Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[linux-2.6.git] / fs / aio.c
blob08159ed13649cacbec1825065e24b2b5b61be267
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
47 #include "internal.h"
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
52 struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head;
56 unsigned tail;
58 unsigned magic;
59 unsigned compat_features;
60 unsigned incompat_features;
61 unsigned header_length; /* size of aio_ring */
64 struct io_event io_events[0];
65 }; /* 128 bytes + ring size */
67 #define AIO_RING_PAGES 8
69 struct kioctx_table {
70 struct rcu_head rcu;
71 unsigned nr;
72 struct kioctx *table[];
75 struct kioctx_cpu {
76 unsigned reqs_available;
79 struct kioctx {
80 struct percpu_ref users;
81 atomic_t dead;
83 struct percpu_ref reqs;
85 unsigned long user_id;
87 struct __percpu kioctx_cpu *cpu;
90 * For percpu reqs_available, number of slots we move to/from global
91 * counter at a time:
93 unsigned req_batch;
95 * This is what userspace passed to io_setup(), it's not used for
96 * anything but counting against the global max_reqs quota.
98 * The real limit is nr_events - 1, which will be larger (see
99 * aio_setup_ring())
101 unsigned max_reqs;
103 /* Size of ringbuffer, in units of struct io_event */
104 unsigned nr_events;
106 unsigned long mmap_base;
107 unsigned long mmap_size;
109 struct page **ring_pages;
110 long nr_pages;
112 struct work_struct free_work;
114 struct {
116 * This counts the number of available slots in the ringbuffer,
117 * so we avoid overflowing it: it's decremented (if positive)
118 * when allocating a kiocb and incremented when the resulting
119 * io_event is pulled off the ringbuffer.
121 * We batch accesses to it with a percpu version.
123 atomic_t reqs_available;
124 } ____cacheline_aligned_in_smp;
126 struct {
127 spinlock_t ctx_lock;
128 struct list_head active_reqs; /* used for cancellation */
129 } ____cacheline_aligned_in_smp;
131 struct {
132 struct mutex ring_lock;
133 wait_queue_head_t wait;
134 } ____cacheline_aligned_in_smp;
136 struct {
137 unsigned tail;
138 spinlock_t completion_lock;
139 } ____cacheline_aligned_in_smp;
141 struct page *internal_pages[AIO_RING_PAGES];
142 struct file *aio_ring_file;
144 unsigned id;
147 /*------ sysctl variables----*/
148 static DEFINE_SPINLOCK(aio_nr_lock);
149 unsigned long aio_nr; /* current system wide number of aio requests */
150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
151 /*----end sysctl variables---*/
153 static struct kmem_cache *kiocb_cachep;
154 static struct kmem_cache *kioctx_cachep;
156 static struct vfsmount *aio_mnt;
158 static const struct file_operations aio_ring_fops;
159 static const struct address_space_operations aio_ctx_aops;
161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
163 struct qstr this = QSTR_INIT("[aio]", 5);
164 struct file *file;
165 struct path path;
166 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
167 if (IS_ERR(inode))
168 return ERR_CAST(inode);
170 inode->i_mapping->a_ops = &aio_ctx_aops;
171 inode->i_mapping->private_data = ctx;
172 inode->i_size = PAGE_SIZE * nr_pages;
174 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
175 if (!path.dentry) {
176 iput(inode);
177 return ERR_PTR(-ENOMEM);
179 path.mnt = mntget(aio_mnt);
181 d_instantiate(path.dentry, inode);
182 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
183 if (IS_ERR(file)) {
184 path_put(&path);
185 return file;
188 file->f_flags = O_RDWR;
189 file->private_data = ctx;
190 return file;
193 static struct dentry *aio_mount(struct file_system_type *fs_type,
194 int flags, const char *dev_name, void *data)
196 static const struct dentry_operations ops = {
197 .d_dname = simple_dname,
199 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
202 /* aio_setup
203 * Creates the slab caches used by the aio routines, panic on
204 * failure as this is done early during the boot sequence.
206 static int __init aio_setup(void)
208 static struct file_system_type aio_fs = {
209 .name = "aio",
210 .mount = aio_mount,
211 .kill_sb = kill_anon_super,
213 aio_mnt = kern_mount(&aio_fs);
214 if (IS_ERR(aio_mnt))
215 panic("Failed to create aio fs mount.");
217 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
218 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
220 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
222 return 0;
224 __initcall(aio_setup);
226 static void put_aio_ring_file(struct kioctx *ctx)
228 struct file *aio_ring_file = ctx->aio_ring_file;
229 if (aio_ring_file) {
230 truncate_setsize(aio_ring_file->f_inode, 0);
232 /* Prevent further access to the kioctx from migratepages */
233 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
234 aio_ring_file->f_inode->i_mapping->private_data = NULL;
235 ctx->aio_ring_file = NULL;
236 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
238 fput(aio_ring_file);
242 static void aio_free_ring(struct kioctx *ctx)
244 int i;
246 for (i = 0; i < ctx->nr_pages; i++) {
247 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
248 page_count(ctx->ring_pages[i]));
249 put_page(ctx->ring_pages[i]);
252 put_aio_ring_file(ctx);
254 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
255 kfree(ctx->ring_pages);
256 ctx->ring_pages = NULL;
260 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
262 vma->vm_ops = &generic_file_vm_ops;
263 return 0;
266 static const struct file_operations aio_ring_fops = {
267 .mmap = aio_ring_mmap,
270 static int aio_set_page_dirty(struct page *page)
272 return 0;
275 #if IS_ENABLED(CONFIG_MIGRATION)
276 static int aio_migratepage(struct address_space *mapping, struct page *new,
277 struct page *old, enum migrate_mode mode)
279 struct kioctx *ctx;
280 unsigned long flags;
281 int rc;
283 /* Writeback must be complete */
284 BUG_ON(PageWriteback(old));
285 put_page(old);
287 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
288 if (rc != MIGRATEPAGE_SUCCESS) {
289 get_page(old);
290 return rc;
293 get_page(new);
295 /* We can potentially race against kioctx teardown here. Use the
296 * address_space's private data lock to protect the mapping's
297 * private_data.
