687 finish_wait(&delayed_refs->wait, &__wait);
2689 if (!refs_newer(delayed_refs, seq, 256))
2690 goto progress;
2691 else
2692 return 0;
2693 } else {
2694 finish_wait(&delayed_refs->wait, &__wait);
2695 goto again;
2699 } else {
2700 atomic_inc(&delayed_refs->procs_running_refs);
2703 again:
2704 loops = 0;
2705 spin_lock(&delayed_refs->lock);
2707 #ifdef SCRAMBLE_DELAYED_REFS
2708 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2709 #endif
2711 while (1) {
2712 if (!(run_all || run_most) &&
2713 !btrfs_should_throttle_delayed_refs(trans, root))
2714 break;
2717 * go find something we can process in the rbtree. We start at
2718 * the beginning of the tree, and then build a cluster
2719 * of refs to process starting at the first one we are able to
2720 * lock
2722 delayed_start = delayed_refs->run_delayed_start;
2723 ret = btrfs_find_ref_cluster(trans, &cluster,
2724 delayed_refs->run_delayed_start);
2725 if (ret)
2726 break;
2728 ret = run_clustered_refs(trans, root, &cluster);
2729 if (ret < 0) {
2730 btrfs_release_ref_cluster(&cluster);
2731 spin_unlock(&delayed_refs->lock);
2732 btrfs_abort_transaction(trans, root, ret);
2733 atomic_dec(&delayed_refs->procs_running_refs);
2734 wake_up(&delayed_refs->wait);
2735 return ret;
2738 atomic_add(ret, &delayed_refs->ref_seq);
2740 count -= min_t(unsigned long, ret, count);
2742 if (count == 0)
2743 break;
2745 if (delayed_start >= delayed_refs->run_delayed_start) {
2746 if (loops == 0) {
2748 * btrfs_find_ref_cluster looped. let's do one
2749 * more cycle. if we don't run any delayed ref
2750 * during that cycle (because we can't because
2751 * all of them are blocked), bail out.
2753 loops = 1;
2754 } else {
2756 * no runnable refs left, stop trying
2758 BUG_ON(run_all);
2759 break;
2762 if (ret) {
2763 /* refs were run, let's reset staleness detection */
2764 loops = 0;
2768 if (run_all) {
2769 if (!list_empty(&trans->new_bgs)) {
2770 spin_unlock(&delayed_refs->lock);
2771 btrfs_create_pending_block_groups(trans, root);
2772 spin_lock(&delayed_refs->lock);
2775 node = rb_first(&delayed_refs->root);
2776 if (!node)
2777 goto out;
2778 count = (unsigned long)-1;
2780 while (node) {
2781 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2782 rb_node);
2783 if (btrfs_delayed_ref_is_head(ref)) {
2784 struct btrfs_delayed_ref_head *head;
2786 head = btrfs_delayed_node_to_head(ref);
2787 atomic_inc(&ref->refs);
2789 spin_unlock(&delayed_refs->lock);
2791 * Mutex was contended, block until it's
2792 * released and try again
2794 mutex_lock(&head->mutex);
2795 mutex_unlock(&head->mutex);
2797 btrfs_put_delayed_ref(ref);
2798 cond_resched();
2799 goto again;
2801 node = rb_next(node);
2803 spin_unlock(&delayed_refs->lock);
2804 schedule_timeout(1);
2805 goto again;
2807 out:
2808 atomic_dec(&delayed_refs->procs_running_refs);
2809 smp_mb();
2810 if (waitqueue_active(&delayed_refs->wait))
2811 wake_up(&delayed_refs->wait);
2813 spin_unlock(&delayed_refs->lock);
2814 assert_qgroups_uptodate(trans);
2815 return 0;
2818 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2819 struct btrfs_root *root,
2820 u64 bytenr, u64 num_bytes, u64 flags,
2821 int level, int is_data)
2823 struct btrfs_delayed_extent_op *extent_op;
2824 int ret;
2826 extent_op = btrfs_alloc_delayed_extent_op();
2827 if (!extent_op)
2828 return -ENOMEM;
2830 extent_op->flags_to_set = flags;
2831 extent_op->update_flags = 1;
2832 extent_op->update_key = 0;
2833 extent_op->is_data = is_data ? 1 : 0;
2834 extent_op->level = level;
2836 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2837 num_bytes, extent_op);
2838 if (ret)
2839 btrfs_free_delayed_extent_op(extent_op);
2840 return ret;
2843 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2844 struct btrfs_root *root,
2845 struct btrfs_path *path,
2846 u64 objectid, u64 offset, u64 bytenr)
2848 struct btrfs_delayed_ref_head *head;
2849 struct btrfs_delayed_ref_node *ref;
2850 struct btrfs_delayed_data_ref *data_ref;
2851 struct btrfs_delayed_ref_root *delayed_refs;
2852 struct rb_node *node;
2853 int ret = 0;
2855 ret = -ENOENT;
2856 delayed_refs = &trans->transaction->delayed_refs;
2857 spin_lock(&delayed_refs->lock);
2858 head = btrfs_find_delayed_ref_head(trans, bytenr);
2859 if (!head)
2860 goto out;
2862 if (!mutex_trylock(&head->mutex)) {
2863 atomic_inc(&head->node.refs);
2864 spin_unlock(&delayed_refs->lock);
2866 btrfs_release_path(path);
2869 * Mutex was contended, block until it's released and let
2870 * caller try again
2872 mutex_lock(&head->mutex);
2873 mutex_unlock(&head->mutex);
2874 btrfs_put_delayed_ref(&head->node);
2875 return -EAGAIN;
2878 node = rb_prev(&head->node.rb_node);
2879 if (!node)
2880 goto out_unlock;
2882 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2884 if (ref->bytenr != bytenr)
2885 goto out_unlock;
2887 ret = 1;
2888 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2889 goto out_unlock;
2891 data_ref = btrfs_delayed_node_to_data_ref(ref);
2893 node = rb_prev(node);
2894 if (node) {
2895 int seq = ref->seq;
2897 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2898 if (ref->bytenr == bytenr && ref->seq == seq)
2899 goto out_unlock;
2902 if (data_ref->root != root->root_key.objectid ||
2903 data_ref->objectid != objectid || data_ref->offset != offset)
2904 goto out_unlock;
2906 ret = 0;
2907 out_unlock:
2908 mutex_unlock(&head->mutex);
2909 out:
2910 spin_unlock(&delayed_refs->lock);
2911 return ret;
2914 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2915 struct btrfs_root *root,
2916 struct btrfs_path *path,
2917 u64 objectid, u64 offset, u64 bytenr)
2919 struct btrfs_root *extent_root = root->fs_info->extent_root;
2920 struct extent_buffer *leaf;
2921 struct btrfs_extent_data_ref *ref;
2922 struct btrfs_extent_inline_ref *iref;
2923 struct btrfs_extent_item *ei;
2924 struct btrfs_key key;
2925 u32 item_size;
2926 int ret;
2928 key.objectid = bytenr;
2929 key.offset = (u64)-1;
2930 key.type = BTRFS_EXTENT_ITEM_KEY;
2932 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2933 if (ret < 0)
2934 goto out;
2935 BUG_ON(ret == 0); /* Corruption */
2937 ret = -ENOENT;
2938 if (path->slots[0] == 0)
2939 goto out;
2941 path->slots[0]--;
2942 leaf = path->nodes[0];
2943 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2945 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2946 goto out;
2948 ret = 1;
2949 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2950 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2951 if (item_size < sizeof(*ei)) {
2952 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2953 goto out;
2955 #endif
2956 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2958 if (item_size != sizeof(*ei) +
2959 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2960 goto out;
2962 if (btrfs_extent_generation(leaf, ei) <=
2963 btrfs_root_last_snapshot(&root->root_item))
2964 goto out;
2966 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2967 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2968 BTRFS_EXTENT_DATA_REF_KEY)
2969 goto out;
2971 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2972 if (btrfs_extent_refs(leaf, ei) !=
2973 btrfs_extent_data_ref_count(leaf, ref) ||
2974 btrfs_extent_data_ref_root(leaf, ref) !=
2975 root->root_key.objectid ||
2976 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2977 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2978 goto out;
2980 ret = 0;
2981 out:
2982 return ret;
2985 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root,
2987 u64 objectid, u64 offset, u64 bytenr)
2989 struct btrfs_path *path;
2990 int ret;
2991 int ret2;
2993 path = btrfs_alloc_path();
2994 if (!path)
2995 return -ENOENT;
2997 do {
2998 ret = check_committed_ref(trans, root, path, objectid,
2999 offset, bytenr);
3000 if (ret && ret != -ENOENT)
3001 goto out;
3003 ret2 = check_delayed_ref(trans, root, path, objectid,
3004 offset, bytenr);
3005 } while (ret2 == -EAGAIN);
3007 if (ret2 && ret2 != -ENOENT) {
3008 ret = ret2;
3009 goto out;
3012 if (ret != -ENOENT || ret2 != -ENOENT)
3013 ret = 0;
3014 out:
3015 btrfs_free_path(path);
3016 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3017 WARN_ON(ret > 0);
3018 return ret;
3021 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3022 struct btrfs_root *root,
3023 struct extent_buffer *buf,
3024 int full_backref, int inc, int for_cow)
3026 u64 bytenr;
3027 u64 num_bytes;
3028 u64 parent;
3029 u64 ref_root;
3030 u32 nritems;
3031 struct btrfs_key key;
3032 struct btrfs_file_extent_item *fi;
3033 int i;
3034 int level;
3035 int ret = 0;
3036 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3037 u64, u64, u64, u64, u64, u64, int);
3039 ref_root = btrfs_header_owner(buf);
3040 nritems = btrfs_header_nritems(buf);
3041 level = btrfs_header_level(buf);
3043 if (!root->ref_cows && level == 0)
3044 return 0;
3046 if (inc)
3047 process_func = btrfs_inc_extent_ref;
3048 else
3049 process_func = btrfs_free_extent;
3051 if (full_backref)
3052 parent = buf->start;
3053 else
3054 parent = 0;
3056 for (i = 0; i < nritems; i++) {
3057 if (level == 0) {
3058 btrfs_item_key_to_cpu(buf, &key, i);
3059 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3060 continue;
3061 fi = btrfs_item_ptr(buf, i,
3062 struct btrfs_file_extent_item);
3063 if (btrfs_file_extent_type(buf, fi) ==
3064 BTRFS_FILE_EXTENT_INLINE)
3065 continue;
3066 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3067 if (bytenr == 0)
3068 continue;
3070 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3071 key.offset -= btrfs_file_extent_offset(buf, fi);
3072 ret = process_func(trans, root, bytenr, num_bytes,
3073 parent, ref_root, key.objectid,
3074 key.offset, for_cow);
3075 if (ret)
3076 goto fail;
3077 } else {
3078 bytenr = btrfs_node_blockptr(buf, i);
3079 num_bytes = btrfs_level_size(root, level - 1);
3080 ret = process_func(trans, root, bytenr, num_bytes,
3081 parent, ref_root, level - 1, 0,
3082 for_cow);
3083 if (ret)
3084 goto fail;
3087 return 0;
3088 fail:
3089 return ret;
3092 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3093 struct extent_buffer *buf, int full_backref, int for_cow)
3095 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3098 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3099 struct extent_buffer *buf, int full_backref, int for_cow)
3101 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3104 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root,
3106 struct btrfs_path *path,
3107 struct btrfs_block_group_cache *cache)
3109 int ret;
3110 struct btrfs_root *extent_root = root->fs_info->extent_root;
3111 unsigned long bi;
3112 struct extent_buffer *leaf;
3114 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3115 if (ret < 0)
3116 goto fail;
3117 BUG_ON(ret); /* Corruption */
3119 leaf = path->nodes[0];
3120 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3121 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3122 btrfs_mark_buffer_dirty(leaf);
3123 btrfs_release_path(path);
3124 fail:
3125 if (ret) {
3126 btrfs_abort_transaction(trans, root, ret);
3127 return ret;
3129 return 0;
3133 static struct btrfs_block_group_cache *
3134 next_block_group(struct btrfs_root *root,
3135 struct btrfs_block_group_cache *cache)
3137 struct rb_node *node;
3138 spin_lock(&root->fs_info->block_group_cache_lock);
3139 node = rb_next(&cache->cache_node);
3140 btrfs_put_block_group(cache);
3141 if (node) {
3142 cache = rb_entry(node, struct btrfs_block_group_cache,
3143 cache_node);
3144 btrfs_get_block_group(cache);
3145 } else
3146 cache = NULL;
3147 spin_unlock(&root->fs_info->block_group_cache_lock);
3148 return cache;
3151 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3152 struct btrfs_trans_handle *trans,
3153 struct btrfs_path *path)
3155 struct btrfs_root *root = block_group->fs_info->tree_root;
3156 struct inode *inode = NULL;
3157 u64 alloc_hint = 0;
3158 int dcs = BTRFS_DC_ERROR;
3159 int num_pages = 0;
3160 int retries = 0;
3161 int ret = 0;
3164 * If this block group is smaller than 100 megs don't bother caching the
3165 * block group.
3167 if (block_group->key.offset < (100 * 1024 * 1024)) {
3168 spin_lock(&block_group->lock);
3169 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3170 spin_unlock(&block_group->lock);
3171 return 0;
3174 again:
3175 inode = lookup_free_space_inode(root, block_group, path);
3176 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3177 ret = PTR_ERR(inode);
3178 btrfs_release_path(path);
3179 goto out;
3182 if (IS_ERR(inode)) {
3183 BUG_ON(retries);
3184 retries++;
3186 if (block_group->ro)
3187 goto out_free;
3189 ret = create_free_space_inode(root, trans, block_group, path);
3190 if (ret)
3191 goto out_free;
3192 goto again;
3195 /* We've already setup this transaction, go ahead and exit */
3196 if (block_group->cache_generation == trans->transid &&
3197 i_size_read(inode)) {
3198 dcs = BTRFS_DC_SETUP;
3199 goto out_put;
3203 * We want to set the generation to 0, that way if anything goes wrong
3204 * from here on out we know not to trust this cache when we load up next
3205 * time.
3207 BTRFS_I(inode)->generation = 0;
3208 ret = btrfs_update_inode(trans, root, inode);
3209 WARN_ON(ret);
3211 if (i_size_read(inode) > 0) {
3212 ret = btrfs_check_trunc_cache_free_space(root,
3213 &root->fs_info->global_block_rsv);
3214 if (ret)
3215 goto out_put;
3217 ret = btrfs_truncate_free_space_cache(root, trans, inode);
3218 if (ret)
3219 goto out_put;
3222 spin_lock(&block_group->lock);
3223 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3224 !btrfs_test_opt(root, SPACE_CACHE)) {
3226 * don't bother trying to write stuff out _if_
3227 * a) we're not cached,
3228 * b) we're with nospace_cache mount option.
3230 dcs = BTRFS_DC_WRITTEN;
3231 spin_unlock(&block_group->lock);
3232 goto out_put;
3234 spin_unlock(&block_group->lock);
3237 * Try to preallocate enough space based on how big the block group is.
3238 * Keep in mind this has to include any pinned space which could end up
3239 * taking up quite a bit since it's not folded into the other space
3240 * cache.
3242 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3243 if (!num_pages)
3244 num_pages = 1;
3246 num_pages *= 16;
3247 num_pages *= PAGE_CACHE_SIZE;
3249 ret = btrfs_check_data_free_space(inode, num_pages);
3250 if (ret)
3251 goto out_put;
3253 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3254 num_pages, num_pages,
3255 &alloc_hint);
3256 if (!ret)
3257 dcs = BTRFS_DC_SETUP;
3258 btrfs_free_reserved_data_space(inode, num_pages);
3260 out_put:
3261 iput(inode);
3262 out_free:
3263 btrfs_release_path(path);
3264 out:
3265 spin_lock(&block_group->lock);
3266 if (!ret && dcs == BTRFS_DC_SETUP)
3267 block_group->cache_generation = trans->transid;
3268 block_group->disk_cache_state = dcs;
3269 spin_unlock(&block_group->lock);
3271 return ret;
3274 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3275 struct btrfs_root *root)
3277 struct btrfs_block_group_cache *cache;
3278 int err = 0;
3279 struct btrfs_path *path;
3280 u64 last = 0;
3282 path = btrfs_alloc_path();
3283 if (!path)
3284 return -ENOMEM;
3286 again:
3287 while (1) {
3288 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3289 while (cache) {
3290 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3291 break;
3292 cache = next_block_group(root, cache);
3294 if (!cache) {
3295 if (last == 0)
3296 break;
3297 last = 0;
3298 continue;
3300 err = cache_save_setup(cache, trans, path);
3301 last = cache->key.objectid + cache->key.offset;
3302 btrfs_put_block_group(cache);
3305 while (1) {
3306 if (last == 0) {
3307 err = btrfs_run_delayed_refs(trans, root,
3308 (unsigned long)-1);
3309 if (err) /* File system offline */
3310 goto out;
3313 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3314 while (cache) {
3315 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3316 btrfs_put_block_group(cache);
3317 goto again;
3320 if (cache->dirty)
3321 break;
3322 cache = next_block_group(root, cache);
3324 if (!cache) {
3325 if (last == 0)
3326 break;
3327 last = 0;
3328 continue;
3331 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3332 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3333 cache->dirty = 0;
3334 last = cache->key.objectid + cache->key.offset;
3336 err = write_one_cache_group(trans, root, path, cache);
3337 btrfs_put_block_group(cache);
3338 if (err) /* File system offline */
3339 goto out;
3342 while (1) {
3344 * I don't think this is needed since we're just marking our
3345 * preallocated extent as written, but just in case it can't
3346 * hurt.
3348 if (last == 0) {
3349 err = btrfs_run_delayed_refs(trans, root,
3350 (unsigned long)-1);
3351 if (err) /* File system offline */
3352 goto out;
3355 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 while (cache) {
3358 * Really this shouldn't happen, but it could if we
3359 * couldn't write the entire preallocated extent and
3360 * splitting the extent resulted in a new block.
3362 if (cache->dirty) {
3363 btrfs_put_block_group(cache);
3364 goto again;
3366 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3367 break;
3368 cache = next_block_group(root, cache);
3370 if (!cache) {
3371 if (last == 0)
3372 break;
3373 last = 0;
3374 continue;
3377 err = btrfs_write_out_cache(root, trans, cache, path);
3380 * If we didn't have an error then the cache state is still
3381 * NEED_WRITE, so we can set it to WRITTEN.
3383 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3384 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3385 last = cache->key.objectid + cache->key.offset;
3386 btrfs_put_block_group(cache);
3388 out:
3390 btrfs_free_path(path);
3391 return err;
3394 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3396 struct btrfs_block_group_cache *block_group;
3397 int readonly = 0;
3399 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3400 if (!block_group || block_group->ro)
3401 readonly = 1;
3402 if (block_group)
3403 btrfs_put_block_group(block_group);
3404 return readonly;
3407 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3408 u64 total_bytes, u64 bytes_used,
3409 struct btrfs_space_info **space_info)
3411 struct btrfs_space_info *found;
3412 int i;
3413 int factor;
3414 int ret;
3416 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3417 BTRFS_BLOCK_GROUP_RAID10))
3418 factor = 2;
3419 else
3420 factor = 1;
3422 found = __find_space_info(info, flags);
3423 if (found) {
3424 spin_lock(&found->lock);
3425 found->total_bytes += total_bytes;
3426 found->disk_total += total_bytes * factor;
3427 found->bytes_used += bytes_used;
3428 found->disk_used += bytes_used * factor;
3429 found->full = 0;
3430 spin_unlock(&found->lock);
3431 *space_info = found;
3432 return 0;
3434 found = kzalloc(sizeof(*found), GFP_NOFS);
3435 if (!found)
3436 return -ENOMEM;
3438 ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3439 if (ret) {
3440 kfree(found);
3441 return ret;
3444 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3445 INIT_LIST_HEAD(&found->block_groups[i]);
3446 init_rwsem(&found->groups_sem);
3447 spin_lock_init(&found->lock);
3448 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3449 found->total_bytes = total_bytes;
3450 found->disk_total = total_bytes * factor;
3451 found->bytes_used = bytes_used;
3452 found->disk_used = bytes_used * factor;
3453 found->bytes_pinned = 0;
3454 found->bytes_reserved = 0;
3455 found->bytes_readonly = 0;
3456 found->bytes_may_use = 0;
3457 found->full = 0;
3458 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3459 found->chunk_alloc = 0;
3460 found->flush = 0;
3461 init_waitqueue_head(&found->wait);
3462 *space_info = found;
3463 list_add_rcu(&found->list, &info->space_info);
3464 if (flags & BTRFS_BLOCK_GROUP_DATA)
3465 info->data_sinfo = found;
3466 return 0;
3469 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3471 u64 extra_flags = chunk_to_extended(flags) &
3472 BTRFS_EXTENDED_PROFILE_MASK;
3474 write_seqlock(&fs_info->profiles_lock);
3475 if (flags & BTRFS_BLOCK_GROUP_DATA)
3476 fs_info->avail_data_alloc_bits |= extra_flags;
3477 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3478 fs_info->avail_metadata_alloc_bits |= extra_flags;
3479 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3480 fs_info->avail_system_alloc_bits |= extra_flags;
3481 write_sequnlock(&fs_info->profiles_lock);
3485 * returns target flags in extended format or 0 if restripe for this
3486 * chunk_type is not in progress
3488 * should be called with either volume_mutex or balance_lock held
3490 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3492 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3493 u64 target = 0;
3495 if (!bctl)
3496 return 0;
3498 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3499 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3500 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3501 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3502 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3503 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3504 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3505 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3506 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3509 return target;
3513 * @flags: available profiles in extended format (see ctree.h)
3515 * Returns reduced profile in chunk format. If profile changing is in
3516 * progress (either running or paused) picks the target profile (if it's
3517 * already available), otherwise falls back to plain reducing.
3519 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3522 * we add in the count of missing devices because we want
3523 * to make sure that any RAID levels on a degraded FS
3524 * continue to be honored.
