MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / net / socket.c
blob275d8cf6d3beca8ddb8634fb0cebf71c5dc69adb
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro, <bir7@leland.Stanford.Edu>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/config.h>
62 #include <linux/mm.h>
63 #include <linux/smp_lock.h>
64 #include <linux/socket.h>
65 #include <linux/file.h>
66 #include <linux/net.h>
67 #include <linux/interrupt.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/init.h>
74 #include <linux/poll.h>
75 #include <linux/cache.h>
76 #include <linux/module.h>
77 #include <linux/highmem.h>
78 #include <linux/divert.h>
79 #include <linux/mount.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/compat.h>
83 #include <linux/kmod.h>
85 #ifdef CONFIG_NET_RADIO
86 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */
87 #endif /* CONFIG_NET_RADIO */
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
92 #include <net/compat.h>
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf,
99 size_t size, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf,
101 size_t size, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct * vma);
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106 struct poll_table_struct *wait);
107 static int sock_ioctl(struct inode *inode, struct file *file,
108 unsigned int cmd, unsigned long arg);
109 static int sock_fasync(int fd, struct file *filp, int on);
110 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
111 unsigned long count, loff_t *ppos);
112 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
113 unsigned long count, loff_t *ppos);
114 static ssize_t sock_sendpage(struct file *file, struct page *page,
115 int offset, size_t size, loff_t *ppos, int more);
119 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
120 * in the operation structures but are done directly via the socketcall() multiplexor.
123 static struct file_operations socket_file_ops = {
124 .owner = THIS_MODULE,
125 .llseek = no_llseek,
126 .aio_read = sock_aio_read,
127 .aio_write = sock_aio_write,
128 .poll = sock_poll,
129 .ioctl = sock_ioctl,
130 .mmap = sock_mmap,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .readv = sock_readv,
135 .writev = sock_writev,
136 .sendpage = sock_sendpage
140 * The protocol list. Each protocol is registered in here.
143 static struct net_proto_family *net_families[NPROTO];
145 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
146 static atomic_t net_family_lockct = ATOMIC_INIT(0);
147 static spinlock_t net_family_lock = SPIN_LOCK_UNLOCKED;
149 /* The strategy is: modifications net_family vector are short, do not
150 sleep and veeery rare, but read access should be free of any exclusive
151 locks.
154 static void net_family_write_lock(void)
156 spin_lock(&net_family_lock);
157 while (atomic_read(&net_family_lockct) != 0) {
158 spin_unlock(&net_family_lock);
160 yield();
162 spin_lock(&net_family_lock);
166 static __inline__ void net_family_write_unlock(void)
168 spin_unlock(&net_family_lock);
171 static __inline__ void net_family_read_lock(void)
173 atomic_inc(&net_family_lockct);
174 spin_unlock_wait(&net_family_lock);
177 static __inline__ void net_family_read_unlock(void)
179 atomic_dec(&net_family_lockct);
182 #else
183 #define net_family_write_lock() do { } while(0)
184 #define net_family_write_unlock() do { } while(0)
185 #define net_family_read_lock() do { } while(0)
186 #define net_family_read_unlock() do { } while(0)
187 #endif
191 * Statistics counters of the socket lists
194 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
197 * Support routines. Move socket addresses back and forth across the kernel/user
198 * divide and look after the messy bits.
201 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
202 16 for IP, 16 for IPX,
203 24 for IPv6,
204 about 80 for AX.25
205 must be at least one bigger than
206 the AF_UNIX size (see net/unix/af_unix.c
207 :unix_mkname()).
211 * move_addr_to_kernel - copy a socket address into kernel space
212 * @uaddr: Address in user space
213 * @kaddr: Address in kernel space
214 * @ulen: Length in user space
216 * The address is copied into kernel space. If the provided address is
217 * too long an error code of -EINVAL is returned. If the copy gives
218 * invalid addresses -EFAULT is returned. On a success 0 is returned.
221 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
223 if(ulen<0||ulen>MAX_SOCK_ADDR)
224 return -EINVAL;
225 if(ulen==0)
226 return 0;
227 if(copy_from_user(kaddr,uaddr,ulen))
228 return -EFAULT;
229 return 0;
233 * move_addr_to_user - copy an address to user space
234 * @kaddr: kernel space address
235 * @klen: length of address in kernel
236 * @uaddr: user space address
237 * @ulen: pointer to user length field
239 * The value pointed to by ulen on entry is the buffer length available.
240 * This is overwritten with the buffer space used. -EINVAL is returned
241 * if an overlong buffer is specified or a negative buffer size. -EFAULT
242 * is returned if either the buffer or the length field are not
243 * accessible.
244 * After copying the data up to the limit the user specifies, the true
245 * length of the data is written over the length limit the user
246 * specified. Zero is returned for a success.
249 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen)
251 int err;
252 int len;
254 if((err=get_user(len, ulen)))
255 return err;
256 if(len>klen)
257 len=klen;
258 if(len<0 || len> MAX_SOCK_ADDR)
259 return -EINVAL;
260 if(len)
262 if(copy_to_user(uaddr,kaddr,len))
263 return -EFAULT;
266 * "fromlen shall refer to the value before truncation.."
