Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / btrfs / disk-io.c
blob8072cfa8a3b16c075e5c381f481e7cb874d9c531
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <linux/semaphore.h>
35 #include <asm/unaligned.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60 int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
72 static int btrfs_cleanup_transaction(struct btrfs_root *root);
73 static void btrfs_error_commit_super(struct btrfs_root *root);
76 * end_io_wq structs are used to do processing in task context when an IO is
77 * complete. This is used during reads to verify checksums, and it is used
78 * by writes to insert metadata for new file extents after IO is complete.
80 struct end_io_wq {
81 struct bio *bio;
82 bio_end_io_t *end_io;
83 void *private;
84 struct btrfs_fs_info *info;
85 int error;
86 int metadata;
87 struct list_head list;
88 struct btrfs_work work;
92 * async submit bios are used to offload expensive checksumming
93 * onto the worker threads. They checksum file and metadata bios
94 * just before they are sent down the IO stack.
96 struct async_submit_bio {
97 struct inode *inode;
98 struct bio *bio;
99 struct list_head list;
100 extent_submit_bio_hook_t *submit_bio_start;
101 extent_submit_bio_hook_t *submit_bio_done;
102 int rw;
103 int mirror_num;
104 unsigned long bio_flags;
106 * bio_offset is optional, can be used if the pages in the bio
107 * can't tell us where in the file the bio should go
109 u64 bio_offset;
110 struct btrfs_work work;
111 int error;
115 * Lockdep class keys for extent_buffer->lock's in this root. For a given
116 * eb, the lockdep key is determined by the btrfs_root it belongs to and
117 * the level the eb occupies in the tree.
119 * Different roots are used for different purposes and may nest inside each
120 * other and they require separate keysets. As lockdep keys should be
121 * static, assign keysets according to the purpose of the root as indicated
122 * by btrfs_root->objectid. This ensures that all special purpose roots
123 * have separate keysets.
125 * Lock-nesting across peer nodes is always done with the immediate parent
126 * node locked thus preventing deadlock. As lockdep doesn't know this, use
127 * subclass to avoid triggering lockdep warning in such cases.
129 * The key is set by the readpage_end_io_hook after the buffer has passed
130 * csum validation but before the pages are unlocked. It is also set by
131 * btrfs_init_new_buffer on freshly allocated blocks.
133 * We also add a check to make sure the highest level of the tree is the
134 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
135 * needs update as well.
137 #ifdef CONFIG_DEBUG_LOCK_ALLOC
138 # if BTRFS_MAX_LEVEL != 8
139 # error
140 # endif
142 static struct btrfs_lockdep_keyset {
143 u64 id; /* root objectid */
144 const char *name_stem; /* lock name stem */
145 char names[BTRFS_MAX_LEVEL + 1][20];
146 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
147 } btrfs_lockdep_keysets[] = {
148 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
149 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
150 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
151 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
152 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
153 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
154 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
155 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
156 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
157 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
158 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
159 { .id = 0, .name_stem = "tree" },
162 void __init btrfs_init_lockdep(void)
164 int i, j;
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
179 struct btrfs_lockdep_keyset *ks;
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
192 #endif
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
198 static struct extent_map *btree_get_extent(struct inode *inode,
199 struct page *page, size_t pg_offset, u64 start, u64 len,
200 int create)
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
206 read_lock(&em_tree->lock);
207 em = lookup_extent_mapping(em_tree, start, len);
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211 read_unlock(&em_tree->lock);
212 goto out;
214 read_unlock(&em_tree->lock);
216 em = alloc_extent_map();
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
221 em->start = 0;
222 em->len = (u64)-1;
223 em->block_len = (u64)-1;
224 em->block_start = 0;
225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227 write_lock(&em_tree->lock);
228 ret = add_extent_mapping(em_tree, em, 0);
229 if (ret == -EEXIST) {
230 free_extent_map(em);
231 em = lookup_extent_mapping(em_tree, start, len);
232 if (!em)
233 em = ERR_PTR(-EIO);
234 } else if (ret) {
235 free_extent_map(em);
236 em = ERR_PTR(ret);
238 write_unlock(&em_tree->lock);
240 out:
241 return em;
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 return crc32c(seed, data, len);
249 void btrfs_csum_final(u32 crc, char *result)
251 put_unaligned_le32(~crc, result);
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
293 btrfs_csum_final(crc, result);
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id, buf->start,
306 val, found, btrfs_header_level(buf));
307 if (result != (char *)&inline_result)
308 kfree(result);
309 return 1;
311 } else {
312 write_extent_buffer(buf, result, 0, csum_size);
314 if (result != (char *)&inline_result)
315 kfree(result);
316 return 0;
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid,
327 int atomic)
329 struct extent_state *cached_state = NULL;
330 int ret;
332 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
333 return 0;
335 if (atomic)
336 return -EAGAIN;
338 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
339 0, &cached_state);
340 if (extent_buffer_uptodate(eb) &&
341 btrfs_header_generation(eb) == parent_transid) {
342 ret = 0;
343 goto out;
345 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
346 "found %llu\n",
347 eb->start, parent_transid, btrfs_header_generation(eb));
348 ret = 1;
349 clear_extent_buffer_uptodate(eb);
350 out:
351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 &cached_state, GFP_NOFS);
353 return ret;
357 * Return 0 if the superblock checksum type matches the checksum value of that
358 * algorithm. Pass the raw disk superblock data.
360 static int btrfs_check_super_csum(char *raw_disk_sb)
362 struct btrfs_super_block *disk_sb =
363 (struct btrfs_super_block *)raw_disk_sb;
364 u16 csum_type = btrfs_super_csum_type(disk_sb);
365 int ret = 0;
367 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
368 u32 crc = ~(u32)0;
369 const int csum_size = sizeof(crc);
370 char result[csum_size];
373 * The super_block structure does not span the whole
374 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
375 * is filled with zeros and is included in the checkum.
377 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
378 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
379 btrfs_csum_final(crc, result);
381 if (memcmp(raw_disk_sb, result, csum_size))
382 ret = 1;
384 if (ret && btrfs_super_generation(disk_sb) < 10) {
385 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
386 ret = 0;
390 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
391 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
392 csum_type);
393 ret = 1;
396 return ret;
400 * helper to read a given tree block, doing retries as required when
401 * the checksums don't match and we have alternate mirrors to try.
403 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
404 struct extent_buffer *eb,
405 u64 start, u64 parent_transid)
407 struct extent_io_tree *io_tree;
408 int failed = 0;
409 int ret;
410 int num_copies = 0;
411 int mirror_num = 0;
412 int failed_mirror = 0;
414 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
415 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
416 while (1) {
417 ret = read_extent_buffer_pages(io_tree, eb, start,
418 WAIT_COMPLETE,
419 btree_get_extent, mirror_num);
420 if (!ret) {
421 if (!verify_parent_transid(io_tree, eb,
422 parent_transid, 0))
423 break;
424 else
425 ret = -EIO;
429 * This buffer's crc is fine, but its contents are corrupted, so
430 * there is no reason to read the other copies, they won't be
431 * any less wrong.
433 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
434 break;
436 num_copies = btrfs_num_copies(root->fs_info,
437 eb->start, eb->len);
438 if (num_copies == 1)
439 break;
441 if (!failed_mirror) {
442 failed = 1;
443 failed_mirror = eb->read_mirror;
446 mirror_num++;
447 if (mirror_num == failed_mirror)
448 mirror_num++;
450 if (mirror_num > num_copies)
451 break;
454 if (failed && !ret && failed_mirror)
455 repair_eb_io_failure(root, eb, failed_mirror);
457 return ret;
461 * checksum a dirty tree block before IO. This has extra checks to make sure
462 * we only fill in the checksum field in the first page of a multi-page block
465 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
467 struct extent_io_tree *tree;
468 u64 start = page_offset(page);
469 u64 found_start;
470 struct extent_buffer *eb;
472 tree = &BTRFS_I(page->mapping->host)->io_tree;
474 eb = (struct extent_buffer *)page->private;
475 if (page != eb->pages[0])
476 return 0;
477 found_start = btrfs_header_bytenr(eb);
478 if (WARN_ON(found_start != start || !PageUptodate(page)))
479 return 0;
480 csum_tree_block(root, eb, 0);
481 return 0;
484 static int check_tree_block_fsid(struct btrfs_root *root,
485 struct extent_buffer *eb)
487 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
488 u8 fsid[BTRFS_UUID_SIZE];
489 int ret = 1;
491 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
492 while (fs_devices) {
493 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
494 ret = 0;
495 break;
497 fs_devices = fs_devices->seed;
499 return ret;
502 #define CORRUPT(reason, eb, root, slot) \
503 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
504 "root=%llu, slot=%d\n", reason, \
505 btrfs_header_bytenr(eb), root->objectid, slot)
507 static noinline int check_leaf(struct btrfs_root *root,
508 struct extent_buffer *leaf)
510 struct btrfs_key key;
511 struct btrfs_key leaf_key;
512 u32 nritems = btrfs_header_nritems(leaf);
513 int slot;
515 if (nritems == 0)
516 return 0;
518 /* Check the 0 item */
519 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
520 BTRFS_LEAF_DATA_SIZE(root)) {
521 CORRUPT("invalid item offset size pair", leaf, root, 0);
522 return -EIO;
526 * Check to make sure each items keys are in the correct order and their
527 * offsets make sense. We only have to loop through nritems-1 because
528 * we check the current slot against the next slot, which verifies the
529 * next slot's offset+size makes sense and that the current's slot
530 * offset is correct.
532 for (slot = 0; slot < nritems - 1; slot++) {
533 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
534 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
536 /* Make sure the keys are in the right order */
537 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
538 CORRUPT("bad key order", leaf, root, slot);
539 return -EIO;
543 * Make sure the offset and ends are right, remember that the
544 * item data starts at the end of the leaf and grows towards the
545 * front.
547 if (btrfs_item_offset_nr(leaf, slot) !=
548 btrfs_item_end_nr(leaf, slot + 1)) {
549 CORRUPT("slot offset bad", leaf, root, slot);
550 return -EIO;
554 * Check to make sure that we don't point outside of the leaf,
555 * just incase all the items are consistent to eachother, but
556 * all point outside of the leaf.
558 if (btrfs_item_end_nr(leaf, slot) >
559 BTRFS_LEAF_DATA_SIZE(root)) {
560 CORRUPT("slot end outside of leaf", leaf, root, slot);
561 return -EIO;
565 return 0;
568 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
569 u64 phy_offset, struct page *page,
570 u64 start, u64 end, int mirror)
572 struct extent_io_tree *tree;
573 u64 found_start;
574 int found_level;
575 struct extent_buffer *eb;
576 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
577 int ret = 0;
578 int reads_done;
580 if (!page->private)
581 goto out;
583 tree = &BTRFS_I(page->mapping->host)->io_tree;
584 eb = (struct extent_buffer *)page->private;
586 /* the pending IO might have been the only thing that kept this buffer
587 * in memory. Make sure we have a ref for all this other checks
589 extent_buffer_get(eb);
591 reads_done = atomic_dec_and_test(&eb->io_pages);
592 if (!reads_done)
593 goto err;
595 eb->read_mirror = mirror;
596 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597 ret = -EIO;
598 goto err;
601 found_start = btrfs_header_bytenr(eb);
602 if (found_start != eb->start) {
603 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
604 "%llu %llu\n",
605 found_start, eb->start);
606 ret = -EIO;
607 goto err;
609 if (check_tree_block_fsid(root, eb)) {
610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 eb->start);
612 ret = -EIO;
613 goto err;
615 found_level = btrfs_header_level(eb);
616 if (found_level >= BTRFS_MAX_LEVEL) {
617 btrfs_info(root->fs_info, "bad tree block level %d\n",
618 (int)btrfs_header_level(eb));
619 ret = -EIO;
620 goto err;
623 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
624 eb, found_level);
626 ret = csum_tree_block(root, eb, 1);
627 if (ret) {
628 ret = -EIO;
629 goto err;
633 * If this is a leaf block and it is corrupt, set the corrupt bit so
634 * that we don't try and read the other copies of this block, just
635 * return -EIO.