3526 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3527 root->fs_info->fs_devices->missing_devices;
3528 u64 target;
3529 u64 tmp;
3532 * see if restripe for this chunk_type is in progress, if so
3533 * try to reduce to the target profile
3535 spin_lock(&root->fs_info->balance_lock);
3536 target = get_restripe_target(root->fs_info, flags);
3537 if (target) {
3538 /* pick target profile only if it's already available */
3539 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3540 spin_unlock(&root->fs_info->balance_lock);
3541 return extended_to_chunk(target);
3544 spin_unlock(&root->fs_info->balance_lock);
3546 /* First, mask out the RAID levels which aren't possible */
3547 if (num_devices == 1)
3548 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3549 BTRFS_BLOCK_GROUP_RAID5);
3550 if (num_devices < 3)
3551 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3552 if (num_devices < 4)
3553 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3555 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3556 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3557 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3558 flags &= ~tmp;
3560 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3561 tmp = BTRFS_BLOCK_GROUP_RAID6;
3562 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3563 tmp = BTRFS_BLOCK_GROUP_RAID5;
3564 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3565 tmp = BTRFS_BLOCK_GROUP_RAID10;
3566 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3567 tmp = BTRFS_BLOCK_GROUP_RAID1;
3568 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3569 tmp = BTRFS_BLOCK_GROUP_RAID0;
3571 return extended_to_chunk(flags | tmp);
3574 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3576 unsigned seq;
3578 do {
3579 seq = read_seqbegin(&root->fs_info->profiles_lock);
3581 if (flags & BTRFS_BLOCK_GROUP_DATA)
3582 flags |= root->fs_info->avail_data_alloc_bits;
3583 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3584 flags |= root->fs_info->avail_system_alloc_bits;
3585 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3586 flags |= root->fs_info->avail_metadata_alloc_bits;
3587 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3589 return btrfs_reduce_alloc_profile(root, flags);
3592 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3594 u64 flags;
3595 u64 ret;
3597 if (data)
3598 flags = BTRFS_BLOCK_GROUP_DATA;
3599 else if (root == root->fs_info->chunk_root)
3600 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3601 else
3602 flags = BTRFS_BLOCK_GROUP_METADATA;
3604 ret = get_alloc_profile(root, flags);
3605 return ret;
3609 * This will check the space that the inode allocates from to make sure we have
3610 * enough space for bytes.
3612 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3614 struct btrfs_space_info *data_sinfo;
3615 struct btrfs_root *root = BTRFS_I(inode)->root;
3616 struct btrfs_fs_info *fs_info = root->fs_info;
3617 u64 used;
3618 int ret = 0, committed = 0, alloc_chunk = 1;
3620 /* make sure bytes are sectorsize aligned */
3621 bytes = ALIGN(bytes, root->sectorsize);
3623 if (btrfs_is_free_space_inode(inode)) {
3624 committed = 1;
3625 ASSERT(current->journal_info);
3628 data_sinfo = fs_info->data_sinfo;
3629 if (!data_sinfo)
3630 goto alloc;
3632 again:
3633 /* make sure we have enough space to handle the data first */
3634 spin_lock(&data_sinfo->lock);
3635 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3636 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3637 data_sinfo->bytes_may_use;
3639 if (used + bytes > data_sinfo->total_bytes) {
3640 struct btrfs_trans_handle *trans;
3643 * if we don't have enough free bytes in this space then we need
3644 * to alloc a new chunk.
3646 if (!data_sinfo->full && alloc_chunk) {
3647 u64 alloc_target;
3649 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3650 spin_unlock(&data_sinfo->lock);
3651 alloc:
3652 alloc_target = btrfs_get_alloc_profile(root, 1);
3654 * It is ugly that we don't call nolock join
3655 * transaction for the free space inode case here.
3656 * But it is safe because we only do the data space
3657 * reservation for the free space cache in the
3658 * transaction context, the common join transaction
3659 * just increase the counter of the current transaction
3660 * handler, doesn't try to acquire the trans_lock of
3661 * the fs.
3663 trans = btrfs_join_transaction(root);
3664 if (IS_ERR(trans))
3665 return PTR_ERR(trans);
3667 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3668 alloc_target,
3669 CHUNK_ALLOC_NO_FORCE);
3670 btrfs_end_transaction(trans, root);
3671 if (ret < 0) {
3672 if (ret != -ENOSPC)
3673 return ret;
3674 else
3675 goto commit_trans;
3678 if (!data_sinfo)
3679 data_sinfo = fs_info->data_sinfo;
3681 goto again;
3685 * If we don't have enough pinned space to deal with this
3686 * allocation don't bother committing the transaction.
3688 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3689 bytes) < 0)
3690 committed = 1;
3691 spin_unlock(&data_sinfo->lock);
3693 /* commit the current transaction and try again */
3694 commit_trans:
3695 if (!committed &&
3696 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3697 committed = 1;
3699 trans = btrfs_join_transaction(root);
3700 if (IS_ERR(trans))
3701 return PTR_ERR(trans);
3702 ret = btrfs_commit_transaction(trans, root);
3703 if (ret)
3704 return ret;
3705 goto again;
3708 trace_btrfs_space_reservation(root->fs_info,
3709 "space_info:enospc",
3710 data_sinfo->flags, bytes, 1);
3711 return -ENOSPC;
3713 data_sinfo->bytes_may_use += bytes;
3714 trace_btrfs_space_reservation(root->fs_info, "space_info",
3715 data_sinfo->flags, bytes, 1);
3716 spin_unlock(&data_sinfo->lock);
3718 return 0;
3722 * Called if we need to clear a data reservation for this inode.
3724 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 struct btrfs_space_info *data_sinfo;
3729 /* make sure bytes are sectorsize aligned */
3730 bytes = ALIGN(bytes, root->sectorsize);
3732 data_sinfo = root->fs_info->data_sinfo;
3733 spin_lock(&data_sinfo->lock);
3734 WARN_ON(data_sinfo->bytes_may_use < bytes);
3735 data_sinfo->bytes_may_use -= bytes;
3736 trace_btrfs_space_reservation(root->fs_info, "space_info",
3737 data_sinfo->flags, bytes, 0);
3738 spin_unlock(&data_sinfo->lock);
3741 static void force_metadata_allocation(struct btrfs_fs_info *info)
3743 struct list_head *head = &info->space_info;
3744 struct btrfs_space_info *found;
3746 rcu_read_lock();
3747 list_for_each_entry_rcu(found, head, list) {
3748 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3749 found->force_alloc = CHUNK_ALLOC_FORCE;
3751 rcu_read_unlock();
3754 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3756 return (global->size << 1);
3759 static int should_alloc_chunk(struct btrfs_root *root,
3760 struct btrfs_space_info *sinfo, int force)
3762 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3763 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3764 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3765 u64 thresh;
3767 if (force == CHUNK_ALLOC_FORCE)
3768 return 1;
3771 * We need to take into account the global rsv because for all intents
3772 * and purposes it's used space. Don't worry about locking the
3773 * global_rsv, it doesn't change except when the transaction commits.
3775 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3776 num_allocated += calc_global_rsv_need_space(global_rsv);
3779 * in limited mode, we want to have some free space up to
3780 * about 1% of the FS size.
3782 if (force == CHUNK_ALLOC_LIMITED) {
3783 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3784 thresh = max_t(u64, 64 * 1024 * 1024,
3785 div_factor_fine(thresh, 1));
3787 if (num_bytes - num_allocated < thresh)
3788 return 1;
3791 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3792 return 0;
3793 return 1;
3796 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3798 u64 num_dev;
3800 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3801 BTRFS_BLOCK_GROUP_RAID0 |
3802 BTRFS_BLOCK_GROUP_RAID5 |
3803 BTRFS_BLOCK_GROUP_RAID6))
3804 num_dev = root->fs_info->fs_devices->rw_devices;
3805 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3806 num_dev = 2;
3807 else
3808 num_dev = 1; /* DUP or single */
3810 /* metadata for updaing devices and chunk tree */
3811 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3814 static void check_system_chunk(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *root, u64 type)
3817 struct btrfs_space_info *info;
3818 u64 left;
3819 u64 thresh;
3821 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3822 spin_lock(&info->lock);
3823 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3824 info->bytes_reserved - info->bytes_readonly;
3825 spin_unlock(&info->lock);
3827 thresh = get_system_chunk_thresh(root, type);
3828 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3829 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3830 left, thresh, type);
3831 dump_space_info(info, 0, 0);
3834 if (left < thresh) {
3835 u64 flags;
3837 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3838 btrfs_alloc_chunk(trans, root, flags);
3842 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3843 struct btrfs_root *extent_root, u64 flags, int force)
3845 struct btrfs_space_info *space_info;
3846 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3847 int wait_for_alloc = 0;
3848 int ret = 0;
3850 /* Don't re-enter if we're already allocating a chunk */
3851 if (trans->allocating_chunk)
3852 return -ENOSPC;
3854 space_info = __find_space_info(extent_root->fs_info, flags);
3855 if (!space_info) {
3856 ret = update_space_info(extent_root->fs_info, flags,
3857 0, 0, &space_info);
3858 BUG_ON(ret); /* -ENOMEM */
3860 BUG_ON(!space_info); /* Logic error */
3862 again:
3863 spin_lock(&space_info->lock);
3864 if (force < space_info->force_alloc)
3865 force = space_info->force_alloc;
3866 if (space_info->full) {
3867 if (should_alloc_chunk(extent_root, space_info, force))
3868 ret = -ENOSPC;
3869 else
3870 ret = 0;
3871 spin_unlock(&space_info->lock);
3872 return ret;
3875 if (!should_alloc_chunk(extent_root, space_info, force)) {
3876 spin_unlock(&space_info->lock);
3877 return 0;
3878 } else if (space_info->chunk_alloc) {
3879 wait_for_alloc = 1;
3880 } else {
3881 space_info->chunk_alloc = 1;
3884 spin_unlock(&space_info->lock);
3886 mutex_lock(&fs_info->chunk_mutex);
3889 * The chunk_mutex is held throughout the entirety of a chunk
3890 * allocation, so once we've acquired the chunk_mutex we know that the
3891 * other guy is done and we need to recheck and see if we should
3892 * allocate.
3894 if (wait_for_alloc) {
3895 mutex_unlock(&fs_info->chunk_mutex);
3896 wait_for_alloc = 0;
3897 goto again;
3900 trans->allocating_chunk = true;
3903 * If we have mixed data/metadata chunks we want to make sure we keep
3904 * allocating mixed chunks instead of individual chunks.
3906 if (btrfs_mixed_space_info(space_info))
3907 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3910 * if we're doing a data chunk, go ahead and make sure that
3911 * we keep a reasonable number of metadata chunks allocated in the
3912 * FS as well.
3914 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3915 fs_info->data_chunk_allocations++;
3916 if (!(fs_info->data_chunk_allocations %
3917 fs_info->metadata_ratio))
3918 force_metadata_allocation(fs_info);
3922 * Check if we have enough space in SYSTEM chunk because we may need
3923 * to update devices.
3925 check_system_chunk(trans, extent_root, flags);
3927 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3928 trans->allocating_chunk = false;
3930 spin_lock(&space_info->lock);
3931 if (ret < 0 && ret != -ENOSPC)
3932 goto out;
3933 if (ret)
3934 space_info->full = 1;
3935 else
3936 ret = 1;
3938 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3939 out:
3940 space_info->chunk_alloc = 0;
3941 spin_unlock(&space_info->lock);
3942 mutex_unlock(&fs_info->chunk_mutex);
3943 return ret;
3946 static int can_overcommit(struct btrfs_root *root,
3947 struct btrfs_space_info *space_info, u64 bytes,
3948 enum btrfs_reserve_flush_enum flush)
3950 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3951 u64 profile = btrfs_get_alloc_profile(root, 0);
3952 u64 space_size;
3953 u64 avail;
3954 u64 used;
3956 used = space_info->bytes_used + space_info->bytes_reserved +
3957 space_info->bytes_pinned + space_info->bytes_readonly;
3960 * We only want to allow over committing if we have lots of actual space
3961 * free, but if we don't have enough space to handle the global reserve
3962 * space then we could end up having a real enospc problem when trying
3963 * to allocate a chunk or some other such important allocation.
3965 spin_lock(&global_rsv->lock);
3966 space_size = calc_global_rsv_need_space(global_rsv);
3967 spin_unlock(&global_rsv->lock);
3968 if (used + space_size >= space_info->total_bytes)
3969 return 0;
3971 used += space_info->bytes_may_use;
3973 spin_lock(&root->fs_info->free_chunk_lock);
3974 avail = root->fs_info->free_chunk_space;
3975 spin_unlock(&root->fs_info->free_chunk_lock);
3978 * If we have dup, raid1 or raid10 then only half of the free
3979 * space is actually useable. For raid56, the space info used
3980 * doesn't include the parity drive, so we don't have to
3981 * change the math
3983 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3984 BTRFS_BLOCK_GROUP_RAID1 |
3985 BTRFS_BLOCK_GROUP_RAID10))
3986 avail >>= 1;
3989 * If we aren't flushing all things, let us overcommit up to
3990 * 1/2th of the space. If we can flush, don't let us overcommit
3991 * too much, let it overcommit up to 1/8 of the space.
3993 if (flush == BTRFS_RESERVE_FLUSH_ALL)
3994 avail >>= 3;
3995 else
3996 avail >>= 1;
3998 if (used + bytes < space_info->total_bytes + avail)
3999 return 1;
4000 return 0;
4003 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4004 unsigned long nr_pages)
4006 struct super_block *sb = root->fs_info->sb;
4008 if (down_read_trylock(&sb->s_umount)) {
4009 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4010 up_read(&sb->s_umount);
4011 } else {
4013 * We needn't worry the filesystem going from r/w to r/o though
4014 * we don't acquire ->s_umount mutex, because the filesystem
4015 * should guarantee the delalloc inodes list be empty after
4016 * the filesystem is readonly(all dirty pages are written to
4017 * the disk).
4019 btrfs_start_delalloc_roots(root->fs_info, 0);
4020 if (!current->journal_info)
4021 btrfs_wait_ordered_roots(root->fs_info, -1);
4025 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4027 u64 bytes;
4028 int nr;
4030 bytes = btrfs_calc_trans_metadata_size(root, 1);
4031 nr = (int)div64_u64(to_reclaim, bytes);
4032 if (!nr)
4033 nr = 1;
4034 return nr;
4037 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4040 * shrink metadata reservation for delalloc
4042 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4043 bool wait_ordered)
4045 struct btrfs_block_rsv *block_rsv;
4046 struct btrfs_space_info *space_info;
4047 struct btrfs_trans_handle *trans;
4048 u64 delalloc_bytes;
4049 u64 max_reclaim;
4050 long time_left;
4051 unsigned long nr_pages;
4052 int loops;
4053 int items;
4054 enum btrfs_reserve_flush_enum flush;
4056 /* Calc the number of the pages we need flush for space reservation */
4057 items = calc_reclaim_items_nr(root, to_reclaim);
4058 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4060 trans = (struct btrfs_trans_handle *)current->journal_info;
4061 block_rsv = &root->fs_info->delalloc_block_rsv;
4062 space_info = block_rsv->space_info;
4064 delalloc_bytes = percpu_counter_sum_positive(
4065 &root->fs_info->delalloc_bytes);
4066 if (delalloc_bytes == 0) {
4067 if (trans)
4068 return;
4069 if (wait_ordered)
4070 btrfs_wait_ordered_roots(root->fs_info, items);
4071 return;
4074 loops = 0;
4075 while (delalloc_bytes && loops < 3) {
4076 max_reclaim = min(delalloc_bytes, to_reclaim);
4077 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4078 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4080 * We need to wait for the async pages to actually start before
4081 * we do anything.
4083 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4084 if (!max_reclaim)
4085 goto skip_async;
4087 if (max_reclaim <= nr_pages)
4088 max_reclaim = 0;
4089 else
4090 max_reclaim -= nr_pages;
4092 wait_event(root->fs_info->async_submit_wait,
4093 atomic_read(&root->fs_info->async_delalloc_pages) <=
4094 (int)max_reclaim);
4095 skip_async:
4096 if (!trans)
4097 flush = BTRFS_RESERVE_FLUSH_ALL;
4098 else
4099 flush = BTRFS_RESERVE_NO_FLUSH;
4100 spin_lock(&space_info->lock);
4101 if (can_overcommit(root, space_info, orig, flush)) {
4102 spin_unlock(&space_info->lock);
4103 break;
4105 spin_unlock(&space_info->lock);
4107 loops++;
4108 if (wait_ordered && !trans) {
4109 btrfs_wait_ordered_roots(root->fs_info, items);
4110 } else {
4111 time_left = schedule_timeout_killable(1);
4112 if (time_left)
4113 break;
4115 delalloc_bytes = percpu_counter_sum_positive(
4116 &root->fs_info->delalloc_bytes);
4121 * maybe_commit_transaction - possibly commit the transaction if its ok to
4122 * @root - the root we're allocating for
4123 * @bytes - the number of bytes we want to reserve
4124 * @force - force the commit
4126 * This will check to make sure that committing the transaction will actually
4127 * get us somewhere and then commit the transaction if it does. Otherwise it
4128 * will return -ENOSPC.
4130 static int may_commit_transaction(struct btrfs_root *root,
4131 struct btrfs_space_info *space_info,
4132 u64 bytes, int force)
4134 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4135 struct btrfs_trans_handle *trans;
4137 trans = (struct btrfs_trans_handle *)current->journal_info;
4138 if (trans)
4139 return -EAGAIN;
4141 if (force)
4142 goto commit;
4144 /* See if there is enough pinned space to make this reservation */
4145 spin_lock(&space_info->lock);
4146 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4147 bytes) >= 0) {
4148 spin_unlock(&space_info->lock);
4149 goto commit;
4151 spin_unlock(&space_info->lock);
4154 * See if there is some space in the delayed insertion reservation for
4155 * this reservation.
4157 if (space_info != delayed_rsv->space_info)
4158 return -ENOSPC;
4160 spin_lock(&space_info->lock);
4161 spin_lock(&delayed_rsv->lock);
4162 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4163 bytes - delayed_rsv->size) >= 0) {
4164 spin_unlock(&delayed_rsv->lock);
4165 spin_unlock(&space_info->lock);
4166 return -ENOSPC;
4168 spin_unlock(&delayed_rsv->lock);
4169 spin_unlock(&space_info->lock);
4171 commit:
4172 trans = btrfs_join_transaction(root);
4173 if (IS_ERR(trans))
4174 return -ENOSPC;
4176 return btrfs_commit_transaction(trans, root);
4179 enum flush_state {
4180 FLUSH_DELAYED_ITEMS_NR = 1,
4181 FLUSH_DELAYED_ITEMS = 2,
4182 FLUSH_DELALLOC = 3,
4183 FLUSH_DELALLOC_WAIT = 4,
4184 ALLOC_CHUNK = 5,
4185 COMMIT_TRANS = 6,
4188 static int flush_space(struct btrfs_root *root,
4189 struct btrfs_space_info *space_info, u64 num_bytes,
4190 u64 orig_bytes, int state)
4192 struct btrfs_trans_handle *trans;
4193 int nr;
4194 int ret = 0;
4196 switch (state) {
4197 case FLUSH_DELAYED_ITEMS_NR:
4198 case FLUSH_DELAYED_ITEMS:
4199 if (state == FLUSH_DELAYED_ITEMS_NR)
4200 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4201 else
4202 nr = -1;
4204 trans = btrfs_join_transaction(root);
4205 if (IS_ERR(trans)) {
4206 ret = PTR_ERR(trans);
4207 break;
4209 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4210 btrfs_end_transaction(trans, root);
4211 break;
4212 case FLUSH_DELALLOC:
4213 case FLUSH_DELALLOC_WAIT:
4214 shrink_delalloc(root, num_bytes, orig_bytes,
4215 state == FLUSH_DELALLOC_WAIT);
4216 break;
4217 case ALLOC_CHUNK:
4218 trans = btrfs_join_transaction(root);
4219 if (IS_ERR(trans)) {
4220 ret = PTR_ERR(trans);
4221 break;
4223 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4224 btrfs_get_alloc_profile(root, 0),
4225 CHUNK_ALLOC_NO_FORCE);
4226 btrfs_end_transaction(trans, root);
4227 if (ret == -ENOSPC)
4228 ret = 0;
4229 break;
4230 case COMMIT_TRANS:
4231 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4232 break;
4233 default:
4234 ret = -ENOSPC;
4235 break;
4238 return ret;
4241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4242 * @root - the root we're allocating for
4243 * @block_rsv - the block_rsv we're allocating for
4244 * @orig_bytes - the number of bytes we want
4245 * @flush - whether or not we can flush to make our reservation
4247 * This will reserve orgi_bytes number of bytes from the space info associated
4248 * with the block_rsv. If there is not enough space it will make an attempt to
4249 * flush out space to make room. It will do this by flushing delalloc if
4250 * possible or committing the transaction. If flush is 0 then no attempts to
4251 * regain reservations will be made and this will fail if there is not enough
4252 * space already.
4254 static int reserve_metadata_bytes(struct btrfs_root *root,
4255 struct btrfs_block_rsv *block_rsv,
4256 u64 orig_bytes,
4257 enum btrfs_reserve_flush_enum flush)
4259 struct btrfs_space_info *space_info = block_rsv->space_info;
4260 u64 used;
4261 u64 num_bytes = orig_bytes;
4262 int flush_state = FLUSH_DELAYED_ITEMS_NR;
4263 int ret = 0;
4264 bool flushing = false;
4266 again:
4267 ret = 0;
4268 spin_lock(&space_info->lock);
4270 * We only want to wait if somebody other than us is flushing and we
4271 * are actually allowed to flush all things.
4273 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4274 space_info->flush) {
4275 spin_unlock(&space_info->lock);
4277 * If we have a trans handle we can't wait because the flusher
4278 * may have to commit the transaction, which would mean we would
4279 * deadlock since we are waiting for the flusher to finish, but
4280 * hold the current transaction open.