299 spin_lock(&mapping->private_lock);
300 ctx = mapping->private_data;
301 if (ctx) {
302 pgoff_t idx;
303 spin_lock_irqsave(&ctx->completion_lock, flags);
304 migrate_page_copy(new, old);
305 idx = old->index;
306 if (idx < (pgoff_t)ctx->nr_pages)
307 ctx->ring_pages[idx] = new;
308 spin_unlock_irqrestore(&ctx->completion_lock, flags);
309 } else
310 rc = -EBUSY;
311 spin_unlock(&mapping->private_lock);
313 return rc;
315 #endif
317 static const struct address_space_operations aio_ctx_aops = {
318 .set_page_dirty = aio_set_page_dirty,
319 #if IS_ENABLED(CONFIG_MIGRATION)
320 .migratepage = aio_migratepage,
321 #endif
324 static int aio_setup_ring(struct kioctx *ctx)
326 struct aio_ring *ring;
327 unsigned nr_events = ctx->max_reqs;
328 struct mm_struct *mm = current->mm;
329 unsigned long size, populate;
330 int nr_pages;
331 int i;
332 struct file *file;
334 /* Compensate for the ring buffer's head/tail overlap entry */
335 nr_events += 2; /* 1 is required, 2 for good luck */
337 size = sizeof(struct aio_ring);
338 size += sizeof(struct io_event) * nr_events;
340 nr_pages = PFN_UP(size);
341 if (nr_pages < 0)
342 return -EINVAL;
344 file = aio_private_file(ctx, nr_pages);
345 if (IS_ERR(file)) {
346 ctx->aio_ring_file = NULL;
347 return -EAGAIN;
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page;
352 page = find_or_create_page(file->f_inode->i_mapping,
353 i, GFP_HIGHUSER | __GFP_ZERO);
354 if (!page)
355 break;
356 pr_debug("pid(%d) page[%d]->count=%d\n",
357 current->pid, i, page_count(page));
358 SetPageUptodate(page);
359 SetPageDirty(page);
360 unlock_page(page);
362 ctx->aio_ring_file = file;
363 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
364 / sizeof(struct io_event);
366 ctx->ring_pages = ctx->internal_pages;
367 if (nr_pages > AIO_RING_PAGES) {
368 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
369 GFP_KERNEL);
370 if (!ctx->ring_pages)
371 return -ENOMEM;
374 ctx->mmap_size = nr_pages * PAGE_SIZE;
375 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
377 down_write(&mm->mmap_sem);
378 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
379 PROT_READ | PROT_WRITE,
380 MAP_SHARED | MAP_POPULATE, 0, &populate);
381 if (IS_ERR((void *)ctx->mmap_base)) {
382 up_write(&mm->mmap_sem);
383 ctx->mmap_size = 0;
384 aio_free_ring(ctx);
385 return -EAGAIN;
388 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
390 /* We must do this while still holding mmap_sem for write, as we
391 * need to be protected against userspace attempting to mremap()
392 * or munmap() the ring buffer.
394 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
395 1, 0, ctx->ring_pages, NULL);
397 /* Dropping the reference here is safe as the page cache will hold
398 * onto the pages for us. It is also required so that page migration
399 * can unmap the pages and get the right reference count.