637 if (found_level == 0 && check_leaf(root, eb)) {
638 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
639 ret = -EIO;
642 if (!ret)
643 set_extent_buffer_uptodate(eb);
644 err:
645 if (reads_done &&
646 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
647 btree_readahead_hook(root, eb, eb->start, ret);
649 if (ret) {
651 * our io error hook is going to dec the io pages
652 * again, we have to make sure it has something
653 * to decrement
655 atomic_inc(&eb->io_pages);
656 clear_extent_buffer_uptodate(eb);
658 free_extent_buffer(eb);
659 out:
660 return ret;
663 static int btree_io_failed_hook(struct page *page, int failed_mirror)
665 struct extent_buffer *eb;
666 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
668 eb = (struct extent_buffer *)page->private;
669 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
670 eb->read_mirror = failed_mirror;
671 atomic_dec(&eb->io_pages);
672 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
673 btree_readahead_hook(root, eb, eb->start, -EIO);
674 return -EIO; /* we fixed nothing */
677 static void end_workqueue_bio(struct bio *bio, int err)
679 struct end_io_wq *end_io_wq = bio->bi_private;
680 struct btrfs_fs_info *fs_info;
682 fs_info = end_io_wq->info;
683 end_io_wq->error = err;
684 end_io_wq->work.func = end_workqueue_fn;
685 end_io_wq->work.flags = 0;
687 if (bio->bi_rw & REQ_WRITE) {
688 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
689 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
690 &end_io_wq->work);
691 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
692 btrfs_queue_worker(&fs_info->endio_freespace_worker,
693 &end_io_wq->work);
694 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
695 btrfs_queue_worker(&fs_info->endio_raid56_workers,
696 &end_io_wq->work);
697 else
698 btrfs_queue_worker(&fs_info->endio_write_workers,
699 &end_io_wq->work);
700 } else {
701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702 btrfs_queue_worker(&fs_info->endio_raid56_workers,
703 &end_io_wq->work);
704 else if (end_io_wq->metadata)
705 btrfs_queue_worker(&fs_info->endio_meta_workers,
706 &end_io_wq->work);
707 else
708 btrfs_queue_worker(&fs_info->endio_workers,
709 &end_io_wq->work);
714 * For the metadata arg you want
716 * 0 - if data
717 * 1 - if normal metadta
718 * 2 - if writing to the free space cache area
719 * 3 - raid parity work
721 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722 int metadata)
724 struct end_io_wq *end_io_wq;
725 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
726 if (!end_io_wq)
727 return -ENOMEM;
729 end_io_wq->private = bio->bi_private;
730 end_io_wq->end_io = bio->bi_end_io;
731 end_io_wq->info = info;
732 end_io_wq->error = 0;
733 end_io_wq->bio = bio;
734 end_io_wq->metadata = metadata;
736 bio->bi_private = end_io_wq;
737 bio->bi_end_io = end_workqueue_bio;
738 return 0;
741 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
743 unsigned long limit = min_t(unsigned long,
744 info->workers.max_workers,
745 info->fs_devices->open_devices);
746 return 256 * limit;
749 static void run_one_async_start(struct btrfs_work *work)
751 struct async_submit_bio *async;
752 int ret;
754 async = container_of(work, struct async_submit_bio, work);
755 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
756 async->mirror_num, async->bio_flags,
757 async->bio_offset);
758 if (ret)
759 async->error = ret;
762 static void run_one_async_done(struct btrfs_work *work)
764 struct btrfs_fs_info *fs_info;
765 struct async_submit_bio *async;
766 int limit;
768 async = container_of(work, struct async_submit_bio, work);
769 fs_info = BTRFS_I(async->inode)->root->fs_info;
771 limit = btrfs_async_submit_limit(fs_info);
772 limit = limit * 2 / 3;
774 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
775 waitqueue_active(&fs_info->async_submit_wait))
776 wake_up(&fs_info->async_submit_wait);
778 /* If an error occured we just want to clean up the bio and move on */
779 if (async->error) {
780 bio_endio(async->bio, async->error);
781 return;
784 async->submit_bio_done(async->inode, async->rw, async->bio,
785 async->mirror_num, async->bio_flags,
786 async->bio_offset);
789 static void run_one_async_free(struct btrfs_work *work)
791 struct async_submit_bio *async;
793 async = container_of(work, struct async_submit_bio, work);
794 kfree(async);
797 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
798 int rw, struct bio *bio, int mirror_num,
799 unsigned long bio_flags,
800 u64 bio_offset,
801 extent_submit_bio_hook_t *submit_bio_start,
802 extent_submit_bio_hook_t *submit_bio_done)
804 struct async_submit_bio *async;
806 async = kmalloc(sizeof(*async), GFP_NOFS);
807 if (!async)
808 return -ENOMEM;
810 async->inode = inode;
811 async->rw = rw;
812 async->bio = bio;
813 async->mirror_num = mirror_num;
814 async->submit_bio_start = submit_bio_start;
815 async->submit_bio_done = submit_bio_done;
817 async->work.func = run_one_async_start;
818 async->work.ordered_func = run_one_async_done;
819 async->work.ordered_free = run_one_async_free;
821 async->work.flags = 0;
822 async->bio_flags = bio_flags;
823 async->bio_offset = bio_offset;
825 async->error = 0;
827 atomic_inc(&fs_info->nr_async_submits);
829 if (rw & REQ_SYNC)
830 btrfs_set_work_high_prio(&async->work);
832 btrfs_queue_worker(&fs_info->workers, &async->work);
834 while (atomic_read(&fs_info->async_submit_draining) &&
835 atomic_read(&fs_info->nr_async_submits)) {
836 wait_event(fs_info->async_submit_wait,
837 (atomic_read(&fs_info->nr_async_submits) == 0));
840 return 0;
843 static int btree_csum_one_bio(struct bio *bio)
845 struct bio_vec *bvec = bio->bi_io_vec;
846 int bio_index = 0;
847 struct btrfs_root *root;
848 int ret = 0;
850 WARN_ON(bio->bi_vcnt <= 0);
851 while (bio_index < bio->bi_vcnt) {
852 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853 ret = csum_dirty_buffer(root, bvec->bv_page);
854 if (ret)
855 break;
856 bio_index++;
857 bvec++;
859 return ret;
862 static int __btree_submit_bio_start(struct inode *inode, int rw,
863 struct bio *bio, int mirror_num,
864 unsigned long bio_flags,
865 u64 bio_offset)
868 * when we're called for a write, we're already in the async
869 * submission context. Just jump into btrfs_map_bio
871 return btree_csum_one_bio(bio);
874 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
875 int mirror_num, unsigned long bio_flags,
876 u64 bio_offset)
878 int ret;
881 * when we're called for a write, we're already in the async
882 * submission context. Just jump into btrfs_map_bio
884 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
885 if (ret)
886 bio_endio(bio, ret);
887 return ret;
890 static int check_async_write(struct inode *inode, unsigned long bio_flags)
892 if (bio_flags & EXTENT_BIO_TREE_LOG)
893 return 0;
894 #ifdef CONFIG_X86
895 if (cpu_has_xmm4_2)
896 return 0;
897 #endif
898 return 1;
901 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
902 int mirror_num, unsigned long bio_flags,
903 u64 bio_offset)
905 int async = check_async_write(inode, bio_flags);
906 int ret;
908 if (!(rw & REQ_WRITE)) {
910 * called for a read, do the setup so that checksum validation
911 * can happen in the async kernel threads
913 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
914 bio, 1);
915 if (ret)
916 goto out_w_error;
917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 mirror_num, 0);
919 } else if (!async) {
920 ret = btree_csum_one_bio(bio);
921 if (ret)
922 goto out_w_error;
923 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
924 mirror_num, 0);
925 } else {
927 * kthread helpers are used to submit writes so that
928 * checksumming can happen in parallel across all CPUs
930 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
931 inode, rw, bio, mirror_num, 0,
932 bio_offset,
933 __btree_submit_bio_start,
934 __btree_submit_bio_done);
937 if (ret) {
938 out_w_error:
939 bio_endio(bio, ret);
941 return ret;
944 #ifdef CONFIG_MIGRATION
945 static int btree_migratepage(struct address_space *mapping,
946 struct page *newpage, struct page *page,
947 enum migrate_mode mode)
950 * we can't safely write a btree page from here,
951 * we haven't done the locking hook
953 if (PageDirty(page))
954 return -EAGAIN;
956 * Buffers may be managed in a filesystem specific way.
957 * We must have no buffers or drop them.
959 if (page_has_private(page) &&
960 !try_to_release_page(page, GFP_KERNEL))
961 return -EAGAIN;
962 return migrate_page(mapping, newpage, page, mode);
964 #endif
967 static int btree_writepages(struct address_space *mapping,
968 struct writeback_control *wbc)
970 struct extent_io_tree *tree;
971 struct btrfs_fs_info *fs_info;
972 int ret;
974 tree = &BTRFS_I(mapping->host)->io_tree;
975 if (wbc->sync_mode == WB_SYNC_NONE) {
977 if (wbc->for_kupdate)
978 return 0;
980 fs_info = BTRFS_I(mapping->host)->root->fs_info;
981 /* this is a bit racy, but that's ok */
982 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
983 BTRFS_DIRTY_METADATA_THRESH);
984 if (ret < 0)
985 return 0;
987 return btree_write_cache_pages(mapping, wbc);
990 static int btree_readpage(struct file *file, struct page *page)
992 struct extent_io_tree *tree;
993 tree = &BTRFS_I(page->mapping->host)->io_tree;
994 return extent_read_full_page(tree, page, btree_get_extent, 0);
997 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
999 if (PageWriteback(page) || PageDirty(page))
1000 return 0;
1002 return try_release_extent_buffer(page);
1005 static void btree_invalidatepage(struct page *page, unsigned int offset,
1006 unsigned int length)
1008 struct extent_io_tree *tree;
1009 tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 extent_invalidatepage(tree, page, offset);
1011 btree_releasepage(page, GFP_NOFS);
1012 if (PagePrivate(page)) {
1013 printk(KERN_WARNING "btrfs warning page private not zero "
1014 "on page %llu\n", (unsigned long long)page_offset(page));
1015 ClearPagePrivate(page);
1016 set_page_private(page, 0);
1017 page_cache_release(page);
1021 static int btree_set_page_dirty(struct page *page)
1023 #ifdef DEBUG
1024 struct extent_buffer *eb;
1026 BUG_ON(!PagePrivate(page));
1027 eb = (struct extent_buffer *)page->private;
1028 BUG_ON(!eb);
1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 BUG_ON(!atomic_read(&eb->refs));
1031 btrfs_assert_tree_locked(eb);
1032 #endif
1033 return __set_page_dirty_nobuffers(page);
1036 static const struct address_space_operations btree_aops = {
1037 .readpage = btree_readpage,
1038 .writepages = btree_writepages,
1039 .releasepage = btree_releasepage,
1040 .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042 .migratepage = btree_migratepage,
1043 #endif
1044 .set_page_dirty = btree_set_page_dirty,
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 u64 parent_transid)
1050 struct extent_buffer *buf = NULL;
1051 struct inode *btree_inode = root->fs_info->btree_inode;
1052 int ret = 0;
1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 if (!buf)
1056 return 0;
1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058 buf, 0, WAIT_NONE, btree_get_extent, 0);
1059 free_extent_buffer(buf);
1060 return ret;
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 int mirror_num, struct extent_buffer **eb)
1066 struct extent_buffer *buf = NULL;
1067 struct inode *btree_inode = root->fs_info->btree_inode;
1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 int ret;
1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 if (!buf)
1073 return 0;
1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 btree_get_extent, mirror_num);
1079 if (ret) {
1080 free_extent_buffer(buf);
1081 return ret;
1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 free_extent_buffer(buf);
1086 return -EIO;
1087 } else if (extent_buffer_uptodate(buf)) {
1088 *eb = buf;
1089 } else {
1090 free_extent_buffer(buf);
1092 return 0;
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 u64 bytenr, u32 blocksize)
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_buffer *eb;
1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr);
1101 return eb;
1104 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1105 u64 bytenr, u32 blocksize)
1107 struct inode *btree_inode = root->fs_info->btree_inode;
1108 struct extent_buffer *eb;
1110 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111 bytenr, blocksize);
1112 return eb;
1116 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1119 buf->start + buf->len - 1);
1122 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 return filemap_fdatawait_range(buf->pages[0]->mapping,
1125 buf->start, buf->start + buf->len - 1);
1128 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1129 u32 blocksize, u64 parent_transid)
1131 struct extent_buffer *buf = NULL;
1132 int ret;
1134 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1135 if (!buf)
1136 return NULL;
1138 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1139 if (ret) {
1140 free_extent_buffer(buf);
1141 return NULL;
1143 return buf;
1147 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1148 struct extent_buffer *buf)
1150 struct btrfs_fs_info *fs_info = root->fs_info;
1152 if (btrfs_header_generation(buf) ==
1153 fs_info->running_transaction->transid) {
1154 btrfs_assert_tree_locked(buf);
1156 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1157 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1158 -buf->len,
1159 fs_info->dirty_metadata_batch);
1160 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1161 btrfs_set_lock_blocking(buf);
1162 clear_extent_buffer_dirty(buf);
1167 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1168 u32 stripesize, struct btrfs_root *root,
1169 struct btrfs_fs_info *fs_info,
1170 u64 objectid)
1172 root->node = NULL;
1173 root->commit_root = NULL;
1174 root->sectorsize = sectorsize;
1175 root->nodesize = nodesize;
1176 root->leafsize = leafsize;
1177 root->stripesize = stripesize;
1178 root->ref_cows = 0;
1179 root->track_dirty = 0;
1180 root->in_radix = 0;
1181 root->orphan_item_inserted = 0;
1182 root->orphan_cleanup_state = 0;
1184 root->objectid = objectid;
1185 root->last_trans = 0;
1186 root->highest_objectid = 0;
1187 root->nr_delalloc_inodes = 0;
1188 root->nr_ordered_extents = 0;
1189 root->name = NULL;
1190 root->inode_tree = RB_ROOT;
1191 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192 root->block_rsv = NULL;
1193 root->orphan_block_rsv = NULL;
1195 INIT_LIST_HEAD(&root->dirty_list);
1196 INIT_LIST_HEAD(&root->root_list);
1197 INIT_LIST_HEAD(&root->delalloc_inodes);
1198 INIT_LIST_HEAD(&root->delalloc_root);