4282 if (current->journal_info)
4283 return -EAGAIN;
4284 ret = wait_event_killable(space_info->wait, !space_info->flush);
4285 /* Must have been killed, return */
4286 if (ret)
4287 return -EINTR;
4289 spin_lock(&space_info->lock);
4292 ret = -ENOSPC;
4293 used = space_info->bytes_used + space_info->bytes_reserved +
4294 space_info->bytes_pinned + space_info->bytes_readonly +
4295 space_info->bytes_may_use;
4298 * The idea here is that we've not already over-reserved the block group
4299 * then we can go ahead and save our reservation first and then start
4300 * flushing if we need to. Otherwise if we've already overcommitted
4301 * lets start flushing stuff first and then come back and try to make
4302 * our reservation.
4304 if (used <= space_info->total_bytes) {
4305 if (used + orig_bytes <= space_info->total_bytes) {
4306 space_info->bytes_may_use += orig_bytes;
4307 trace_btrfs_space_reservation(root->fs_info,
4308 "space_info", space_info->flags, orig_bytes, 1);
4309 ret = 0;
4310 } else {
4312 * Ok set num_bytes to orig_bytes since we aren't
4313 * overocmmitted, this way we only try and reclaim what
4314 * we need.
4316 num_bytes = orig_bytes;
4318 } else {
4320 * Ok we're over committed, set num_bytes to the overcommitted
4321 * amount plus the amount of bytes that we need for this
4322 * reservation.
4324 num_bytes = used - space_info->total_bytes +
4325 (orig_bytes * 2);
4328 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4329 space_info->bytes_may_use += orig_bytes;
4330 trace_btrfs_space_reservation(root->fs_info, "space_info",
4331 space_info->flags, orig_bytes,
4333 ret = 0;
4337 * Couldn't make our reservation, save our place so while we're trying
4338 * to reclaim space we can actually use it instead of somebody else
4339 * stealing it from us.
4341 * We make the other tasks wait for the flush only when we can flush
4342 * all things.
4344 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4345 flushing = true;
4346 space_info->flush = 1;
4349 spin_unlock(&space_info->lock);
4351 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4352 goto out;
4354 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4355 flush_state);
4356 flush_state++;
4359 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4360 * would happen. So skip delalloc flush.
4362 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4363 (flush_state == FLUSH_DELALLOC ||
4364 flush_state == FLUSH_DELALLOC_WAIT))
4365 flush_state = ALLOC_CHUNK;
4367 if (!ret)
4368 goto again;
4369 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4370 flush_state < COMMIT_TRANS)
4371 goto again;
4372 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4373 flush_state <= COMMIT_TRANS)
4374 goto again;
4376 out:
4377 if (ret == -ENOSPC &&
4378 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4379 struct btrfs_block_rsv *global_rsv =
4380 &root->fs_info->global_block_rsv;
4382 if (block_rsv != global_rsv &&
4383 !block_rsv_use_bytes(global_rsv, orig_bytes))
4384 ret = 0;
4386 if (ret == -ENOSPC)
4387 trace_btrfs_space_reservation(root->fs_info,
4388 "space_info:enospc",
4389 space_info->flags, orig_bytes, 1);
4390 if (flushing) {
4391 spin_lock(&space_info->lock);
4392 space_info->flush = 0;
4393 wake_up_all(&space_info->wait);
4394 spin_unlock(&space_info->lock);
4396 return ret;
4399 static struct btrfs_block_rsv *get_block_rsv(
4400 const struct btrfs_trans_handle *trans,
4401 const struct btrfs_root *root)
4403 struct btrfs_block_rsv *block_rsv = NULL;
4405 if (root->ref_cows)
4406 block_rsv = trans->block_rsv;
4408 if (root == root->fs_info->csum_root && trans->adding_csums)
4409 block_rsv = trans->block_rsv;
4411 if (root == root->fs_info->uuid_root)
4412 block_rsv = trans->block_rsv;
4414 if (!block_rsv)
4415 block_rsv = root->block_rsv;
4417 if (!block_rsv)
4418 block_rsv = &root->fs_info->empty_block_rsv;
4420 return block_rsv;
4423 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4424 u64 num_bytes)
4426 int ret = -ENOSPC;
4427 spin_lock(&block_rsv->lock);
4428 if (block_rsv->reserved >= num_bytes) {
4429 block_rsv->reserved -= num_bytes;
4430 if (block_rsv->reserved < block_rsv->size)
4431 block_rsv->full = 0;
4432 ret = 0;
4434 spin_unlock(&block_rsv->lock);
4435 return ret;
4438 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4439 u64 num_bytes, int update_size)
4441 spin_lock(&block_rsv->lock);
4442 block_rsv->reserved += num_bytes;
4443 if (update_size)
4444 block_rsv->size += num_bytes;
4445 else if (block_rsv->reserved >= block_rsv->size)
4446 block_rsv->full = 1;
4447 spin_unlock(&block_rsv->lock);
4450 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4451 struct btrfs_block_rsv *dest, u64 num_bytes,
4452 int min_factor)
4454 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4455 u64 min_bytes;
4457 if (global_rsv->space_info != dest->space_info)
4458 return -ENOSPC;
4460 spin_lock(&global_rsv->lock);
4461 min_bytes = div_factor(global_rsv->size, min_factor);
4462 if (global_rsv->reserved < min_bytes + num_bytes) {
4463 spin_unlock(&global_rsv->lock);
4464 return -ENOSPC;
4466 global_rsv->reserved -= num_bytes;
4467 if (global_rsv->reserved < global_rsv->size)
4468 global_rsv->full = 0;
4469 spin_unlock(&global_rsv->lock);
4471 block_rsv_add_bytes(dest, num_bytes, 1);
4472 return 0;
4475 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4476 struct btrfs_block_rsv *block_rsv,
4477 struct btrfs_block_rsv *dest, u64 num_bytes)
4479 struct btrfs_space_info *space_info = block_rsv->space_info;
4481 spin_lock(&block_rsv->lock);
4482 if (num_bytes == (u64)-1)
4483 num_bytes = block_rsv->size;
4484 block_rsv->size -= num_bytes;
4485 if (block_rsv->reserved >= block_rsv->size) {
4486 num_bytes = block_rsv->reserved - block_rsv->size;
4487 block_rsv->reserved = block_rsv->size;
4488 block_rsv->full = 1;
4489 } else {
4490 num_bytes = 0;
4492 spin_unlock(&block_rsv->lock);
4494 if (num_bytes > 0) {
4495 if (dest) {
4496 spin_lock(&dest->lock);
4497 if (!dest->full) {
4498 u64 bytes_to_add;
4500 bytes_to_add = dest->size - dest->reserved;
4501 bytes_to_add = min(num_bytes, bytes_to_add);
4502 dest->reserved += bytes_to_add;
4503 if (dest->reserved >= dest->size)
4504 dest->full = 1;
4505 num_bytes -= bytes_to_add;
4507 spin_unlock(&dest->lock);
4509 if (num_bytes) {
4510 spin_lock(&space_info->lock);
4511 space_info->bytes_may_use -= num_bytes;
4512 trace_btrfs_space_reservation(fs_info, "space_info",
4513 space_info->flags, num_bytes, 0);
4514 spin_unlock(&space_info->lock);
4519 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4520 struct btrfs_block_rsv *dst, u64 num_bytes)
4522 int ret;
4524 ret = block_rsv_use_bytes(src, num_bytes);
4525 if (ret)
4526 return ret;
4528 block_rsv_add_bytes(dst, num_bytes, 1);
4529 return 0;
4532 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4534 memset(rsv, 0, sizeof(*rsv));
4535 spin_lock_init(&rsv->lock);
4536 rsv->type = type;
4539 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4540 unsigned short type)
4542 struct btrfs_block_rsv *block_rsv;
4543 struct btrfs_fs_info *fs_info = root->fs_info;
4545 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4546 if (!block_rsv)
4547 return NULL;
4549 btrfs_init_block_rsv(block_rsv, type);
4550 block_rsv->space_info = __find_space_info(fs_info,
4551 BTRFS_BLOCK_GROUP_METADATA);
4552 return block_rsv;
4555 void btrfs_free_block_rsv(struct btrfs_root *root,
4556 struct btrfs_block_rsv *rsv)
4558 if (!rsv)
4559 return;
4560 btrfs_block_rsv_release(root, rsv, (u64)-1);
4561 kfree(rsv);
4564 int btrfs_block_rsv_add(struct btrfs_root *root,
4565 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4566 enum btrfs_reserve_flush_enum flush)
4568 int ret;
4570 if (num_bytes == 0)
4571 return 0;
4573 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4574 if (!ret) {
4575 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4576 return 0;
4579 return ret;
4582 int btrfs_block_rsv_check(struct btrfs_root *root,
4583 struct btrfs_block_rsv *block_rsv, int min_factor)
4585 u64 num_bytes = 0;
4586 int ret = -ENOSPC;
4588 if (!block_rsv)
4589 return 0;
4591 spin_lock(&block_rsv->lock);
4592 num_bytes = div_factor(block_rsv->size, min_factor);
4593 if (block_rsv->reserved >= num_bytes)
4594 ret = 0;
4595 spin_unlock(&block_rsv->lock);
4597 return ret;
4600 int btrfs_block_rsv_refill(struct btrfs_root *root,
4601 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4602 enum btrfs_reserve_flush_enum flush)
4604 u64 num_bytes = 0;
4605 int ret = -ENOSPC;
4607 if (!block_rsv)
4608 return 0;
4610 spin_lock(&block_rsv->lock);
4611 num_bytes = min_reserved;
4612 if (block_rsv->reserved >= num_bytes)
4613 ret = 0;
4614 else
4615 num_bytes -= block_rsv->reserved;
4616 spin_unlock(&block_rsv->lock);
4618 if (!ret)
4619 return 0;
4621 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4622 if (!ret) {
4623 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4624 return 0;
4627 return ret;
4630 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4631 struct btrfs_block_rsv *dst_rsv,
4632 u64 num_bytes)
4634 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4637 void btrfs_block_rsv_release(struct btrfs_root *root,
4638 struct btrfs_block_rsv *block_rsv,
4639 u64 num_bytes)
4641 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4642 if (global_rsv->full || global_rsv == block_rsv ||
4643 block_rsv->space_info != global_rsv->space_info)
4644 global_rsv = NULL;
4645 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4646 num_bytes);
4650 * helper to calculate size of global block reservation.
4651 * the desired value is sum of space used by extent tree,
4652 * checksum tree and root tree
4654 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4656 struct btrfs_space_info *sinfo;
4657 u64 num_bytes;
4658 u64 meta_used;
4659 u64 data_used;
4660 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4662 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4663 spin_lock(&sinfo->lock);
4664 data_used = sinfo->bytes_used;
4665 spin_unlock(&sinfo->lock);
4667 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4668 spin_lock(&sinfo->lock);
4669 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4670 data_used = 0;
4671 meta_used = sinfo->bytes_used;
4672 spin_unlock(&sinfo->lock);
4674 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4675 csum_size * 2;
4676 num_bytes += div64_u64(data_used + meta_used, 50);
4678 if (num_bytes * 3 > meta_used)
4679 num_bytes = div64_u64(meta_used, 3);
4681 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4686 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4687 struct btrfs_space_info *sinfo = block_rsv->space_info;
4688 u64 num_bytes;
4690 num_bytes = calc_global_metadata_size(fs_info);
4692 spin_lock(&sinfo->lock);
4693 spin_lock(&block_rsv->lock);
4695 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4697 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4698 sinfo->bytes_reserved + sinfo->bytes_readonly +
4699 sinfo->bytes_may_use;
4701 if (sinfo->total_bytes > num_bytes) {
4702 num_bytes = sinfo->total_bytes - num_bytes;
4703 block_rsv->reserved += num_bytes;
4704 sinfo->bytes_may_use += num_bytes;
4705 trace_btrfs_space_reservation(fs_info, "space_info",
4706 sinfo->flags, num_bytes, 1);
4709 if (block_rsv->reserved >= block_rsv->size) {
4710 num_bytes = block_rsv->reserved - block_rsv->size;
4711 sinfo->bytes_may_use -= num_bytes;
4712 trace_btrfs_space_reservation(fs_info, "space_info",
4713 sinfo->flags, num_bytes, 0);
4714 block_rsv->reserved = block_rsv->size;
4715 block_rsv->full = 1;
4718 spin_unlock(&block_rsv->lock);
4719 spin_unlock(&sinfo->lock);
4722 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4724 struct btrfs_space_info *space_info;
4726 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4727 fs_info->chunk_block_rsv.space_info = space_info;
4729 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4730 fs_info->global_block_rsv.space_info = space_info;
4731 fs_info->delalloc_block_rsv.space_info = space_info;
4732 fs_info->trans_block_rsv.space_info = space_info;
4733 fs_info->empty_block_rsv.space_info = space_info;
4734 fs_info->delayed_block_rsv.space_info = space_info;
4736 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4737 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4738 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4739 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4740 if (fs_info->quota_root)
4741 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4742 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4744 update_global_block_rsv(fs_info);
4747 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4749 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4750 (u64)-1);
4751 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4752 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4753 WARN_ON(fs_info->trans_block_rsv.size > 0);
4754 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4755 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4756 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4757 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4758 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4761 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4762 struct btrfs_root *root)
4764 if (!trans->block_rsv)
4765 return;
4767 if (!trans->bytes_reserved)
4768 return;
4770 trace_btrfs_space_reservation(root->fs_info, "transaction",
4771 trans->transid, trans->bytes_reserved, 0);
4772 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4773 trans->bytes_reserved = 0;
4776 /* Can only return 0 or -ENOSPC */
4777 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4778 struct inode *inode)
4780 struct btrfs_root *root = BTRFS_I(inode)->root;
4781 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4782 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4785 * We need to hold space in order to delete our orphan item once we've
4786 * added it, so this takes the reservation so we can release it later
4787 * when we are truly done with the orphan item.
4789 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4790 trace_btrfs_space_reservation(root->fs_info, "orphan",
4791 btrfs_ino(inode), num_bytes, 1);
4792 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4795 void btrfs_orphan_release_metadata(struct inode *inode)
4797 struct btrfs_root *root = BTRFS_I(inode)->root;
4798 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4799 trace_btrfs_space_reservation(root->fs_info, "orphan",
4800 btrfs_ino(inode), num_bytes, 0);
4801 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4805 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4806 * root: the root of the parent directory
4807 * rsv: block reservation
4808 * items: the number of items that we need do reservation
4809 * qgroup_reserved: used to return the reserved size in qgroup
4811 * This function is used to reserve the space for snapshot/subvolume
4812 * creation and deletion. Those operations are different with the
4813 * common file/directory operations, they change two fs/file trees
4814 * and root tree, the number of items that the qgroup reserves is
4815 * different with the free space reservation. So we can not use
4816 * the space reseravtion mechanism in start_transaction().
4818 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4819 struct btrfs_block_rsv *rsv,
4820 int items,
4821 u64 *qgroup_reserved,
4822 bool use_global_rsv)
4824 u64 num_bytes;
4825 int ret;
4826 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4828 if (root->fs_info->quota_enabled) {
4829 /* One for parent inode, two for dir entries */
4830 num_bytes = 3 * root->leafsize;
4831 ret = btrfs_qgroup_reserve(root, num_bytes);
4832 if (ret)
4833 return ret;
4834 } else {
4835 num_bytes = 0;
4838 *qgroup_reserved = num_bytes;
4840 num_bytes = btrfs_calc_trans_metadata_size(root, items);
4841 rsv->space_info = __find_space_info(root->fs_info,
4842 BTRFS_BLOCK_GROUP_METADATA);
4843 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4844 BTRFS_RESERVE_FLUSH_ALL);
4846 if (ret == -ENOSPC && use_global_rsv)
4847 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4849 if (ret) {
4850 if (*qgroup_reserved)
4851 btrfs_qgroup_free(root, *qgroup_reserved);
4854 return ret;
4857 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4858 struct btrfs_block_rsv *rsv,
4859 u64 qgroup_reserved)
4861 btrfs_block_rsv_release(root, rsv, (u64)-1);
4862 if (qgroup_reserved)
4863 btrfs_qgroup_free(root, qgroup_reserved);
4867 * drop_outstanding_extent - drop an outstanding extent
4868 * @inode: the inode we're dropping the extent for
4870 * This is called when we are freeing up an outstanding extent, either called
4871 * after an error or after an extent is written. This will return the number of
4872 * reserved extents that need to be freed. This must be called with
4873 * BTRFS_I(inode)->lock held.
4875 static unsigned drop_outstanding_extent(struct inode *inode)
4877 unsigned drop_inode_space = 0;
4878 unsigned dropped_extents = 0;
4880 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4881 BTRFS_I(inode)->outstanding_extents--;
4883 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4884 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4885 &BTRFS_I(inode)->runtime_flags))
4886 drop_inode_space = 1;
4889 * If we have more or the same amount of outsanding extents than we have
4890 * reserved then we need to leave the reserved extents count alone.
4892 if (BTRFS_I(inode)->outstanding_extents >=
4893 BTRFS_I(inode)->reserved_extents)
4894 return drop_inode_space;
4896 dropped_extents = BTRFS_I(inode)->reserved_extents -
4897 BTRFS_I(inode)->outstanding_extents;
4898 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4899 return dropped_extents + drop_inode_space;
4903 * calc_csum_metadata_size - return the amount of metada space that must be
4904 * reserved/free'd for the given bytes.
4905 * @inode: the inode we're manipulating
4906 * @num_bytes: the number of bytes in question
4907 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4909 * This adjusts the number of csum_bytes in the inode and then returns the
4910 * correct amount of metadata that must either be reserved or freed. We
4911 * calculate how many checksums we can fit into one leaf and then divide the
4912 * number of bytes that will need to be checksumed by this value to figure out
4913 * how many checksums will be required. If we are adding bytes then the number
4914 * may go up and we will return the number of additional bytes that must be
4915 * reserved. If it is going down we will return the number of bytes that must
4916 * be freed.
4918 * This must be called with BTRFS_I(inode)->lock held.
4920 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4921 int reserve)
4923 struct btrfs_root *root = BTRFS_I(inode)->root;
4924 u64 csum_size;
4925 int num_csums_per_leaf;
4926 int num_csums;
4927 int old_csums;
4929 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4930 BTRFS_I(inode)->csum_bytes == 0)
4931 return 0;
4933 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4934 if (reserve)
4935 BTRFS_I(inode)->csum_bytes += num_bytes;
4936 else
4937 BTRFS_I(inode)->csum_bytes -= num_bytes;
4938 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4939 num_csums_per_leaf = (int)div64_u64(csum_size,
4940 sizeof(struct btrfs_csum_item) +
4941 sizeof(struct btrfs_disk_key));
4942 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4943 num_csums = num_csums + num_csums_per_leaf - 1;
4944 num_csums = num_csums / num_csums_per_leaf;
4946 old_csums = old_csums + num_csums_per_leaf - 1;
4947 old_csums = old_csums / num_csums_per_leaf;
4949 /* No change, no need to reserve more */
4950 if (old_csums == num_csums)
4951 return 0;
4953 if (reserve)
4954 return btrfs_calc_trans_metadata_size(root,
4955 num_csums - old_csums);
4957 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4960 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4962 struct btrfs_root *root = BTRFS_I(inode)->root;
4963 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4964 u64 to_reserve = 0;
4965 u64 csum_bytes;
4966 unsigned nr_extents = 0;
4967 int extra_reserve = 0;
4968 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4969 int ret = 0;
4970 bool delalloc_lock = true;
4971 u64 to_free = 0;
4972 unsigned dropped;
4974 /* If we are a free space inode we need to not flush since we will be in
4975 * the middle of a transaction commit. We also don't need the delalloc
4976 * mutex since we won't race with anybody. We need this mostly to make
4977 * lockdep shut its filthy mouth.
4979 if (btrfs_is_free_space_inode(inode)) {
4980 flush = BTRFS_RESERVE_NO_FLUSH;
4981 delalloc_lock = false;
4984 if (flush != BTRFS_RESERVE_NO_FLUSH &&
4985 btrfs_transaction_in_commit(root->fs_info))
4986 schedule_timeout(1);
4988 if (delalloc_lock)
4989 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4991 num_bytes = ALIGN(num_bytes, root->sectorsize);
4993 spin_lock(&BTRFS_I(inode)->lock);
4994 BTRFS_I(inode)->outstanding_extents++;
4996 if (BTRFS_I(inode)->outstanding_extents >
4997 BTRFS_I(inode)->reserved_extents)
4998 nr_extents = BTRFS_I(inode)->outstanding_extents -
4999 BTRFS_I(inode)->reserved_extents;
5002 * Add an item to reserve for updating the inode when we complete the
5003 * delalloc io.
5005 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5006 &BTRFS_I(inode)->runtime_flags)) {
5007 nr_extents++;
5008 extra_reserve = 1;
5011 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5012 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5013 csum_bytes = BTRFS_I(inode)->csum_bytes;
5014 spin_unlock(&BTRFS_I(inode)->lock);
5016 if (root->fs_info->quota_enabled) {
5017 ret = btrfs_qgroup_reserve(root, num_bytes +
5018 nr_extents * root->leafsize);
5019 if (ret)
5020 goto out_fail;
5023 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5024 if (unlikely(ret)) {
5025 if (root->fs_info->quota_enabled)
5026 btrfs_qgroup_free(root, num_bytes +
5027 nr_extents * root->leafsize);
5028 goto out_fail;
5031 spin_lock(&BTRFS_I(inode)->lock);
5032 if (extra_reserve) {
5033 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5034 &BTRFS_I(inode)->runtime_flags);
5035 nr_extents--;
5037 BTRFS_I(inode)->reserved_extents += nr_extents;
5038 spin_unlock(&BTRFS_I(inode)->lock);
5040 if (delalloc_lock)
5041 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5043 if (to_reserve)
5044 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5045 btrfs_ino(inode), to_reserve, 1);
5046 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5048 return 0;
5050 out_fail:
5051 spin_lock(&BTRFS_I(inode)->lock);
5052 dropped = drop_outstanding_extent(inode);
5054 * If the inodes csum_bytes is the same as the original
5055 * csum_bytes then we know we haven't raced with any free()ers
5056 * so we can just reduce our inodes csum bytes and carry on.
5058 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5059 calc_csum_metadata_size(inode, num_bytes, 0);
5060 } else {
5061 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5062 u64 bytes;
5065 * This is tricky, but first we need to figure out how much we
5066 * free'd from any free-ers that occured during this
5067 * reservation, so we reset ->csum_bytes to the csum_bytes
5068 * before we dropped our lock, and then call the free for the
5069 * number of bytes that were freed while we were trying our
5070 * reservation.