267 * 1003.1g
269 return __put_user(klen, ulen);
272 #define SOCKFS_MAGIC 0x534F434B
274 static kmem_cache_t * sock_inode_cachep;
276 static struct inode *sock_alloc_inode(struct super_block *sb)
278 struct socket_alloc *ei;
279 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL);
280 if (!ei)
281 return NULL;
282 init_waitqueue_head(&ei->socket.wait);
284 ei->socket.fasync_list = NULL;
285 ei->socket.state = SS_UNCONNECTED;
286 ei->socket.flags = 0;
287 ei->socket.ops = NULL;
288 ei->socket.sk = NULL;
289 ei->socket.file = NULL;
290 ei->socket.passcred = 0;
292 return &ei->vfs_inode;
295 static void sock_destroy_inode(struct inode *inode)
297 kmem_cache_free(sock_inode_cachep,
298 container_of(inode, struct socket_alloc, vfs_inode));
301 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
303 struct socket_alloc *ei = (struct socket_alloc *) foo;
305 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
306 SLAB_CTOR_CONSTRUCTOR)
307 inode_init_once(&ei->vfs_inode);
310 static int init_inodecache(void)
312 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
313 sizeof(struct socket_alloc),
314 0, SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
315 init_once, NULL);
316 if (sock_inode_cachep == NULL)
317 return -ENOMEM;
318 return 0;
321 static struct super_operations sockfs_ops = {
322 .alloc_inode = sock_alloc_inode,
323 .destroy_inode =sock_destroy_inode,
324 .statfs = simple_statfs,
327 static struct super_block *sockfs_get_sb(struct file_system_type *fs_type,
328 int flags, const char *dev_name, void *data)
330 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC);
333 static struct vfsmount *sock_mnt;
335 static struct file_system_type sock_fs_type = {
336 .name = "sockfs",
337 .get_sb = sockfs_get_sb,
338 .kill_sb = kill_anon_super,
340 static int sockfs_delete_dentry(struct dentry *dentry)
342 return 1;
344 static struct dentry_operations sockfs_dentry_operations = {
345 .d_delete = sockfs_delete_dentry,
349 * Obtains the first available file descriptor and sets it up for use.
351 * This function creates file structure and maps it to fd space
352 * of current process. On success it returns file descriptor
353 * and file struct implicitly stored in sock->file.
354 * Note that another thread may close file descriptor before we return
355 * from this function. We use the fact that now we do not refer
356 * to socket after mapping. If one day we will need it, this
357 * function will increment ref. count on file by 1.
359 * In any case returned fd MAY BE not valid!
360 * This race condition is unavoidable
361 * with shared fd spaces, we cannot solve it inside kernel,
362 * but we take care of internal coherence yet.
365 int sock_map_fd(struct socket *sock)
367 int fd;
368 struct qstr this;
369 char name[32];
372 * Find a file descriptor suitable for return to the user.
375 fd = get_unused_fd();
376 if (fd >= 0) {
377 struct file *file = get_empty_filp();
379 if (!file) {
380 put_unused_fd(fd);
381 fd = -ENFILE;
382 goto out;
385 sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino);
386 this.name = name;
387 this.len = strlen(name);
388 this.hash = SOCK_INODE(sock)->i_ino;
390 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this);
391 if (!file->f_dentry) {
392 put_filp(file);
393 put_unused_fd(fd);
394 fd = -ENOMEM;
395 goto out;
397 file->f_dentry->d_op = &sockfs_dentry_operations;
398 d_add(file->f_dentry, SOCK_INODE(sock));
399 file->f_vfsmnt = mntget(sock_mnt);
400 file->f_mapping = file->f_dentry->d_inode->i_mapping;
402 sock->file = file;
403 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
404 file->f_mode = FMODE_READ | FMODE_WRITE;
405 file->f_flags = O_RDWR;
406 file->f_pos = 0;
407 fd_install(fd, file);
410 out:
411 return fd;
415 * sockfd_lookup - Go from a file number to its socket slot
416 * @fd: file handle
417 * @err: pointer to an error code return
419 * The file handle passed in is locked and the socket it is bound
420 * too is returned. If an error occurs the err pointer is overwritten
421 * with a negative errno code and NULL is returned. The function checks
422 * for both invalid handles and passing a handle which is not a socket.
424 * On a success the socket object pointer is returned.
427 struct socket *sockfd_lookup(int fd, int *err)
429 struct file *file;
430 struct inode *inode;
431 struct socket *sock;
433 if (!(file = fget(fd)))
435 *err = -EBADF;
436 return NULL;
439 inode = file->f_dentry->d_inode;
440 if (!inode->i_sock || !(sock = SOCKET_I(inode)))
442 *err = -ENOTSOCK;
443 fput(file);
444 return NULL;
447 if (sock->file != file) {
448 printk(KERN_ERR "socki_lookup: socket file changed!\n");
449 sock->file = file;
451 return sock;
455 * sock_alloc - allocate a socket
457 * Allocate a new inode and socket object. The two are bound together
458 * and initialised. The socket is then returned. If we are out of inodes
459 * NULL is returned.
462 struct socket *sock_alloc(void)
464 struct inode * inode;
465 struct socket * sock;
467 inode = new_inode(sock_mnt->mnt_sb);
468 if (!inode)
469 return NULL;
471 sock = SOCKET_I(inode);
473 inode->i_mode = S_IFSOCK|S_IRWXUGO;
474 inode->i_sock = 1;
475 inode->i_uid = current->fsuid;
476 inode->i_gid = current->fsgid;
478 get_cpu_var(sockets_in_use)++;
479 put_cpu_var(sockets_in_use);
480 return sock;
484 * In theory you can't get an open on this inode, but /proc provides
485 * a back door. Remember to keep it shut otherwise you'll let the
486 * creepy crawlies in.
489 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
491 return -ENXIO;
494 struct file_operations bad_sock_fops = {
495 .owner = THIS_MODULE,
496 .open = sock_no_open,
500 * sock_release - close a socket
501 * @sock: socket to close
503 * The socket is released from the protocol stack if it has a release
504 * callback, and the inode is then released if the socket is bound to
505 * an inode not a file.