1199 INIT_LIST_HEAD(&root->ordered_extents);
1200 INIT_LIST_HEAD(&root->ordered_root);
1201 INIT_LIST_HEAD(&root->logged_list[0]);
1202 INIT_LIST_HEAD(&root->logged_list[1]);
1203 spin_lock_init(&root->orphan_lock);
1204 spin_lock_init(&root->inode_lock);
1205 spin_lock_init(&root->delalloc_lock);
1206 spin_lock_init(&root->ordered_extent_lock);
1207 spin_lock_init(&root->accounting_lock);
1208 spin_lock_init(&root->log_extents_lock[0]);
1209 spin_lock_init(&root->log_extents_lock[1]);
1210 mutex_init(&root->objectid_mutex);
1211 mutex_init(&root->log_mutex);
1212 init_waitqueue_head(&root->log_writer_wait);
1213 init_waitqueue_head(&root->log_commit_wait[0]);
1214 init_waitqueue_head(&root->log_commit_wait[1]);
1215 atomic_set(&root->log_commit[0], 0);
1216 atomic_set(&root->log_commit[1], 0);
1217 atomic_set(&root->log_writers, 0);
1218 atomic_set(&root->log_batch, 0);
1219 atomic_set(&root->orphan_inodes, 0);
1220 atomic_set(&root->refs, 1);
1221 root->log_transid = 0;
1222 root->last_log_commit = 0;
1223 if (fs_info)
1224 extent_io_tree_init(&root->dirty_log_pages,
1225 fs_info->btree_inode->i_mapping);
1227 memset(&root->root_key, 0, sizeof(root->root_key));
1228 memset(&root->root_item, 0, sizeof(root->root_item));
1229 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1230 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1231 if (fs_info)
1232 root->defrag_trans_start = fs_info->generation;
1233 else
1234 root->defrag_trans_start = 0;
1235 init_completion(&root->kobj_unregister);
1236 root->defrag_running = 0;
1237 root->root_key.objectid = objectid;
1238 root->anon_dev = 0;
1240 spin_lock_init(&root->root_item_lock);
1243 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1245 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1246 if (root)
1247 root->fs_info = fs_info;
1248 return root;
1251 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1252 /* Should only be used by the testing infrastructure */
1253 struct btrfs_root *btrfs_alloc_dummy_root(void)
1255 struct btrfs_root *root;
1257 root = btrfs_alloc_root(NULL);
1258 if (!root)
1259 return ERR_PTR(-ENOMEM);
1260 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1261 root->dummy_root = 1;
1263 return root;
1265 #endif
1267 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1268 struct btrfs_fs_info *fs_info,
1269 u64 objectid)
1271 struct extent_buffer *leaf;
1272 struct btrfs_root *tree_root = fs_info->tree_root;
1273 struct btrfs_root *root;
1274 struct btrfs_key key;
1275 int ret = 0;
1276 u64 bytenr;
1277 uuid_le uuid;
1279 root = btrfs_alloc_root(fs_info);
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1283 __setup_root(tree_root->nodesize, tree_root->leafsize,
1284 tree_root->sectorsize, tree_root->stripesize,
1285 root, fs_info, objectid);
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 0, objectid, NULL, 0, 0, 0);
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1294 leaf = NULL;
1295 goto fail;
1298 bytenr = leaf->start;
1299 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300 btrfs_set_header_bytenr(leaf, leaf->start);
1301 btrfs_set_header_generation(leaf, trans->transid);
1302 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303 btrfs_set_header_owner(leaf, objectid);
1304 root->node = leaf;
1306 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1307 BTRFS_FSID_SIZE);
1308 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1309 btrfs_header_chunk_tree_uuid(leaf),
1310 BTRFS_UUID_SIZE);
1311 btrfs_mark_buffer_dirty(leaf);
1313 root->commit_root = btrfs_root_node(root);
1314 root->track_dirty = 1;
1317 root->root_item.flags = 0;
1318 root->root_item.byte_limit = 0;
1319 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1320 btrfs_set_root_generation(&root->root_item, trans->transid);
1321 btrfs_set_root_level(&root->root_item, 0);
1322 btrfs_set_root_refs(&root->root_item, 1);
1323 btrfs_set_root_used(&root->root_item, leaf->len);
1324 btrfs_set_root_last_snapshot(&root->root_item, 0);
1325 btrfs_set_root_dirid(&root->root_item, 0);
1326 uuid_le_gen(&uuid);
1327 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1328 root->root_item.drop_level = 0;
1330 key.objectid = objectid;
1331 key.type = BTRFS_ROOT_ITEM_KEY;
1332 key.offset = 0;
1333 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1334 if (ret)
1335 goto fail;
1337 btrfs_tree_unlock(leaf);
1339 return root;
1341 fail:
1342 if (leaf) {
1343 btrfs_tree_unlock(leaf);
1344 free_extent_buffer(leaf);
1346 kfree(root);
1348 return ERR_PTR(ret);
1351 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1352 struct btrfs_fs_info *fs_info)
1354 struct btrfs_root *root;
1355 struct btrfs_root *tree_root = fs_info->tree_root;
1356 struct extent_buffer *leaf;
1358 root = btrfs_alloc_root(fs_info);
1359 if (!root)
1360 return ERR_PTR(-ENOMEM);
1362 __setup_root(tree_root->nodesize, tree_root->leafsize,
1363 tree_root->sectorsize, tree_root->stripesize,
1364 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1366 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1367 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1368 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1370 * log trees do not get reference counted because they go away
1371 * before a real commit is actually done. They do store pointers
1372 * to file data extents, and those reference counts still get
1373 * updated (along with back refs to the log tree).
1375 root->ref_cows = 0;
1377 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1378 BTRFS_TREE_LOG_OBJECTID, NULL,
1379 0, 0, 0);
1380 if (IS_ERR(leaf)) {
1381 kfree(root);
1382 return ERR_CAST(leaf);
1385 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1386 btrfs_set_header_bytenr(leaf, leaf->start);
1387 btrfs_set_header_generation(leaf, trans->transid);
1388 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1389 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1390 root->node = leaf;
1392 write_extent_buffer(root->node, root->fs_info->fsid,
1393 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1394 btrfs_mark_buffer_dirty(root->node);
1395 btrfs_tree_unlock(root->node);
1396 return root;
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400 struct btrfs_fs_info *fs_info)
1402 struct btrfs_root *log_root;
1404 log_root = alloc_log_tree(trans, fs_info);
1405 if (IS_ERR(log_root))
1406 return PTR_ERR(log_root);
1407 WARN_ON(fs_info->log_root_tree);
1408 fs_info->log_root_tree = log_root;
1409 return 0;
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_root *root)
1415 struct btrfs_root *log_root;
1416 struct btrfs_inode_item *inode_item;
1418 log_root = alloc_log_tree(trans, root->fs_info);
1419 if (IS_ERR(log_root))
1420 return PTR_ERR(log_root);
1422 log_root->last_trans = trans->transid;
1423 log_root->root_key.offset = root->root_key.objectid;
1425 inode_item = &log_root->root_item.inode;
1426 btrfs_set_stack_inode_generation(inode_item, 1);
1427 btrfs_set_stack_inode_size(inode_item, 3);
1428 btrfs_set_stack_inode_nlink(inode_item, 1);
1429 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1430 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1432 btrfs_set_root_node(&log_root->root_item, log_root->node);
1434 WARN_ON(root->log_root);
1435 root->log_root = log_root;
1436 root->log_transid = 0;
1437 root->last_log_commit = 0;
1438 return 0;
1441 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1442 struct btrfs_key *key)
1444 struct btrfs_root *root;
1445 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446 struct btrfs_path *path;
1447 u64 generation;
1448 u32 blocksize;
1449 int ret;
1451 path = btrfs_alloc_path();
1452 if (!path)
1453 return ERR_PTR(-ENOMEM);
1455 root = btrfs_alloc_root(fs_info);
1456 if (!root) {
1457 ret = -ENOMEM;
1458 goto alloc_fail;
1461 __setup_root(tree_root->nodesize, tree_root->leafsize,
1462 tree_root->sectorsize, tree_root->stripesize,
1463 root, fs_info, key->objectid);
1465 ret = btrfs_find_root(tree_root, key, path,
1466 &root->root_item, &root->root_key);
1467 if (ret) {
1468 if (ret > 0)
1469 ret = -ENOENT;
1470 goto find_fail;
1473 generation = btrfs_root_generation(&root->root_item);
1474 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1475 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1476 blocksize, generation);
1477 if (!root->node) {
1478 ret = -ENOMEM;
1479 goto find_fail;
1480 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1481 ret = -EIO;
1482 goto read_fail;
1484 root->commit_root = btrfs_root_node(root);
1485 out:
1486 btrfs_free_path(path);
1487 return root;
1489 read_fail:
1490 free_extent_buffer(root->node);
1491 find_fail:
1492 kfree(root);
1493 alloc_fail:
1494 root = ERR_PTR(ret);
1495 goto out;
1498 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1499 struct btrfs_key *location)
1501 struct btrfs_root *root;
1503 root = btrfs_read_tree_root(tree_root, location);
1504 if (IS_ERR(root))
1505 return root;
1507 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1508 root->ref_cows = 1;
1509 btrfs_check_and_init_root_item(&root->root_item);
1512 return root;
1515 int btrfs_init_fs_root(struct btrfs_root *root)
1517 int ret;
1519 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1520 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1521 GFP_NOFS);
1522 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1523 ret = -ENOMEM;
1524 goto fail;
1527 btrfs_init_free_ino_ctl(root);
1528 mutex_init(&root->fs_commit_mutex);
1529 spin_lock_init(&root->cache_lock);
1530 init_waitqueue_head(&root->cache_wait);
1532 ret = get_anon_bdev(&root->anon_dev);
1533 if (ret)
1534 goto fail;
1535 return 0;
1536 fail:
1537 kfree(root->free_ino_ctl);
1538 kfree(root->free_ino_pinned);
1539 return ret;
1542 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1543 u64 root_id)
1545 struct btrfs_root *root;
1547 spin_lock(&fs_info->fs_roots_radix_lock);
1548 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1549 (unsigned long)root_id);
1550 spin_unlock(&fs_info->fs_roots_radix_lock);
1551 return root;
1554 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1555 struct btrfs_root *root)
1557 int ret;
1559 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1560 if (ret)
1561 return ret;
1563 spin_lock(&fs_info->fs_roots_radix_lock);
1564 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565 (unsigned long)root->root_key.objectid,
1566 root);
1567 if (ret == 0)
1568 root->in_radix = 1;
1569 spin_unlock(&fs_info->fs_roots_radix_lock);
1570 radix_tree_preload_end();
1572 return ret;
1575 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1576 struct btrfs_key *location,
1577 bool check_ref)
1579 struct btrfs_root *root;
1580 int ret;
1582 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1583 return fs_info->tree_root;
1584 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1585 return fs_info->extent_root;
1586 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1587 return fs_info->chunk_root;
1588 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1589 return fs_info->dev_root;
1590 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1591 return fs_info->csum_root;
1592 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1593 return fs_info->quota_root ? fs_info->quota_root :
1594 ERR_PTR(-ENOENT);
1595 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1596 return fs_info->uuid_root ? fs_info->uuid_root :
1597 ERR_PTR(-ENOENT);
1598 again:
1599 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1600 if (root) {
1601 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1602 return ERR_PTR(-ENOENT);
1603 return root;
1606 root = btrfs_read_fs_root(fs_info->tree_root, location);
1607 if (IS_ERR(root))
1608 return root;
1610 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1611 ret = -ENOENT;
1612 goto fail;
1615 ret = btrfs_init_fs_root(root);
1616 if (ret)
1617 goto fail;
1619 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1620 if (ret < 0)
1621 goto fail;
1622 if (ret == 0)
1623 root->orphan_item_inserted = 1;
1625 ret = btrfs_insert_fs_root(fs_info, root);
1626 if (ret) {
1627 if (ret == -EEXIST) {
1628 free_fs_root(root);
1629 goto again;
1631 goto fail;
1633 return root;
1634 fail:
1635 free_fs_root(root);
1636 return ERR_PTR(ret);
1639 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1641 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1642 int ret = 0;
1643 struct btrfs_device *device;
1644 struct backing_dev_info *bdi;
1646 rcu_read_lock();
1647 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1648 if (!device->bdev)
1649 continue;
1650 bdi = blk_get_backing_dev_info(device->bdev);
1651 if (bdi && bdi_congested(bdi, bdi_bits)) {
1652 ret = 1;
1653 break;
1656 rcu_read_unlock();
1657 return ret;
1661 * If this fails, caller must call bdi_destroy() to get rid of the
1662 * bdi again.
1664 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1666 int err;
1668 bdi->capabilities = BDI_CAP_MAP_COPY;
1669 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1670 if (err)
1671 return err;
1673 bdi->ra_pages = default_backing_dev_info.ra_pages;
1674 bdi->congested_fn = btrfs_congested_fn;
1675 bdi->congested_data = info;
1676 return 0;
1680 * called by the kthread helper functions to finally call the bio end_io
1681 * functions. This is where read checksum verification actually happens
1683 static void end_workqueue_fn(struct btrfs_work *work)
1685 struct bio *bio;
1686 struct end_io_wq *end_io_wq;
1687 struct btrfs_fs_info *fs_info;
1688 int error;
1690 end_io_wq = container_of(work, struct end_io_wq, work);
1691 bio = end_io_wq->bio;
1692 fs_info = end_io_wq->info;
1694 error = end_io_wq->error;
1695 bio->bi_private = end_io_wq->private;
1696 bio->bi_end_io = end_io_wq->end_io;
1697 kfree(end_io_wq);
1698 bio_endio(bio, error);
1701 static int cleaner_kthread(void *arg)
1703 struct btrfs_root *root = arg;
1704 int again;
1706 do {
1707 again = 0;
1709 /* Make the cleaner go to sleep early. */
1710 if (btrfs_need_cleaner_sleep(root))
1711 goto sleep;
1713 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1714 goto sleep;
1717 * Avoid the problem that we change the status of the fs
1718 * during the above check and trylock.
1720 if (btrfs_need_cleaner_sleep(root)) {
1721 mutex_unlock(&root->fs_info->cleaner_mutex);
1722 goto sleep;
1725 btrfs_run_delayed_iputs(root);
1726 again = btrfs_clean_one_deleted_snapshot(root);
1727 mutex_unlock(&root->fs_info->cleaner_mutex);
1730 * The defragger has dealt with the R/O remount and umount,
1731 * needn't do anything special here.