5072 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5073 BTRFS_I(inode)->csum_bytes = csum_bytes;
5074 to_free = calc_csum_metadata_size(inode, bytes, 0);
5078 * Now we need to see how much we would have freed had we not
5079 * been making this reservation and our ->csum_bytes were not
5080 * artificially inflated.
5082 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5083 bytes = csum_bytes - orig_csum_bytes;
5084 bytes = calc_csum_metadata_size(inode, bytes, 0);
5087 * Now reset ->csum_bytes to what it should be. If bytes is
5088 * more than to_free then we would have free'd more space had we
5089 * not had an artificially high ->csum_bytes, so we need to free
5090 * the remainder. If bytes is the same or less then we don't
5091 * need to do anything, the other free-ers did the correct
5092 * thing.
5094 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5095 if (bytes > to_free)
5096 to_free = bytes - to_free;
5097 else
5098 to_free = 0;
5100 spin_unlock(&BTRFS_I(inode)->lock);
5101 if (dropped)
5102 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5104 if (to_free) {
5105 btrfs_block_rsv_release(root, block_rsv, to_free);
5106 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5107 btrfs_ino(inode), to_free, 0);
5109 if (delalloc_lock)
5110 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5111 return ret;
5115 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5116 * @inode: the inode to release the reservation for
5117 * @num_bytes: the number of bytes we're releasing
5119 * This will release the metadata reservation for an inode. This can be called
5120 * once we complete IO for a given set of bytes to release their metadata
5121 * reservations.
5123 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5125 struct btrfs_root *root = BTRFS_I(inode)->root;
5126 u64 to_free = 0;
5127 unsigned dropped;
5129 num_bytes = ALIGN(num_bytes, root->sectorsize);
5130 spin_lock(&BTRFS_I(inode)->lock);
5131 dropped = drop_outstanding_extent(inode);
5133 if (num_bytes)
5134 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5135 spin_unlock(&BTRFS_I(inode)->lock);
5136 if (dropped > 0)
5137 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5139 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5140 btrfs_ino(inode), to_free, 0);
5141 if (root->fs_info->quota_enabled) {
5142 btrfs_qgroup_free(root, num_bytes +
5143 dropped * root->leafsize);
5146 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5147 to_free);
5151 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5152 * @inode: inode we're writing to
5153 * @num_bytes: the number of bytes we want to allocate
5155 * This will do the following things
5157 * o reserve space in the data space info for num_bytes
5158 * o reserve space in the metadata space info based on number of outstanding
5159 * extents and how much csums will be needed
5160 * o add to the inodes ->delalloc_bytes
5161 * o add it to the fs_info's delalloc inodes list.
5163 * This will return 0 for success and -ENOSPC if there is no space left.
5165 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5167 int ret;
5169 ret = btrfs_check_data_free_space(inode, num_bytes);
5170 if (ret)
5171 return ret;
5173 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5174 if (ret) {
5175 btrfs_free_reserved_data_space(inode, num_bytes);
5176 return ret;
5179 return 0;
5183 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5184 * @inode: inode we're releasing space for
5185 * @num_bytes: the number of bytes we want to free up
5187 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5188 * called in the case that we don't need the metadata AND data reservations
5189 * anymore. So if there is an error or we insert an inline extent.
5191 * This function will release the metadata space that was not used and will
5192 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5193 * list if there are no delalloc bytes left.
5195 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5197 btrfs_delalloc_release_metadata(inode, num_bytes);
5198 btrfs_free_reserved_data_space(inode, num_bytes);
5201 static int update_block_group(struct btrfs_root *root,
5202 u64 bytenr, u64 num_bytes, int alloc)
5204 struct btrfs_block_group_cache *cache = NULL;
5205 struct btrfs_fs_info *info = root->fs_info;
5206 u64 total = num_bytes;
5207 u64 old_val;
5208 u64 byte_in_group;
5209 int factor;
5211 /* block accounting for super block */
5212 spin_lock(&info->delalloc_root_lock);
5213 old_val = btrfs_super_bytes_used(info->super_copy);
5214 if (alloc)
5215 old_val += num_bytes;
5216 else
5217 old_val -= num_bytes;
5218 btrfs_set_super_bytes_used(info->super_copy, old_val);
5219 spin_unlock(&info->delalloc_root_lock);
5221 while (total) {
5222 cache = btrfs_lookup_block_group(info, bytenr);
5223 if (!cache)
5224 return -ENOENT;
5225 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5226 BTRFS_BLOCK_GROUP_RAID1 |
5227 BTRFS_BLOCK_GROUP_RAID10))
5228 factor = 2;
5229 else
5230 factor = 1;
5232 * If this block group has free space cache written out, we
5233 * need to make sure to load it if we are removing space. This
5234 * is because we need the unpinning stage to actually add the
5235 * space back to the block group, otherwise we will leak space.
5237 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5238 cache_block_group(cache, 1);
5240 byte_in_group = bytenr - cache->key.objectid;
5241 WARN_ON(byte_in_group > cache->key.offset);
5243 spin_lock(&cache->space_info->lock);
5244 spin_lock(&cache->lock);
5246 if (btrfs_test_opt(root, SPACE_CACHE) &&
5247 cache->disk_cache_state < BTRFS_DC_CLEAR)
5248 cache->disk_cache_state = BTRFS_DC_CLEAR;
5250 cache->dirty = 1;
5251 old_val = btrfs_block_group_used(&cache->item);
5252 num_bytes = min(total, cache->key.offset - byte_in_group);
5253 if (alloc) {
5254 old_val += num_bytes;
5255 btrfs_set_block_group_used(&cache->item, old_val);
5256 cache->reserved -= num_bytes;
5257 cache->space_info->bytes_reserved -= num_bytes;
5258 cache->space_info->bytes_used += num_bytes;
5259 cache->space_info->disk_used += num_bytes * factor;
5260 spin_unlock(&cache->lock);
5261 spin_unlock(&cache->space_info->lock);
5262 } else {
5263 old_val -= num_bytes;
5264 btrfs_set_block_group_used(&cache->item, old_val);
5265 cache->pinned += num_bytes;
5266 cache->space_info->bytes_pinned += num_bytes;
5267 cache->space_info->bytes_used -= num_bytes;
5268 cache->space_info->disk_used -= num_bytes * factor;
5269 spin_unlock(&cache->lock);
5270 spin_unlock(&cache->space_info->lock);
5272 set_extent_dirty(info->pinned_extents,
5273 bytenr, bytenr + num_bytes - 1,
5274 GFP_NOFS | __GFP_NOFAIL);
5276 btrfs_put_block_group(cache);
5277 total -= num_bytes;
5278 bytenr += num_bytes;
5280 return 0;
5283 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5285 struct btrfs_block_group_cache *cache;
5286 u64 bytenr;
5288 spin_lock(&root->fs_info->block_group_cache_lock);
5289 bytenr = root->fs_info->first_logical_byte;
5290 spin_unlock(&root->fs_info->block_group_cache_lock);
5292 if (bytenr < (u64)-1)
5293 return bytenr;
5295 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5296 if (!cache)
5297 return 0;
5299 bytenr = cache->key.objectid;
5300 btrfs_put_block_group(cache);
5302 return bytenr;
5305 static int pin_down_extent(struct btrfs_root *root,
5306 struct btrfs_block_group_cache *cache,
5307 u64 bytenr, u64 num_bytes, int reserved)
5309 spin_lock(&cache->space_info->lock);
5310 spin_lock(&cache->lock);
5311 cache->pinned += num_bytes;
5312 cache->space_info->bytes_pinned += num_bytes;
5313 if (reserved) {
5314 cache->reserved -= num_bytes;
5315 cache->space_info->bytes_reserved -= num_bytes;
5317 spin_unlock(&cache->lock);
5318 spin_unlock(&cache->space_info->lock);
5320 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5321 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5322 if (reserved)
5323 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5324 return 0;
5328 * this function must be called within transaction
5330 int btrfs_pin_extent(struct btrfs_root *root,
5331 u64 bytenr, u64 num_bytes, int reserved)
5333 struct btrfs_block_group_cache *cache;
5335 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5336 BUG_ON(!cache); /* Logic error */
5338 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5340 btrfs_put_block_group(cache);
5341 return 0;
5345 * this function must be called within transaction
5347 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5348 u64 bytenr, u64 num_bytes)
5350 struct btrfs_block_group_cache *cache;
5351 int ret;
5353 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5354 if (!cache)
5355 return -EINVAL;
5358 * pull in the free space cache (if any) so that our pin
5359 * removes the free space from the cache. We have load_only set
5360 * to one because the slow code to read in the free extents does check
5361 * the pinned extents.
5363 cache_block_group(cache, 1);
5365 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5367 /* remove us from the free space cache (if we're there at all) */
5368 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5369 btrfs_put_block_group(cache);
5370 return ret;
5373 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5375 int ret;
5376 struct btrfs_block_group_cache *block_group;
5377 struct btrfs_caching_control *caching_ctl;
5379 block_group = btrfs_lookup_block_group(root->fs_info, start);
5380 if (!block_group)
5381 return -EINVAL;
5383 cache_block_group(block_group, 0);
5384 caching_ctl = get_caching_control(block_group);
5386 if (!caching_ctl) {
5387 /* Logic error */
5388 BUG_ON(!block_group_cache_done(block_group));
5389 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5390 } else {
5391 mutex_lock(&caching_ctl->mutex);
5393 if (start >= caching_ctl->progress) {
5394 ret = add_excluded_extent(root, start, num_bytes);
5395 } else if (start + num_bytes <= caching_ctl->progress) {
5396 ret = btrfs_remove_free_space(block_group,
5397 start, num_bytes);
5398 } else {
5399 num_bytes = caching_ctl->progress - start;
5400 ret = btrfs_remove_free_space(block_group,
5401 start, num_bytes);
5402 if (ret)
5403 goto out_lock;
5405 num_bytes = (start + num_bytes) -
5406 caching_ctl->progress;
5407 start = caching_ctl->progress;
5408 ret = add_excluded_extent(root, start, num_bytes);
5410 out_lock:
5411 mutex_unlock(&caching_ctl->mutex);
5412 put_caching_control(caching_ctl);
5414 btrfs_put_block_group(block_group);
5415 return ret;
5418 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5419 struct extent_buffer *eb)
5421 struct btrfs_file_extent_item *item;
5422 struct btrfs_key key;
5423 int found_type;
5424 int i;
5426 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5427 return 0;
5429 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5430 btrfs_item_key_to_cpu(eb, &key, i);
5431 if (key.type != BTRFS_EXTENT_DATA_KEY)
5432 continue;
5433 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5434 found_type = btrfs_file_extent_type(eb, item);
5435 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5436 continue;
5437 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5438 continue;
5439 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5440 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5441 __exclude_logged_extent(log, key.objectid, key.offset);
5444 return 0;
5448 * btrfs_update_reserved_bytes - update the block_group and space info counters
5449 * @cache: The cache we are manipulating
5450 * @num_bytes: The number of bytes in question
5451 * @reserve: One of the reservation enums
5453 * This is called by the allocator when it reserves space, or by somebody who is
5454 * freeing space that was never actually used on disk. For example if you
5455 * reserve some space for a new leaf in transaction A and before transaction A
5456 * commits you free that leaf, you call this with reserve set to 0 in order to
5457 * clear the reservation.
5459 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5460 * ENOSPC accounting. For data we handle the reservation through clearing the
5461 * delalloc bits in the io_tree. We have to do this since we could end up
5462 * allocating less disk space for the amount of data we have reserved in the
5463 * case of compression.
5465 * If this is a reservation and the block group has become read only we cannot
5466 * make the reservation and return -EAGAIN, otherwise this function always
5467 * succeeds.
5469 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5470 u64 num_bytes, int reserve)
5472 struct btrfs_space_info *space_info = cache->space_info;
5473 int ret = 0;
5475 spin_lock(&space_info->lock);
5476 spin_lock(&cache->lock);
5477 if (reserve != RESERVE_FREE) {
5478 if (cache->ro) {
5479 ret = -EAGAIN;
5480 } else {
5481 cache->reserved += num_bytes;
5482 space_info->bytes_reserved += num_bytes;
5483 if (reserve == RESERVE_ALLOC) {
5484 trace_btrfs_space_reservation(cache->fs_info,
5485 "space_info", space_info->flags,
5486 num_bytes, 0);
5487 space_info->bytes_may_use -= num_bytes;
5490 } else {
5491 if (cache->ro)
5492 space_info->bytes_readonly += num_bytes;
5493 cache->reserved -= num_bytes;
5494 space_info->bytes_reserved -= num_bytes;
5496 spin_unlock(&cache->lock);
5497 spin_unlock(&space_info->lock);
5498 return ret;
5501 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5502 struct btrfs_root *root)
5504 struct btrfs_fs_info *fs_info = root->fs_info;
5505 struct btrfs_caching_control *next;
5506 struct btrfs_caching_control *caching_ctl;
5507 struct btrfs_block_group_cache *cache;
5508 struct btrfs_space_info *space_info;
5510 down_write(&fs_info->extent_commit_sem);
5512 list_for_each_entry_safe(caching_ctl, next,
5513 &fs_info->caching_block_groups, list) {
5514 cache = caching_ctl->block_group;
5515 if (block_group_cache_done(cache)) {
5516 cache->last_byte_to_unpin = (u64)-1;
5517 list_del_init(&caching_ctl->list);
5518 put_caching_control(caching_ctl);
5519 } else {
5520 cache->last_byte_to_unpin = caching_ctl->progress;
5524 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5525 fs_info->pinned_extents = &fs_info->freed_extents[1];
5526 else
5527 fs_info->pinned_extents = &fs_info->freed_extents[0];
5529 up_write(&fs_info->extent_commit_sem);
5531 list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5532 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5534 update_global_block_rsv(fs_info);
5537 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5539 struct btrfs_fs_info *fs_info = root->fs_info;
5540 struct btrfs_block_group_cache *cache = NULL;
5541 struct btrfs_space_info *space_info;
5542 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5543 u64 len;
5544 bool readonly;
5546 while (start <= end) {
5547 readonly = false;
5548 if (!cache ||
5549 start >= cache->key.objectid + cache->key.offset) {
5550 if (cache)
5551 btrfs_put_block_group(cache);
5552 cache = btrfs_lookup_block_group(fs_info, start);
5553 BUG_ON(!cache); /* Logic error */
5556 len = cache->key.objectid + cache->key.offset - start;
5557 len = min(len, end + 1 - start);
5559 if (start < cache->last_byte_to_unpin) {
5560 len = min(len, cache->last_byte_to_unpin - start);
5561 btrfs_add_free_space(cache, start, len);
5564 start += len;
5565 space_info = cache->space_info;
5567 spin_lock(&space_info->lock);
5568 spin_lock(&cache->lock);
5569 cache->pinned -= len;
5570 space_info->bytes_pinned -= len;
5571 if (cache->ro) {
5572 space_info->bytes_readonly += len;
5573 readonly = true;
5575 spin_unlock(&cache->lock);
5576 if (!readonly && global_rsv->space_info == space_info) {
5577 spin_lock(&global_rsv->lock);
5578 if (!global_rsv->full) {
5579 len = min(len, global_rsv->size -
5580 global_rsv->reserved);
5581 global_rsv->reserved += len;
5582 space_info->bytes_may_use += len;
5583 if (global_rsv->reserved >= global_rsv->size)
5584 global_rsv->full = 1;
5586 spin_unlock(&global_rsv->lock);
5588 spin_unlock(&space_info->lock);
5591 if (cache)
5592 btrfs_put_block_group(cache);
5593 return 0;
5596 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5597 struct btrfs_root *root)
5599 struct btrfs_fs_info *fs_info = root->fs_info;
5600 struct extent_io_tree *unpin;
5601 u64 start;
5602 u64 end;
5603 int ret;
5605 if (trans->aborted)
5606 return 0;
5608 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5609 unpin = &fs_info->freed_extents[1];
5610 else
5611 unpin = &fs_info->freed_extents[0];
5613 while (1) {
5614 ret = find_first_extent_bit(unpin, 0, &start, &end,
5615 EXTENT_DIRTY, NULL);
5616 if (ret)
5617 break;
5619 if (btrfs_test_opt(root, DISCARD))
5620 ret = btrfs_discard_extent(root, start,
5621 end + 1 - start, NULL);
5623 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5624 unpin_extent_range(root, start, end);
5625 cond_resched();
5628 return 0;
5631 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5632 u64 owner, u64 root_objectid)
5634 struct btrfs_space_info *space_info;
5635 u64 flags;
5637 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5638 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5639 flags = BTRFS_BLOCK_GROUP_SYSTEM;
5640 else
5641 flags = BTRFS_BLOCK_GROUP_METADATA;
5642 } else {
5643 flags = BTRFS_BLOCK_GROUP_DATA;
5646 space_info = __find_space_info(fs_info, flags);
5647 BUG_ON(!space_info); /* Logic bug */
5648 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5652 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5653 struct btrfs_root *root,
5654 u64 bytenr, u64 num_bytes, u64 parent,
5655 u64 root_objectid, u64 owner_objectid,
5656 u64 owner_offset, int refs_to_drop,
5657 struct btrfs_delayed_extent_op *extent_op)
5659 struct btrfs_key key;
5660 struct btrfs_path *path;
5661 struct btrfs_fs_info *info = root->fs_info;
5662 struct btrfs_root *extent_root = info->extent_root;
5663 struct extent_buffer *leaf;
5664 struct btrfs_extent_item *ei;
5665 struct btrfs_extent_inline_ref *iref;
5666 int ret;
5667 int is_data;
5668 int extent_slot = 0;
5669 int found_extent = 0;
5670 int num_to_del = 1;
5671 u32 item_size;
5672 u64 refs;
5673 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5674 SKINNY_METADATA);
5676 path = btrfs_alloc_path();
5677 if (!path)
5678 return -ENOMEM;
5680 path->reada = 1;
5681 path->leave_spinning = 1;
5683 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5684 BUG_ON(!is_data && refs_to_drop != 1);
5686 if (is_data)
5687 skinny_metadata = 0;
5689 ret = lookup_extent_backref(trans, extent_root, path, &iref,
5690 bytenr, num_bytes, parent,
5691 root_objectid, owner_objectid,
5692 owner_offset);
5693 if (ret == 0) {
5694 extent_slot = path->slots[0];
5695 while (extent_slot >= 0) {
5696 btrfs_item_key_to_cpu(path->nodes[0], &key,
5697 extent_slot);
5698 if (key.objectid != bytenr)
5699 break;
5700 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5701 key.offset == num_bytes) {
5702 found_extent = 1;
5703 break;
5705 if (key.type == BTRFS_METADATA_ITEM_KEY &&
5706 key.offset == owner_objectid) {
5707 found_extent = 1;
5708 break;
5710 if (path->slots[0] - extent_slot > 5)
5711 break;
5712 extent_slot--;
5714 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5715 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5716 if (found_extent && item_size < sizeof(*ei))
5717 found_extent = 0;
5718 #endif
5719 if (!found_extent) {
5720 BUG_ON(iref);
5721 ret = remove_extent_backref(trans, extent_root, path,
5722 NULL, refs_to_drop,
5723 is_data);
5724 if (ret) {
5725 btrfs_abort_transaction(trans, extent_root, ret);
5726 goto out;
5728 btrfs_release_path(path);
5729 path->leave_spinning = 1;
5731 key.objectid = bytenr;
5732 key.type = BTRFS_EXTENT_ITEM_KEY;
5733 key.offset = num_bytes;
5735 if (!is_data && skinny_metadata) {
5736 key.type = BTRFS_METADATA_ITEM_KEY;
5737 key.offset = owner_objectid;
5740 ret = btrfs_search_slot(trans, extent_root,
5741 &key, path, -1, 1);
5742 if (ret > 0 && skinny_metadata && path->slots[0]) {
5744 * Couldn't find our skinny metadata item,
5745 * see if we have ye olde extent item.