508 void sock_release(struct socket *sock)
510 if (sock->ops) {
511 struct module *owner = sock->ops->owner;
513 sock->ops->release(sock);
514 sock->ops = NULL;
515 module_put(owner);
518 if (sock->fasync_list)
519 printk(KERN_ERR "sock_release: fasync list not empty!\n");
521 get_cpu_var(sockets_in_use)--;
522 put_cpu_var(sockets_in_use);
523 if (!sock->file) {
524 iput(SOCK_INODE(sock));
525 return;
527 sock->file=NULL;
530 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
531 struct msghdr *msg, size_t size)
533 struct sock_iocb *si = kiocb_to_siocb(iocb);
534 int err;
536 si->sock = sock;
537 si->scm = NULL;
538 si->msg = msg;
539 si->size = size;
541 err = security_socket_sendmsg(sock, msg, size);
542 if (err)
543 return err;
545 return sock->ops->sendmsg(iocb, sock, msg, size);
548 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
550 struct kiocb iocb;
551 struct sock_iocb siocb;
552 int ret;
554 init_sync_kiocb(&iocb, NULL);
555 iocb.private = &siocb;
556 ret = __sock_sendmsg(&iocb, sock, msg, size);
557 if (-EIOCBQUEUED == ret)
558 ret = wait_on_sync_kiocb(&iocb);
559 return ret;
562 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
563 struct kvec *vec, size_t num, size_t size)
565 mm_segment_t oldfs = get_fs();
566 int result;
568 set_fs(KERNEL_DS);
570 * the following is safe, since for compiler definitions of kvec and
571 * iovec are identical, yielding the same in-core layout and alignment
573 msg->msg_iov = (struct iovec *)vec,
574 msg->msg_iovlen = num;
575 result = sock_sendmsg(sock, msg, size);
576 set_fs(oldfs);
577 return result;
580 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
581 struct msghdr *msg, size_t size, int flags)
583 int err;
584 struct sock_iocb *si = kiocb_to_siocb(iocb);
586 si->sock = sock;
587 si->scm = NULL;
588 si->msg = msg;
589 si->size = size;
590 si->flags = flags;
592 err = security_socket_recvmsg(sock, msg, size, flags);
593 if (err)
594 return err;
596 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
599 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
600 size_t size, int flags)
602 struct kiocb iocb;
603 struct sock_iocb siocb;
604 int ret;
606 init_sync_kiocb(&iocb, NULL);
607 iocb.private = &siocb;
608 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
609 if (-EIOCBQUEUED == ret)
610 ret = wait_on_sync_kiocb(&iocb);
611 return ret;
614 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
615 struct kvec *vec, size_t num,
616 size_t size, int flags)
618 mm_segment_t oldfs = get_fs();
619 int result;
621 set_fs(KERNEL_DS);
623 * the following is safe, since for compiler definitions of kvec and
624 * iovec are identical, yielding the same in-core layout and alignment
626 msg->msg_iov = (struct iovec *)vec,
627 msg->msg_iovlen = num;
628 result = sock_recvmsg(sock, msg, size, flags);
629 set_fs(oldfs);
630 return result;
633 static void sock_aio_dtor(struct kiocb *iocb)
635 kfree(iocb->private);
639 * Read data from a socket. ubuf is a user mode pointer. We make sure the user
640 * area ubuf...ubuf+size-1 is writable before asking the protocol.
643 static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf,
644 size_t size, loff_t pos)
646 struct sock_iocb *x, siocb;
647 struct socket *sock;
648 int flags;
650 if (pos != 0)
651 return -ESPIPE;
652 if (size==0) /* Match SYS5 behaviour */
653 return 0;
655 if (is_sync_kiocb(iocb))
656 x = &siocb;
657 else {
658 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
659 if (!x)
660 return -ENOMEM;
661 iocb->ki_dtor = sock_aio_dtor;
663 iocb->private = x;
664 x->kiocb = iocb;
665 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
667 x->async_msg.msg_name = NULL;
668 x->async_msg.msg_namelen = 0;
669 x->async_msg.msg_iov = &x->async_iov;
670 x->async_msg.msg_iovlen = 1;
671 x->async_msg.msg_control = NULL;
672 x->async_msg.msg_controllen = 0;
673 x->async_iov.iov_base = ubuf;
674 x->async_iov.iov_len = size;
675 flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
677 return __sock_recvmsg(iocb, sock, &x->async_msg, size, flags);
682 * Write data to a socket. We verify that the user area ubuf..ubuf+size-1
683 * is readable by the user process.
686 static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf,
687 size_t size, loff_t pos)
689 struct sock_iocb *x, siocb;
690 struct socket *sock;
692 if (pos != 0)
693 return -ESPIPE;
694 if(size==0) /* Match SYS5 behaviour */
695 return 0;
697 if (is_sync_kiocb(iocb))
698 x = &siocb;
699 else {
700 x = kmalloc(sizeof(struct sock_iocb), GFP_KERNEL);
701 if (!x)
702 return -ENOMEM;
703 iocb->ki_dtor = sock_aio_dtor;
705 iocb->private = x;
706 x->kiocb = iocb;
707 sock = SOCKET_I(iocb->ki_filp->f_dentry->d_inode);
709 x->async_msg.msg_name = NULL;
710 x->async_msg.msg_namelen = 0;
711 x->async_msg.msg_iov = &x->async_iov;
712 x->async_msg.msg_iovlen = 1;
713 x->async_msg.msg_control = NULL;
714 x->async_msg.msg_controllen = 0;
715 x->async_msg.msg_flags = !(iocb->ki_filp->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
716 if (sock->type == SOCK_SEQPACKET)
717 x->async_msg.msg_flags |= MSG_EOR;
718 x->async_iov.iov_base = (void __user *)ubuf;
719 x->async_iov.iov_len = size;
721 return __sock_sendmsg(iocb, sock, &x->async_msg, size);
724 ssize_t sock_sendpage(struct file *file, struct page *page,
725 int offset, size_t size, loff_t *ppos, int more)
727 struct socket *sock;
728 int flags;
730 sock = SOCKET_I(file->f_dentry->d_inode);
732 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
733 if (more)
734 flags |= MSG_MORE;
736 return sock->ops->sendpage(sock, page, offset, size, flags);
739 int sock_readv_writev(int type, struct inode * inode, struct file * file,
740 const struct iovec * iov, long count, size_t size)
742 struct msghdr msg;
743 struct socket *sock;
745 sock = SOCKET_I(inode);
747 msg.msg_name = NULL;
748 msg.msg_namelen = 0;
749 msg.msg_control = NULL;
750 msg.msg_controllen = 0;
751 msg.msg_iov = (struct iovec *) iov;
752 msg.msg_iovlen = count;
753 msg.msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
755 /* read() does a VERIFY_WRITE */
756 if (type == VERIFY_WRITE)
757 return sock_recvmsg(sock, &msg, size, msg.msg_flags);
759 if (sock->type == SOCK_SEQPACKET)
760 msg.msg_flags |= MSG_EOR;
762 return sock_sendmsg(sock, &msg, size);
765 static ssize_t sock_readv(struct file *file, const struct iovec *vector,
766 unsigned long count, loff_t *ppos)
768 size_t tot_len = 0;
769 int i;
770 for (i = 0 ; i < count ; i++)
771 tot_len += vector[i].iov_len;
772 return sock_readv_writev(VERIFY_WRITE, file->f_dentry->d_inode,
773 file, vector, count, tot_len);
776 static ssize_t sock_writev(struct file *file, const struct iovec *vector,
777 unsigned long count, loff_t *ppos)
779 size_t tot_len = 0;
780 int i;
781 for (i = 0 ; i < count ; i++)
782 tot_len += vector[i].iov_len;
783 return sock_readv_writev(VERIFY_READ, file->f_dentry->d_inode,
784 file, vector, count, tot_len);
789 * Atomic setting of ioctl hooks to avoid race
790 * with module unload.