1733 btrfs_run_defrag_inodes(root->fs_info);
1734 sleep:
1735 if (!try_to_freeze() && !again) {
1736 set_current_state(TASK_INTERRUPTIBLE);
1737 if (!kthread_should_stop())
1738 schedule();
1739 __set_current_state(TASK_RUNNING);
1741 } while (!kthread_should_stop());
1742 return 0;
1745 static int transaction_kthread(void *arg)
1747 struct btrfs_root *root = arg;
1748 struct btrfs_trans_handle *trans;
1749 struct btrfs_transaction *cur;
1750 u64 transid;
1751 unsigned long now;
1752 unsigned long delay;
1753 bool cannot_commit;
1755 do {
1756 cannot_commit = false;
1757 delay = HZ * root->fs_info->commit_interval;
1758 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1760 spin_lock(&root->fs_info->trans_lock);
1761 cur = root->fs_info->running_transaction;
1762 if (!cur) {
1763 spin_unlock(&root->fs_info->trans_lock);
1764 goto sleep;
1767 now = get_seconds();
1768 if (cur->state < TRANS_STATE_BLOCKED &&
1769 (now < cur->start_time ||
1770 now - cur->start_time < root->fs_info->commit_interval)) {
1771 spin_unlock(&root->fs_info->trans_lock);
1772 delay = HZ * 5;
1773 goto sleep;
1775 transid = cur->transid;
1776 spin_unlock(&root->fs_info->trans_lock);
1778 /* If the file system is aborted, this will always fail. */
1779 trans = btrfs_attach_transaction(root);
1780 if (IS_ERR(trans)) {
1781 if (PTR_ERR(trans) != -ENOENT)
1782 cannot_commit = true;
1783 goto sleep;
1785 if (transid == trans->transid) {
1786 btrfs_commit_transaction(trans, root);
1787 } else {
1788 btrfs_end_transaction(trans, root);
1790 sleep:
1791 wake_up_process(root->fs_info->cleaner_kthread);
1792 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1794 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1795 &root->fs_info->fs_state)))
1796 btrfs_cleanup_transaction(root);
1797 if (!try_to_freeze()) {
1798 set_current_state(TASK_INTERRUPTIBLE);
1799 if (!kthread_should_stop() &&
1800 (!btrfs_transaction_blocked(root->fs_info) ||
1801 cannot_commit))
1802 schedule_timeout(delay);
1803 __set_current_state(TASK_RUNNING);
1805 } while (!kthread_should_stop());
1806 return 0;
1810 * this will find the highest generation in the array of
1811 * root backups. The index of the highest array is returned,
1812 * or -1 if we can't find anything.
1814 * We check to make sure the array is valid by comparing the
1815 * generation of the latest root in the array with the generation
1816 * in the super block. If they don't match we pitch it.
1818 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1820 u64 cur;
1821 int newest_index = -1;
1822 struct btrfs_root_backup *root_backup;
1823 int i;
1825 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1826 root_backup = info->super_copy->super_roots + i;
1827 cur = btrfs_backup_tree_root_gen(root_backup);
1828 if (cur == newest_gen)
1829 newest_index = i;
1832 /* check to see if we actually wrapped around */
1833 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1834 root_backup = info->super_copy->super_roots;
1835 cur = btrfs_backup_tree_root_gen(root_backup);
1836 if (cur == newest_gen)
1837 newest_index = 0;
1839 return newest_index;
1844 * find the oldest backup so we know where to store new entries
1845 * in the backup array. This will set the backup_root_index
1846 * field in the fs_info struct
1848 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1849 u64 newest_gen)
1851 int newest_index = -1;
1853 newest_index = find_newest_super_backup(info, newest_gen);
1854 /* if there was garbage in there, just move along */
1855 if (newest_index == -1) {
1856 info->backup_root_index = 0;
1857 } else {
1858 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1863 * copy all the root pointers into the super backup array.
1864 * this will bump the backup pointer by one when it is
1865 * done
1867 static void backup_super_roots(struct btrfs_fs_info *info)
1869 int next_backup;
1870 struct btrfs_root_backup *root_backup;
1871 int last_backup;
1873 next_backup = info->backup_root_index;
1874 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1875 BTRFS_NUM_BACKUP_ROOTS;
1878 * just overwrite the last backup if we're at the same generation
1879 * this happens only at umount
1881 root_backup = info->super_for_commit->super_roots + last_backup;
1882 if (btrfs_backup_tree_root_gen(root_backup) ==
1883 btrfs_header_generation(info->tree_root->node))
1884 next_backup = last_backup;
1886 root_backup = info->super_for_commit->super_roots + next_backup;
1889 * make sure all of our padding and empty slots get zero filled
1890 * regardless of which ones we use today
1892 memset(root_backup, 0, sizeof(*root_backup));
1894 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1896 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1897 btrfs_set_backup_tree_root_gen(root_backup,
1898 btrfs_header_generation(info->tree_root->node));
1900 btrfs_set_backup_tree_root_level(root_backup,
1901 btrfs_header_level(info->tree_root->node));
1903 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1904 btrfs_set_backup_chunk_root_gen(root_backup,
1905 btrfs_header_generation(info->chunk_root->node));
1906 btrfs_set_backup_chunk_root_level(root_backup,
1907 btrfs_header_level(info->chunk_root->node));
1909 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1910 btrfs_set_backup_extent_root_gen(root_backup,
1911 btrfs_header_generation(info->extent_root->node));
1912 btrfs_set_backup_extent_root_level(root_backup,
1913 btrfs_header_level(info->extent_root->node));
1916 * we might commit during log recovery, which happens before we set
1917 * the fs_root. Make sure it is valid before we fill it in.
1919 if (info->fs_root && info->fs_root->node) {
1920 btrfs_set_backup_fs_root(root_backup,
1921 info->fs_root->node->start);
1922 btrfs_set_backup_fs_root_gen(root_backup,
1923 btrfs_header_generation(info->fs_root->node));
1924 btrfs_set_backup_fs_root_level(root_backup,
1925 btrfs_header_level(info->fs_root->node));
1928 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1929 btrfs_set_backup_dev_root_gen(root_backup,
1930 btrfs_header_generation(info->dev_root->node));
1931 btrfs_set_backup_dev_root_level(root_backup,
1932 btrfs_header_level(info->dev_root->node));
1934 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1935 btrfs_set_backup_csum_root_gen(root_backup,
1936 btrfs_header_generation(info->csum_root->node));
1937 btrfs_set_backup_csum_root_level(root_backup,
1938 btrfs_header_level(info->csum_root->node));
1940 btrfs_set_backup_total_bytes(root_backup,
1941 btrfs_super_total_bytes(info->super_copy));
1942 btrfs_set_backup_bytes_used(root_backup,
1943 btrfs_super_bytes_used(info->super_copy));
1944 btrfs_set_backup_num_devices(root_backup,
1945 btrfs_super_num_devices(info->super_copy));
1948 * if we don't copy this out to the super_copy, it won't get remembered
1949 * for the next commit
1951 memcpy(&info->super_copy->super_roots,
1952 &info->super_for_commit->super_roots,
1953 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1957 * this copies info out of the root backup array and back into
1958 * the in-memory super block. It is meant to help iterate through
1959 * the array, so you send it the number of backups you've already
1960 * tried and the last backup index you used.
1962 * this returns -1 when it has tried all the backups
1964 static noinline int next_root_backup(struct btrfs_fs_info *info,
1965 struct btrfs_super_block *super,
1966 int *num_backups_tried, int *backup_index)
1968 struct btrfs_root_backup *root_backup;
1969 int newest = *backup_index;
1971 if (*num_backups_tried == 0) {
1972 u64 gen = btrfs_super_generation(super);
1974 newest = find_newest_super_backup(info, gen);
1975 if (newest == -1)
1976 return -1;
1978 *backup_index = newest;
1979 *num_backups_tried = 1;
1980 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1981 /* we've tried all the backups, all done */
1982 return -1;
1983 } else {
1984 /* jump to the next oldest backup */
1985 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1986 BTRFS_NUM_BACKUP_ROOTS;
1987 *backup_index = newest;
1988 *num_backups_tried += 1;
1990 root_backup = super->super_roots + newest;
1992 btrfs_set_super_generation(super,
1993 btrfs_backup_tree_root_gen(root_backup));
1994 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1995 btrfs_set_super_root_level(super,
1996 btrfs_backup_tree_root_level(root_backup));
1997 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2000 * fixme: the total bytes and num_devices need to match or we should
2001 * need a fsck
2003 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2004 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2005 return 0;
2008 /* helper to cleanup workers */
2009 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2011 btrfs_stop_workers(&fs_info->generic_worker);
2012 btrfs_stop_workers(&fs_info->fixup_workers);
2013 btrfs_stop_workers(&fs_info->delalloc_workers);
2014 btrfs_stop_workers(&fs_info->workers);
2015 btrfs_stop_workers(&fs_info->endio_workers);
2016 btrfs_stop_workers(&fs_info->endio_meta_workers);
2017 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2018 btrfs_stop_workers(&fs_info->rmw_workers);
2019 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2020 btrfs_stop_workers(&fs_info->endio_write_workers);
2021 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2022 btrfs_stop_workers(&fs_info->submit_workers);
2023 btrfs_stop_workers(&fs_info->delayed_workers);
2024 btrfs_stop_workers(&fs_info->caching_workers);
2025 btrfs_stop_workers(&fs_info->readahead_workers);
2026 btrfs_stop_workers(&fs_info->flush_workers);
2027 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2030 static void free_root_extent_buffers(struct btrfs_root *root)
2032 if (root) {
2033 free_extent_buffer(root->node);
2034 free_extent_buffer(root->commit_root);
2035 root->node = NULL;
2036 root->commit_root = NULL;
2040 /* helper to cleanup tree roots */
2041 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2043 free_root_extent_buffers(info->tree_root);
2045 free_root_extent_buffers(info->dev_root);
2046 free_root_extent_buffers(info->extent_root);
2047 free_root_extent_buffers(info->csum_root);
2048 free_root_extent_buffers(info->quota_root);
2049 free_root_extent_buffers(info->uuid_root);
2050 if (chunk_root)
2051 free_root_extent_buffers(info->chunk_root);
2054 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2056 int ret;
2057 struct btrfs_root *gang[8];
2058 int i;
2060 while (!list_empty(&fs_info->dead_roots)) {
2061 gang[0] = list_entry(fs_info->dead_roots.next,
2062 struct btrfs_root, root_list);
2063 list_del(&gang[0]->root_list);
2065 if (gang[0]->in_radix) {
2066 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067 } else {
2068 free_extent_buffer(gang[0]->node);
2069 free_extent_buffer(gang[0]->commit_root);
2070 btrfs_put_fs_root(gang[0]);
2074 while (1) {
2075 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2076 (void **)gang, 0,
2077 ARRAY_SIZE(gang));
2078 if (!ret)
2079 break;
2080 for (i = 0; i < ret; i++)
2081 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2085 int open_ctree(struct super_block *sb,
2086 struct btrfs_fs_devices *fs_devices,
2087 char *options)
2089 u32 sectorsize;
2090 u32 nodesize;
2091 u32 leafsize;
2092 u32 blocksize;
2093 u32 stripesize;
2094 u64 generation;
2095 u64 features;
2096 struct btrfs_key location;
2097 struct buffer_head *bh;
2098 struct btrfs_super_block *disk_super;
2099 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2100 struct btrfs_root *tree_root;
2101 struct btrfs_root *extent_root;
2102 struct btrfs_root *csum_root;
2103 struct btrfs_root *chunk_root;
2104 struct btrfs_root *dev_root;
2105 struct btrfs_root *quota_root;
2106 struct btrfs_root *uuid_root;
2107 struct btrfs_root *log_tree_root;
2108 int ret;
2109 int err = -EINVAL;
2110 int num_backups_tried = 0;
2111 int backup_index = 0;
2112 bool create_uuid_tree;
2113 bool check_uuid_tree;
2115 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2116 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2117 if (!tree_root || !chunk_root) {
2118 err = -ENOMEM;
2119 goto fail;
2122 ret = init_srcu_struct(&fs_info->subvol_srcu);
2123 if (ret) {
2124 err = ret;
2125 goto fail;
2128 ret = setup_bdi(fs_info, &fs_info->bdi);
2129 if (ret) {
2130 err = ret;
2131 goto fail_srcu;
2134 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2135 if (ret) {
2136 err = ret;
2137 goto fail_bdi;
2139 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2140 (1 + ilog2(nr_cpu_ids));
2142 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2143 if (ret) {
2144 err = ret;
2145 goto fail_dirty_metadata_bytes;
2148 fs_info->btree_inode = new_inode(sb);
2149 if (!fs_info->btree_inode) {
2150 err = -ENOMEM;
2151 goto fail_delalloc_bytes;
2154 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2156 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2157 INIT_LIST_HEAD(&fs_info->trans_list);
2158 INIT_LIST_HEAD(&fs_info->dead_roots);
2159 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2160 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2161 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2162 spin_lock_init(&fs_info->delalloc_root_lock);
2163 spin_lock_init(&fs_info->trans_lock);
2164 spin_lock_init(&fs_info->fs_roots_radix_lock);
2165 spin_lock_init(&fs_info->delayed_iput_lock);
2166 spin_lock_init(&fs_info->defrag_inodes_lock);
2167 spin_lock_init(&fs_info->free_chunk_lock);
2168 spin_lock_init(&fs_info->tree_mod_seq_lock);
2169 spin_lock_init(&fs_info->super_lock);
2170 rwlock_init(&fs_info->tree_mod_log_lock);
2171 mutex_init(&fs_info->reloc_mutex);
2172 seqlock_init(&fs_info->profiles_lock);
2174 init_completion(&fs_info->kobj_unregister);
2175 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2176 INIT_LIST_HEAD(&fs_info->space_info);
2177 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2178 btrfs_mapping_init(&fs_info->mapping_tree);
2179 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2180 BTRFS_BLOCK_RSV_GLOBAL);
2181 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2182 BTRFS_BLOCK_RSV_DELALLOC);
2183 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2184 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2185 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2186 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2187 BTRFS_BLOCK_RSV_DELOPS);
2188 atomic_set(&fs_info->nr_async_submits, 0);
2189 atomic_set(&fs_info->async_delalloc_pages, 0);
2190 atomic_set(&fs_info->async_submit_draining, 0);
2191 atomic_set(&fs_info->nr_async_bios, 0);
2192 atomic_set(&fs_info->defrag_running, 0);
2193 atomic64_set(&fs_info->tree_mod_seq, 0);
2194 fs_info->sb = sb;
2195 fs_info->max_inline = 8192 * 1024;
2196 fs_info->metadata_ratio = 0;
2197 fs_info->defrag_inodes = RB_ROOT;
2198 fs_info->free_chunk_space = 0;
2199 fs_info->tree_mod_log = RB_ROOT;
2200 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2202 /* readahead state */
2203 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2204 spin_lock_init(&fs_info->reada_lock);
2206 fs_info->thread_pool_size = min_t(unsigned long,
2207 num_online_cpus() + 2, 8);
2209 INIT_LIST_HEAD(&fs_info->ordered_roots);
2210 spin_lock_init(&fs_info->ordered_root_lock);
2211 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2212 GFP_NOFS);
2213 if (!fs_info->delayed_root) {
2214 err = -ENOMEM;
2215 goto fail_iput;
2217 btrfs_init_delayed_root(fs_info->delayed_root);
2219 mutex_init(&fs_info->scrub_lock);
2220 atomic_set(&fs_info->scrubs_running, 0);
2221 atomic_set(&fs_info->scrub_pause_req, 0);
2222 atomic_set(&fs_info->scrubs_paused, 0);
2223 atomic_set(&fs_info->scrub_cancel_req, 0);
2224 init_waitqueue_head(&fs_info->scrub_pause_wait);
2225 fs_info->scrub_workers_refcnt = 0;
2226 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2227 fs_info->check_integrity_print_mask = 0;
2228 #endif
2230 spin_lock_init(&fs_info->balance_lock);
2231 mutex_init(&fs_info->balance_mutex);
2232 atomic_set(&fs_info->balance_running, 0);
2233 atomic_set(&fs_info->balance_pause_req, 0);
2234 atomic_set(&fs_info->balance_cancel_req, 0);
2235 fs_info->balance_ctl = NULL;
2236 init_waitqueue_head(&fs_info->balance_wait_q);
2238 sb->s_blocksize = 4096;
2239 sb->s_blocksize_bits = blksize_bits(4096);
2240 sb->s_bdi = &fs_info->bdi;
2242 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2243 set_nlink(fs_info->btree_inode, 1);
2245 * we set the i_size on the btree inode to the max possible int.