5747 path->slots[0]--;
5748 btrfs_item_key_to_cpu(path->nodes[0], &key,
5749 path->slots[0]);
5750 if (key.objectid == bytenr &&
5751 key.type == BTRFS_EXTENT_ITEM_KEY &&
5752 key.offset == num_bytes)
5753 ret = 0;
5756 if (ret > 0 && skinny_metadata) {
5757 skinny_metadata = false;
5758 key.type = BTRFS_EXTENT_ITEM_KEY;
5759 key.offset = num_bytes;
5760 btrfs_release_path(path);
5761 ret = btrfs_search_slot(trans, extent_root,
5762 &key, path, -1, 1);
5765 if (ret) {
5766 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5767 ret, bytenr);
5768 if (ret > 0)
5769 btrfs_print_leaf(extent_root,
5770 path->nodes[0]);
5772 if (ret < 0) {
5773 btrfs_abort_transaction(trans, extent_root, ret);
5774 goto out;
5776 extent_slot = path->slots[0];
5778 } else if (WARN_ON(ret == -ENOENT)) {
5779 btrfs_print_leaf(extent_root, path->nodes[0]);
5780 btrfs_err(info,
5781 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5782 bytenr, parent, root_objectid, owner_objectid,
5783 owner_offset);
5784 } else {
5785 btrfs_abort_transaction(trans, extent_root, ret);
5786 goto out;
5789 leaf = path->nodes[0];
5790 item_size = btrfs_item_size_nr(leaf, extent_slot);
5791 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5792 if (item_size < sizeof(*ei)) {
5793 BUG_ON(found_extent || extent_slot != path->slots[0]);
5794 ret = convert_extent_item_v0(trans, extent_root, path,
5795 owner_objectid, 0);
5796 if (ret < 0) {
5797 btrfs_abort_transaction(trans, extent_root, ret);
5798 goto out;
5801 btrfs_release_path(path);
5802 path->leave_spinning = 1;
5804 key.objectid = bytenr;
5805 key.type = BTRFS_EXTENT_ITEM_KEY;
5806 key.offset = num_bytes;
5808 ret = btrfs_search_slot(trans, extent_root, &key, path,
5809 -1, 1);
5810 if (ret) {
5811 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5812 ret, bytenr);
5813 btrfs_print_leaf(extent_root, path->nodes[0]);
5815 if (ret < 0) {
5816 btrfs_abort_transaction(trans, extent_root, ret);
5817 goto out;
5820 extent_slot = path->slots[0];
5821 leaf = path->nodes[0];
5822 item_size = btrfs_item_size_nr(leaf, extent_slot);
5824 #endif
5825 BUG_ON(item_size < sizeof(*ei));
5826 ei = btrfs_item_ptr(leaf, extent_slot,
5827 struct btrfs_extent_item);
5828 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5829 key.type == BTRFS_EXTENT_ITEM_KEY) {
5830 struct btrfs_tree_block_info *bi;
5831 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5832 bi = (struct btrfs_tree_block_info *)(ei + 1);
5833 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5836 refs = btrfs_extent_refs(leaf, ei);
5837 if (refs < refs_to_drop) {
5838 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5839 "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5840 ret = -EINVAL;
5841 btrfs_abort_transaction(trans, extent_root, ret);
5842 goto out;
5844 refs -= refs_to_drop;
5846 if (refs > 0) {
5847 if (extent_op)
5848 __run_delayed_extent_op(extent_op, leaf, ei);
5850 * In the case of inline back ref, reference count will
5851 * be updated by remove_extent_backref
5853 if (iref) {
5854 BUG_ON(!found_extent);
5855 } else {
5856 btrfs_set_extent_refs(leaf, ei, refs);
5857 btrfs_mark_buffer_dirty(leaf);
5859 if (found_extent) {
5860 ret = remove_extent_backref(trans, extent_root, path,
5861 iref, refs_to_drop,
5862 is_data);
5863 if (ret) {
5864 btrfs_abort_transaction(trans, extent_root, ret);
5865 goto out;
5868 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5869 root_objectid);
5870 } else {
5871 if (found_extent) {
5872 BUG_ON(is_data && refs_to_drop !=
5873 extent_data_ref_count(root, path, iref));
5874 if (iref) {
5875 BUG_ON(path->slots[0] != extent_slot);
5876 } else {
5877 BUG_ON(path->slots[0] != extent_slot + 1);
5878 path->slots[0] = extent_slot;
5879 num_to_del = 2;
5883 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5884 num_to_del);
5885 if (ret) {
5886 btrfs_abort_transaction(trans, extent_root, ret);
5887 goto out;
5889 btrfs_release_path(path);
5891 if (is_data) {
5892 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5893 if (ret) {
5894 btrfs_abort_transaction(trans, extent_root, ret);
5895 goto out;
5899 ret = update_block_group(root, bytenr, num_bytes, 0);
5900 if (ret) {
5901 btrfs_abort_transaction(trans, extent_root, ret);
5902 goto out;
5905 out:
5906 btrfs_free_path(path);
5907 return ret;
5911 * when we free an block, it is possible (and likely) that we free the last
5912 * delayed ref for that extent as well. This searches the delayed ref tree for
5913 * a given extent, and if there are no other delayed refs to be processed, it
5914 * removes it from the tree.
5916 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5917 struct btrfs_root *root, u64 bytenr)
5919 struct btrfs_delayed_ref_head *head;
5920 struct btrfs_delayed_ref_root *delayed_refs;
5921 struct btrfs_delayed_ref_node *ref;
5922 struct rb_node *node;
5923 int ret = 0;
5925 delayed_refs = &trans->transaction->delayed_refs;
5926 spin_lock(&delayed_refs->lock);
5927 head = btrfs_find_delayed_ref_head(trans, bytenr);
5928 if (!head)
5929 goto out;
5931 node = rb_prev(&head->node.rb_node);
5932 if (!node)
5933 goto out;
5935 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5937 /* there are still entries for this ref, we can't drop it */
5938 if (ref->bytenr == bytenr)
5939 goto out;
5941 if (head->extent_op) {
5942 if (!head->must_insert_reserved)
5943 goto out;
5944 btrfs_free_delayed_extent_op(head->extent_op);
5945 head->extent_op = NULL;
5949 * waiting for the lock here would deadlock. If someone else has it
5950 * locked they are already in the process of dropping it anyway
5952 if (!mutex_trylock(&head->mutex))
5953 goto out;
5956 * at this point we have a head with no other entries. Go
5957 * ahead and process it.
5959 head->node.in_tree = 0;
5960 rb_erase(&head->node.rb_node, &delayed_refs->root);
5962 delayed_refs->num_entries--;
5965 * we don't take a ref on the node because we're removing it from the
5966 * tree, so we just steal the ref the tree was holding.
5968 delayed_refs->num_heads--;
5969 if (list_empty(&head->cluster))
5970 delayed_refs->num_heads_ready--;
5972 list_del_init(&head->cluster);
5973 spin_unlock(&delayed_refs->lock);
5975 BUG_ON(head->extent_op);
5976 if (head->must_insert_reserved)
5977 ret = 1;
5979 mutex_unlock(&head->mutex);
5980 btrfs_put_delayed_ref(&head->node);
5981 return ret;
5982 out:
5983 spin_unlock(&delayed_refs->lock);
5984 return 0;
5987 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5988 struct btrfs_root *root,
5989 struct extent_buffer *buf,
5990 u64 parent, int last_ref)
5992 struct btrfs_block_group_cache *cache = NULL;
5993 int pin = 1;
5994 int ret;
5996 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5997 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5998 buf->start, buf->len,
5999 parent, root->root_key.objectid,
6000 btrfs_header_level(buf),
6001 BTRFS_DROP_DELAYED_REF, NULL, 0);
6002 BUG_ON(ret); /* -ENOMEM */
6005 if (!last_ref)
6006 return;
6008 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6010 if (btrfs_header_generation(buf) == trans->transid) {
6011 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6012 ret = check_ref_cleanup(trans, root, buf->start);
6013 if (!ret)
6014 goto out;
6017 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6018 pin_down_extent(root, cache, buf->start, buf->len, 1);
6019 goto out;
6022 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6024 btrfs_add_free_space(cache, buf->start, buf->len);
6025 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
6026 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6027 pin = 0;
6029 out:
6030 if (pin)
6031 add_pinned_bytes(root->fs_info, buf->len,
6032 btrfs_header_level(buf),
6033 root->root_key.objectid);
6036 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6037 * anymore.
6039 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6040 btrfs_put_block_group(cache);
6043 /* Can return -ENOMEM */
6044 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6045 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6046 u64 owner, u64 offset, int for_cow)
6048 int ret;
6049 struct btrfs_fs_info *fs_info = root->fs_info;
6051 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6054 * tree log blocks never actually go into the extent allocation
6055 * tree, just update pinning info and exit early.
6057 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6058 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6059 /* unlocks the pinned mutex */
6060 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6061 ret = 0;
6062 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6063 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6064 num_bytes,
6065 parent, root_objectid, (int)owner,
6066 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6067 } else {
6068 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6069 num_bytes,
6070 parent, root_objectid, owner,
6071 offset, BTRFS_DROP_DELAYED_REF,
6072 NULL, for_cow);
6074 return ret;
6077 static u64 stripe_align(struct btrfs_root *root,
6078 struct btrfs_block_group_cache *cache,
6079 u64 val, u64 num_bytes)
6081 u64 ret = ALIGN(val, root->stripesize);
6082 return ret;
6086 * when we wait for progress in the block group caching, its because
6087 * our allocation attempt failed at least once. So, we must sleep
6088 * and let some progress happen before we try again.
6090 * This function will sleep at least once waiting for new free space to
6091 * show up, and then it will check the block group free space numbers
6092 * for our min num_bytes. Another option is to have it go ahead
6093 * and look in the rbtree for a free extent of a given size, but this
6094 * is a good start.
6096 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6097 * any of the information in this block group.
6099 static noinline void
6100 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6101 u64 num_bytes)
6103 struct btrfs_caching_control *caching_ctl;
6105 caching_ctl = get_caching_control(cache);
6106 if (!caching_ctl)
6107 return;
6109 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6110 (cache->free_space_ctl->free_space >= num_bytes));
6112 put_caching_control(caching_ctl);
6115 static noinline int
6116 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6118 struct btrfs_caching_control *caching_ctl;
6119 int ret = 0;
6121 caching_ctl = get_caching_control(cache);
6122 if (!caching_ctl)
6123 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6125 wait_event(caching_ctl->wait, block_group_cache_done(cache));
6126 if (cache->cached == BTRFS_CACHE_ERROR)
6127 ret = -EIO;
6128 put_caching_control(caching_ctl);
6129 return ret;
6132 int __get_raid_index(u64 flags)
6134 if (flags & BTRFS_BLOCK_GROUP_RAID10)
6135 return BTRFS_RAID_RAID10;
6136 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6137 return BTRFS_RAID_RAID1;
6138 else if (flags & BTRFS_BLOCK_GROUP_DUP)
6139 return BTRFS_RAID_DUP;
6140 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6141 return BTRFS_RAID_RAID0;
6142 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6143 return BTRFS_RAID_RAID5;
6144 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6145 return BTRFS_RAID_RAID6;
6147 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6150 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6152 return __get_raid_index(cache->flags);
6155 enum btrfs_loop_type {
6156 LOOP_CACHING_NOWAIT = 0,
6157 LOOP_CACHING_WAIT = 1,
6158 LOOP_ALLOC_CHUNK = 2,
6159 LOOP_NO_EMPTY_SIZE = 3,
6163 * walks the btree of allocated extents and find a hole of a given size.
6164 * The key ins is changed to record the hole:
6165 * ins->objectid == start position
6166 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6167 * ins->offset == the size of the hole.
6168 * Any available blocks before search_start are skipped.
6170 * If there is no suitable free space, we will record the max size of
6171 * the free space extent currently.
6173 static noinline int find_free_extent(struct btrfs_root *orig_root,
6174 u64 num_bytes, u64 empty_size,
6175 u64 hint_byte, struct btrfs_key *ins,
6176 u64 flags)
6178 int ret = 0;
6179 struct btrfs_root *root = orig_root->fs_info->extent_root;
6180 struct btrfs_free_cluster *last_ptr = NULL;
6181 struct btrfs_block_group_cache *block_group = NULL;
6182 struct btrfs_block_group_cache *used_block_group;
6183 u64 search_start = 0;
6184 u64 max_extent_size = 0;
6185 int empty_cluster = 2 * 1024 * 1024;
6186 struct btrfs_space_info *space_info;
6187 int loop = 0;
6188 int index = __get_raid_index(flags);
6189 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6190 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6191 bool found_uncached_bg = false;
6192 bool failed_cluster_refill = false;
6193 bool failed_alloc = false;
6194 bool use_cluster = true;
6195 bool have_caching_bg = false;
6197 WARN_ON(num_bytes < root->sectorsize);
6198 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6199 ins->objectid = 0;
6200 ins->offset = 0;
6202 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6204 space_info = __find_space_info(root->fs_info, flags);
6205 if (!space_info) {
6206 btrfs_err(root->fs_info, "No space info for %llu", flags);
6207 return -ENOSPC;
6211 * If the space info is for both data and metadata it means we have a
6212 * small filesystem and we can't use the clustering stuff.
6214 if (btrfs_mixed_space_info(space_info))
6215 use_cluster = false;
6217 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6218 last_ptr = &root->fs_info->meta_alloc_cluster;
6219 if (!btrfs_test_opt(root, SSD))
6220 empty_cluster = 64 * 1024;
6223 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6224 btrfs_test_opt(root, SSD)) {
6225 last_ptr = &root->fs_info->data_alloc_cluster;
6228 if (last_ptr) {
6229 spin_lock(&last_ptr->lock);
6230 if (last_ptr->block_group)
6231 hint_byte = last_ptr->window_start;
6232 spin_unlock(&last_ptr->lock);
6235 search_start = max(search_start, first_logical_byte(root, 0));
6236 search_start = max(search_start, hint_byte);
6238 if (!last_ptr)
6239 empty_cluster = 0;
6241 if (search_start == hint_byte) {
6242 block_group = btrfs_lookup_block_group(root->fs_info,
6243 search_start);
6244 used_block_group = block_group;
6246 * we don't want to use the block group if it doesn't match our
6247 * allocation bits, or if its not cached.
6249 * However if we are re-searching with an ideal block group
6250 * picked out then we don't care that the block group is cached.
6252 if (block_group && block_group_bits(block_group, flags) &&
6253 block_group->cached != BTRFS_CACHE_NO) {
6254 down_read(&space_info->groups_sem);
6255 if (list_empty(&block_group->list) ||
6256 block_group->ro) {
6258 * someone is removing this block group,
6259 * we can't jump into the have_block_group
6260 * target because our list pointers are not
6261 * valid
6263 btrfs_put_block_group(block_group);
6264 up_read(&space_info->groups_sem);
6265 } else {
6266 index = get_block_group_index(block_group);
6267 goto have_block_group;
6269 } else if (block_group) {
6270 btrfs_put_block_group(block_group);
6273 search:
6274 have_caching_bg = false;
6275 down_read(&space_info->groups_sem);
6276 list_for_each_entry(block_group, &space_info->block_groups[index],
6277 list) {
6278 u64 offset;
6279 int cached;
6281 used_block_group = block_group;
6282 btrfs_get_block_group(block_group);
6283 search_start = block_group->key.objectid;
6286 * this can happen if we end up cycling through all the
6287 * raid types, but we want to make sure we only allocate
6288 * for the proper type.
6290 if (!block_group_bits(block_group, flags)) {
6291 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6292 BTRFS_BLOCK_GROUP_RAID1 |
6293 BTRFS_BLOCK_GROUP_RAID5 |
6294 BTRFS_BLOCK_GROUP_RAID6 |
6295 BTRFS_BLOCK_GROUP_RAID10;
6298 * if they asked for extra copies and this block group
6299 * doesn't provide them, bail. This does allow us to
6300 * fill raid0 from raid1.
6302 if ((flags & extra) && !(block_group->flags & extra))
6303 goto loop;
6306 have_block_group:
6307 cached = block_group_cache_done(block_group);
6308 if (unlikely(!cached)) {
6309 found_uncached_bg = true;
6310 ret = cache_block_group(block_group, 0);
6311 BUG_ON(ret < 0);
6312 ret = 0;
6315 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6316 goto loop;
6317 if (unlikely(block_group->ro))
6318 goto loop;
6321 * Ok we want to try and use the cluster allocator, so
6322 * lets look there
6324 if (last_ptr) {
6325 unsigned long aligned_cluster;
6327 * the refill lock keeps out other
6328 * people trying to start a new cluster
6330 spin_lock(&last_ptr->refill_lock);
6331 used_block_group = last_ptr->block_group;
6332 if (used_block_group != block_group &&
6333 (!used_block_group ||
6334 used_block_group->ro ||
6335 !block_group_bits(used_block_group, flags))) {
6336 used_block_group = block_group;
6337 goto refill_cluster;
6340 if (used_block_group != block_group)
6341 btrfs_get_block_group(used_block_group);
6343 offset = btrfs_alloc_from_cluster(used_block_group,
6344 last_ptr,
6345 num_bytes,
6346 used_block_group->key.objectid,
6347 &max_extent_size);
6348 if (offset) {
6349 /* we have a block, we're done */
6350 spin_unlock(&last_ptr->refill_lock);
6351 trace_btrfs_reserve_extent_cluster(root,
6352 block_group, search_start, num_bytes);
6353 goto checks;
6356 WARN_ON(last_ptr->block_group != used_block_group);
6357 if (used_block_group != block_group) {
6358 btrfs_put_block_group(used_block_group);
6359 used_block_group = block_group;
6361 refill_cluster:
6362 BUG_ON(used_block_group != block_group);
6363 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6364 * set up a new clusters, so lets just skip it
6365 * and let the allocator find whatever block
6366 * it can find. If we reach this point, we
6367 * will have tried the cluster allocator
6368 * plenty of times and not have found
6369 * anything, so we are likely way too
6370 * fragmented for the clustering stuff to find
6371 * anything.
6373 * However, if the cluster is taken from the
6374 * current block group, release the cluster
6375 * first, so that we stand a better chance of
6376 * succeeding in the unclustered
6377 * allocation. */
6378 if (loop >= LOOP_NO_EMPTY_SIZE &&
6379 last_ptr->block_group != block_group) {
6380 spin_unlock(&last_ptr->refill_lock);
6381 goto unclustered_alloc;
6385 * this cluster didn't work out, free it and
6386 * start over
6388 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6390 if (loop >= LOOP_NO_EMPTY_SIZE) {
6391 spin_unlock(&last_ptr->refill_lock);
6392 goto unclustered_alloc;
6395 aligned_cluster = max_t(unsigned long,
6396 empty_cluster + empty_size,
6397 block_group->full_stripe_len);
6399 /* allocate a cluster in this block group */
6400 ret = btrfs_find_space_cluster(root, block_group,
6401 last_ptr, search_start,
6402 num_bytes,
6403 aligned_cluster);
6404 if (ret == 0) {
6406 * now pull our allocation out of this
6407 * cluster
6409 offset = btrfs_alloc_from_cluster(block_group,
6410 last_ptr,
6411 num_bytes,
6412 search_start,
6413 &max_extent_size);
6414 if (offset) {
6415 /* we found one, proceed */
6416 spin_unlock(&last_ptr->refill_lock);
6417 trace_btrfs_reserve_extent_cluster(root,
6418 block_group, search_start,
6419 num_bytes);
6420 goto checks;
6422 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6423 && !failed_cluster_refill) {
6424 spin_unlock(&last_ptr->refill_lock);
6426 failed_cluster_refill = true;
6427 wait_block_group_cache_progress(block_group,
6428 num_bytes + empty_cluster + empty_size);
6429 goto have_block_group;
6433 * at this point we either didn't find a cluster
6434 * or we weren't able to allocate a block from our
6435 * cluster. Free the cluster we've been trying
6436 * to use, and go to the next block group
6438 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6439 spin_unlock(&last_ptr->refill_lock);
6440 goto loop;
6443 unclustered_alloc:
6444 spin_lock(&block_group->free_space_ctl->tree_lock);
6445 if (cached &&
6446 block_group->free_space_ctl->free_space <
6447 num_bytes + empty_cluster + empty_size) {
6448 if (block_group->free_space_ctl->free_space >
6449 max_extent_size)
6450 max_extent_size =
6451 block_group->free_space_ctl->free_space;
6452 spin_unlock(&block_group->free_space_ctl->tree_lock);
6453 goto loop;
6455 spin_unlock(&block_group->free_space_ctl->tree_lock);
6457 offset = btrfs_find_space_for_alloc(block_group, search_start,
6458 num_bytes, empty_size,
6459 &max_extent_size);
6461 * If we didn't find a chunk, and we haven't failed on this
6462 * block group before, and this block group is in the middle of
6463 * caching and we are ok with waiting, then go ahead and wait
6464 * for progress to be made, and set failed_alloc to true.
6466 * If failed_alloc is true then we've already waited on this
6467 * block group once and should move on to the next block group.
6469 if (!offset && !failed_alloc && !cached &&
6470 loop > LOOP_CACHING_NOWAIT) {
6471 wait_block_group_cache_progress(block_group,
6472 num_bytes + empty_size);
6473 failed_alloc = true;
6474 goto have_block_group;
6475 } else if (!offset) {
6476 if (!cached)
6477 have_caching_bg = true;
6478 goto loop;
6480 checks:
6481 search_start = stripe_align(root, used_block_group,
6482 offset, num_bytes);
6484 /* move on to the next group */
6485 if (search_start + num_bytes >
6486 used_block_group->key.objectid + used_block_group->key.offset) {
6487 btrfs_add_free_space(used_block_group, offset, num_bytes);
6488 goto loop;
6491 if (offset < search_start)
6492 btrfs_add_free_space(used_block_group, offset,
6493 search_start - offset);
6494 BUG_ON(offset > search_start);
6496 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6497 alloc_type);
6498 if (ret == -EAGAIN) {
6499 btrfs_add_free_space(used_block_group, offset, num_bytes);
6500 goto loop;
6503 /* we are all good, lets return */
6504 ins->objectid = search_start;
6505 ins->offset = num_bytes;
6507 trace_btrfs_reserve_extent(orig_root, block_group,
6508 search_start, num_bytes);
6509 if (used_block_group != block_group)
6510 btrfs_put_block_group(used_block_group);
6511 btrfs_put_block_group(block_group);
6512 break;
6513 loop:
6514 failed_cluster_refill = false;
6515 failed_alloc = false;
6516 BUG_ON(index != get_block_group_index(block_group));
6517 if (used_block_group != block_group)
6518 btrfs_put_block_group(used_block_group);
6519 btrfs_put_block_group(block_group);
6521 up_read(&space_info->groups_sem);
6523 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6524 goto search;
6526 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6527 goto search;
6530 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6531 * caching kthreads as we move along
6532 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6533 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6534 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6535 * again
6537 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6538 index = 0;
6539 loop++;
6540 if (loop == LOOP_ALLOC_CHUNK) {
6541 struct btrfs_trans_handle *trans;
6543 trans = btrfs_join_transaction(root);
6544 if (IS_ERR(trans)) {
6545 ret = PTR_ERR(trans);
6546 goto out;
6549 ret = do_chunk_alloc(trans, root, flags,
6550 CHUNK_ALLOC_FORCE);
6552 * Do not bail out on ENOSPC since we
6553 * can do more things.