401 for (i = 0; i < ctx->nr_pages; i++)
402 put_page(ctx->ring_pages[i]);
404 up_write(&mm->mmap_sem);
406 if (unlikely(ctx->nr_pages != nr_pages)) {
407 aio_free_ring(ctx);
408 return -EAGAIN;
411 ctx->user_id = ctx->mmap_base;
412 ctx->nr_events = nr_events; /* trusted copy */
414 ring = kmap_atomic(ctx->ring_pages[0]);
415 ring->nr = nr_events; /* user copy */
416 ring->id = ~0U;
417 ring->head = ring->tail = 0;
418 ring->magic = AIO_RING_MAGIC;
419 ring->compat_features = AIO_RING_COMPAT_FEATURES;
420 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
421 ring->header_length = sizeof(struct aio_ring);
422 kunmap_atomic(ring);
423 flush_dcache_page(ctx->ring_pages[0]);
425 return 0;
428 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
429 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
430 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
432 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
434 struct kioctx *ctx = req->ki_ctx;
435 unsigned long flags;
437 spin_lock_irqsave(&ctx->ctx_lock, flags);
439 if (!req->ki_list.next)
440 list_add(&req->ki_list, &ctx->active_reqs);
442 req->ki_cancel = cancel;
444 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
446 EXPORT_SYMBOL(kiocb_set_cancel_fn);
448 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
450 kiocb_cancel_fn *old, *cancel;
453 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
454 * actually has a cancel function, hence the cmpxchg()
457 cancel = ACCESS_ONCE(kiocb->ki_cancel);
458 do {
459 if (!cancel || cancel == KIOCB_CANCELLED)
460 return -EINVAL;
462 old = cancel;
463 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
464 } while (cancel != old);
466 return cancel(kiocb);
469 static void free_ioctx(struct work_struct *work)
471 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
473 pr_debug("freeing %p\n", ctx);
475 aio_free_ring(ctx);
476 free_percpu(ctx->cpu);
477 kmem_cache_free(kioctx_cachep, ctx);
480 static void free_ioctx_reqs(struct percpu_ref *ref)
482 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
484 INIT_WORK(&ctx->free_work, free_ioctx);
485 schedule_work(&ctx->free_work);
489 * When this function runs, the kioctx has been removed from the "hash table"
490 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
491 * now it's safe to cancel any that need to be.
493 static void free_ioctx_users(struct percpu_ref *ref)
495 struct kioctx *ctx = container_of(ref, struct kioctx, users);
496 struct kiocb *req;
498 spin_lock_irq(&ctx->ctx_lock);
500 while (!list_empty(&ctx->active_reqs)) {
501 req = list_first_entry(&ctx->active_reqs,
502 struct kiocb, ki_list);
504 list_del_init(&req->ki_list);
505 kiocb_cancel(ctx, req);
508 spin_unlock_irq(&ctx->ctx_lock);
510 percpu_ref_kill(&ctx->reqs);
511 percpu_ref_put(&ctx->reqs);
514 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
516 unsigned i, new_nr;
517 struct kioctx_table *table, *old;
518 struct aio_ring *ring;
520 spin_lock(&mm->ioctx_lock);
521 rcu_read_lock();
522 table = rcu_dereference(mm->ioctx_table);
524 while (1) {
525 if (table)
526 for (i = 0; i < table->nr; i++)
527 if (!table->table[i]) {
528 ctx->id = i;
529 table->table[i] = ctx;
530 rcu_read_unlock();
531 spin_unlock(&mm->ioctx_lock);
533 ring = kmap_atomic(ctx->ring_pages[0]);
534 ring->id = ctx->id;
535 kunmap_atomic(ring);
536 return 0;
539 new_nr = (table ? table->nr : 1) * 4;
541 rcu_read_unlock();
542 spin_unlock(&mm->ioctx_lock);
544 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
545 new_nr, GFP_KERNEL);
546 if (!table)
547 return -ENOMEM;
549 table->nr = new_nr;
551 spin_lock(&mm->ioctx_lock);
552 rcu_read_lock();
553 old = rcu_dereference(mm->ioctx_table);
555 if (!old) {
556 rcu_assign_pointer(mm->ioctx_table, table);
557 } else if (table->nr > old->nr) {
558 memcpy(table->table, old->table,
559 old->nr * sizeof(struct kioctx *));
561 rcu_assign_pointer(mm->ioctx_table, table);
562 kfree_rcu(old, rcu);
563 } else {
564 kfree(table);
565 table = old;
570 static void aio_nr_sub(unsigned nr)
572 spin_lock(&aio_nr_lock);
573 if (WARN_ON(aio_nr - nr > aio_nr))
574 aio_nr = 0;
575 else
576 aio_nr -= nr;
577 spin_unlock(&aio_nr_lock);
580 /* ioctx_alloc
581 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
583 static struct kioctx *ioctx_alloc(unsigned nr_events)
585 struct mm_struct *mm = current->mm;
586 struct kioctx *ctx;
587 int err = -ENOMEM;
590 * We keep track of the number of available ringbuffer slots, to prevent
591 * overflow (reqs_available), and we also use percpu counters for this.