793 static DECLARE_MUTEX(br_ioctl_mutex);
794 static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL;
796 void brioctl_set(int (*hook)(unsigned int, void __user *))
798 down(&br_ioctl_mutex);
799 br_ioctl_hook = hook;
800 up(&br_ioctl_mutex);
802 EXPORT_SYMBOL(brioctl_set);
804 static DECLARE_MUTEX(vlan_ioctl_mutex);
805 static int (*vlan_ioctl_hook)(void __user *arg);
807 void vlan_ioctl_set(int (*hook)(void __user *))
809 down(&vlan_ioctl_mutex);
810 vlan_ioctl_hook = hook;
811 up(&vlan_ioctl_mutex);
813 EXPORT_SYMBOL(vlan_ioctl_set);
815 static DECLARE_MUTEX(dlci_ioctl_mutex);
816 static int (*dlci_ioctl_hook)(unsigned int, void __user *);
818 void dlci_ioctl_set(int (*hook)(unsigned int, void __user *))
820 down(&dlci_ioctl_mutex);
821 dlci_ioctl_hook = hook;
822 up(&dlci_ioctl_mutex);
824 EXPORT_SYMBOL(dlci_ioctl_set);
827 * With an ioctl, arg may well be a user mode pointer, but we don't know
828 * what to do with it - that's up to the protocol still.
831 static int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
832 unsigned long arg)
834 struct socket *sock;
835 void __user *argp = (void __user *)arg;
836 int pid, err;
838 unlock_kernel();
839 sock = SOCKET_I(inode);
840 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
841 err = dev_ioctl(cmd, argp);
842 } else
843 #ifdef WIRELESS_EXT
844 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
845 err = dev_ioctl(cmd, argp);
846 } else
847 #endif /* WIRELESS_EXT */
848 switch (cmd) {
849 case FIOSETOWN:
850 case SIOCSPGRP:
851 err = -EFAULT;
852 if (get_user(pid, (int __user *)argp))
853 break;
854 err = f_setown(sock->file, pid, 1);
855 break;
856 case FIOGETOWN:
857 case SIOCGPGRP:
858 err = put_user(sock->file->f_owner.pid, (int __user *)argp);
859 break;
860 case SIOCGIFBR:
861 case SIOCSIFBR:
862 case SIOCBRADDBR:
863 case SIOCBRDELBR:
864 err = -ENOPKG;
865 if (!br_ioctl_hook)
866 request_module("bridge");
868 down(&br_ioctl_mutex);
869 if (br_ioctl_hook)
870 err = br_ioctl_hook(cmd, argp);
871 up(&br_ioctl_mutex);
872 break;
873 case SIOCGIFVLAN:
874 case SIOCSIFVLAN:
875 err = -ENOPKG;
876 if (!vlan_ioctl_hook)
877 request_module("8021q");
879 down(&vlan_ioctl_mutex);
880 if (vlan_ioctl_hook)
881 err = vlan_ioctl_hook(argp);
882 up(&vlan_ioctl_mutex);
883 break;
884 case SIOCGIFDIVERT:
885 case SIOCSIFDIVERT:
886 /* Convert this to call through a hook */
887 err = divert_ioctl(cmd, argp);
888 break;
889 case SIOCADDDLCI:
890 case SIOCDELDLCI:
891 err = -ENOPKG;
892 if (!dlci_ioctl_hook)
893 request_module("dlci");
895 if (dlci_ioctl_hook) {
896 down(&dlci_ioctl_mutex);
897 err = dlci_ioctl_hook(cmd, argp);
898 up(&dlci_ioctl_mutex);
900 break;
901 default:
902 err = sock->ops->ioctl(sock, cmd, arg);
903 break;
905 lock_kernel();
907 return err;
910 int sock_create_lite(int family, int type, int protocol, struct socket **res)
912 int err;
913 struct socket *sock = NULL;
915 err = security_socket_create(family, type, protocol, 1);
916 if (err)
917 goto out;
919 sock = sock_alloc();
920 if (!sock) {
921 err = -ENOMEM;
922 goto out;
925 security_socket_post_create(sock, family, type, protocol, 1);
926 sock->type = type;
927 out:
928 *res = sock;
929 return err;
932 /* No kernel lock held - perfect */
933 static unsigned int sock_poll(struct file *file, poll_table * wait)
935 struct socket *sock;
938 * We can't return errors to poll, so it's either yes or no.
940 sock = SOCKET_I(file->f_dentry->d_inode);
941 return sock->ops->poll(file, sock, wait);
944 static int sock_mmap(struct file * file, struct vm_area_struct * vma)
946 struct socket *sock = SOCKET_I(file->f_dentry->d_inode);
948 return sock->ops->mmap(file, sock, vma);
951 int sock_close(struct inode *inode, struct file *filp)
954 * It was possible the inode is NULL we were
955 * closing an unfinished socket.
958 if (!inode)
960 printk(KERN_DEBUG "sock_close: NULL inode\n");
961 return 0;
963 sock_fasync(-1, filp, 0);
964 sock_release(SOCKET_I(inode));
965 return 0;
969 * Update the socket async list
971 * Fasync_list locking strategy.
973 * 1. fasync_list is modified only under process context socket lock
974 * i.e. under semaphore.
975 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
976 * or under socket lock.
977 * 3. fasync_list can be used from softirq context, so that
978 * modification under socket lock have to be enhanced with
979 * write_lock_bh(&sk->sk_callback_lock).