6555 if (ret < 0 && ret != -ENOSPC)
6556 btrfs_abort_transaction(trans,
6557 root, ret);
6558 else
6559 ret = 0;
6560 btrfs_end_transaction(trans, root);
6561 if (ret)
6562 goto out;
6565 if (loop == LOOP_NO_EMPTY_SIZE) {
6566 empty_size = 0;
6567 empty_cluster = 0;
6570 goto search;
6571 } else if (!ins->objectid) {
6572 ret = -ENOSPC;
6573 } else if (ins->objectid) {
6574 ret = 0;
6576 out:
6577 if (ret == -ENOSPC)
6578 ins->offset = max_extent_size;
6579 return ret;
6582 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6583 int dump_block_groups)
6585 struct btrfs_block_group_cache *cache;
6586 int index = 0;
6588 spin_lock(&info->lock);
6589 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6590 info->flags,
6591 info->total_bytes - info->bytes_used - info->bytes_pinned -
6592 info->bytes_reserved - info->bytes_readonly,
6593 (info->full) ? "" : "not ");
6594 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6595 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6596 info->total_bytes, info->bytes_used, info->bytes_pinned,
6597 info->bytes_reserved, info->bytes_may_use,
6598 info->bytes_readonly);
6599 spin_unlock(&info->lock);
6601 if (!dump_block_groups)
6602 return;
6604 down_read(&info->groups_sem);
6605 again:
6606 list_for_each_entry(cache, &info->block_groups[index], list) {
6607 spin_lock(&cache->lock);
6608 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6609 cache->key.objectid, cache->key.offset,
6610 btrfs_block_group_used(&cache->item), cache->pinned,
6611 cache->reserved, cache->ro ? "[readonly]" : "");
6612 btrfs_dump_free_space(cache, bytes);
6613 spin_unlock(&cache->lock);
6615 if (++index < BTRFS_NR_RAID_TYPES)
6616 goto again;
6617 up_read(&info->groups_sem);
6620 int btrfs_reserve_extent(struct btrfs_root *root,
6621 u64 num_bytes, u64 min_alloc_size,
6622 u64 empty_size, u64 hint_byte,
6623 struct btrfs_key *ins, int is_data)
6625 bool final_tried = false;
6626 u64 flags;
6627 int ret;
6629 flags = btrfs_get_alloc_profile(root, is_data);
6630 again:
6631 WARN_ON(num_bytes < root->sectorsize);
6632 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6633 flags);
6635 if (ret == -ENOSPC) {
6636 if (!final_tried && ins->offset) {
6637 num_bytes = min(num_bytes >> 1, ins->offset);
6638 num_bytes = round_down(num_bytes, root->sectorsize);
6639 num_bytes = max(num_bytes, min_alloc_size);
6640 if (num_bytes == min_alloc_size)
6641 final_tried = true;
6642 goto again;
6643 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6644 struct btrfs_space_info *sinfo;
6646 sinfo = __find_space_info(root->fs_info, flags);
6647 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6648 flags, num_bytes);
6649 if (sinfo)
6650 dump_space_info(sinfo, num_bytes, 1);
6654 return ret;
6657 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6658 u64 start, u64 len, int pin)
6660 struct btrfs_block_group_cache *cache;
6661 int ret = 0;
6663 cache = btrfs_lookup_block_group(root->fs_info, start);
6664 if (!cache) {
6665 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6666 start);
6667 return -ENOSPC;
6670 if (btrfs_test_opt(root, DISCARD))
6671 ret = btrfs_discard_extent(root, start, len, NULL);
6673 if (pin)
6674 pin_down_extent(root, cache, start, len, 1);
6675 else {
6676 btrfs_add_free_space(cache, start, len);
6677 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6679 btrfs_put_block_group(cache);
6681 trace_btrfs_reserved_extent_free(root, start, len);
6683 return ret;
6686 int btrfs_free_reserved_extent(struct btrfs_root *root,
6687 u64 start, u64 len)
6689 return __btrfs_free_reserved_extent(root, start, len, 0);
6692 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6693 u64 start, u64 len)
6695 return __btrfs_free_reserved_extent(root, start, len, 1);
6698 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6699 struct btrfs_root *root,
6700 u64 parent, u64 root_objectid,
6701 u64 flags, u64 owner, u64 offset,
6702 struct btrfs_key *ins, int ref_mod)
6704 int ret;
6705 struct btrfs_fs_info *fs_info = root->fs_info;
6706 struct btrfs_extent_item *extent_item;
6707 struct btrfs_extent_inline_ref *iref;
6708 struct btrfs_path *path;
6709 struct extent_buffer *leaf;
6710 int type;
6711 u32 size;
6713 if (parent > 0)
6714 type = BTRFS_SHARED_DATA_REF_KEY;
6715 else
6716 type = BTRFS_EXTENT_DATA_REF_KEY;
6718 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6720 path = btrfs_alloc_path();
6721 if (!path)
6722 return -ENOMEM;
6724 path->leave_spinning = 1;
6725 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6726 ins, size);
6727 if (ret) {
6728 btrfs_free_path(path);
6729 return ret;
6732 leaf = path->nodes[0];
6733 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6734 struct btrfs_extent_item);
6735 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6736 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6737 btrfs_set_extent_flags(leaf, extent_item,
6738 flags | BTRFS_EXTENT_FLAG_DATA);
6740 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6741 btrfs_set_extent_inline_ref_type(leaf, iref, type);
6742 if (parent > 0) {
6743 struct btrfs_shared_data_ref *ref;
6744 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6745 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6746 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6747 } else {
6748 struct btrfs_extent_data_ref *ref;
6749 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6750 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6751 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6752 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6753 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6756 btrfs_mark_buffer_dirty(path->nodes[0]);
6757 btrfs_free_path(path);
6759 ret = update_block_group(root, ins->objectid, ins->offset, 1);
6760 if (ret) { /* -ENOENT, logic error */
6761 btrfs_err(fs_info, "update block group failed for %llu %llu",
6762 ins->objectid, ins->offset);
6763 BUG();
6765 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6766 return ret;
6769 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6770 struct btrfs_root *root,
6771 u64 parent, u64 root_objectid,
6772 u64 flags, struct btrfs_disk_key *key,
6773 int level, struct btrfs_key *ins)
6775 int ret;
6776 struct btrfs_fs_info *fs_info = root->fs_info;
6777 struct btrfs_extent_item *extent_item;
6778 struct btrfs_tree_block_info *block_info;
6779 struct btrfs_extent_inline_ref *iref;
6780 struct btrfs_path *path;
6781 struct extent_buffer *leaf;
6782 u32 size = sizeof(*extent_item) + sizeof(*iref);
6783 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6784 SKINNY_METADATA);
6786 if (!skinny_metadata)
6787 size += sizeof(*block_info);
6789 path = btrfs_alloc_path();
6790 if (!path) {
6791 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6792 root->leafsize);
6793 return -ENOMEM;
6796 path->leave_spinning = 1;
6797 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6798 ins, size);
6799 if (ret) {
6800 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6801 root->leafsize);
6802 btrfs_free_path(path);
6803 return ret;
6806 leaf = path->nodes[0];
6807 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6808 struct btrfs_extent_item);
6809 btrfs_set_extent_refs(leaf, extent_item, 1);
6810 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6811 btrfs_set_extent_flags(leaf, extent_item,
6812 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6814 if (skinny_metadata) {
6815 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6816 } else {
6817 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6818 btrfs_set_tree_block_key(leaf, block_info, key);
6819 btrfs_set_tree_block_level(leaf, block_info, level);
6820 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6823 if (parent > 0) {
6824 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6825 btrfs_set_extent_inline_ref_type(leaf, iref,
6826 BTRFS_SHARED_BLOCK_REF_KEY);
6827 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6828 } else {
6829 btrfs_set_extent_inline_ref_type(leaf, iref,
6830 BTRFS_TREE_BLOCK_REF_KEY);
6831 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6834 btrfs_mark_buffer_dirty(leaf);
6835 btrfs_free_path(path);
6837 ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6838 if (ret) { /* -ENOENT, logic error */
6839 btrfs_err(fs_info, "update block group failed for %llu %llu",
6840 ins->objectid, ins->offset);
6841 BUG();
6844 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6845 return ret;
6848 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6849 struct btrfs_root *root,
6850 u64 root_objectid, u64 owner,
6851 u64 offset, struct btrfs_key *ins)
6853 int ret;
6855 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6857 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6858 ins->offset, 0,
6859 root_objectid, owner, offset,
6860 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6861 return ret;
6865 * this is used by the tree logging recovery code. It records that
6866 * an extent has been allocated and makes sure to clear the free
6867 * space cache bits as well
6869 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6870 struct btrfs_root *root,
6871 u64 root_objectid, u64 owner, u64 offset,
6872 struct btrfs_key *ins)
6874 int ret;
6875 struct btrfs_block_group_cache *block_group;
6878 * Mixed block groups will exclude before processing the log so we only
6879 * need to do the exlude dance if this fs isn't mixed.
6881 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6882 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6883 if (ret)
6884 return ret;
6887 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6888 if (!block_group)
6889 return -EINVAL;
6891 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6892 RESERVE_ALLOC_NO_ACCOUNT);
6893 BUG_ON(ret); /* logic error */
6894 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6895 0, owner, offset, ins, 1);
6896 btrfs_put_block_group(block_group);
6897 return ret;
6900 static struct extent_buffer *
6901 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6902 u64 bytenr, u32 blocksize, int level)
6904 struct extent_buffer *buf;
6906 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6907 if (!buf)
6908 return ERR_PTR(-ENOMEM);
6909 btrfs_set_header_generation(buf, trans->transid);
6910 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6911 btrfs_tree_lock(buf);
6912 clean_tree_block(trans, root, buf);
6913 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6915 btrfs_set_lock_blocking(buf);
6916 btrfs_set_buffer_uptodate(buf);
6918 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6920 * we allow two log transactions at a time, use different
6921 * EXENT bit to differentiate dirty pages.
6923 if (root->log_transid % 2 == 0)
6924 set_extent_dirty(&root->dirty_log_pages, buf->start,
6925 buf->start + buf->len - 1, GFP_NOFS);
6926 else
6927 set_extent_new(&root->dirty_log_pages, buf->start,
6928 buf->start + buf->len - 1, GFP_NOFS);
6929 } else {
6930 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6931 buf->start + buf->len - 1, GFP_NOFS);
6933 trans->blocks_used++;
6934 /* this returns a buffer locked for blocking */
6935 return buf;
6938 static struct btrfs_block_rsv *
6939 use_block_rsv(struct btrfs_trans_handle *trans,
6940 struct btrfs_root *root, u32 blocksize)
6942 struct btrfs_block_rsv *block_rsv;
6943 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6944 int ret;
6945 bool global_updated = false;
6947 block_rsv = get_block_rsv(trans, root);
6949 if (unlikely(block_rsv->size == 0))
6950 goto try_reserve;
6951 again:
6952 ret = block_rsv_use_bytes(block_rsv, blocksize);
6953 if (!ret)
6954 return block_rsv;
6956 if (block_rsv->failfast)
6957 return ERR_PTR(ret);
6959 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6960 global_updated = true;
6961 update_global_block_rsv(root->fs_info);
6962 goto again;
6965 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6966 static DEFINE_RATELIMIT_STATE(_rs,
6967 DEFAULT_RATELIMIT_INTERVAL * 10,
6968 /*DEFAULT_RATELIMIT_BURST*/ 1);
6969 if (__ratelimit(&_rs))
6970 WARN(1, KERN_DEBUG
6971 "btrfs: block rsv returned %d\n", ret);
6973 try_reserve:
6974 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6975 BTRFS_RESERVE_NO_FLUSH);
6976 if (!ret)
6977 return block_rsv;
6979 * If we couldn't reserve metadata bytes try and use some from
6980 * the global reserve if its space type is the same as the global
6981 * reservation.
6983 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6984 block_rsv->space_info == global_rsv->space_info) {
6985 ret = block_rsv_use_bytes(global_rsv, blocksize);
6986 if (!ret)
6987 return global_rsv;
6989 return ERR_PTR(ret);
6992 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6993 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6995 block_rsv_add_bytes(block_rsv, blocksize, 0);
6996 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7000 * finds a free extent and does all the dirty work required for allocation
7001 * returns the key for the extent through ins, and a tree buffer for
7002 * the first block of the extent through buf.
7004 * returns the tree buffer or NULL.
7006 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
7007 struct btrfs_root *root, u32 blocksize,
7008 u64 parent, u64 root_objectid,
7009 struct btrfs_disk_key *key, int level,
7010 u64 hint, u64 empty_size)
7012 struct btrfs_key ins;
7013 struct btrfs_block_rsv *block_rsv;
7014 struct extent_buffer *buf;
7015 u64 flags = 0;
7016 int ret;
7017 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7018 SKINNY_METADATA);
7020 block_rsv = use_block_rsv(trans, root, blocksize);
7021 if (IS_ERR(block_rsv))
7022 return ERR_CAST(block_rsv);
7024 ret = btrfs_reserve_extent(root, blocksize, blocksize,
7025 empty_size, hint, &ins, 0);
7026 if (ret) {
7027 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7028 return ERR_PTR(ret);
7031 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7032 blocksize, level);
7033 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7035 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7036 if (parent == 0)
7037 parent = ins.objectid;
7038 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7039 } else
7040 BUG_ON(parent > 0);
7042 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7043 struct btrfs_delayed_extent_op *extent_op;
7044 extent_op = btrfs_alloc_delayed_extent_op();
7045 BUG_ON(!extent_op); /* -ENOMEM */
7046 if (key)
7047 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7048 else
7049 memset(&extent_op->key, 0, sizeof(extent_op->key));
7050 extent_op->flags_to_set = flags;
7051 if (skinny_metadata)
7052 extent_op->update_key = 0;
7053 else
7054 extent_op->update_key = 1;
7055 extent_op->update_flags = 1;
7056 extent_op->is_data = 0;
7057 extent_op->level = level;
7059 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7060 ins.objectid,
7061 ins.offset, parent, root_objectid,
7062 level, BTRFS_ADD_DELAYED_EXTENT,
7063 extent_op, 0);
7064 BUG_ON(ret); /* -ENOMEM */
7066 return buf;
7069 struct walk_control {
7070 u64 refs[BTRFS_MAX_LEVEL];
7071 u64 flags[BTRFS_MAX_LEVEL];
7072 struct btrfs_key update_progress;
7073 int stage;
7074 int level;
7075 int shared_level;
7076 int update_ref;
7077 int keep_locks;
7078 int reada_slot;
7079 int reada_count;
7080 int for_reloc;
7083 #define DROP_REFERENCE 1
7084 #define UPDATE_BACKREF 2
7086 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7087 struct btrfs_root *root,
7088 struct walk_control *wc,
7089 struct btrfs_path *path)
7091 u64 bytenr;
7092 u64 generation;
7093 u64 refs;
7094 u64 flags;
7095 u32 nritems;
7096 u32 blocksize;
7097 struct btrfs_key key;
7098 struct extent_buffer *eb;
7099 int ret;
7100 int slot;
7101 int nread = 0;
7103 if (path->slots[wc->level] < wc->reada_slot) {
7104 wc->reada_count = wc->reada_count * 2 / 3;
7105 wc->reada_count = max(wc->reada_count, 2);
7106 } else {
7107 wc->reada_count = wc->reada_count * 3 / 2;
7108 wc->reada_count = min_t(int, wc->reada_count,
7109 BTRFS_NODEPTRS_PER_BLOCK(root));
7112 eb = path->nodes[wc->level];
7113 nritems = btrfs_header_nritems(eb);
7114 blocksize = btrfs_level_size(root, wc->level - 1);
7116 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7117 if (nread >= wc->reada_count)
7118 break;
7120 cond_resched();
7121 bytenr = btrfs_node_blockptr(eb, slot);
7122 generation = btrfs_node_ptr_generation(eb, slot);
7124 if (slot == path->slots[wc->level])
7125 goto reada;
7127 if (wc->stage == UPDATE_BACKREF &&
7128 generation <= root->root_key.offset)
7129 continue;
7131 /* We don't lock the tree block, it's OK to be racy here */
7132 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7133 wc->level - 1, 1, &refs,
7134 &flags);
7135 /* We don't care about errors in readahead. */
7136 if (ret < 0)
7137 continue;
7138 BUG_ON(refs == 0);
7140 if (wc->stage == DROP_REFERENCE) {
7141 if (refs == 1)
7142 goto reada;
7144 if (wc->level == 1 &&
7145 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7146 continue;
7147 if (!wc->update_ref ||
7148 generation <= root->root_key.offset)
7149 continue;
7150 btrfs_node_key_to_cpu(eb, &key, slot);
7151 ret = btrfs_comp_cpu_keys(&key,
7152 &wc->update_progress);
7153 if (ret < 0)
7154 continue;
7155 } else {
7156 if (wc->level == 1 &&
7157 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7158 continue;
7160 reada:
7161 ret = readahead_tree_block(root, bytenr, blocksize,
7162 generation);
7163 if (ret)
7164 break;
7165 nread++;
7167 wc->reada_slot = slot;
7171 * helper to process tree block while walking down the tree.
7173 * when wc->stage == UPDATE_BACKREF, this function updates
7174 * back refs for pointers in the block.
7176 * NOTE: return value 1 means we should stop walking down.
7178 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7179 struct btrfs_root *root,
7180 struct btrfs_path *path,
7181 struct walk_control *wc, int lookup_info)
7183 int level = wc->level;
7184 struct extent_buffer *eb = path->nodes[level];
7185 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7186 int ret;
7188 if (wc->stage == UPDATE_BACKREF &&
7189 btrfs_header_owner(eb) != root->root_key.objectid)
7190 return 1;
7193 * when reference count of tree block is 1, it won't increase
7194 * again. once full backref flag is set, we never clear it.
7196 if (lookup_info &&
7197 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7198 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7199 BUG_ON(!path->locks[level]);
7200 ret = btrfs_lookup_extent_info(trans, root,
7201 eb->start, level, 1,
7202 &wc->refs[level],
7203 &wc->flags[level]);
7204 BUG_ON(ret == -ENOMEM);
7205 if (ret)
7206 return ret;
7207 BUG_ON(wc->refs[level] == 0);
7210 if (wc->stage == DROP_REFERENCE) {
7211 if (wc->refs[level] > 1)
7212 return 1;
7214 if (path->locks[level] && !wc->keep_locks) {
7215 btrfs_tree_unlock_rw(eb, path->locks[level]);
7216 path->locks[level] = 0;
7218 return 0;
7221 /* wc->stage == UPDATE_BACKREF */
7222 if (!(wc->flags[level] & flag)) {
7223 BUG_ON(!path->locks[level]);
7224 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7225 BUG_ON(ret); /* -ENOMEM */
7226 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7227 BUG_ON(ret); /* -ENOMEM */
7228 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7229 eb->len, flag,
7230 btrfs_header_level(eb), 0);
7231 BUG_ON(ret); /* -ENOMEM */
7232 wc->flags[level] |= flag;
7236 * the block is shared by multiple trees, so it's not good to
7237 * keep the tree lock
7239 if (path->locks[level] && level > 0) {
7240 btrfs_tree_unlock_rw(eb, path->locks[level]);
7241 path->locks[level] = 0;
7243 return 0;
7247 * helper to process tree block pointer.
7249 * when wc->stage == DROP_REFERENCE, this function checks
7250 * reference count of the block pointed to. if the block
7251 * is shared and we need update back refs for the subtree
7252 * rooted at the block, this function changes wc->stage to
7253 * UPDATE_BACKREF. if the block is shared and there is no
7254 * need to update back, this function drops the reference
7255 * to the block.
7257 * NOTE: return value 1 means we should stop walking down.
7259 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7260 struct btrfs_root *root,
7261 struct btrfs_path *path,
7262 struct walk_control *wc, int *lookup_info)
7264 u64 bytenr;
7265 u64 generation;
7266 u64 parent;
7267 u32 blocksize;
7268 struct btrfs_key key;
7269 struct extent_buffer *next;
7270 int level = wc->level;
7271 int reada = 0;
7272 int ret = 0;
7274 generation = btrfs_node_ptr_generation(path->nodes[level],
7275 path->slots[level]);
7277 * if the lower level block was created before the snapshot
7278 * was created, we know there is no need to update back refs
7279 * for the subtree
7281 if (wc->stage == UPDATE_BACKREF &&
7282 generation <= root->root_key.offset) {
7283 *lookup_info = 1;
7284 return 1;
7287 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7288 blocksize = btrfs_level_size(root, level - 1);
7290 next = btrfs_find_tree_block(root, bytenr, blocksize);
7291 if (!next) {
7292 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7293 if (!next)
7294 return -ENOMEM;
7295 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7296 level - 1);
7297 reada = 1;
7299 btrfs_tree_lock(next);
7300 btrfs_set_lock_blocking(next);
7302 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7303 &wc->refs[level - 1],
7304 &wc->flags[level - 1]);
7305 if (ret < 0) {
7306 btrfs_tree_unlock(next);
7307 return ret;
7310 if (unlikely(wc->refs[level - 1] == 0)) {
7311 btrfs_err(root->fs_info, "Missing references.");
7312 BUG();
7314 *lookup_info = 0;
7316 if (wc->stage == DROP_REFERENCE) {
7317 if (wc->refs[level - 1] > 1) {
7318 if (level == 1 &&
7319 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7320 goto skip;
7322 if (!wc->update_ref ||
7323 generation <= root->root_key.offset)
7324 goto skip;
7326 btrfs_node_key_to_cpu(path->nodes[level], &key,
7327 path->slots[level]);
7328 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7329 if (ret < 0)
7330 goto skip;
7332 wc->stage = UPDATE_BACKREF;
7333 wc->shared_level = level - 1;
7335 } else {
7336 if (level == 1 &&
7337 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7338 goto skip;
7341 if (!btrfs_buffer_uptodate(next, generation, 0)) {
7342 btrfs_tree_unlock(next);
7343 free_extent_buffer(next);
7344 next = NULL;
7345 *lookup_info = 1;
7348 if (!next) {
7349 if (reada && level == 1)
7350 reada_walk_down(trans, root, wc, path);
7351 next = read_tree_block(root, bytenr, blocksize, generation);
7352 if (!next || !extent_buffer_uptodate(next)) {
7353 free_extent_buffer(next);
7354 return -EIO;
7356 btrfs_tree_lock(next);
7357 btrfs_set_lock_blocking(next);
7360 level--;
7361 BUG_ON(level != btrfs_header_level(next));
7362 path->nodes[level] = next;
7363 path->slots[level] = 0;
7364 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7365 wc->level = level;
7366 if (wc->level == 1)
7367 wc->reada_slot = 0;
7368 return 0;
7369 skip:
7370 wc->refs[level - 1] = 0;
7371 wc->flags[level - 1] = 0;
7372 if (wc->stage == DROP_REFERENCE) {
7373 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7374 parent = path->nodes[level]->start;
7375 } else {
7376 BUG_ON(root->root_key.objectid !=
7377 btrfs_header_owner(path->nodes[level]));
7378 parent = 0;
7381 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7382 root->root_key.objectid, level - 1, 0, 0);
7383 BUG_ON(ret); /* -ENOMEM */
7385 btrfs_tree_unlock(next);
7386 free_extent_buffer(next);
7387 *lookup_info = 1;
7388 return 1;
7392 * helper to process tree block while walking up the tree.