2246 * the real end of the address space is determined by all of
2247 * the devices in the system
2249 fs_info->btree_inode->i_size = OFFSET_MAX;
2250 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2251 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2253 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2254 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2255 fs_info->btree_inode->i_mapping);
2256 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2257 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2259 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2261 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2262 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2263 sizeof(struct btrfs_key));
2264 set_bit(BTRFS_INODE_DUMMY,
2265 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2266 btrfs_insert_inode_hash(fs_info->btree_inode);
2268 spin_lock_init(&fs_info->block_group_cache_lock);
2269 fs_info->block_group_cache_tree = RB_ROOT;
2270 fs_info->first_logical_byte = (u64)-1;
2272 extent_io_tree_init(&fs_info->freed_extents[0],
2273 fs_info->btree_inode->i_mapping);
2274 extent_io_tree_init(&fs_info->freed_extents[1],
2275 fs_info->btree_inode->i_mapping);
2276 fs_info->pinned_extents = &fs_info->freed_extents[0];
2277 fs_info->do_barriers = 1;
2280 mutex_init(&fs_info->ordered_operations_mutex);
2281 mutex_init(&fs_info->ordered_extent_flush_mutex);
2282 mutex_init(&fs_info->tree_log_mutex);
2283 mutex_init(&fs_info->chunk_mutex);
2284 mutex_init(&fs_info->transaction_kthread_mutex);
2285 mutex_init(&fs_info->cleaner_mutex);
2286 mutex_init(&fs_info->volume_mutex);
2287 init_rwsem(&fs_info->extent_commit_sem);
2288 init_rwsem(&fs_info->cleanup_work_sem);
2289 init_rwsem(&fs_info->subvol_sem);
2290 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2291 fs_info->dev_replace.lock_owner = 0;
2292 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2293 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2294 mutex_init(&fs_info->dev_replace.lock_management_lock);
2295 mutex_init(&fs_info->dev_replace.lock);
2297 spin_lock_init(&fs_info->qgroup_lock);
2298 mutex_init(&fs_info->qgroup_ioctl_lock);
2299 fs_info->qgroup_tree = RB_ROOT;
2300 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2301 fs_info->qgroup_seq = 1;
2302 fs_info->quota_enabled = 0;
2303 fs_info->pending_quota_state = 0;
2304 fs_info->qgroup_ulist = NULL;
2305 mutex_init(&fs_info->qgroup_rescan_lock);
2307 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2308 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2310 init_waitqueue_head(&fs_info->transaction_throttle);
2311 init_waitqueue_head(&fs_info->transaction_wait);
2312 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2313 init_waitqueue_head(&fs_info->async_submit_wait);
2315 ret = btrfs_alloc_stripe_hash_table(fs_info);
2316 if (ret) {
2317 err = ret;
2318 goto fail_alloc;
2321 __setup_root(4096, 4096, 4096, 4096, tree_root,
2322 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2324 invalidate_bdev(fs_devices->latest_bdev);
2327 * Read super block and check the signature bytes only
2329 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2330 if (!bh) {
2331 err = -EINVAL;
2332 goto fail_alloc;
2336 * We want to check superblock checksum, the type is stored inside.
2337 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2339 if (btrfs_check_super_csum(bh->b_data)) {
2340 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2341 err = -EINVAL;
2342 goto fail_alloc;
2346 * super_copy is zeroed at allocation time and we never touch the
2347 * following bytes up to INFO_SIZE, the checksum is calculated from
2348 * the whole block of INFO_SIZE
2350 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2351 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2352 sizeof(*fs_info->super_for_commit));
2353 brelse(bh);
2355 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2357 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2358 if (ret) {
2359 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2360 err = -EINVAL;
2361 goto fail_alloc;
2364 disk_super = fs_info->super_copy;
2365 if (!btrfs_super_root(disk_super))
2366 goto fail_alloc;
2368 /* check FS state, whether FS is broken. */
2369 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2370 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2373 * run through our array of backup supers and setup
2374 * our ring pointer to the oldest one
2376 generation = btrfs_super_generation(disk_super);
2377 find_oldest_super_backup(fs_info, generation);
2380 * In the long term, we'll store the compression type in the super
2381 * block, and it'll be used for per file compression control.
2383 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2385 ret = btrfs_parse_options(tree_root, options);
2386 if (ret) {
2387 err = ret;
2388 goto fail_alloc;
2391 features = btrfs_super_incompat_flags(disk_super) &
2392 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2393 if (features) {
2394 printk(KERN_ERR "BTRFS: couldn't mount because of "
2395 "unsupported optional features (%Lx).\n",
2396 features);
2397 err = -EINVAL;
2398 goto fail_alloc;
2401 if (btrfs_super_leafsize(disk_super) !=
2402 btrfs_super_nodesize(disk_super)) {
2403 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2404 "blocksizes don't match. node %d leaf %d\n",
2405 btrfs_super_nodesize(disk_super),
2406 btrfs_super_leafsize(disk_super));
2407 err = -EINVAL;
2408 goto fail_alloc;
2410 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2411 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2412 "blocksize (%d) was too large\n",
2413 btrfs_super_leafsize(disk_super));
2414 err = -EINVAL;
2415 goto fail_alloc;
2418 features = btrfs_super_incompat_flags(disk_super);
2419 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2420 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2421 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2423 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2424 printk(KERN_ERR "btrfs: has skinny extents\n");
2427 * flag our filesystem as having big metadata blocks if
2428 * they are bigger than the page size
2430 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2431 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2432 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2433 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2436 nodesize = btrfs_super_nodesize(disk_super);
2437 leafsize = btrfs_super_leafsize(disk_super);
2438 sectorsize = btrfs_super_sectorsize(disk_super);
2439 stripesize = btrfs_super_stripesize(disk_super);
2440 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2441 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2444 * mixed block groups end up with duplicate but slightly offset
2445 * extent buffers for the same range. It leads to corruptions
2447 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2448 (sectorsize != leafsize)) {
2449 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2450 "are not allowed for mixed block groups on %s\n",
2451 sb->s_id);
2452 goto fail_alloc;
2456 * Needn't use the lock because there is no other task which will
2457 * update the flag.
2459 btrfs_set_super_incompat_flags(disk_super, features);
2461 features = btrfs_super_compat_ro_flags(disk_super) &
2462 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2463 if (!(sb->s_flags & MS_RDONLY) && features) {
2464 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2465 "unsupported option features (%Lx).\n",
2466 features);
2467 err = -EINVAL;
2468 goto fail_alloc;
2471 btrfs_init_workers(&fs_info->generic_worker,
2472 "genwork", 1, NULL);
2474 btrfs_init_workers(&fs_info->workers, "worker",
2475 fs_info->thread_pool_size,
2476 &fs_info->generic_worker);
2478 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2479 fs_info->thread_pool_size, NULL);
2481 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2482 fs_info->thread_pool_size, NULL);
2484 btrfs_init_workers(&fs_info->submit_workers, "submit",
2485 min_t(u64, fs_devices->num_devices,
2486 fs_info->thread_pool_size), NULL);
2488 btrfs_init_workers(&fs_info->caching_workers, "cache",
2489 fs_info->thread_pool_size, NULL);
2491 /* a higher idle thresh on the submit workers makes it much more
2492 * likely that bios will be send down in a sane order to the
2493 * devices
2495 fs_info->submit_workers.idle_thresh = 64;
2497 fs_info->workers.idle_thresh = 16;
2498 fs_info->workers.ordered = 1;
2500 fs_info->delalloc_workers.idle_thresh = 2;
2501 fs_info->delalloc_workers.ordered = 1;
2503 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2504 &fs_info->generic_worker);
2505 btrfs_init_workers(&fs_info->endio_workers, "endio",
2506 fs_info->thread_pool_size,
2507 &fs_info->generic_worker);
2508 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2509 fs_info->thread_pool_size,
2510 &fs_info->generic_worker);
2511 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2512 "endio-meta-write", fs_info->thread_pool_size,
2513 &fs_info->generic_worker);
2514 btrfs_init_workers(&fs_info->endio_raid56_workers,
2515 "endio-raid56", fs_info->thread_pool_size,
2516 &fs_info->generic_worker);
2517 btrfs_init_workers(&fs_info->rmw_workers,
2518 "rmw", fs_info->thread_pool_size,
2519 &fs_info->generic_worker);
2520 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2521 fs_info->thread_pool_size,
2522 &fs_info->generic_worker);
2523 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2524 1, &fs_info->generic_worker);
2525 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2526 fs_info->thread_pool_size,
2527 &fs_info->generic_worker);
2528 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2529 fs_info->thread_pool_size,
2530 &fs_info->generic_worker);
2531 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2532 &fs_info->generic_worker);
2535 * endios are largely parallel and should have a very
2536 * low idle thresh
2538 fs_info->endio_workers.idle_thresh = 4;
2539 fs_info->endio_meta_workers.idle_thresh = 4;
2540 fs_info->endio_raid56_workers.idle_thresh = 4;
2541 fs_info->rmw_workers.idle_thresh = 2;
2543 fs_info->endio_write_workers.idle_thresh = 2;
2544 fs_info->endio_meta_write_workers.idle_thresh = 2;
2545 fs_info->readahead_workers.idle_thresh = 2;
2548 * btrfs_start_workers can really only fail because of ENOMEM so just
2549 * return -ENOMEM if any of these fail.