593 * So since up to half the slots might be on other cpu's percpu counters
594 * and unavailable, double nr_events so userspace sees what they
595 * expected: additionally, we move req_batch slots to/from percpu
596 * counters at a time, so make sure that isn't 0:
598 nr_events = max(nr_events, num_possible_cpus() * 4);
599 nr_events *= 2;
601 /* Prevent overflows */
602 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
603 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
604 pr_debug("ENOMEM: nr_events too high\n");
605 return ERR_PTR(-EINVAL);
608 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
609 return ERR_PTR(-EAGAIN);
611 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
612 if (!ctx)
613 return ERR_PTR(-ENOMEM);
615 ctx->max_reqs = nr_events;
617 if (percpu_ref_init(&ctx->users, free_ioctx_users))
618 goto err;
620 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
621 goto err;
623 spin_lock_init(&ctx->ctx_lock);
624 spin_lock_init(&ctx->completion_lock);
625 mutex_init(&ctx->ring_lock);
626 init_waitqueue_head(&ctx->wait);
628 INIT_LIST_HEAD(&ctx->active_reqs);
630 ctx->cpu = alloc_percpu(struct kioctx_cpu);
631 if (!ctx->cpu)
632 goto err;
634 if (aio_setup_ring(ctx) < 0)
635 goto err;
637 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
638 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
639 if (ctx->req_batch < 1)
640 ctx->req_batch = 1;
642 /* limit the number of system wide aios */
643 spin_lock(&aio_nr_lock);
644 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
645 aio_nr + nr_events < aio_nr) {
646 spin_unlock(&aio_nr_lock);
647 err = -EAGAIN;
648 goto err;
650 aio_nr += ctx->max_reqs;
651 spin_unlock(&aio_nr_lock);
653 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
655 err = ioctx_add_table(ctx, mm);
656 if (err)
657 goto err_cleanup;
659 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
660 ctx, ctx->user_id, mm, ctx->nr_events);
661 return ctx;
663 err_cleanup:
664 aio_nr_sub(ctx->max_reqs);
665 err:
666 free_percpu(ctx->cpu);
667 free_percpu(ctx->reqs.pcpu_count);
668 free_percpu(ctx->users.pcpu_count);
669 kmem_cache_free(kioctx_cachep, ctx);
670 pr_debug("error allocating ioctx %d\n", err);
671 return ERR_PTR(err);
674 /* kill_ioctx
675 * Cancels all outstanding aio requests on an aio context. Used
676 * when the processes owning a context have all exited to encourage
677 * the rapid destruction of the kioctx.
679 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
681 if (!atomic_xchg(&ctx->dead, 1)) {
682 struct kioctx_table *table;
684 spin_lock(&mm->ioctx_lock);
685 rcu_read_lock();
686 table = rcu_dereference(mm->ioctx_table);
688 WARN_ON(ctx != table->table[ctx->id]);
689 table->table[ctx->id] = NULL;
690 rcu_read_unlock();
691 spin_unlock(&mm->ioctx_lock);
693 /* percpu_ref_kill() will do the necessary call_rcu() */
694 wake_up_all(&ctx->wait);
697 * It'd be more correct to do this in free_ioctx(), after all
698 * the outstanding kiocbs have finished - but by then io_destroy
699 * has already returned, so io_setup() could potentially return
700 * -EAGAIN with no ioctxs actually in use (as far as userspace
701 * could tell).
703 aio_nr_sub(ctx->max_reqs);
705 if (ctx->mmap_size)
706 vm_munmap(ctx->mmap_base, ctx->mmap_size);
708 percpu_ref_kill(&ctx->users);
712 /* wait_on_sync_kiocb:
713 * Waits on the given sync kiocb to complete.
715 ssize_t wait_on_sync_kiocb(struct kiocb *req)
717 while (!req->ki_ctx) {
718 set_current_state(TASK_UNINTERRUPTIBLE);
719 if (req->ki_ctx)
720 break;
721 io_schedule();
723 __set_current_state(TASK_RUNNING);
724 return req->ki_user_data;
726 EXPORT_SYMBOL(wait_on_sync_kiocb);
729 * exit_aio: called when the last user of mm goes away. At this point, there is
730 * no way for any new requests to be submited or any of the io_* syscalls to be
731 * called on the context.
733 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
734 * them.
736 void exit_aio(struct mm_struct *mm)
738 struct kioctx_table *table;
739 struct kioctx *ctx;
740 unsigned i = 0;
742 while (1) {
743 rcu_read_lock();
744 table = rcu_dereference(mm->ioctx_table);
746 do {
747 if (!table || i >= table->nr) {
748 rcu_read_unlock();
749 rcu_assign_pointer(mm->ioctx_table, NULL);
750 if (table)
751 kfree(table);
752 return;
755 ctx = table->table[i++];
756 } while (!ctx);
758 rcu_read_unlock();
761 * We don't need to bother with munmap() here -
762 * exit_mmap(mm) is coming and it'll unmap everything.
763 * Since aio_free_ring() uses non-zero ->mmap_size
764 * as indicator that it needs to unmap the area,
765 * just set it to 0; aio_free_ring() is the only
766 * place that uses ->mmap_size, so it's safe.
768 ctx->mmap_size = 0;
770 kill_ioctx(mm, ctx);
774 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
776 struct kioctx_cpu *kcpu;
778 preempt_disable();
779 kcpu = this_cpu_ptr(ctx->cpu);
781 kcpu->reqs_available += nr;
782 while (kcpu->reqs_available >= ctx->req_batch * 2) {
783 kcpu->reqs_available -= ctx->req_batch;
784 atomic_add(ctx->req_batch, &ctx->reqs_available);
787 preempt_enable();
790 static bool get_reqs_available(struct kioctx *ctx)
792 struct kioctx_cpu *kcpu;
793 bool ret = false;
795 preempt_disable();
796 kcpu = this_cpu_ptr(ctx->cpu);
798 if (!kcpu->reqs_available) {
799 int old, avail = atomic_read(&ctx->reqs_available);
801 do {
802 if (avail < ctx->req_batch)
803 goto out;
805 old = avail;
806 avail = atomic_cmpxchg(&ctx->reqs_available,
807 avail, avail - ctx->req_batch);
808 } while (avail != old);
810 kcpu->reqs_available += ctx->req_batch;
813 ret = true;
814 kcpu->reqs_available--;
815 out:
816 preempt_enable();
817 return ret;
820 /* aio_get_req
821 * Allocate a slot for an aio request.