7394 * when wc->stage == DROP_REFERENCE, this function drops
7395 * reference count on the block.
7397 * when wc->stage == UPDATE_BACKREF, this function changes
7398 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7399 * to UPDATE_BACKREF previously while processing the block.
7401 * NOTE: return value 1 means we should stop walking up.
7403 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7404 struct btrfs_root *root,
7405 struct btrfs_path *path,
7406 struct walk_control *wc)
7408 int ret;
7409 int level = wc->level;
7410 struct extent_buffer *eb = path->nodes[level];
7411 u64 parent = 0;
7413 if (wc->stage == UPDATE_BACKREF) {
7414 BUG_ON(wc->shared_level < level);
7415 if (level < wc->shared_level)
7416 goto out;
7418 ret = find_next_key(path, level + 1, &wc->update_progress);
7419 if (ret > 0)
7420 wc->update_ref = 0;
7422 wc->stage = DROP_REFERENCE;
7423 wc->shared_level = -1;
7424 path->slots[level] = 0;
7427 * check reference count again if the block isn't locked.
7428 * we should start walking down the tree again if reference
7429 * count is one.
7431 if (!path->locks[level]) {
7432 BUG_ON(level == 0);
7433 btrfs_tree_lock(eb);
7434 btrfs_set_lock_blocking(eb);
7435 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7437 ret = btrfs_lookup_extent_info(trans, root,
7438 eb->start, level, 1,
7439 &wc->refs[level],
7440 &wc->flags[level]);
7441 if (ret < 0) {
7442 btrfs_tree_unlock_rw(eb, path->locks[level]);
7443 path->locks[level] = 0;
7444 return ret;
7446 BUG_ON(wc->refs[level] == 0);
7447 if (wc->refs[level] == 1) {
7448 btrfs_tree_unlock_rw(eb, path->locks[level]);
7449 path->locks[level] = 0;
7450 return 1;
7455 /* wc->stage == DROP_REFERENCE */
7456 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7458 if (wc->refs[level] == 1) {
7459 if (level == 0) {
7460 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7461 ret = btrfs_dec_ref(trans, root, eb, 1,
7462 wc->for_reloc);
7463 else
7464 ret = btrfs_dec_ref(trans, root, eb, 0,
7465 wc->for_reloc);
7466 BUG_ON(ret); /* -ENOMEM */
7468 /* make block locked assertion in clean_tree_block happy */
7469 if (!path->locks[level] &&
7470 btrfs_header_generation(eb) == trans->transid) {
7471 btrfs_tree_lock(eb);
7472 btrfs_set_lock_blocking(eb);
7473 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7475 clean_tree_block(trans, root, eb);
7478 if (eb == root->node) {
7479 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7480 parent = eb->start;
7481 else
7482 BUG_ON(root->root_key.objectid !=
7483 btrfs_header_owner(eb));
7484 } else {
7485 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7486 parent = path->nodes[level + 1]->start;
7487 else
7488 BUG_ON(root->root_key.objectid !=
7489 btrfs_header_owner(path->nodes[level + 1]));
7492 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7493 out:
7494 wc->refs[level] = 0;
7495 wc->flags[level] = 0;
7496 return 0;
7499 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7500 struct btrfs_root *root,
7501 struct btrfs_path *path,
7502 struct walk_control *wc)
7504 int level = wc->level;
7505 int lookup_info = 1;
7506 int ret;
7508 while (level >= 0) {
7509 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7510 if (ret > 0)
7511 break;
7513 if (level == 0)
7514 break;
7516 if (path->slots[level] >=
7517 btrfs_header_nritems(path->nodes[level]))
7518 break;
7520 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7521 if (ret > 0) {
7522 path->slots[level]++;
7523 continue;
7524 } else if (ret < 0)
7525 return ret;
7526 level = wc->level;
7528 return 0;
7531 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7532 struct btrfs_root *root,
7533 struct btrfs_path *path,
7534 struct walk_control *wc, int max_level)
7536 int level = wc->level;
7537 int ret;
7539 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7540 while (level < max_level && path->nodes[level]) {
7541 wc->level = level;
7542 if (path->slots[level] + 1 <
7543 btrfs_header_nritems(path->nodes[level])) {
7544 path->slots[level]++;
7545 return 0;
7546 } else {
7547 ret = walk_up_proc(trans, root, path, wc);
7548 if (ret > 0)
7549 return 0;
7551 if (path->locks[level]) {
7552 btrfs_tree_unlock_rw(path->nodes[level],
7553 path->locks[level]);
7554 path->locks[level] = 0;
7556 free_extent_buffer(path->nodes[level]);
7557 path->nodes[level] = NULL;
7558 level++;
7561 return 1;
7565 * drop a subvolume tree.
7567 * this function traverses the tree freeing any blocks that only
7568 * referenced by the tree.
7570 * when a shared tree block is found. this function decreases its
7571 * reference count by one. if update_ref is true, this function
7572 * also make sure backrefs for the shared block and all lower level
7573 * blocks are properly updated.
7575 * If called with for_reloc == 0, may exit early with -EAGAIN
7577 int btrfs_drop_snapshot(struct btrfs_root *root,
7578 struct btrfs_block_rsv *block_rsv, int update_ref,
7579 int for_reloc)
7581 struct btrfs_path *path;
7582 struct btrfs_trans_handle *trans;
7583 struct btrfs_root *tree_root = root->fs_info->tree_root;
7584 struct btrfs_root_item *root_item = &root->root_item;
7585 struct walk_control *wc;
7586 struct btrfs_key key;
7587 int err = 0;
7588 int ret;
7589 int level;
7590 bool root_dropped = false;
7592 path = btrfs_alloc_path();
7593 if (!path) {
7594 err = -ENOMEM;
7595 goto out;
7598 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7599 if (!wc) {
7600 btrfs_free_path(path);
7601 err = -ENOMEM;
7602 goto out;
7605 trans = btrfs_start_transaction(tree_root, 0);
7606 if (IS_ERR(trans)) {
7607 err = PTR_ERR(trans);
7608 goto out_free;
7611 if (block_rsv)
7612 trans->block_rsv = block_rsv;
7614 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7615 level = btrfs_header_level(root->node);
7616 path->nodes[level] = btrfs_lock_root_node(root);
7617 btrfs_set_lock_blocking(path->nodes[level]);
7618 path->slots[level] = 0;
7619 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7620 memset(&wc->update_progress, 0,
7621 sizeof(wc->update_progress));
7622 } else {
7623 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7624 memcpy(&wc->update_progress, &key,
7625 sizeof(wc->update_progress));
7627 level = root_item->drop_level;
7628 BUG_ON(level == 0);
7629 path->lowest_level = level;
7630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7631 path->lowest_level = 0;
7632 if (ret < 0) {
7633 err = ret;
7634 goto out_end_trans;
7636 WARN_ON(ret > 0);
7639 * unlock our path, this is safe because only this
7640 * function is allowed to delete this snapshot
7642 btrfs_unlock_up_safe(path, 0);
7644 level = btrfs_header_level(root->node);
7645 while (1) {
7646 btrfs_tree_lock(path->nodes[level]);
7647 btrfs_set_lock_blocking(path->nodes[level]);
7648 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7650 ret = btrfs_lookup_extent_info(trans, root,
7651 path->nodes[level]->start,
7652 level, 1, &wc->refs[level],
7653 &wc->flags[level]);
7654 if (ret < 0) {
7655 err = ret;
7656 goto out_end_trans;
7658 BUG_ON(wc->refs[level] == 0);
7660 if (level == root_item->drop_level)
7661 break;
7663 btrfs_tree_unlock(path->nodes[level]);
7664 path->locks[level] = 0;
7665 WARN_ON(wc->refs[level] != 1);
7666 level--;
7670 wc->level = level;
7671 wc->shared_level = -1;
7672 wc->stage = DROP_REFERENCE;
7673 wc->update_ref = update_ref;
7674 wc->keep_locks = 0;
7675 wc->for_reloc = for_reloc;
7676 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7678 while (1) {
7680 ret = walk_down_tree(trans, root, path, wc);
7681 if (ret < 0) {
7682 err = ret;
7683 break;
7686 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7687 if (ret < 0) {
7688 err = ret;
7689 break;
7692 if (ret > 0) {
7693 BUG_ON(wc->stage != DROP_REFERENCE);
7694 break;
7697 if (wc->stage == DROP_REFERENCE) {
7698 level = wc->level;
7699 btrfs_node_key(path->nodes[level],
7700 &root_item->drop_progress,
7701 path->slots[level]);
7702 root_item->drop_level = level;
7705 BUG_ON(wc->level == 0);
7706 if (btrfs_should_end_transaction(trans, tree_root) ||
7707 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7708 ret = btrfs_update_root(trans, tree_root,
7709 &root->root_key,
7710 root_item);
7711 if (ret) {
7712 btrfs_abort_transaction(trans, tree_root, ret);
7713 err = ret;
7714 goto out_end_trans;
7717 btrfs_end_transaction_throttle(trans, tree_root);
7718 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7719 pr_debug("btrfs: drop snapshot early exit\n");
7720 err = -EAGAIN;
7721 goto out_free;
7724 trans = btrfs_start_transaction(tree_root, 0);
7725 if (IS_ERR(trans)) {
7726 err = PTR_ERR(trans);
7727 goto out_free;
7729 if (block_rsv)
7730 trans->block_rsv = block_rsv;
7733 btrfs_release_path(path);
7734 if (err)
7735 goto out_end_trans;
7737 ret = btrfs_del_root(trans, tree_root, &root->root_key);
7738 if (ret) {
7739 btrfs_abort_transaction(trans, tree_root, ret);
7740 goto out_end_trans;
7743 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7744 ret = btrfs_find_root(tree_root, &root->root_key, path,
7745 NULL, NULL);
7746 if (ret < 0) {
7747 btrfs_abort_transaction(trans, tree_root, ret);
7748 err = ret;
7749 goto out_end_trans;
7750 } else if (ret > 0) {
7751 /* if we fail to delete the orphan item this time
7752 * around, it'll get picked up the next time.
7754 * The most common failure here is just -ENOENT.
7756 btrfs_del_orphan_item(trans, tree_root,
7757 root->root_key.objectid);
7761 if (root->in_radix) {
7762 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7763 } else {
7764 free_extent_buffer(root->node);
7765 free_extent_buffer(root->commit_root);
7766 btrfs_put_fs_root(root);
7768 root_dropped = true;
7769 out_end_trans:
7770 btrfs_end_transaction_throttle(trans, tree_root);
7771 out_free:
7772 kfree(wc);
7773 btrfs_free_path(path);
7774 out:
7776 * So if we need to stop dropping the snapshot for whatever reason we
7777 * need to make sure to add it back to the dead root list so that we
7778 * keep trying to do the work later. This also cleans up roots if we
7779 * don't have it in the radix (like when we recover after a power fail
7780 * or unmount) so we don't leak memory.
7782 if (!for_reloc && root_dropped == false)
7783 btrfs_add_dead_root(root);
7784 if (err)
7785 btrfs_std_error(root->fs_info, err);
7786 return err;
7790 * drop subtree rooted at tree block 'node'.
7792 * NOTE: this function will unlock and release tree block 'node'
7793 * only used by relocation code
7795 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7796 struct btrfs_root *root,
7797 struct extent_buffer *node,
7798 struct extent_buffer *parent)
7800 struct btrfs_path *path;
7801 struct walk_control *wc;
7802 int level;
7803 int parent_level;
7804 int ret = 0;
7805 int wret;
7807 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7809 path = btrfs_alloc_path();
7810 if (!path)
7811 return -ENOMEM;
7813 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7814 if (!wc) {
7815 btrfs_free_path(path);
7816 return -ENOMEM;
7819 btrfs_assert_tree_locked(parent);
7820 parent_level = btrfs_header_level(parent);
7821 extent_buffer_get(parent);
7822 path->nodes[parent_level] = parent;
7823 path->slots[parent_level] = btrfs_header_nritems(parent);
7825 btrfs_assert_tree_locked(node);
7826 level = btrfs_header_level(node);
7827 path->nodes[level] = node;
7828 path->slots[level] = 0;
7829 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7831 wc->refs[parent_level] = 1;
7832 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7833 wc->level = level;
7834 wc->shared_level = -1;
7835 wc->stage = DROP_REFERENCE;
7836 wc->update_ref = 0;
7837 wc->keep_locks = 1;
7838 wc->for_reloc = 1;
7839 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7841 while (1) {
7842 wret = walk_down_tree(trans, root, path, wc);
7843 if (wret < 0) {
7844 ret = wret;
7845 break;
7848 wret = walk_up_tree(trans, root, path, wc, parent_level);
7849 if (wret < 0)
7850 ret = wret;
7851 if (wret != 0)
7852 break;
7855 kfree(wc);
7856 btrfs_free_path(path);
7857 return ret;
7860 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7862 u64 num_devices;
7863 u64 stripped;
7866 * if restripe for this chunk_type is on pick target profile and
7867 * return, otherwise do the usual balance
7869 stripped = get_restripe_target(root->fs_info, flags);
7870 if (stripped)
7871 return extended_to_chunk(stripped);
7874 * we add in the count of missing devices because we want
7875 * to make sure that any RAID levels on a degraded FS
7876 * continue to be honored.
7878 num_devices = root->fs_info->fs_devices->rw_devices +
7879 root->fs_info->fs_devices->missing_devices;
7881 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7882 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7883 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7885 if (num_devices == 1) {
7886 stripped |= BTRFS_BLOCK_GROUP_DUP;
7887 stripped = flags & ~stripped;
7889 /* turn raid0 into single device chunks */
7890 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7891 return stripped;
7893 /* turn mirroring into duplication */
7894 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7895 BTRFS_BLOCK_GROUP_RAID10))
7896 return stripped | BTRFS_BLOCK_GROUP_DUP;
7897 } else {
7898 /* they already had raid on here, just return */
7899 if (flags & stripped)
7900 return flags;
7902 stripped |= BTRFS_BLOCK_GROUP_DUP;
7903 stripped = flags & ~stripped;
7905 /* switch duplicated blocks with raid1 */
7906 if (flags & BTRFS_BLOCK_GROUP_DUP)
7907 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7909 /* this is drive concat, leave it alone */
7912 return flags;
7915 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7917 struct btrfs_space_info *sinfo = cache->space_info;
7918 u64 num_bytes;
7919 u64 min_allocable_bytes;
7920 int ret = -ENOSPC;
7924 * We need some metadata space and system metadata space for
7925 * allocating chunks in some corner cases until we force to set
7926 * it to be readonly.
7928 if ((sinfo->flags &
7929 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7930 !force)
7931 min_allocable_bytes = 1 * 1024 * 1024;
7932 else
7933 min_allocable_bytes = 0;
7935 spin_lock(&sinfo->lock);
7936 spin_lock(&cache->lock);
7938 if (cache->ro) {
7939 ret = 0;
7940 goto out;
7943 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7944 cache->bytes_super - btrfs_block_group_used(&cache->item);
7946 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7947 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7948 min_allocable_bytes <= sinfo->total_bytes) {
7949 sinfo->bytes_readonly += num_bytes;
7950 cache->ro = 1;
7951 ret = 0;
7953 out:
7954 spin_unlock(&cache->lock);
7955 spin_unlock(&sinfo->lock);
7956 return ret;
7959 int btrfs_set_block_group_ro(struct btrfs_root *root,
7960 struct btrfs_block_group_cache *cache)
7963 struct btrfs_trans_handle *trans;
7964 u64 alloc_flags;
7965 int ret;
7967 BUG_ON(cache->ro);
7969 trans = btrfs_join_transaction(root);
7970 if (IS_ERR(trans))
7971 return PTR_ERR(trans);
7973 alloc_flags = update_block_group_flags(root, cache->flags);
7974 if (alloc_flags != cache->flags) {
7975 ret = do_chunk_alloc(trans, root, alloc_flags,
7976 CHUNK_ALLOC_FORCE);
7977 if (ret < 0)
7978 goto out;
7981 ret = set_block_group_ro(cache, 0);
7982 if (!ret)
7983 goto out;
7984 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7985 ret = do_chunk_alloc(trans, root, alloc_flags,
7986 CHUNK_ALLOC_FORCE);
7987 if (ret < 0)
7988 goto out;
7989 ret = set_block_group_ro(cache, 0);
7990 out:
7991 btrfs_end_transaction(trans, root);
7992 return ret;
7995 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7996 struct btrfs_root *root, u64 type)
7998 u64 alloc_flags = get_alloc_profile(root, type);
7999 return do_chunk_alloc(trans, root, alloc_flags,
8000 CHUNK_ALLOC_FORCE);
8004 * helper to account the unused space of all the readonly block group in the
8005 * list. takes mirrors into account.
8007 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8009 struct btrfs_block_group_cache *block_group;
8010 u64 free_bytes = 0;
8011 int factor;
8013 list_for_each_entry(block_group, groups_list, list) {
8014 spin_lock(&block_group->lock);
8016 if (!block_group->ro) {
8017 spin_unlock(&block_group->lock);
8018 continue;
8021 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8022 BTRFS_BLOCK_GROUP_RAID10 |
8023 BTRFS_BLOCK_GROUP_DUP))
8024 factor = 2;
8025 else
8026 factor = 1;
8028 free_bytes += (block_group->key.offset -
8029 btrfs_block_group_used(&block_group->item)) *
8030 factor;
8032 spin_unlock(&block_group->lock);
8035 return free_bytes;
8039 * helper to account the unused space of all the readonly block group in the
8040 * space_info. takes mirrors into account.
8042 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8044 int i;
8045 u64 free_bytes = 0;
8047 spin_lock(&sinfo->lock);
8049 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8050 if (!list_empty(&sinfo->block_groups[i]))
8051 free_bytes += __btrfs_get_ro_block_group_free_space(
8052 &sinfo->block_groups[i]);
8054 spin_unlock(&sinfo->lock);
8056 return free_bytes;
8059 void btrfs_set_block_group_rw(struct btrfs_root *root,
8060 struct btrfs_block_group_cache *cache)
8062 struct btrfs_space_info *sinfo = cache->space_info;
8063 u64 num_bytes;
8065 BUG_ON(!cache->ro);
8067 spin_lock(&sinfo->lock);
8068 spin_lock(&cache->lock);
8069 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8070 cache->bytes_super - btrfs_block_group_used(&cache->item);
8071 sinfo->bytes_readonly -= num_bytes;
8072 cache->ro = 0;
8073 spin_unlock(&cache->lock);
8074 spin_unlock(&sinfo->lock);
8078 * checks to see if its even possible to relocate this block group.
8080 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8081 * ok to go ahead and try.
8083 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8085 struct btrfs_block_group_cache *block_group;
8086 struct btrfs_space_info *space_info;
8087 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8088 struct btrfs_device *device;
8089 struct btrfs_trans_handle *trans;
8090 u64 min_free;
8091 u64 dev_min = 1;
8092 u64 dev_nr = 0;
8093 u64 target;
8094 int index;
8095 int full = 0;
8096 int ret = 0;
8098 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8100 /* odd, couldn't find the block group, leave it alone */
8101 if (!block_group)
8102 return -1;
8104 min_free = btrfs_block_group_used(&block_group->item);
8106 /* no bytes used, we're good */
8107 if (!min_free)
8108 goto out;
8110 space_info = block_group->space_info;
8111 spin_lock(&space_info->lock);
8113 full = space_info->full;
8116 * if this is the last block group we have in this space, we can't
8117 * relocate it unless we're able to allocate a new chunk below.
8119 * Otherwise, we need to make sure we have room in the space to handle
8120 * all of the extents from this block group. If we can, we're good
8122 if ((space_info->total_bytes != block_group->key.offset) &&
8123 (space_info->bytes_used + space_info->bytes_reserved +
8124 space_info->bytes_pinned + space_info->bytes_readonly +
8125 min_free < space_info->total_bytes)) {
8126 spin_unlock(&space_info->lock);
8127 goto out;
8129 spin_unlock(&space_info->lock);
8132 * ok we don't have enough space, but maybe we have free space on our
8133 * devices to allocate new chunks for relocation, so loop through our
8134 * alloc devices and guess if we have enough space. if this block
8135 * group is going to be restriped, run checks against the target
8136 * profile instead of the current one.
8138 ret = -1;
8141 * index:
8142 * 0: raid10
8143 * 1: raid1
8144 * 2: dup
8145 * 3: raid0
8146 * 4: single
8148 target = get_restripe_target(root->fs_info, block_group->flags);
8149 if (target) {
8150 index = __get_raid_index(extended_to_chunk(target));
8151 } else {
8153 * this is just a balance, so if we were marked as full
8154 * we know there is no space for a new chunk
8156 if (full)
8157 goto out;
8159 index = get_block_group_index(block_group);
8162 if (index == BTRFS_RAID_RAID10) {
8163 dev_min = 4;
8164 /* Divide by 2 */
8165 min_free >>= 1;
8166 } else if (index == BTRFS_RAID_RAID1) {
8167 dev_min = 2;
8168 } else if (index == BTRFS_RAID_DUP) {
8169 /* Multiply by 2 */
8170 min_free <<= 1;
8171 } else if (index == BTRFS_RAID_RAID0) {
8172 dev_min = fs_devices->rw_devices;
8173 do_div(min_free, dev_min);
8176 /* We need to do this so that we can look at pending chunks */
8177 trans = btrfs_join_transaction(root);
8178 if (IS_ERR(trans)) {
8179 ret = PTR_ERR(trans);
8180 goto out;
8183 mutex_lock(&root->fs_info->chunk_mutex);
8184 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8185 u64 dev_offset;
8188 * check to make sure we can actually find a chunk with enough
8189 * space to fit our block group in.