2551 ret = btrfs_start_workers(&fs_info->workers);
2552 ret |= btrfs_start_workers(&fs_info->generic_worker);
2553 ret |= btrfs_start_workers(&fs_info->submit_workers);
2554 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2555 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2556 ret |= btrfs_start_workers(&fs_info->endio_workers);
2557 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2558 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2559 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2560 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2561 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2562 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2563 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2564 ret |= btrfs_start_workers(&fs_info->caching_workers);
2565 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2566 ret |= btrfs_start_workers(&fs_info->flush_workers);
2567 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2568 if (ret) {
2569 err = -ENOMEM;
2570 goto fail_sb_buffer;
2573 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2574 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2575 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2577 tree_root->nodesize = nodesize;
2578 tree_root->leafsize = leafsize;
2579 tree_root->sectorsize = sectorsize;
2580 tree_root->stripesize = stripesize;
2582 sb->s_blocksize = sectorsize;
2583 sb->s_blocksize_bits = blksize_bits(sectorsize);
2585 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2586 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2587 goto fail_sb_buffer;
2590 if (sectorsize != PAGE_SIZE) {
2591 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2592 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2593 goto fail_sb_buffer;
2596 mutex_lock(&fs_info->chunk_mutex);
2597 ret = btrfs_read_sys_array(tree_root);
2598 mutex_unlock(&fs_info->chunk_mutex);
2599 if (ret) {
2600 printk(KERN_WARNING "btrfs: failed to read the system "
2601 "array on %s\n", sb->s_id);
2602 goto fail_sb_buffer;
2605 blocksize = btrfs_level_size(tree_root,
2606 btrfs_super_chunk_root_level(disk_super));
2607 generation = btrfs_super_chunk_root_generation(disk_super);
2609 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2610 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2612 chunk_root->node = read_tree_block(chunk_root,
2613 btrfs_super_chunk_root(disk_super),
2614 blocksize, generation);
2615 if (!chunk_root->node ||
2616 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2617 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2618 sb->s_id);
2619 goto fail_tree_roots;
2621 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2622 chunk_root->commit_root = btrfs_root_node(chunk_root);
2624 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2625 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2627 ret = btrfs_read_chunk_tree(chunk_root);
2628 if (ret) {
2629 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2630 sb->s_id);
2631 goto fail_tree_roots;
2635 * keep the device that is marked to be the target device for the
2636 * dev_replace procedure
2638 btrfs_close_extra_devices(fs_info, fs_devices, 0);
2640 if (!fs_devices->latest_bdev) {
2641 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2642 sb->s_id);
2643 goto fail_tree_roots;
2646 retry_root_backup:
2647 blocksize = btrfs_level_size(tree_root,
2648 btrfs_super_root_level(disk_super));
2649 generation = btrfs_super_generation(disk_super);
2651 tree_root->node = read_tree_block(tree_root,
2652 btrfs_super_root(disk_super),
2653 blocksize, generation);
2654 if (!tree_root->node ||
2655 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2656 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2657 sb->s_id);
2659 goto recovery_tree_root;
2662 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2663 tree_root->commit_root = btrfs_root_node(tree_root);
2664 btrfs_set_root_refs(&tree_root->root_item, 1);
2666 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2667 location.type = BTRFS_ROOT_ITEM_KEY;
2668 location.offset = 0;
2670 extent_root = btrfs_read_tree_root(tree_root, &location);
2671 if (IS_ERR(extent_root)) {
2672 ret = PTR_ERR(extent_root);
2673 goto recovery_tree_root;
2675 extent_root->track_dirty = 1;
2676 fs_info->extent_root = extent_root;
2678 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2679 dev_root = btrfs_read_tree_root(tree_root, &location);
2680 if (IS_ERR(dev_root)) {
2681 ret = PTR_ERR(dev_root);
2682 goto recovery_tree_root;
2684 dev_root->track_dirty = 1;
2685 fs_info->dev_root = dev_root;
2686 btrfs_init_devices_late(fs_info);
2688 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2689 csum_root = btrfs_read_tree_root(tree_root, &location);
2690 if (IS_ERR(csum_root)) {
2691 ret = PTR_ERR(csum_root);
2692 goto recovery_tree_root;
2694 csum_root->track_dirty = 1;
2695 fs_info->csum_root = csum_root;
2697 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2698 quota_root = btrfs_read_tree_root(tree_root, &location);
2699 if (!IS_ERR(quota_root)) {
2700 quota_root->track_dirty = 1;
2701 fs_info->quota_enabled = 1;
2702 fs_info->pending_quota_state = 1;
2703 fs_info->quota_root = quota_root;
2706 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2707 uuid_root = btrfs_read_tree_root(tree_root, &location);
2708 if (IS_ERR(uuid_root)) {
2709 ret = PTR_ERR(uuid_root);
2710 if (ret != -ENOENT)
2711 goto recovery_tree_root;
2712 create_uuid_tree = true;
2713 check_uuid_tree = false;
2714 } else {
2715 uuid_root->track_dirty = 1;
2716 fs_info->uuid_root = uuid_root;
2717 create_uuid_tree = false;
2718 check_uuid_tree =
2719 generation != btrfs_super_uuid_tree_generation(disk_super);
2722 fs_info->generation = generation;
2723 fs_info->last_trans_committed = generation;
2725 ret = btrfs_recover_balance(fs_info);
2726 if (ret) {
2727 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2728 goto fail_block_groups;
2731 ret = btrfs_init_dev_stats(fs_info);
2732 if (ret) {
2733 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2734 ret);
2735 goto fail_block_groups;
2738 ret = btrfs_init_dev_replace(fs_info);
2739 if (ret) {
2740 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2741 goto fail_block_groups;
2744 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2746 ret = btrfs_init_space_info(fs_info);
2747 if (ret) {
2748 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2749 goto fail_block_groups;
2752 ret = btrfs_read_block_groups(extent_root);
2753 if (ret) {
2754 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2755 goto fail_block_groups;
2757 fs_info->num_tolerated_disk_barrier_failures =
2758 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2759 if (fs_info->fs_devices->missing_devices >
2760 fs_info->num_tolerated_disk_barrier_failures &&
2761 !(sb->s_flags & MS_RDONLY)) {
2762 printk(KERN_WARNING
2763 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2764 goto fail_block_groups;
2767 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2768 "btrfs-cleaner");
2769 if (IS_ERR(fs_info->cleaner_kthread))
2770 goto fail_block_groups;
2772 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2773 tree_root,
2774 "btrfs-transaction");
2775 if (IS_ERR(fs_info->transaction_kthread))
2776 goto fail_cleaner;
2778 if (!btrfs_test_opt(tree_root, SSD) &&
2779 !btrfs_test_opt(tree_root, NOSSD) &&
2780 !fs_info->fs_devices->rotating) {
2781 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2782 "mode\n");
2783 btrfs_set_opt(fs_info->mount_opt, SSD);
2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2787 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2788 ret = btrfsic_mount(tree_root, fs_devices,
2789 btrfs_test_opt(tree_root,
2790 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2791 1 : 0,
2792 fs_info->check_integrity_print_mask);
2793 if (ret)
2794 printk(KERN_WARNING "btrfs: failed to initialize"
2795 " integrity check module %s\n", sb->s_id);
2797 #endif
2798 ret = btrfs_read_qgroup_config(fs_info);
2799 if (ret)
2800 goto fail_trans_kthread;
2802 /* do not make disk changes in broken FS */
2803 if (btrfs_super_log_root(disk_super) != 0) {
2804 u64 bytenr = btrfs_super_log_root(disk_super);
2806 if (fs_devices->rw_devices == 0) {
2807 printk(KERN_WARNING "Btrfs log replay required "
2808 "on RO media\n");
2809 err = -EIO;
2810 goto fail_qgroup;
2812 blocksize =
2813 btrfs_level_size(tree_root,
2814 btrfs_super_log_root_level(disk_super));
2816 log_tree_root = btrfs_alloc_root(fs_info);
2817 if (!log_tree_root) {
2818 err = -ENOMEM;
2819 goto fail_qgroup;
2822 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2823 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2825 log_tree_root->node = read_tree_block(tree_root, bytenr,
2826 blocksize,
2827 generation + 1);
2828 if (!log_tree_root->node ||
2829 !extent_buffer_uptodate(log_tree_root->node)) {
2830 printk(KERN_ERR "btrfs: failed to read log tree\n");
2831 free_extent_buffer(log_tree_root->node);
2832 kfree(log_tree_root);
2833 goto fail_trans_kthread;
2835 /* returns with log_tree_root freed on success */
2836 ret = btrfs_recover_log_trees(log_tree_root);
2837 if (ret) {
2838 btrfs_error(tree_root->fs_info, ret,
2839 "Failed to recover log tree");
2840 free_extent_buffer(log_tree_root->node);
2841 kfree(log_tree_root);
2842 goto fail_trans_kthread;
2845 if (sb->s_flags & MS_RDONLY) {
2846 ret = btrfs_commit_super(tree_root);
2847 if (ret)
2848 goto fail_trans_kthread;
2852 ret = btrfs_find_orphan_roots(tree_root);
2853 if (ret)
2854 goto fail_trans_kthread;
2856 if (!(sb->s_flags & MS_RDONLY)) {
2857 ret = btrfs_cleanup_fs_roots(fs_info);
2858 if (ret)
2859 goto fail_trans_kthread;
2861 ret = btrfs_recover_relocation(tree_root);
2862 if (ret < 0) {
2863 printk(KERN_WARNING
2864 "btrfs: failed to recover relocation\n");
2865 err = -EINVAL;
2866 goto fail_qgroup;
2870 location.objectid = BTRFS_FS_TREE_OBJECTID;
2871 location.type = BTRFS_ROOT_ITEM_KEY;
2872 location.offset = 0;
2874 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2875 if (IS_ERR(fs_info->fs_root)) {
2876 err = PTR_ERR(fs_info->fs_root);
2877 goto fail_qgroup;
2880 if (sb->s_flags & MS_RDONLY)
2881 return 0;
2883 down_read(&fs_info->cleanup_work_sem);
2884 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2885 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2886 up_read(&fs_info->cleanup_work_sem);
2887 close_ctree(tree_root);
2888 return ret;
2890 up_read(&fs_info->cleanup_work_sem);
2892 ret = btrfs_resume_balance_async(fs_info);
2893 if (ret) {
2894 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2895 close_ctree(tree_root);
2896 return ret;
2899 ret = btrfs_resume_dev_replace_async(fs_info);
2900 if (ret) {
2901 pr_warn("btrfs: failed to resume dev_replace\n");
2902 close_ctree(tree_root);
2903 return ret;
2906 btrfs_qgroup_rescan_resume(fs_info);
2908 if (create_uuid_tree) {
2909 pr_info("btrfs: creating UUID tree\n");
2910 ret = btrfs_create_uuid_tree(fs_info);
2911 if (ret) {
2912 pr_warn("btrfs: failed to create the UUID tree %d\n",
2913 ret);
2914 close_ctree(tree_root);
2915 return ret;
2917 } else if (check_uuid_tree ||
2918 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2919 pr_info("btrfs: checking UUID tree\n");
2920 ret = btrfs_check_uuid_tree(fs_info);
2921 if (ret) {
2922 pr_warn("btrfs: failed to check the UUID tree %d\n",
2923 ret);
2924 close_ctree(tree_root);
2925 return ret;
2927 } else {
2928 fs_info->update_uuid_tree_gen = 1;
2931 return 0;
2933 fail_qgroup:
2934 btrfs_free_qgroup_config(fs_info);
2935 fail_trans_kthread:
2936 kthread_stop(fs_info->transaction_kthread);
2937 btrfs_cleanup_transaction(fs_info->tree_root);
2938 del_fs_roots(fs_info);
2939 fail_cleaner:
2940 kthread_stop(fs_info->cleaner_kthread);
2943 * make sure we're done with the btree inode before we stop our
2944 * kthreads
2946 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2948 fail_block_groups:
2949 btrfs_put_block_group_cache(fs_info);
2950 btrfs_free_block_groups(fs_info);
2952 fail_tree_roots:
2953 free_root_pointers(fs_info, 1);
2954 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2956 fail_sb_buffer:
2957 btrfs_stop_all_workers(fs_info);
2958 fail_alloc:
2959 fail_iput:
2960 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2962 iput(fs_info->btree_inode);
2963 fail_delalloc_bytes:
2964 percpu_counter_destroy(&fs_info->delalloc_bytes);
2965 fail_dirty_metadata_bytes:
2966 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2967 fail_bdi:
2968 bdi_destroy(&fs_info->bdi);
2969 fail_srcu:
2970 cleanup_srcu_struct(&fs_info->subvol_srcu);
2971 fail:
2972 btrfs_free_stripe_hash_table(fs_info);
2973 btrfs_close_devices(fs_info->fs_devices);
2974 return err;
2976 recovery_tree_root:
2977 if (!btrfs_test_opt(tree_root, RECOVERY))
2978 goto fail_tree_roots;
2980 free_root_pointers(fs_info, 0);
2982 /* don't use the log in recovery mode, it won't be valid */
2983 btrfs_set_super_log_root(disk_super, 0);
2985 /* we can't trust the free space cache either */
2986 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2988 ret = next_root_backup(fs_info, fs_info->super_copy,
2989 &num_backups_tried, &backup_index);
2990 if (ret == -1)
2991 goto fail_block_groups;
2992 goto retry_root_backup;
2995 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2997 if (uptodate) {
2998 set_buffer_uptodate(bh);
2999 } else {
3000 struct btrfs_device *device = (struct btrfs_device *)
3001 bh->b_private;
3003 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
3004 "I/O error on %s\n",
3005 rcu_str_deref(device->name));
3006 /* note, we dont' set_buffer_write_io_error because we have
3007 * our own ways of dealing with the IO errors
3009 clear_buffer_uptodate(bh);
3010 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3012 unlock_buffer(bh);
3013 put_bh(bh);
3016 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3018 struct buffer_head *bh;
3019 struct buffer_head *latest = NULL;
3020 struct btrfs_super_block *super;
3021 int i;
3022 u64 transid = 0;
3023 u64 bytenr;
3025 /* we would like to check all the supers, but that would make
3026 * a btrfs mount succeed after a mkfs from a different FS.
3027 * So, we need to add a special mount option to scan for
3028 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3030 for (i = 0; i < 1; i++) {
3031 bytenr = btrfs_sb_offset(i);
3032 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3033 i_size_read(bdev->bd_inode))
3034 break;
3035 bh = __bread(bdev, bytenr / 4096,
3036 BTRFS_SUPER_INFO_SIZE);
3037 if (!bh)
3038 continue;
3040 super = (struct btrfs_super_block *)bh->b_data;
3041 if (btrfs_super_bytenr(super) != bytenr ||
3042 btrfs_super_magic(super) != BTRFS_MAGIC) {
3043 brelse(bh);
3044 continue;
3047 if (!latest || btrfs_super_generation(super) > transid) {
3048 brelse(latest);
3049 latest = bh;
3050 transid = btrfs_super_generation(super);
3051 } else {
3052 brelse(bh);
3055 return latest;
3059 * this should be called twice, once with wait == 0 and
3060 * once with wait == 1. When wait == 0 is done, all the buffer heads
3061 * we write are pinned.
3063 * They are released when wait == 1 is done.
3064 * max_mirrors must be the same for both runs, and it indicates how
3065 * many supers on this one device should be written.
3067 * max_mirrors == 0 means to write them all.