822 * Returns NULL if no requests are free.
824 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
826 struct kiocb *req;
828 if (!get_reqs_available(ctx))
829 return NULL;
831 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
832 if (unlikely(!req))
833 goto out_put;
835 percpu_ref_get(&ctx->reqs);
837 req->ki_ctx = ctx;
838 return req;
839 out_put:
840 put_reqs_available(ctx, 1);
841 return NULL;
844 static void kiocb_free(struct kiocb *req)
846 if (req->ki_filp)
847 fput(req->ki_filp);
848 if (req->ki_eventfd != NULL)
849 eventfd_ctx_put(req->ki_eventfd);
850 kmem_cache_free(kiocb_cachep, req);
853 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
855 struct aio_ring __user *ring = (void __user *)ctx_id;
856 struct mm_struct *mm = current->mm;
857 struct kioctx *ctx, *ret = NULL;
858 struct kioctx_table *table;
859 unsigned id;
861 if (get_user(id, &ring->id))
862 return NULL;
864 rcu_read_lock();
865 table = rcu_dereference(mm->ioctx_table);
867 if (!table || id >= table->nr)
868 goto out;
870 ctx = table->table[id];
871 if (ctx && ctx->user_id == ctx_id) {
872 percpu_ref_get(&ctx->users);
873 ret = ctx;
875 out:
876 rcu_read_unlock();
877 return ret;
880 /* aio_complete
881 * Called when the io request on the given iocb is complete.
883 void aio_complete(struct kiocb *iocb, long res, long res2)
885 struct kioctx *ctx = iocb->ki_ctx;
886 struct aio_ring *ring;
887 struct io_event *ev_page, *event;
888 unsigned long flags;
889 unsigned tail, pos;
892 * Special case handling for sync iocbs:
893 * - events go directly into the iocb for fast handling
894 * - the sync task with the iocb in its stack holds the single iocb
895 * ref, no other paths have a way to get another ref
896 * - the sync task helpfully left a reference to itself in the iocb
898 if (is_sync_kiocb(iocb)) {
899 iocb->ki_user_data = res;
900 smp_wmb();
901 iocb->ki_ctx = ERR_PTR(-EXDEV);
902 wake_up_process(iocb->ki_obj.tsk);
903 return;
906 if (iocb->ki_list.next) {
907 unsigned long flags;
909 spin_lock_irqsave(&ctx->ctx_lock, flags);
910 list_del(&iocb->ki_list);
911 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
915 * Add a completion event to the ring buffer. Must be done holding
916 * ctx->completion_lock to prevent other code from messing with the tail
917 * pointer since we might be called from irq context.
919 spin_lock_irqsave(&ctx->completion_lock, flags);
921 tail = ctx->tail;
922 pos = tail + AIO_EVENTS_OFFSET;
924 if (++tail >= ctx->nr_events)
925 tail = 0;
927 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
928 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
930 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
931 event->data = iocb->ki_user_data;
932 event->res = res;
933 event->res2 = res2;
935 kunmap_atomic(ev_page);
936 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
938 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
939 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
940 res, res2);
942 /* after flagging the request as done, we
943 * must never even look at it again
945 smp_wmb(); /* make event visible before updating tail */
947 ctx->tail = tail;
949 ring = kmap_atomic(ctx->ring_pages[0]);
950 ring->tail = tail;
951 kunmap_atomic(ring);
952 flush_dcache_page(ctx->ring_pages[0]);
954 spin_unlock_irqrestore(&ctx->completion_lock, flags);
956 pr_debug("added to ring %p at [%u]\n", iocb, tail);
959 * Check if the user asked us to deliver the result through an
960 * eventfd. The eventfd_signal() function is safe to be called
961 * from IRQ context.
963 if (iocb->ki_eventfd != NULL)
964 eventfd_signal(iocb->ki_eventfd, 1);
966 /* everything turned out well, dispose of the aiocb. */
967 kiocb_free(iocb);
970 * We have to order our ring_info tail store above and test
971 * of the wait list below outside the wait lock. This is
972 * like in wake_up_bit() where clearing a bit has to be
973 * ordered with the unlocked test.