980 * --ANK (990710)
983 static int sock_fasync(int fd, struct file *filp, int on)
985 struct fasync_struct *fa, *fna=NULL, **prev;
986 struct socket *sock;
987 struct sock *sk;
989 if (on)
991 fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
992 if(fna==NULL)
993 return -ENOMEM;
996 sock = SOCKET_I(filp->f_dentry->d_inode);
998 if ((sk=sock->sk) == NULL) {
999 if (fna)
1000 kfree(fna);
1001 return -EINVAL;
1004 lock_sock(sk);
1006 prev=&(sock->fasync_list);
1008 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev)
1009 if (fa->fa_file==filp)
1010 break;
1012 if(on)
1014 if(fa!=NULL)
1016 write_lock_bh(&sk->sk_callback_lock);
1017 fa->fa_fd=fd;
1018 write_unlock_bh(&sk->sk_callback_lock);
1020 kfree(fna);
1021 goto out;
1023 fna->fa_file=filp;
1024 fna->fa_fd=fd;
1025 fna->magic=FASYNC_MAGIC;
1026 fna->fa_next=sock->fasync_list;
1027 write_lock_bh(&sk->sk_callback_lock);
1028 sock->fasync_list=fna;
1029 write_unlock_bh(&sk->sk_callback_lock);
1031 else
1033 if (fa!=NULL)
1035 write_lock_bh(&sk->sk_callback_lock);
1036 *prev=fa->fa_next;
1037 write_unlock_bh(&sk->sk_callback_lock);
1038 kfree(fa);
1042 out:
1043 release_sock(sock->sk);
1044 return 0;
1047 /* This function may be called only under socket lock or callback_lock */
1049 int sock_wake_async(struct socket *sock, int how, int band)
1051 if (!sock || !sock->fasync_list)
1052 return -1;
1053 switch (how)
1055 case 1:
1057 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1058 break;
1059 goto call_kill;
1060 case 2:
1061 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1062 break;
1063 /* fall through */
1064 case 0:
1065 call_kill:
1066 __kill_fasync(sock->fasync_list, SIGIO, band);
1067 break;
1068 case 3:
1069 __kill_fasync(sock->fasync_list, SIGURG, band);
1071 return 0;
1074 static int __sock_create(int family, int type, int protocol, struct socket **res, int kern)
1076 int i;
1077 int err;
1078 struct socket *sock;
1081 * Check protocol is in range
1083 if (family < 0 || family >= NPROTO)
1084 return -EAFNOSUPPORT;
1085 if (type < 0 || type >= SOCK_MAX)
1086 return -EINVAL;
1088 /* Compatibility.
1090 This uglymoron is moved from INET layer to here to avoid
1091 deadlock in module load.
1093 if (family == PF_INET && type == SOCK_PACKET) {
1094 static int warned;
1095 if (!warned) {
1096 warned = 1;
1097 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm);
1099 family = PF_PACKET;
1102 err = security_socket_create(family, type, protocol, kern);
1103 if (err)
1104 return err;
1106 #if defined(CONFIG_KMOD)
1107 /* Attempt to load a protocol module if the find failed.
1109 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1110 * requested real, full-featured networking support upon configuration.
1111 * Otherwise module support will break!
1113 if (net_families[family]==NULL)
1115 request_module("net-pf-%d",family);
1117 #endif
1119 net_family_read_lock();
1120 if (net_families[family] == NULL) {
1121 i = -EAFNOSUPPORT;
1122 goto out;
1126 * Allocate the socket and allow the family to set things up. if
1127 * the protocol is 0, the family is instructed to select an appropriate
1128 * default.
1131 if (!(sock = sock_alloc()))
1133 printk(KERN_WARNING "socket: no more sockets\n");
1134 i = -ENFILE; /* Not exactly a match, but its the
1135 closest posix thing */
1136 goto out;
1139 sock->type = type;
1142 * We will call the ->create function, that possibly is in a loadable
1143 * module, so we have to bump that loadable module refcnt first.
1145 i = -EAFNOSUPPORT;
1146 if (!try_module_get(net_families[family]->owner))
1147 goto out_release;
1149 if ((i = net_families[family]->create(sock, protocol)) < 0)
1150 goto out_module_put;
1152 * Now to bump the refcnt of the [loadable] module that owns this
1153 * socket at sock_release time we decrement its refcnt.
1155 if (!try_module_get(sock->ops->owner)) {
1156 sock->ops = NULL;
1157 goto out_module_put;
1160 * Now that we're done with the ->create function, the [loadable]
1161 * module can have its refcnt decremented
1163 module_put(net_families[family]->owner);
1164 *res = sock;
1165 security_socket_post_create(sock, family, type, protocol, kern);
1167 out:
1168 net_family_read_unlock();
1169 return i;
1170 out_module_put:
1171 module_put(net_families[family]->owner);
1172 out_release:
1173 sock_release(sock);
1174 goto out;
1177 int sock_create(int family, int type, int protocol, struct socket **res)
1179 return __sock_create(family, type, protocol, res, 0);
1182 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1184 return __sock_create(family, type, protocol, res, 1);
1187 asmlinkage long sys_socket(int family, int type, int protocol)
1189 int retval;
1190 struct socket *sock;
1192 retval = sock_create(family, type, protocol, &sock);
1193 if (retval < 0)
1194 goto out;
1196 retval = sock_map_fd(sock);
1197 if (retval < 0)
1198 goto out_release;
1200 out:
1201 /* It may be already another descriptor 8) Not kernel problem. */
1202 return retval;
1204 out_release:
1205 sock_release(sock);
1206 return retval;
1210 * Create a pair of connected sockets.
1213 asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1215 struct socket *sock1, *sock2;
1216 int fd1, fd2, err;
1219 * Obtain the first socket and check if the underlying protocol
1220 * supports the socketpair call.
1223 err = sock_create(family, type, protocol, &sock1);
1224 if (err < 0)
1225 goto out;
1227 err = sock_create(family, type, protocol, &sock2);
1228 if (err < 0)
1229 goto out_release_1;
1231 err = sock1->ops->socketpair(sock1, sock2);
1232 if (err < 0)
1233 goto out_release_both;
1235 fd1 = fd2 = -1;
1237 err = sock_map_fd(sock1);
1238 if (err < 0)
1239 goto out_release_both;
1240 fd1 = err;
1242 err = sock_map_fd(sock2);
1243 if (err < 0)
1244 goto out_close_1;
1245 fd2 = err;
1247 /* fd1 and fd2 may be already another descriptors.