8191 if (device->total_bytes > device->bytes_used + min_free &&
8192 !device->is_tgtdev_for_dev_replace) {
8193 ret = find_free_dev_extent(trans, device, min_free,
8194 &dev_offset, NULL);
8195 if (!ret)
8196 dev_nr++;
8198 if (dev_nr >= dev_min)
8199 break;
8201 ret = -1;
8204 mutex_unlock(&root->fs_info->chunk_mutex);
8205 btrfs_end_transaction(trans, root);
8206 out:
8207 btrfs_put_block_group(block_group);
8208 return ret;
8211 static int find_first_block_group(struct btrfs_root *root,
8212 struct btrfs_path *path, struct btrfs_key *key)
8214 int ret = 0;
8215 struct btrfs_key found_key;
8216 struct extent_buffer *leaf;
8217 int slot;
8219 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8220 if (ret < 0)
8221 goto out;
8223 while (1) {
8224 slot = path->slots[0];
8225 leaf = path->nodes[0];
8226 if (slot >= btrfs_header_nritems(leaf)) {
8227 ret = btrfs_next_leaf(root, path);
8228 if (ret == 0)
8229 continue;
8230 if (ret < 0)
8231 goto out;
8232 break;
8234 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8236 if (found_key.objectid >= key->objectid &&
8237 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8238 ret = 0;
8239 goto out;
8241 path->slots[0]++;
8243 out:
8244 return ret;
8247 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8249 struct btrfs_block_group_cache *block_group;
8250 u64 last = 0;
8252 while (1) {
8253 struct inode *inode;
8255 block_group = btrfs_lookup_first_block_group(info, last);
8256 while (block_group) {
8257 spin_lock(&block_group->lock);
8258 if (block_group->iref)
8259 break;
8260 spin_unlock(&block_group->lock);
8261 block_group = next_block_group(info->tree_root,
8262 block_group);
8264 if (!block_group) {
8265 if (last == 0)
8266 break;
8267 last = 0;
8268 continue;
8271 inode = block_group->inode;
8272 block_group->iref = 0;
8273 block_group->inode = NULL;
8274 spin_unlock(&block_group->lock);
8275 iput(inode);
8276 last = block_group->key.objectid + block_group->key.offset;
8277 btrfs_put_block_group(block_group);
8281 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8283 struct btrfs_block_group_cache *block_group;
8284 struct btrfs_space_info *space_info;
8285 struct btrfs_caching_control *caching_ctl;
8286 struct rb_node *n;
8288 down_write(&info->extent_commit_sem);
8289 while (!list_empty(&info->caching_block_groups)) {
8290 caching_ctl = list_entry(info->caching_block_groups.next,
8291 struct btrfs_caching_control, list);
8292 list_del(&caching_ctl->list);
8293 put_caching_control(caching_ctl);
8295 up_write(&info->extent_commit_sem);
8297 spin_lock(&info->block_group_cache_lock);
8298 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8299 block_group = rb_entry(n, struct btrfs_block_group_cache,
8300 cache_node);
8301 rb_erase(&block_group->cache_node,
8302 &info->block_group_cache_tree);
8303 spin_unlock(&info->block_group_cache_lock);
8305 down_write(&block_group->space_info->groups_sem);
8306 list_del(&block_group->list);
8307 up_write(&block_group->space_info->groups_sem);
8309 if (block_group->cached == BTRFS_CACHE_STARTED)
8310 wait_block_group_cache_done(block_group);
8313 * We haven't cached this block group, which means we could
8314 * possibly have excluded extents on this block group.
8316 if (block_group->cached == BTRFS_CACHE_NO ||
8317 block_group->cached == BTRFS_CACHE_ERROR)
8318 free_excluded_extents(info->extent_root, block_group);
8320 btrfs_remove_free_space_cache(block_group);
8321 btrfs_put_block_group(block_group);
8323 spin_lock(&info->block_group_cache_lock);
8325 spin_unlock(&info->block_group_cache_lock);
8327 /* now that all the block groups are freed, go through and
8328 * free all the space_info structs. This is only called during
8329 * the final stages of unmount, and so we know nobody is
8330 * using them. We call synchronize_rcu() once before we start,
8331 * just to be on the safe side.
8333 synchronize_rcu();
8335 release_global_block_rsv(info);
8337 while (!list_empty(&info->space_info)) {
8338 space_info = list_entry(info->space_info.next,
8339 struct btrfs_space_info,
8340 list);
8341 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8342 if (WARN_ON(space_info->bytes_pinned > 0 ||
8343 space_info->bytes_reserved > 0 ||
8344 space_info->bytes_may_use > 0)) {
8345 dump_space_info(space_info, 0, 0);
8348 percpu_counter_destroy(&space_info->total_bytes_pinned);
8349 list_del(&space_info->list);
8350 kfree(space_info);
8352 return 0;
8355 static void __link_block_group(struct btrfs_space_info *space_info,
8356 struct btrfs_block_group_cache *cache)
8358 int index = get_block_group_index(cache);
8360 down_write(&space_info->groups_sem);
8361 list_add_tail(&cache->list, &space_info->block_groups[index]);
8362 up_write(&space_info->groups_sem);
8365 int btrfs_read_block_groups(struct btrfs_root *root)
8367 struct btrfs_path *path;
8368 int ret;
8369 struct btrfs_block_group_cache *cache;
8370 struct btrfs_fs_info *info = root->fs_info;
8371 struct btrfs_space_info *space_info;
8372 struct btrfs_key key;
8373 struct btrfs_key found_key;
8374 struct extent_buffer *leaf;
8375 int need_clear = 0;
8376 u64 cache_gen;
8378 root = info->extent_root;
8379 key.objectid = 0;
8380 key.offset = 0;
8381 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8382 path = btrfs_alloc_path();
8383 if (!path)
8384 return -ENOMEM;
8385 path->reada = 1;
8387 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8388 if (btrfs_test_opt(root, SPACE_CACHE) &&
8389 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8390 need_clear = 1;
8391 if (btrfs_test_opt(root, CLEAR_CACHE))
8392 need_clear = 1;
8394 while (1) {
8395 ret = find_first_block_group(root, path, &key);
8396 if (ret > 0)
8397 break;
8398 if (ret != 0)
8399 goto error;
8400 leaf = path->nodes[0];
8401 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8402 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8403 if (!cache) {
8404 ret = -ENOMEM;
8405 goto error;
8407 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8408 GFP_NOFS);
8409 if (!cache->free_space_ctl) {
8410 kfree(cache);
8411 ret = -ENOMEM;
8412 goto error;
8415 atomic_set(&cache->count, 1);
8416 spin_lock_init(&cache->lock);
8417 cache->fs_info = info;
8418 INIT_LIST_HEAD(&cache->list);
8419 INIT_LIST_HEAD(&cache->cluster_list);
8421 if (need_clear) {
8423 * When we mount with old space cache, we need to
8424 * set BTRFS_DC_CLEAR and set dirty flag.
8426 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8427 * truncate the old free space cache inode and
8428 * setup a new one.
8429 * b) Setting 'dirty flag' makes sure that we flush
8430 * the new space cache info onto disk.
8432 cache->disk_cache_state = BTRFS_DC_CLEAR;
8433 if (btrfs_test_opt(root, SPACE_CACHE))
8434 cache->dirty = 1;
8437 read_extent_buffer(leaf, &cache->item,
8438 btrfs_item_ptr_offset(leaf, path->slots[0]),
8439 sizeof(cache->item));
8440 memcpy(&cache->key, &found_key, sizeof(found_key));
8442 key.objectid = found_key.objectid + found_key.offset;
8443 btrfs_release_path(path);
8444 cache->flags = btrfs_block_group_flags(&cache->item);
8445 cache->sectorsize = root->sectorsize;
8446 cache->full_stripe_len = btrfs_full_stripe_len(root,
8447 &root->fs_info->mapping_tree,
8448 found_key.objectid);
8449 btrfs_init_free_space_ctl(cache);
8452 * We need to exclude the super stripes now so that the space
8453 * info has super bytes accounted for, otherwise we'll think
8454 * we have more space than we actually do.
8456 ret = exclude_super_stripes(root, cache);
8457 if (ret) {
8459 * We may have excluded something, so call this just in
8460 * case.
8462 free_excluded_extents(root, cache);
8463 kfree(cache->free_space_ctl);
8464 kfree(cache);
8465 goto error;
8469 * check for two cases, either we are full, and therefore
8470 * don't need to bother with the caching work since we won't
8471 * find any space, or we are empty, and we can just add all
8472 * the space in and be done with it. This saves us _alot_ of
8473 * time, particularly in the full case.
8475 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8476 cache->last_byte_to_unpin = (u64)-1;
8477 cache->cached = BTRFS_CACHE_FINISHED;
8478 free_excluded_extents(root, cache);
8479 } else if (btrfs_block_group_used(&cache->item) == 0) {
8480 cache->last_byte_to_unpin = (u64)-1;
8481 cache->cached = BTRFS_CACHE_FINISHED;
8482 add_new_free_space(cache, root->fs_info,
8483 found_key.objectid,
8484 found_key.objectid +
8485 found_key.offset);
8486 free_excluded_extents(root, cache);
8489 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8490 if (ret) {
8491 btrfs_remove_free_space_cache(cache);
8492 btrfs_put_block_group(cache);
8493 goto error;
8496 ret = update_space_info(info, cache->flags, found_key.offset,
8497 btrfs_block_group_used(&cache->item),
8498 &space_info);
8499 if (ret) {
8500 btrfs_remove_free_space_cache(cache);
8501 spin_lock(&info->block_group_cache_lock);
8502 rb_erase(&cache->cache_node,
8503 &info->block_group_cache_tree);
8504 spin_unlock(&info->block_group_cache_lock);
8505 btrfs_put_block_group(cache);
8506 goto error;
8509 cache->space_info = space_info;
8510 spin_lock(&cache->space_info->lock);
8511 cache->space_info->bytes_readonly += cache->bytes_super;
8512 spin_unlock(&cache->space_info->lock);
8514 __link_block_group(space_info, cache);
8516 set_avail_alloc_bits(root->fs_info, cache->flags);
8517 if (btrfs_chunk_readonly(root, cache->key.objectid))
8518 set_block_group_ro(cache, 1);
8521 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8522 if (!(get_alloc_profile(root, space_info->flags) &
8523 (BTRFS_BLOCK_GROUP_RAID10 |
8524 BTRFS_BLOCK_GROUP_RAID1 |
8525 BTRFS_BLOCK_GROUP_RAID5 |
8526 BTRFS_BLOCK_GROUP_RAID6 |
8527 BTRFS_BLOCK_GROUP_DUP)))
8528 continue;
8530 * avoid allocating from un-mirrored block group if there are
8531 * mirrored block groups.
8533 list_for_each_entry(cache,
8534 &space_info->block_groups[BTRFS_RAID_RAID0],
8535 list)
8536 set_block_group_ro(cache, 1);
8537 list_for_each_entry(cache,
8538 &space_info->block_groups[BTRFS_RAID_SINGLE],
8539 list)
8540 set_block_group_ro(cache, 1);
8543 init_global_block_rsv(info);
8544 ret = 0;
8545 error:
8546 btrfs_free_path(path);
8547 return ret;
8550 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8551 struct btrfs_root *root)
8553 struct btrfs_block_group_cache *block_group, *tmp;
8554 struct btrfs_root *extent_root = root->fs_info->extent_root;
8555 struct btrfs_block_group_item item;
8556 struct btrfs_key key;
8557 int ret = 0;
8559 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8560 new_bg_list) {
8561 list_del_init(&block_group->new_bg_list);
8563 if (ret)
8564 continue;
8566 spin_lock(&block_group->lock);
8567 memcpy(&item, &block_group->item, sizeof(item));
8568 memcpy(&key, &block_group->key, sizeof(key));
8569 spin_unlock(&block_group->lock);
8571 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8572 sizeof(item));
8573 if (ret)
8574 btrfs_abort_transaction(trans, extent_root, ret);
8575 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8576 key.objectid, key.offset);
8577 if (ret)
8578 btrfs_abort_transaction(trans, extent_root, ret);
8582 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8583 struct btrfs_root *root, u64 bytes_used,
8584 u64 type, u64 chunk_objectid, u64 chunk_offset,
8585 u64 size)
8587 int ret;
8588 struct btrfs_root *extent_root;
8589 struct btrfs_block_group_cache *cache;
8591 extent_root = root->fs_info->extent_root;
8593 root->fs_info->last_trans_log_full_commit = trans->transid;
8595 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8596 if (!cache)
8597 return -ENOMEM;
8598 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8599 GFP_NOFS);
8600 if (!cache->free_space_ctl) {
8601 kfree(cache);
8602 return -ENOMEM;
8605 cache->key.objectid = chunk_offset;
8606 cache->key.offset = size;
8607 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8608 cache->sectorsize = root->sectorsize;
8609 cache->fs_info = root->fs_info;
8610 cache->full_stripe_len = btrfs_full_stripe_len(root,
8611 &root->fs_info->mapping_tree,
8612 chunk_offset);
8614 atomic_set(&cache->count, 1);
8615 spin_lock_init(&cache->lock);
8616 INIT_LIST_HEAD(&cache->list);
8617 INIT_LIST_HEAD(&cache->cluster_list);
8618 INIT_LIST_HEAD(&cache->new_bg_list);
8620 btrfs_init_free_space_ctl(cache);
8622 btrfs_set_block_group_used(&cache->item, bytes_used);
8623 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8624 cache->flags = type;
8625 btrfs_set_block_group_flags(&cache->item, type);
8627 cache->last_byte_to_unpin = (u64)-1;
8628 cache->cached = BTRFS_CACHE_FINISHED;
8629 ret = exclude_super_stripes(root, cache);
8630 if (ret) {
8632 * We may have excluded something, so call this just in
8633 * case.
8635 free_excluded_extents(root, cache);
8636 kfree(cache->free_space_ctl);
8637 kfree(cache);
8638 return ret;
8641 add_new_free_space(cache, root->fs_info, chunk_offset,
8642 chunk_offset + size);
8644 free_excluded_extents(root, cache);
8646 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8647 if (ret) {
8648 btrfs_remove_free_space_cache(cache);
8649 btrfs_put_block_group(cache);
8650 return ret;
8653 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8654 &cache->space_info);
8655 if (ret) {
8656 btrfs_remove_free_space_cache(cache);
8657 spin_lock(&root->fs_info->block_group_cache_lock);
8658 rb_erase(&cache->cache_node,
8659 &root->fs_info->block_group_cache_tree);
8660 spin_unlock(&root->fs_info->block_group_cache_lock);
8661 btrfs_put_block_group(cache);
8662 return ret;
8664 update_global_block_rsv(root->fs_info);
8666 spin_lock(&cache->space_info->lock);
8667 cache->space_info->bytes_readonly += cache->bytes_super;
8668 spin_unlock(&cache->space_info->lock);
8670 __link_block_group(cache->space_info, cache);
8672 list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8674 set_avail_alloc_bits(extent_root->fs_info, type);
8676 return 0;
8679 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8681 u64 extra_flags = chunk_to_extended(flags) &
8682 BTRFS_EXTENDED_PROFILE_MASK;
8684 write_seqlock(&fs_info->profiles_lock);
8685 if (flags & BTRFS_BLOCK_GROUP_DATA)
8686 fs_info->avail_data_alloc_bits &= ~extra_flags;
8687 if (flags & BTRFS_BLOCK_GROUP_METADATA)
8688 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8689 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8690 fs_info->avail_system_alloc_bits &= ~extra_flags;
8691 write_sequnlock(&fs_info->profiles_lock);
8694 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8695 struct btrfs_root *root, u64 group_start)
8697 struct btrfs_path *path;
8698 struct btrfs_block_group_cache *block_group;
8699 struct btrfs_free_cluster *cluster;
8700 struct btrfs_root *tree_root = root->fs_info->tree_root;
8701 struct btrfs_key key;
8702 struct inode *inode;
8703 int ret;
8704 int index;
8705 int factor;
8707 root = root->fs_info->extent_root;
8709 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8710 BUG_ON(!block_group);
8711 BUG_ON(!block_group->ro);
8714 * Free the reserved super bytes from this block group before
8715 * remove it.
8717 free_excluded_extents(root, block_group);
8719 memcpy(&key, &block_group->key, sizeof(key));
8720 index = get_block_group_index(block_group);
8721 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8722 BTRFS_BLOCK_GROUP_RAID1 |
8723 BTRFS_BLOCK_GROUP_RAID10))
8724 factor = 2;
8725 else
8726 factor = 1;
8728 /* make sure this block group isn't part of an allocation cluster */
8729 cluster = &root->fs_info->data_alloc_cluster;
8730 spin_lock(&cluster->refill_lock);
8731 btrfs_return_cluster_to_free_space(block_group, cluster);
8732 spin_unlock(&cluster->refill_lock);
8735 * make sure this block group isn't part of a metadata
8736 * allocation cluster
8738 cluster = &root->fs_info->meta_alloc_cluster;
8739 spin_lock(&cluster->refill_lock);
8740 btrfs_return_cluster_to_free_space(block_group, cluster);
8741 spin_unlock(&cluster->refill_lock);
8743 path = btrfs_alloc_path();
8744 if (!path) {
8745 ret = -ENOMEM;
8746 goto out;
8749 inode = lookup_free_space_inode(tree_root, block_group, path);
8750 if (!IS_ERR(inode)) {
8751 ret = btrfs_orphan_add(trans, inode);
8752 if (ret) {
8753 btrfs_add_delayed_iput(inode);
8754 goto out;
8756 clear_nlink(inode);
8757 /* One for the block groups ref */
8758 spin_lock(&block_group->lock);
8759 if (block_group->iref) {
8760 block_group->iref = 0;
8761 block_group->inode = NULL;
8762 spin_unlock(&block_group->lock);
8763 iput(inode);
8764 } else {
8765 spin_unlock(&block_group->lock);
8767 /* One for our lookup ref */
8768 btrfs_add_delayed_iput(inode);
8771 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8772 key.offset = block_group->key.objectid;
8773 key.type = 0;
8775 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8776 if (ret < 0)
8777 goto out;
8778 if (ret > 0)
8779 btrfs_release_path(path);
8780 if (ret == 0) {
8781 ret = btrfs_del_item(trans, tree_root, path);
8782 if (ret)
8783 goto out;
8784 btrfs_release_path(path);
8787 spin_lock(&root->fs_info->block_group_cache_lock);
8788 rb_erase(&block_group->cache_node,
8789 &root->fs_info->block_group_cache_tree);
8791 if (root->fs_info->first_logical_byte == block_group->key.objectid)
8792 root->fs_info->first_logical_byte = (u64)-1;
8793 spin_unlock(&root->fs_info->block_group_cache_lock);
8795 down_write(&block_group->space_info->groups_sem);
8797 * we must use list_del_init so people can check to see if they
8798 * are still on the list after taking the semaphore
8800 list_del_init(&block_group->list);
8801 if (list_empty(&block_group->space_info->block_groups[index]))
8802 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8803 up_write(&block_group->space_info->groups_sem);
8805 if (block_group->cached == BTRFS_CACHE_STARTED)
8806 wait_block_group_cache_done(block_group);
8808 btrfs_remove_free_space_cache(block_group);
8810 spin_lock(&block_group->space_info->lock);
8811 block_group->space_info->total_bytes -= block_group->key.offset;
8812 block_group->space_info->bytes_readonly -= block_group->key.offset;
8813 block_group->space_info->disk_total -= block_group->key.offset * factor;
8814 spin_unlock(&block_group->space_info->lock);
8816 memcpy(&key, &block_group->key, sizeof(key));
8818 btrfs_clear_space_info_full(root->fs_info);
8820 btrfs_put_block_group(block_group);
8821 btrfs_put_block_group(block_group);
8823 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8824 if (ret > 0)
8825 ret = -EIO;
8826 if (ret < 0)
8827 goto out;
8829 ret = btrfs_del_item(trans, root, path);
8830 out:
8831 btrfs_free_path(path);
8832 return ret;
8835 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8837 struct btrfs_space_info *space_info;
8838 struct btrfs_super_block *disk_super;
8839 u64 features;
8840 u64 flags;
8841 int mixed = 0;
8842 int ret;
8844 disk_super = fs_info->super_copy;
8845 if (!btrfs_super_root(disk_super))
8846 return 1;
8848 features = btrfs_super_incompat_flags(disk_super);
8849 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8850 mixed = 1;
8852 flags = BTRFS_BLOCK_GROUP_SYSTEM;
8853 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8854 if (ret)
8855 goto out;
8857 if (mixed) {
8858 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8859 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8860 } else {
8861 flags = BTRFS_BLOCK_GROUP_METADATA;
8862 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8863 if (ret)
8864 goto out;
8866 flags = BTRFS_BLOCK_GROUP_DATA;
8867 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8869 out:
8870 return ret;
8873 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8875 return unpin_extent_range(root, start, end);
8878 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8879 u64 num_bytes, u64 *actual_bytes)
8881 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8884 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8886 struct btrfs_fs_info *fs_info = root->fs_info;
8887 struct btrfs_block_group_cache *cache = NULL;
8888 u64 group_trimmed;
8889 u64 start;
8890 u64 end;
8891 u64 trimmed = 0;
8892 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8893 int ret = 0;
8896 * try to trim all FS space, our block group may start from non-zero.
8898 if (range->len == total_bytes)
8899 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8900 else
8901 cache = btrfs_lookup_block_group(fs_info, range->start);
8903 while (cache) {
8904 if (cache->key.objectid >= (range->start + range->len)) {
8905 btrfs_put_block_group(cache);
8906 break;
8909 start = max(range->start, cache->key.objectid);
8910 end = min(range->start + range->len,
8911 cache->key.objectid + cache->key.offset);
8913 if (end - start >= range->minlen) {
8914 if (!block_group_cache_done(cache)) {
8915 ret = cache_block_group(cache, 0);
8916 if (ret) {
8917 btrfs_put_block_group(cache);
8918 break;
8920 ret = wait_block_group_cache_done(cache);
8921 if (ret) {
8922 btrfs_put_block_group(cache);
8923 break;
8926 ret = btrfs_trim_block_group(cache,
8927 &group_trimmed,
8928 start,
8929 end,
8930 range->minlen);
8932 trimmed += group_trimmed;
8933 if (ret) {
8934 btrfs_put_block_group(cache);
8935 break;
8939 cache = next_block_group(fs_info->tree_root, cache);
8942 range->len = trimmed;
8943 return ret;