975 smp_mb();
977 if (waitqueue_active(&ctx->wait))
978 wake_up(&ctx->wait);
980 percpu_ref_put(&ctx->reqs);
982 EXPORT_SYMBOL(aio_complete);
984 /* aio_read_events
985 * Pull an event off of the ioctx's event ring. Returns the number of
986 * events fetched
988 static long aio_read_events_ring(struct kioctx *ctx,
989 struct io_event __user *event, long nr)
991 struct aio_ring *ring;
992 unsigned head, tail, pos;
993 long ret = 0;
994 int copy_ret;
996 mutex_lock(&ctx->ring_lock);
998 ring = kmap_atomic(ctx->ring_pages[0]);
999 head = ring->head;
1000 tail = ring->tail;
1001 kunmap_atomic(ring);
1003 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1005 if (head == tail)
1006 goto out;
1008 while (ret < nr) {
1009 long avail;
1010 struct io_event *ev;
1011 struct page *page;
1013 avail = (head <= tail ? tail : ctx->nr_events) - head;
1014 if (head == tail)
1015 break;
1017 avail = min(avail, nr - ret);
1018 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1019 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1021 pos = head + AIO_EVENTS_OFFSET;
1022 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1023 pos %= AIO_EVENTS_PER_PAGE;
1025 ev = kmap(page);
1026 copy_ret = copy_to_user(event + ret, ev + pos,
1027 sizeof(*ev) * avail);
1028 kunmap(page);
1030 if (unlikely(copy_ret)) {
1031 ret = -EFAULT;
1032 goto out;
1035 ret += avail;
1036 head += avail;
1037 head %= ctx->nr_events;
1040 ring = kmap_atomic(ctx->ring_pages[0]);
1041 ring->head = head;
1042 kunmap_atomic(ring);
1043 flush_dcache_page(ctx->ring_pages[0]);
1045 pr_debug("%li h%u t%u\n", ret, head, tail);
1047 put_reqs_available(ctx, ret);
1048 out:
1049 mutex_unlock(&ctx->ring_lock);
1051 return ret;
1054 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1055 struct io_event __user *event, long *i)
1057 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1059 if (ret > 0)
1060 *i += ret;
1062 if (unlikely(atomic_read(&ctx->dead)))
1063 ret = -EINVAL;
1065 if (!*i)
1066 *i = ret;
1068 return ret < 0 || *i >= min_nr;
1071 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1072 struct io_event __user *event,
1073 struct timespec __user *timeout)
1075 ktime_t until = { .tv64 = KTIME_MAX };
1076 long ret = 0;
1078 if (timeout) {
1079 struct timespec ts;
1081 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1082 return -EFAULT;
1084 until = timespec_to_ktime(ts);
1088 * Note that aio_read_events() is being called as the conditional - i.e.
1089 * we're calling it after prepare_to_wait() has set task state to
1090 * TASK_INTERRUPTIBLE.
1092 * But aio_read_events() can block, and if it blocks it's going to flip
1093 * the task state back to TASK_RUNNING.
1095 * This should be ok, provided it doesn't flip the state back to
1096 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1097 * will only happen if the mutex_lock() call blocks, and we then find
1098 * the ringbuffer empty. So in practice we should be ok, but it's
1099 * something to be aware of when touching this code.
1101 wait_event_interruptible_hrtimeout(ctx->wait,
1102 aio_read_events(ctx, min_nr, nr, event, &ret), until);
1104 if (!ret && signal_pending(current))
1105 ret = -EINTR;
1107 return ret;
1110 /* sys_io_setup:
1111 * Create an aio_context capable of receiving at least nr_events.
1112 * ctxp must not point to an aio_context that already exists, and
1113 * must be initialized to 0 prior to the call. On successful
1114 * creation of the aio_context, *ctxp is filled in with the resulting
1115 * handle. May fail with -EINVAL if *ctxp is not initialized,
1116 * if the specified nr_events exceeds internal limits. May fail
1117 * with -EAGAIN if the specified nr_events exceeds the user's limit
1118 * of available events. May fail with -ENOMEM if insufficient kernel
1119 * resources are available. May fail with -EFAULT if an invalid
1120 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1121 * implemented.
1123 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1125 struct kioctx *ioctx = NULL;
1126 unsigned long ctx;
1127 long ret;
1129 ret = get_user(ctx, ctxp);
1130 if (unlikely(ret))
1131 goto out;
1133 ret = -EINVAL;
1134 if (unlikely(ctx || nr_events == 0)) {
1135 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1136 ctx, nr_events);
1137 goto out;
1140 ioctx = ioctx_alloc(nr_events);
1141 ret = PTR_ERR(ioctx);
1142 if (!IS_ERR(ioctx)) {
1143 ret = put_user(ioctx->user_id, ctxp);
1144 if (ret)
1145 kill_ioctx(current->mm, ioctx);
1146 percpu_ref_put(&ioctx->users);
1149 out:
1150 return ret;
1153 /* sys_io_destroy:
1154 * Destroy the aio_context specified. May cancel any outstanding
1155 * AIOs and block on completion. Will fail with -ENOSYS if not
1156 * implemented. May fail with -EINVAL if the context pointed to
1157 * is invalid.
1159 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1161 struct kioctx *ioctx = lookup_ioctx(ctx);
1162 if (likely(NULL != ioctx)) {
1163 kill_ioctx(current->mm, ioctx);
1164 percpu_ref_put(&ioctx->users);
1165 return 0;
1167 pr_debug("EINVAL: io_destroy: invalid context id\n");
1168 return -EINVAL;
1171 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1172 unsigned long, loff_t);
1174 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1175 int rw, char __user *buf,
1176 unsigned long *nr_segs,
1177 struct iovec **iovec,
1178 bool compat)
1180 ssize_t ret;
1182 *nr_segs = kiocb->ki_nbytes;
1184 #ifdef CONFIG_COMPAT
1185 if (compat)
1186 ret = compat_rw_copy_check_uvector(rw,
1187 (struct compat_iovec __user *)buf,
1188 *nr_segs, 1, *iovec, iovec);
1189 else
1190 #endif
1191 ret = rw_copy_check_uvector(rw,
1192 (struct iovec __user *)buf,
1193 *nr_segs, 1, *iovec, iovec);
1194 if (ret < 0)
1195 return ret;
1197 /* ki_nbytes now reflect bytes instead of segs */
1198 kiocb->ki_nbytes = ret;
1199 return 0;
1202 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1203 int rw, char __user *buf,
1204 unsigned long *nr_segs,
1205 struct iovec *iovec)
1207 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1208 return -EFAULT;
1210 iovec->iov_base = buf;
1211 iovec->iov_len = kiocb->ki_nbytes;
1212 *nr_segs = 1;
1213 return 0;
1217 * aio_setup_iocb:
1218 * Performs the initial checks and aio retry method
1219 * setup for the kiocb at the time of io submission.