1248 * Not kernel problem.
1251 err = put_user(fd1, &usockvec[0]);
1252 if (!err)
1253 err = put_user(fd2, &usockvec[1]);
1254 if (!err)
1255 return 0;
1257 sys_close(fd2);
1258 sys_close(fd1);
1259 return err;
1261 out_close_1:
1262 sock_release(sock2);
1263 sys_close(fd1);
1264 return err;
1266 out_release_both:
1267 sock_release(sock2);
1268 out_release_1:
1269 sock_release(sock1);
1270 out:
1271 return err;
1276 * Bind a name to a socket. Nothing much to do here since it's
1277 * the protocol's responsibility to handle the local address.
1279 * We move the socket address to kernel space before we call
1280 * the protocol layer (having also checked the address is ok).
1283 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1285 struct socket *sock;
1286 char address[MAX_SOCK_ADDR];
1287 int err;
1289 if((sock = sockfd_lookup(fd,&err))!=NULL)
1291 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) {
1292 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen);
1293 if (err) {
1294 sockfd_put(sock);
1295 return err;
1297 err = sock->ops->bind(sock, (struct sockaddr *)address, addrlen);
1299 sockfd_put(sock);
1301 return err;
1306 * Perform a listen. Basically, we allow the protocol to do anything
1307 * necessary for a listen, and if that works, we mark the socket as
1308 * ready for listening.
1311 int sysctl_somaxconn = SOMAXCONN;
1313 asmlinkage long sys_listen(int fd, int backlog)
1315 struct socket *sock;
1316 int err;
1318 if ((sock = sockfd_lookup(fd, &err)) != NULL) {
1319 if ((unsigned) backlog > sysctl_somaxconn)
1320 backlog = sysctl_somaxconn;
1322 err = security_socket_listen(sock, backlog);
1323 if (err) {
1324 sockfd_put(sock);
1325 return err;
1328 err=sock->ops->listen(sock, backlog);
1329 sockfd_put(sock);
1331 return err;
1336 * For accept, we attempt to create a new socket, set up the link
1337 * with the client, wake up the client, then return the new
1338 * connected fd. We collect the address of the connector in kernel
1339 * space and move it to user at the very end. This is unclean because
1340 * we open the socket then return an error.
1342 * 1003.1g adds the ability to recvmsg() to query connection pending
1343 * status to recvmsg. We need to add that support in a way thats
1344 * clean when we restucture accept also.
1347 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen)
1349 struct socket *sock, *newsock;
1350 int err, len;
1351 char address[MAX_SOCK_ADDR];
1353 sock = sockfd_lookup(fd, &err);
1354 if (!sock)
1355 goto out;
1357 err = -EMFILE;
1358 if (!(newsock = sock_alloc()))
1359 goto out_put;
1361 newsock->type = sock->type;
1362 newsock->ops = sock->ops;
1364 err = security_socket_accept(sock, newsock);
1365 if (err)
1366 goto out_release;
1369 * We don't need try_module_get here, as the listening socket (sock)
1370 * has the protocol module (sock->ops->owner) held.
1372 __module_get(newsock->ops->owner);
1374 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1375 if (err < 0)
1376 goto out_release;
1378 if (upeer_sockaddr) {
1379 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) {
1380 err = -ECONNABORTED;
1381 goto out_release;
1383 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen);
1384 if (err < 0)
1385 goto out_release;
1388 /* File flags are not inherited via accept() unlike another OSes. */
1390 if ((err = sock_map_fd(newsock)) < 0)
1391 goto out_release;
1393 security_socket_post_accept(sock, newsock);
1395 out_put:
1396 sockfd_put(sock);
1397 out:
1398 return err;
1399 out_release:
1400 sock_release(newsock);
1401 goto out_put;
1406 * Attempt to connect to a socket with the server address. The address
1407 * is in user space so we verify it is OK and move it to kernel space.
1409 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1410 * break bindings
1412 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1413 * other SEQPACKET protocols that take time to connect() as it doesn't
1414 * include the -EINPROGRESS status for such sockets.
1417 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1419 struct socket *sock;
1420 char address[MAX_SOCK_ADDR];
1421 int err;
1423 sock = sockfd_lookup(fd, &err);
1424 if (!sock)
1425 goto out;
1426 err = move_addr_to_kernel(uservaddr, addrlen, address);
1427 if (err < 0)
1428 goto out_put;
1430 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1431 if (err)
1432 goto out_put;
1434 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen,
1435 sock->file->f_flags);
1436 out_put:
1437 sockfd_put(sock);
1438 out:
1439 return err;
1443 * Get the local address ('name') of a socket object. Move the obtained
1444 * name to user space.
1447 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1449 struct socket *sock;
1450 char address[MAX_SOCK_ADDR];
1451 int len, err;
1453 sock = sockfd_lookup(fd, &err);
1454 if (!sock)
1455 goto out;
1457 err = security_socket_getsockname(sock);
1458 if (err)
1459 goto out_put;
1461 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1462 if (err)
1463 goto out_put;
1464 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1466 out_put:
1467 sockfd_put(sock);
1468 out:
1469 return err;
1473 * Get the remote address ('name') of a socket object. Move the obtained
1474 * name to user space.
1477 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len)
1479 struct socket *sock;
1480 char address[MAX_SOCK_ADDR];
1481 int len, err;
1483 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1485 err = security_socket_getpeername(sock);
1486 if (err) {
1487 sockfd_put(sock);
1488 return err;
1491 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1);
1492 if (!err)
1493 err=move_addr_to_user(address,len, usockaddr, usockaddr_len);
1494 sockfd_put(sock);
1496 return err;
1500 * Send a datagram to a given address. We move the address into kernel
1501 * space and check the user space data area is readable before invoking
1502 * the protocol.