3069 static int write_dev_supers(struct btrfs_device *device,
3070 struct btrfs_super_block *sb,
3071 int do_barriers, int wait, int max_mirrors)
3073 struct buffer_head *bh;
3074 int i;
3075 int ret;
3076 int errors = 0;
3077 u32 crc;
3078 u64 bytenr;
3080 if (max_mirrors == 0)
3081 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3083 for (i = 0; i < max_mirrors; i++) {
3084 bytenr = btrfs_sb_offset(i);
3085 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3086 break;
3088 if (wait) {
3089 bh = __find_get_block(device->bdev, bytenr / 4096,
3090 BTRFS_SUPER_INFO_SIZE);
3091 if (!bh) {
3092 errors++;
3093 continue;
3095 wait_on_buffer(bh);
3096 if (!buffer_uptodate(bh))
3097 errors++;
3099 /* drop our reference */
3100 brelse(bh);
3102 /* drop the reference from the wait == 0 run */
3103 brelse(bh);
3104 continue;
3105 } else {
3106 btrfs_set_super_bytenr(sb, bytenr);
3108 crc = ~(u32)0;
3109 crc = btrfs_csum_data((char *)sb +
3110 BTRFS_CSUM_SIZE, crc,
3111 BTRFS_SUPER_INFO_SIZE -
3112 BTRFS_CSUM_SIZE);
3113 btrfs_csum_final(crc, sb->csum);
3116 * one reference for us, and we leave it for the
3117 * caller
3119 bh = __getblk(device->bdev, bytenr / 4096,
3120 BTRFS_SUPER_INFO_SIZE);
3121 if (!bh) {
3122 printk(KERN_ERR "btrfs: couldn't get super "
3123 "buffer head for bytenr %Lu\n", bytenr);
3124 errors++;
3125 continue;
3128 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3130 /* one reference for submit_bh */
3131 get_bh(bh);
3133 set_buffer_uptodate(bh);
3134 lock_buffer(bh);
3135 bh->b_end_io = btrfs_end_buffer_write_sync;
3136 bh->b_private = device;
3140 * we fua the first super. The others we allow
3141 * to go down lazy.
3143 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3144 if (ret)
3145 errors++;
3147 return errors < i ? 0 : -1;
3151 * endio for the write_dev_flush, this will wake anyone waiting
3152 * for the barrier when it is done
3154 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3156 if (err) {
3157 if (err == -EOPNOTSUPP)
3158 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3161 if (bio->bi_private)
3162 complete(bio->bi_private);
3163 bio_put(bio);
3167 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3168 * sent down. With wait == 1, it waits for the previous flush.
3170 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3171 * capable
3173 static int write_dev_flush(struct btrfs_device *device, int wait)
3175 struct bio *bio;
3176 int ret = 0;
3178 if (device->nobarriers)
3179 return 0;
3181 if (wait) {
3182 bio = device->flush_bio;
3183 if (!bio)
3184 return 0;
3186 wait_for_completion(&device->flush_wait);
3188 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3189 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3190 rcu_str_deref(device->name));
3191 device->nobarriers = 1;
3192 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3193 ret = -EIO;
3194 btrfs_dev_stat_inc_and_print(device,
3195 BTRFS_DEV_STAT_FLUSH_ERRS);
3198 /* drop the reference from the wait == 0 run */
3199 bio_put(bio);
3200 device->flush_bio = NULL;
3202 return ret;
3206 * one reference for us, and we leave it for the
3207 * caller
3209 device->flush_bio = NULL;
3210 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3211 if (!bio)
3212 return -ENOMEM;
3214 bio->bi_end_io = btrfs_end_empty_barrier;
3215 bio->bi_bdev = device->bdev;
3216 init_completion(&device->flush_wait);
3217 bio->bi_private = &device->flush_wait;
3218 device->flush_bio = bio;
3220 bio_get(bio);
3221 btrfsic_submit_bio(WRITE_FLUSH, bio);
3223 return 0;
3227 * send an empty flush down to each device in parallel,
3228 * then wait for them
3230 static int barrier_all_devices(struct btrfs_fs_info *info)
3232 struct list_head *head;
3233 struct btrfs_device *dev;
3234 int errors_send = 0;
3235 int errors_wait = 0;
3236 int ret;
3238 /* send down all the barriers */
3239 head = &info->fs_devices->devices;
3240 list_for_each_entry_rcu(dev, head, dev_list) {
3241 if (!dev->bdev) {
3242 errors_send++;
3243 continue;
3245 if (!dev->in_fs_metadata || !dev->writeable)
3246 continue;
3248 ret = write_dev_flush(dev, 0);
3249 if (ret)
3250 errors_send++;
3253 /* wait for all the barriers */
3254 list_for_each_entry_rcu(dev, head, dev_list) {
3255 if (!dev->bdev) {
3256 errors_wait++;
3257 continue;
3259 if (!dev->in_fs_metadata || !dev->writeable)
3260 continue;
3262 ret = write_dev_flush(dev, 1);
3263 if (ret)
3264 errors_wait++;
3266 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3267 errors_wait > info->num_tolerated_disk_barrier_failures)
3268 return -EIO;
3269 return 0;
3272 int btrfs_calc_num_tolerated_disk_barrier_failures(
3273 struct btrfs_fs_info *fs_info)
3275 struct btrfs_ioctl_space_info space;
3276 struct btrfs_space_info *sinfo;
3277 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3278 BTRFS_BLOCK_GROUP_SYSTEM,
3279 BTRFS_BLOCK_GROUP_METADATA,
3280 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3281 int num_types = 4;
3282 int i;
3283 int c;
3284 int num_tolerated_disk_barrier_failures =
3285 (int)fs_info->fs_devices->num_devices;
3287 for (i = 0; i < num_types; i++) {
3288 struct btrfs_space_info *tmp;
3290 sinfo = NULL;
3291 rcu_read_lock();
3292 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3293 if (tmp->flags == types[i]) {
3294 sinfo = tmp;
3295 break;
3298 rcu_read_unlock();
3300 if (!sinfo)
3301 continue;
3303 down_read(&sinfo->groups_sem);
3304 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3305 if (!list_empty(&sinfo->block_groups[c])) {
3306 u64 flags;
3308 btrfs_get_block_group_info(
3309 &sinfo->block_groups[c], &space);
3310 if (space.total_bytes == 0 ||
3311 space.used_bytes == 0)
3312 continue;
3313 flags = space.flags;
3315 * return
3316 * 0: if dup, single or RAID0 is configured for
3317 * any of metadata, system or data, else
3318 * 1: if RAID5 is configured, or if RAID1 or
3319 * RAID10 is configured and only two mirrors
3320 * are used, else
3321 * 2: if RAID6 is configured, else
3322 * num_mirrors - 1: if RAID1 or RAID10 is
3323 * configured and more than
3324 * 2 mirrors are used.
3326 if (num_tolerated_disk_barrier_failures > 0 &&
3327 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3328 BTRFS_BLOCK_GROUP_RAID0)) ||
3329 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3330 == 0)))
3331 num_tolerated_disk_barrier_failures = 0;
3332 else if (num_tolerated_disk_barrier_failures > 1) {
3333 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3334 BTRFS_BLOCK_GROUP_RAID5 |
3335 BTRFS_BLOCK_GROUP_RAID10)) {
3336 num_tolerated_disk_barrier_failures = 1;
3337 } else if (flags &
3338 BTRFS_BLOCK_GROUP_RAID6) {
3339 num_tolerated_disk_barrier_failures = 2;
3344 up_read(&sinfo->groups_sem);
3347 return num_tolerated_disk_barrier_failures;
3350 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3352 struct list_head *head;
3353 struct btrfs_device *dev;
3354 struct btrfs_super_block *sb;
3355 struct btrfs_dev_item *dev_item;
3356 int ret;
3357 int do_barriers;
3358 int max_errors;
3359 int total_errors = 0;
3360 u64 flags;
3362 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3363 backup_super_roots(root->fs_info);
3365 sb = root->fs_info->super_for_commit;
3366 dev_item = &sb->dev_item;
3368 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3369 head = &root->fs_info->fs_devices->devices;
3370 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3372 if (do_barriers) {
3373 ret = barrier_all_devices(root->fs_info);
3374 if (ret) {
3375 mutex_unlock(
3376 &root->fs_info->fs_devices->device_list_mutex);
3377 btrfs_error(root->fs_info, ret,
3378 "errors while submitting device barriers.");
3379 return ret;
3383 list_for_each_entry_rcu(dev, head, dev_list) {
3384 if (!dev->bdev) {
3385 total_errors++;
3386 continue;
3388 if (!dev->in_fs_metadata || !dev->writeable)
3389 continue;
3391 btrfs_set_stack_device_generation(dev_item, 0);
3392 btrfs_set_stack_device_type(dev_item, dev->type);
3393 btrfs_set_stack_device_id(dev_item, dev->devid);
3394 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3395 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3396 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3397 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3398 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3399 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3400 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3402 flags = btrfs_super_flags(sb);
3403 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3405 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3406 if (ret)
3407 total_errors++;
3409 if (total_errors > max_errors) {
3410 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3411 total_errors);
3412 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3414 /* FUA is masked off if unsupported and can't be the reason */
3415 btrfs_error(root->fs_info, -EIO,
3416 "%d errors while writing supers", total_errors);
3417 return -EIO;
3420 total_errors = 0;
3421 list_for_each_entry_rcu(dev, head, dev_list) {
3422 if (!dev->bdev)
3423 continue;
3424 if (!dev->in_fs_metadata || !dev->writeable)
3425 continue;
3427 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3428 if (ret)
3429 total_errors++;
3431 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3432 if (total_errors > max_errors) {
3433 btrfs_error(root->fs_info, -EIO,
3434 "%d errors while writing supers", total_errors);
3435 return -EIO;
3437 return 0;
3440 int write_ctree_super(struct btrfs_trans_handle *trans,
3441 struct btrfs_root *root, int max_mirrors)
3443 return write_all_supers(root, max_mirrors);
3446 /* Drop a fs root from the radix tree and free it. */
3447 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3448 struct btrfs_root *root)
3450 spin_lock(&fs_info->fs_roots_radix_lock);
3451 radix_tree_delete(&fs_info->fs_roots_radix,
3452 (unsigned long)root->root_key.objectid);
3453 spin_unlock(&fs_info->fs_roots_radix_lock);
3455 if (btrfs_root_refs(&root->root_item) == 0)
3456 synchronize_srcu(&fs_info->subvol_srcu);
3458 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3459 btrfs_free_log(NULL, root);
3460 btrfs_free_log_root_tree(NULL, fs_info);
3463 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3464 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3465 free_fs_root(root);
3468 static void free_fs_root(struct btrfs_root *root)
3470 iput(root->cache_inode);
3471 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3472 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3473 root->orphan_block_rsv = NULL;
3474 if (root->anon_dev)
3475 free_anon_bdev(root->anon_dev);
3476 free_extent_buffer(root->node);
3477 free_extent_buffer(root->commit_root);
3478 kfree(root->free_ino_ctl);
3479 kfree(root->free_ino_pinned);
3480 kfree(root->name);
3481 btrfs_put_fs_root(root);
3484 void btrfs_free_fs_root(struct btrfs_root *root)
3486 free_fs_root(root);
3489 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3491 u64 root_objectid = 0;
3492 struct btrfs_root *gang[8];
3493 int i;
3494 int ret;
3496 while (1) {
3497 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3498 (void **)gang, root_objectid,
3499 ARRAY_SIZE(gang));
3500 if (!ret)
3501 break;
3503 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3504 for (i = 0; i < ret; i++) {
3505 int err;
3507 root_objectid = gang[i]->root_key.objectid;
3508 err = btrfs_orphan_cleanup(gang[i]);
3509 if (err)
3510 return err;
3512 root_objectid++;
3514 return 0;
3517 int btrfs_commit_super(struct btrfs_root *root)
3519 struct btrfs_trans_handle *trans;
3521 mutex_lock(&root->fs_info->cleaner_mutex);
3522 btrfs_run_delayed_iputs(root);
3523 mutex_unlock(&root->fs_info->cleaner_mutex);
3524 wake_up_process(root->fs_info->cleaner_kthread);
3526 /* wait until ongoing cleanup work done */
3527 down_write(&root->fs_info->cleanup_work_sem);
3528 up_write(&root->fs_info->cleanup_work_sem);
3530 trans = btrfs_join_transaction(root);
3531 if (IS_ERR(trans))
3532 return PTR_ERR(trans);
3533 return btrfs_commit_transaction(trans, root);
3536 int close_ctree(struct btrfs_root *root)
3538 struct btrfs_fs_info *fs_info = root->fs_info;
3539 int ret;
3541 fs_info->closing = 1;
3542 smp_mb();
3544 /* wait for the uuid_scan task to finish */
3545 down(&fs_info->uuid_tree_rescan_sem);
3546 /* avoid complains from lockdep et al., set sem back to initial state */
3547 up(&fs_info->uuid_tree_rescan_sem);
3549 /* pause restriper - we want to resume on mount */
3550 btrfs_pause_balance(fs_info);
3552 btrfs_dev_replace_suspend_for_unmount(fs_info);
3554 btrfs_scrub_cancel(fs_info);
3556 /* wait for any defraggers to finish */
3557 wait_event(fs_info->transaction_wait,
3558 (atomic_read(&fs_info->defrag_running) == 0));
3560 /* clear out the rbtree of defraggable inodes */
3561 btrfs_cleanup_defrag_inodes(fs_info);
3563 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3564 ret = btrfs_commit_super(root);
3565 if (ret)
3566 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3569 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3570 btrfs_error_commit_super(root);
3572 btrfs_put_block_group_cache(fs_info);
3574 kthread_stop(fs_info->transaction_kthread);
3575 kthread_stop(fs_info->cleaner_kthread);
3577 fs_info->closing = 2;
3578 smp_mb();
3580 btrfs_free_qgroup_config(root->fs_info);
3582 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3583 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3584 percpu_counter_sum(&fs_info->delalloc_bytes));
3587 del_fs_roots(fs_info);
3589 btrfs_free_block_groups(fs_info);
3591 btrfs_stop_all_workers(fs_info);
3593 free_root_pointers(fs_info, 1);
3595 iput(fs_info->btree_inode);
3597 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3598 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3599 btrfsic_unmount(root, fs_info->fs_devices);
3600 #endif
3602 btrfs_close_devices(fs_info->fs_devices);
3603 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3605 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3606 percpu_counter_destroy(&fs_info->delalloc_bytes);
3607 bdi_destroy(&fs_info->bdi);
3608 cleanup_srcu_struct(&fs_info->subvol_srcu);
3610 btrfs_free_stripe_hash_table(fs_info);
3612 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3613 root->orphan_block_rsv = NULL;
3615 return 0;
3618 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3619 int atomic)
3621 int ret;
3622 struct inode *btree_inode = buf->pages[0]->mapping->host;
3624 ret = extent_buffer_uptodate(buf);
3625 if (!ret)
3626 return ret;
3628 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3629 parent_transid, atomic);
3630 if (ret == -EAGAIN)
3631 return ret;
3632 return !ret;
3635 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3637 return set_extent_buffer_uptodate(buf);
3640 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3642 struct btrfs_root *root;
3643 u64 transid = btrfs_header_generation(buf);
3644 int was_dirty;
3646 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3648 * This is a fast path so only do this check if we have sanity tests
3649 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3650 * outside of the sanity tests.