1221 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1222 char __user *buf, bool compat)
1224 struct file *file = req->ki_filp;
1225 ssize_t ret;
1226 unsigned long nr_segs;
1227 int rw;
1228 fmode_t mode;
1229 aio_rw_op *rw_op;
1230 struct iovec inline_vec, *iovec = &inline_vec;
1232 switch (opcode) {
1233 case IOCB_CMD_PREAD:
1234 case IOCB_CMD_PREADV:
1235 mode = FMODE_READ;
1236 rw = READ;
1237 rw_op = file->f_op->aio_read;
1238 goto rw_common;
1240 case IOCB_CMD_PWRITE:
1241 case IOCB_CMD_PWRITEV:
1242 mode = FMODE_WRITE;
1243 rw = WRITE;
1244 rw_op = file->f_op->aio_write;
1245 goto rw_common;
1246 rw_common:
1247 if (unlikely(!(file->f_mode & mode)))
1248 return -EBADF;
1250 if (!rw_op)
1251 return -EINVAL;
1253 ret = (opcode == IOCB_CMD_PREADV ||
1254 opcode == IOCB_CMD_PWRITEV)
1255 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1256 &iovec, compat)
1257 : aio_setup_single_vector(req, rw, buf, &nr_segs,
1258 iovec);
1259 if (ret)
1260 return ret;
1262 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1263 if (ret < 0) {
1264 if (iovec != &inline_vec)
1265 kfree(iovec);
1266 return ret;
1269 req->ki_nbytes = ret;
1271 /* XXX: move/kill - rw_verify_area()? */
1272 /* This matches the pread()/pwrite() logic */
1273 if (req->ki_pos < 0) {
1274 ret = -EINVAL;
1275 break;
1278 if (rw == WRITE)
1279 file_start_write(file);
1281 ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1283 if (rw == WRITE)
1284 file_end_write(file);
1285 break;
1287 case IOCB_CMD_FDSYNC:
1288 if (!file->f_op->aio_fsync)
1289 return -EINVAL;
1291 ret = file->f_op->aio_fsync(req, 1);
1292 break;
1294 case IOCB_CMD_FSYNC:
1295 if (!file->f_op->aio_fsync)
1296 return -EINVAL;
1298 ret = file->f_op->aio_fsync(req, 0);
1299 break;
1301 default:
1302 pr_debug("EINVAL: no operation provided\n");
1303 return -EINVAL;
1306 if (iovec != &inline_vec)
1307 kfree(iovec);
1309 if (ret != -EIOCBQUEUED) {
1311 * There's no easy way to restart the syscall since other AIO's
1312 * may be already running. Just fail this IO with EINTR.
1314 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1315 ret == -ERESTARTNOHAND ||
1316 ret == -ERESTART_RESTARTBLOCK))
1317 ret = -EINTR;
1318 aio_complete(req, ret, 0);
1321 return 0;
1324 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1325 struct iocb *iocb, bool compat)
1327 struct kiocb *req;
1328 ssize_t ret;
1330 /* enforce forwards compatibility on users */
1331 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1332 pr_debug("EINVAL: reserve field set\n");
1333 return -EINVAL;
1336 /* prevent overflows */
1337 if (unlikely(
1338 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1339 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1340 ((ssize_t)iocb->aio_nbytes < 0)
1341 )) {
1342 pr_debug("EINVAL: io_submit: overflow check\n");
1343 return -EINVAL;
1346 req = aio_get_req(ctx);
1347 if (unlikely(!req))
1348 return -EAGAIN;
1350 req->ki_filp = fget(iocb->aio_fildes);
1351 if (unlikely(!req->ki_filp)) {
1352 ret = -EBADF;
1353 goto out_put_req;
1356 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1358 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1359 * instance of the file* now. The file descriptor must be
1360 * an eventfd() fd, and will be signaled for each completed
1361 * event using the eventfd_signal() function.