1505 asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags,
1506 struct sockaddr __user *addr, int addr_len)
1508 struct socket *sock;
1509 char address[MAX_SOCK_ADDR];
1510 int err;
1511 struct msghdr msg;
1512 struct iovec iov;
1514 sock = sockfd_lookup(fd, &err);
1515 if (!sock)
1516 goto out;
1517 iov.iov_base=buff;
1518 iov.iov_len=len;
1519 msg.msg_name=NULL;
1520 msg.msg_iov=&iov;
1521 msg.msg_iovlen=1;
1522 msg.msg_control=NULL;
1523 msg.msg_controllen=0;
1524 msg.msg_namelen=0;
1525 if(addr)
1527 err = move_addr_to_kernel(addr, addr_len, address);
1528 if (err < 0)
1529 goto out_put;
1530 msg.msg_name=address;
1531 msg.msg_namelen=addr_len;
1533 if (sock->file->f_flags & O_NONBLOCK)
1534 flags |= MSG_DONTWAIT;
1535 msg.msg_flags = flags;
1536 err = sock_sendmsg(sock, &msg, len);
1538 out_put:
1539 sockfd_put(sock);
1540 out:
1541 return err;
1545 * Send a datagram down a socket.
1548 asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags)
1550 return sys_sendto(fd, buff, len, flags, NULL, 0);
1554 * Receive a frame from the socket and optionally record the address of the
1555 * sender. We verify the buffers are writable and if needed move the
1556 * sender address from kernel to user space.
1559 asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags,
1560 struct sockaddr __user *addr, int __user *addr_len)
1562 struct socket *sock;
1563 struct iovec iov;
1564 struct msghdr msg;
1565 char address[MAX_SOCK_ADDR];
1566 int err,err2;
1568 sock = sockfd_lookup(fd, &err);
1569 if (!sock)
1570 goto out;
1572 msg.msg_control=NULL;
1573 msg.msg_controllen=0;
1574 msg.msg_iovlen=1;
1575 msg.msg_iov=&iov;
1576 iov.iov_len=size;
1577 iov.iov_base=ubuf;
1578 msg.msg_name=address;
1579 msg.msg_namelen=MAX_SOCK_ADDR;
1580 if (sock->file->f_flags & O_NONBLOCK)
1581 flags |= MSG_DONTWAIT;
1582 err=sock_recvmsg(sock, &msg, size, flags);
1584 if(err >= 0 && addr != NULL)
1586 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1587 if(err2<0)
1588 err=err2;
1590 sockfd_put(sock);
1591 out:
1592 return err;
1596 * Receive a datagram from a socket.
1599 asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags)
1601 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1605 * Set a socket option. Because we don't know the option lengths we have
1606 * to pass the user mode parameter for the protocols to sort out.
1609 asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen)
1611 int err;
1612 struct socket *sock;
1614 if (optlen < 0)
1615 return -EINVAL;
1617 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1619 err = security_socket_setsockopt(sock,level,optname);
1620 if (err) {
1621 sockfd_put(sock);
1622 return err;
1625 if (level == SOL_SOCKET)
1626 err=sock_setsockopt(sock,level,optname,optval,optlen);
1627 else
1628 err=sock->ops->setsockopt(sock, level, optname, optval, optlen);
1629 sockfd_put(sock);
1631 return err;
1635 * Get a socket option. Because we don't know the option lengths we have
1636 * to pass a user mode parameter for the protocols to sort out.
1639 asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen)
1641 int err;
1642 struct socket *sock;
1644 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1646 err = security_socket_getsockopt(sock, level,
1647 optname);
1648 if (err) {
1649 sockfd_put(sock);
1650 return err;
1653 if (level == SOL_SOCKET)
1654 err=sock_getsockopt(sock,level,optname,optval,optlen);
1655 else
1656 err=sock->ops->getsockopt(sock, level, optname, optval, optlen);
1657 sockfd_put(sock);
1659 return err;
1664 * Shutdown a socket.
1667 asmlinkage long sys_shutdown(int fd, int how)
1669 int err;
1670 struct socket *sock;
1672 if ((sock = sockfd_lookup(fd, &err))!=NULL)
1674 err = security_socket_shutdown(sock, how);
1675 if (err) {
1676 sockfd_put(sock);
1677 return err;
1680 err=sock->ops->shutdown(sock, how);
1681 sockfd_put(sock);
1683 return err;
1686 /* A couple of helpful macros for getting the address of the 32/64 bit
1687 * fields which are the same type (int / unsigned) on our platforms.
1689 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1690 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1691 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1695 * BSD sendmsg interface
1698 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1700 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1701 struct socket *sock;
1702 char address[MAX_SOCK_ADDR];
1703 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1704 unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */
1705 unsigned char *ctl_buf = ctl;
1706 struct msghdr msg_sys;
1707 int err, ctl_len, iov_size, total_len;
1709 err = -EFAULT;
1710 if (MSG_CMSG_COMPAT & flags) {
1711 if (get_compat_msghdr(&msg_sys, msg_compat))
1712 return -EFAULT;
1713 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1714 return -EFAULT;
1716 sock = sockfd_lookup(fd, &err);
1717 if (!sock)
1718 goto out;
1720 /* do not move before msg_sys is valid */
1721 err = -EMSGSIZE;
1722 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1723 goto out_put;
1725 /* Check whether to allocate the iovec area*/
1726 err = -ENOMEM;
1727 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1728 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1729 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1730 if (!iov)
1731 goto out_put;
1734 /* This will also move the address data into kernel space */
1735 if (MSG_CMSG_COMPAT & flags) {
1736 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1737 } else
1738 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1739 if (err < 0)
1740 goto out_freeiov;
1741 total_len = err;
1743 err = -ENOBUFS;
1745 if (msg_sys.msg_controllen > INT_MAX)
1746 goto out_freeiov;
1747 ctl_len = msg_sys.msg_controllen;
1748 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1749 err = cmsghdr_from_user_compat_to_kern(&msg_sys, ctl, sizeof(ctl));
1750 if (err)
1751 goto out_freeiov;
1752 ctl_buf = msg_sys.msg_control;
1753 } else if (ctl_len) {
1754 if (ctl_len > sizeof(ctl))
1756 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1757 if (ctl_buf == NULL)
1758 goto out_freeiov;
1760 err = -EFAULT;
1762 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1763 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1764 * checking falls down on this.