3652 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3653 return;
3654 #endif
3655 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3656 btrfs_assert_tree_locked(buf);
3657 if (transid != root->fs_info->generation)
3658 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3659 "found %llu running %llu\n",
3660 buf->start, transid, root->fs_info->generation);
3661 was_dirty = set_extent_buffer_dirty(buf);
3662 if (!was_dirty)
3663 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3664 buf->len,
3665 root->fs_info->dirty_metadata_batch);
3668 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3669 int flush_delayed)
3672 * looks as though older kernels can get into trouble with
3673 * this code, they end up stuck in balance_dirty_pages forever
3675 int ret;
3677 if (current->flags & PF_MEMALLOC)
3678 return;
3680 if (flush_delayed)
3681 btrfs_balance_delayed_items(root);
3683 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3684 BTRFS_DIRTY_METADATA_THRESH);
3685 if (ret > 0) {
3686 balance_dirty_pages_ratelimited(
3687 root->fs_info->btree_inode->i_mapping);
3689 return;
3692 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3694 __btrfs_btree_balance_dirty(root, 1);
3697 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3699 __btrfs_btree_balance_dirty(root, 0);
3702 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3704 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3705 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3708 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3709 int read_only)
3712 * Placeholder for checks
3714 return 0;
3717 static void btrfs_error_commit_super(struct btrfs_root *root)
3719 mutex_lock(&root->fs_info->cleaner_mutex);
3720 btrfs_run_delayed_iputs(root);
3721 mutex_unlock(&root->fs_info->cleaner_mutex);
3723 down_write(&root->fs_info->cleanup_work_sem);
3724 up_write(&root->fs_info->cleanup_work_sem);
3726 /* cleanup FS via transaction */
3727 btrfs_cleanup_transaction(root);
3730 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3731 struct btrfs_root *root)
3733 struct btrfs_inode *btrfs_inode;
3734 struct list_head splice;
3736 INIT_LIST_HEAD(&splice);
3738 mutex_lock(&root->fs_info->ordered_operations_mutex);
3739 spin_lock(&root->fs_info->ordered_root_lock);
3741 list_splice_init(&t->ordered_operations, &splice);
3742 while (!list_empty(&splice)) {
3743 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3744 ordered_operations);
3746 list_del_init(&btrfs_inode->ordered_operations);
3747 spin_unlock(&root->fs_info->ordered_root_lock);
3749 btrfs_invalidate_inodes(btrfs_inode->root);
3751 spin_lock(&root->fs_info->ordered_root_lock);
3754 spin_unlock(&root->fs_info->ordered_root_lock);
3755 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3758 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3760 struct btrfs_ordered_extent *ordered;
3762 spin_lock(&root->ordered_extent_lock);
3764 * This will just short circuit the ordered completion stuff which will
3765 * make sure the ordered extent gets properly cleaned up.
3767 list_for_each_entry(ordered, &root->ordered_extents,
3768 root_extent_list)
3769 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3770 spin_unlock(&root->ordered_extent_lock);
3773 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3775 struct btrfs_root *root;
3776 struct list_head splice;
3778 INIT_LIST_HEAD(&splice);
3780 spin_lock(&fs_info->ordered_root_lock);
3781 list_splice_init(&fs_info->ordered_roots, &splice);
3782 while (!list_empty(&splice)) {
3783 root = list_first_entry(&splice, struct btrfs_root,
3784 ordered_root);
3785 list_move_tail(&root->ordered_root,
3786 &fs_info->ordered_roots);
3788 btrfs_destroy_ordered_extents(root);
3790 cond_resched_lock(&fs_info->ordered_root_lock);
3792 spin_unlock(&fs_info->ordered_root_lock);
3795 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3796 struct btrfs_root *root)
3798 struct rb_node *node;
3799 struct btrfs_delayed_ref_root *delayed_refs;
3800 struct btrfs_delayed_ref_node *ref;
3801 int ret = 0;
3803 delayed_refs = &trans->delayed_refs;
3805 spin_lock(&delayed_refs->lock);
3806 if (delayed_refs->num_entries == 0) {
3807 spin_unlock(&delayed_refs->lock);
3808 printk(KERN_INFO "delayed_refs has NO entry\n");
3809 return ret;
3812 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3813 struct btrfs_delayed_ref_head *head = NULL;
3814 bool pin_bytes = false;
3816 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3817 atomic_set(&ref->refs, 1);
3818 if (btrfs_delayed_ref_is_head(ref)) {
3820 head = btrfs_delayed_node_to_head(ref);
3821 if (!mutex_trylock(&head->mutex)) {
3822 atomic_inc(&ref->refs);
3823 spin_unlock(&delayed_refs->lock);
3825 /* Need to wait for the delayed ref to run */
3826 mutex_lock(&head->mutex);
3827 mutex_unlock(&head->mutex);
3828 btrfs_put_delayed_ref(ref);
3830 spin_lock(&delayed_refs->lock);
3831 continue;
3834 if (head->must_insert_reserved)
3835 pin_bytes = true;
3836 btrfs_free_delayed_extent_op(head->extent_op);
3837 delayed_refs->num_heads--;
3838 if (list_empty(&head->cluster))
3839 delayed_refs->num_heads_ready--;
3840 list_del_init(&head->cluster);
3843 ref->in_tree = 0;
3844 rb_erase(&ref->rb_node, &delayed_refs->root);
3845 delayed_refs->num_entries--;
3846 spin_unlock(&delayed_refs->lock);
3847 if (head) {
3848 if (pin_bytes)
3849 btrfs_pin_extent(root, ref->bytenr,
3850 ref->num_bytes, 1);
3851 mutex_unlock(&head->mutex);
3853 btrfs_put_delayed_ref(ref);
3855 cond_resched();
3856 spin_lock(&delayed_refs->lock);
3859 spin_unlock(&delayed_refs->lock);
3861 return ret;
3864 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3866 struct btrfs_inode *btrfs_inode;
3867 struct list_head splice;
3869 INIT_LIST_HEAD(&splice);
3871 spin_lock(&root->delalloc_lock);
3872 list_splice_init(&root->delalloc_inodes, &splice);
3874 while (!list_empty(&splice)) {
3875 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3876 delalloc_inodes);
3878 list_del_init(&btrfs_inode->delalloc_inodes);
3879 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3880 &btrfs_inode->runtime_flags);
3881 spin_unlock(&root->delalloc_lock);
3883 btrfs_invalidate_inodes(btrfs_inode->root);
3885 spin_lock(&root->delalloc_lock);
3888 spin_unlock(&root->delalloc_lock);
3891 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3893 struct btrfs_root *root;
3894 struct list_head splice;
3896 INIT_LIST_HEAD(&splice);
3898 spin_lock(&fs_info->delalloc_root_lock);
3899 list_splice_init(&fs_info->delalloc_roots, &splice);
3900 while (!list_empty(&splice)) {
3901 root = list_first_entry(&splice, struct btrfs_root,
3902 delalloc_root);
3903 list_del_init(&root->delalloc_root);
3904 root = btrfs_grab_fs_root(root);
3905 BUG_ON(!root);
3906 spin_unlock(&fs_info->delalloc_root_lock);
3908 btrfs_destroy_delalloc_inodes(root);
3909 btrfs_put_fs_root(root);
3911 spin_lock(&fs_info->delalloc_root_lock);
3913 spin_unlock(&fs_info->delalloc_root_lock);
3916 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3917 struct extent_io_tree *dirty_pages,
3918 int mark)
3920 int ret;
3921 struct extent_buffer *eb;
3922 u64 start = 0;
3923 u64 end;
3925 while (1) {
3926 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3927 mark, NULL);
3928 if (ret)
3929 break;
3931 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3932 while (start <= end) {
3933 eb = btrfs_find_tree_block(root, start,
3934 root->leafsize);
3935 start += root->leafsize;
3936 if (!eb)
3937 continue;
3938 wait_on_extent_buffer_writeback(eb);
3940 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3941 &eb->bflags))
3942 clear_extent_buffer_dirty(eb);
3943 free_extent_buffer_stale(eb);
3947 return ret;
3950 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3951 struct extent_io_tree *pinned_extents)
3953 struct extent_io_tree *unpin;
3954 u64 start;
3955 u64 end;
3956 int ret;
3957 bool loop = true;
3959 unpin = pinned_extents;
3960 again:
3961 while (1) {
3962 ret = find_first_extent_bit(unpin, 0, &start, &end,
3963 EXTENT_DIRTY, NULL);
3964 if (ret)
3965 break;
3967 /* opt_discard */
3968 if (btrfs_test_opt(root, DISCARD))
3969 ret = btrfs_error_discard_extent(root, start,
3970 end + 1 - start,
3971 NULL);
3973 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3974 btrfs_error_unpin_extent_range(root, start, end);
3975 cond_resched();
3978 if (loop) {
3979 if (unpin == &root->fs_info->freed_extents[0])
3980 unpin = &root->fs_info->freed_extents[1];
3981 else
3982 unpin = &root->fs_info->freed_extents[0];
3983 loop = false;
3984 goto again;
3987 return 0;
3990 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3991 struct btrfs_root *root)
3993 btrfs_destroy_ordered_operations(cur_trans, root);
3995 btrfs_destroy_delayed_refs(cur_trans, root);
3997 cur_trans->state = TRANS_STATE_COMMIT_START;
3998 wake_up(&root->fs_info->transaction_blocked_wait);
4000 cur_trans->state = TRANS_STATE_UNBLOCKED;
4001 wake_up(&root->fs_info->transaction_wait);
4003 btrfs_destroy_delayed_inodes(root);
4004 btrfs_assert_delayed_root_empty(root);
4006 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4007 EXTENT_DIRTY);
4008 btrfs_destroy_pinned_extent(root,
4009 root->fs_info->pinned_extents);
4011 cur_trans->state =TRANS_STATE_COMPLETED;
4012 wake_up(&cur_trans->commit_wait);
4015 memset(cur_trans, 0, sizeof(*cur_trans));
4016 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4020 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4022 struct btrfs_transaction *t;
4024 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4026 spin_lock(&root->fs_info->trans_lock);
4027 while (!list_empty(&root->fs_info->trans_list)) {
4028 t = list_first_entry(&root->fs_info->trans_list,
4029 struct btrfs_transaction, list);
4030 if (t->state >= TRANS_STATE_COMMIT_START) {
4031 atomic_inc(&t->use_count);
4032 spin_unlock(&root->fs_info->trans_lock);
4033 btrfs_wait_for_commit(root, t->transid);
4034 btrfs_put_transaction(t);
4035 spin_lock(&root->fs_info->trans_lock);
4036 continue;
4038 if (t == root->fs_info->running_transaction) {
4039 t->state = TRANS_STATE_COMMIT_DOING;
4040 spin_unlock(&root->fs_info->trans_lock);
4042 * We wait for 0 num_writers since we don't hold a trans
4043 * handle open currently for this transaction.
4045 wait_event(t->writer_wait,
4046 atomic_read(&t->num_writers) == 0);
4047 } else {
4048 spin_unlock(&root->fs_info->trans_lock);
4050 btrfs_cleanup_one_transaction(t, root);
4052 spin_lock(&root->fs_info->trans_lock);
4053 if (t == root->fs_info->running_transaction)
4054 root->fs_info->running_transaction = NULL;
4055 list_del_init(&t->list);
4056 spin_unlock(&root->fs_info->trans_lock);
4058 btrfs_put_transaction(t);
4059 trace_btrfs_transaction_commit(root);
4060 spin_lock(&root->fs_info->trans_lock);
4062 spin_unlock(&root->fs_info->trans_lock);
4063 btrfs_destroy_all_ordered_extents(root->fs_info);
4064 btrfs_destroy_delayed_inodes(root);
4065 btrfs_assert_delayed_root_empty(root);
4066 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4067 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4068 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4070 return 0;
4073 static struct extent_io_ops btree_extent_io_ops = {
4074 .readpage_end_io_hook = btree_readpage_end_io_hook,
4075 .readpage_io_failed_hook = btree_io_failed_hook,
4076 .submit_bio_hook = btree_submit_bio_hook,
4077 /* note we're sharing with inode.c for the merge bio hook */
4078 .merge_bio_hook = btrfs_merge_bio_hook,