1363 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1364 if (IS_ERR(req->ki_eventfd)) {
1365 ret = PTR_ERR(req->ki_eventfd);
1366 req->ki_eventfd = NULL;
1367 goto out_put_req;
1371 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1372 if (unlikely(ret)) {
1373 pr_debug("EFAULT: aio_key\n");
1374 goto out_put_req;
1377 req->ki_obj.user = user_iocb;
1378 req->ki_user_data = iocb->aio_data;
1379 req->ki_pos = iocb->aio_offset;
1380 req->ki_nbytes = iocb->aio_nbytes;
1382 ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1383 (char __user *)(unsigned long)iocb->aio_buf,
1384 compat);
1385 if (ret)
1386 goto out_put_req;
1388 return 0;
1389 out_put_req:
1390 put_reqs_available(ctx, 1);
1391 percpu_ref_put(&ctx->reqs);
1392 kiocb_free(req);
1393 return ret;
1396 long do_io_submit(aio_context_t ctx_id, long nr,
1397 struct iocb __user *__user *iocbpp, bool compat)
1399 struct kioctx *ctx;
1400 long ret = 0;
1401 int i = 0;
1402 struct blk_plug plug;
1404 if (unlikely(nr < 0))
1405 return -EINVAL;
1407 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1408 nr = LONG_MAX/sizeof(*iocbpp);
1410 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1411 return -EFAULT;
1413 ctx = lookup_ioctx(ctx_id);
1414 if (unlikely(!ctx)) {
1415 pr_debug("EINVAL: invalid context id\n");
1416 return -EINVAL;
1419 blk_start_plug(&plug);
1422 * AKPM: should this return a partial result if some of the IOs were
1423 * successfully submitted?
1425 for (i=0; i<nr; i++) {
1426 struct iocb __user *user_iocb;
1427 struct iocb tmp;
1429 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1430 ret = -EFAULT;
1431 break;
1434 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1435 ret = -EFAULT;
1436 break;
1439 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1440 if (ret)
1441 break;
1443 blk_finish_plug(&plug);
1445 percpu_ref_put(&ctx->users);
1446 return i ? i : ret;
1449 /* sys_io_submit:
1450 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1451 * the number of iocbs queued. May return -EINVAL if the aio_context
1452 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1453 * *iocbpp[0] is not properly initialized, if the operation specified
1454 * is invalid for the file descriptor in the iocb. May fail with
1455 * -EFAULT if any of the data structures point to invalid data. May
1456 * fail with -EBADF if the file descriptor specified in the first
1457 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1458 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1459 * fail with -ENOSYS if not implemented.
1461 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1462 struct iocb __user * __user *, iocbpp)
1464 return do_io_submit(ctx_id, nr, iocbpp, 0);
1467 /* lookup_kiocb
1468 * Finds a given iocb for cancellation.
1470 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1471 u32 key)
1473 struct list_head *pos;
1475 assert_spin_locked(&ctx->ctx_lock);
1477 if (key != KIOCB_KEY)
1478 return NULL;
1480 /* TODO: use a hash or array, this sucks. */
1481 list_for_each(pos, &ctx->active_reqs) {
1482 struct kiocb *kiocb = list_kiocb(pos);
1483 if (kiocb->ki_obj.user == iocb)
1484 return kiocb;
1486 return NULL;
1489 /* sys_io_cancel:
1490 * Attempts to cancel an iocb previously passed to io_submit. If
1491 * the operation is successfully cancelled, the resulting event is
1492 * copied into the memory pointed to by result without being placed
1493 * into the completion queue and 0 is returned. May fail with
1494 * -EFAULT if any of the data structures pointed to are invalid.
1495 * May fail with -EINVAL if aio_context specified by ctx_id is
1496 * invalid. May fail with -EAGAIN if the iocb specified was not
1497 * cancelled. Will fail with -ENOSYS if not implemented.
1499 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1500 struct io_event __user *, result)
1502 struct kioctx *ctx;
1503 struct kiocb *kiocb;
1504 u32 key;
1505 int ret;
1507 ret = get_user(key, &iocb->aio_key);
1508 if (unlikely(ret))
1509 return -EFAULT;
1511 ctx = lookup_ioctx(ctx_id);
1512 if (unlikely(!ctx))
1513 return -EINVAL;
1515 spin_lock_irq(&ctx->ctx_lock);
1517 kiocb = lookup_kiocb(ctx, iocb, key);
1518 if (kiocb)
1519 ret = kiocb_cancel(ctx, kiocb);
1520 else
1521 ret = -EINVAL;
1523 spin_unlock_irq(&ctx->ctx_lock);
1525 if (!ret) {
1527 * The result argument is no longer used - the io_event is
1528 * always delivered via the ring buffer. -EINPROGRESS indicates
1529 * cancellation is progress:
1531 ret = -EINPROGRESS;
1534 percpu_ref_put(&ctx->users);
1536 return ret;
1539 /* io_getevents:
1540 * Attempts to read at least min_nr events and up to nr events from
1541 * the completion queue for the aio_context specified by ctx_id. If
1542 * it succeeds, the number of read events is returned. May fail with
1543 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1544 * out of range, if timeout is out of range. May fail with -EFAULT
1545 * if any of the memory specified is invalid. May return 0 or
1546 * < min_nr if the timeout specified by timeout has elapsed
1547 * before sufficient events are available, where timeout == NULL
1548 * specifies an infinite timeout. Note that the timeout pointed to by
1549 * timeout is relative. Will fail with -ENOSYS if not implemented.
1551 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1552 long, min_nr,
1553 long, nr,
1554 struct io_event __user *, events,
1555 struct timespec __user *, timeout)
1557 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1558 long ret = -EINVAL;
1560 if (likely(ioctx)) {
1561 if (likely(min_nr <= nr && min_nr >= 0))
1562 ret = read_events(ioctx, min_nr, nr, events, timeout);
1563 percpu_ref_put(&ioctx->users);
1565 return ret;