1766 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len))
1767 goto out_freectl;
1768 msg_sys.msg_control = ctl_buf;
1770 msg_sys.msg_flags = flags;
1772 if (sock->file->f_flags & O_NONBLOCK)
1773 msg_sys.msg_flags |= MSG_DONTWAIT;
1774 err = sock_sendmsg(sock, &msg_sys, total_len);
1776 out_freectl:
1777 if (ctl_buf != ctl)
1778 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1779 out_freeiov:
1780 if (iov != iovstack)
1781 sock_kfree_s(sock->sk, iov, iov_size);
1782 out_put:
1783 sockfd_put(sock);
1784 out:
1785 return err;
1789 * BSD recvmsg interface
1792 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags)
1794 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg;
1795 struct socket *sock;
1796 struct iovec iovstack[UIO_FASTIOV];
1797 struct iovec *iov=iovstack;
1798 struct msghdr msg_sys;
1799 unsigned long cmsg_ptr;
1800 int err, iov_size, total_len, len;
1802 /* kernel mode address */
1803 char addr[MAX_SOCK_ADDR];
1805 /* user mode address pointers */
1806 struct sockaddr __user *uaddr;
1807 int __user *uaddr_len;
1809 if (MSG_CMSG_COMPAT & flags) {
1810 if (get_compat_msghdr(&msg_sys, msg_compat))
1811 return -EFAULT;
1812 } else
1813 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr)))
1814 return -EFAULT;
1816 sock = sockfd_lookup(fd, &err);
1817 if (!sock)
1818 goto out;
1820 err = -EMSGSIZE;
1821 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1822 goto out_put;
1824 /* Check whether to allocate the iovec area*/
1825 err = -ENOMEM;
1826 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1827 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1828 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1829 if (!iov)
1830 goto out_put;
1834 * Save the user-mode address (verify_iovec will change the
1835 * kernel msghdr to use the kernel address space)
1838 uaddr = (void __user *) msg_sys.msg_name;
1839 uaddr_len = COMPAT_NAMELEN(msg);
1840 if (MSG_CMSG_COMPAT & flags) {
1841 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1842 } else
1843 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1844 if (err < 0)
1845 goto out_freeiov;
1846 total_len=err;
1848 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1849 msg_sys.msg_flags = 0;
1850 if (MSG_CMSG_COMPAT & flags)
1851 msg_sys.msg_flags = MSG_CMSG_COMPAT;
1853 if (sock->file->f_flags & O_NONBLOCK)
1854 flags |= MSG_DONTWAIT;
1855 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1856 if (err < 0)
1857 goto out_freeiov;
1858 len = err;
1860 if (uaddr != NULL) {
1861 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len);
1862 if (err < 0)
1863 goto out_freeiov;
1865 err = __put_user(msg_sys.msg_flags, COMPAT_FLAGS(msg));
1866 if (err)
1867 goto out_freeiov;
1868 if (MSG_CMSG_COMPAT & flags)
1869 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1870 &msg_compat->msg_controllen);
1871 else
1872 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr,
1873 &msg->msg_controllen);
1874 if (err)
1875 goto out_freeiov;
1876 err = len;
1878 out_freeiov:
1879 if (iov != iovstack)
1880 sock_kfree_s(sock->sk, iov, iov_size);
1881 out_put:
1882 sockfd_put(sock);
1883 out:
1884 return err;
1887 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1889 /* Argument list sizes for sys_socketcall */
1890 #define AL(x) ((x) * sizeof(unsigned long))
1891 static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1892 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1893 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
1894 #undef AL
1897 * System call vectors.
1899 * Argument checking cleaned up. Saved 20% in size.
1900 * This function doesn't need to set the kernel lock because
1901 * it is set by the callees.
1904 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
1906 unsigned long a[6];
1907 unsigned long a0,a1;
1908 int err;
1910 if(call<1||call>SYS_RECVMSG)
1911 return -EINVAL;
1913 /* copy_from_user should be SMP safe. */
1914 if (copy_from_user(a, args, nargs[call]))
1915 return -EFAULT;
1917 a0=a[0];
1918 a1=a[1];
1920 switch(call)
1922 case SYS_SOCKET:
1923 err = sys_socket(a0,a1,a[2]);
1924 break;
1925 case SYS_BIND:
1926 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
1927 break;
1928 case SYS_CONNECT:
1929 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
1930 break;
1931 case SYS_LISTEN:
1932 err = sys_listen(a0,a1);
1933 break;
1934 case SYS_ACCEPT:
1935 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1936 break;
1937 case SYS_GETSOCKNAME:
1938 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
1939 break;
1940 case SYS_GETPEERNAME:
1941 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
1942 break;
1943 case SYS_SOCKETPAIR:
1944 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
1945 break;
1946 case SYS_SEND:
1947 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
1948 break;
1949 case SYS_SENDTO:
1950 err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
1951 (struct sockaddr __user *)a[4], a[5]);
1952 break;
1953 case SYS_RECV:
1954 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
1955 break;
1956 case SYS_RECVFROM:
1957 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
1958 (struct sockaddr __user *)a[4], (int __user *)a[5]);
1959 break;
1960 case SYS_SHUTDOWN:
1961 err = sys_shutdown(a0,a1);
1962 break;
1963 case SYS_SETSOCKOPT:
1964 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
1965 break;
1966 case SYS_GETSOCKOPT:
1967 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
1968 break;
1969 case SYS_SENDMSG:
1970 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
1971 break;
1972 case SYS_RECVMSG:
1973 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
1974 break;
1975 default:
1976 err = -EINVAL;
1977 break;
1979 return err;
1982 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
1985 * This function is called by a protocol handler that wants to
1986 * advertise its address family, and have it linked into the
1987 * SOCKET module.
1990 int sock_register(struct net_proto_family *ops)
1992 int err;
1994 if (ops->family >= NPROTO) {
1995 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
1996 return -ENOBUFS;
1998 net_family_write_lock();
1999 err = -EEXIST;
2000 if (net_families[ops->family] == NULL) {
2001 net_families[ops->family]=ops;
2002 err = 0;
2004 net_family_write_unlock();
2005 printk(KERN_INFO "NET: Registered protocol family %d\n",
2006 ops->family);
2007 return err;
2011 * This function is called by a protocol handler that wants to
2012 * remove its address family, and have it unlinked from the
2013 * SOCKET module.
2016 int sock_unregister(int family)
2018 if (family < 0 || family >= NPROTO)
2019 return -1;
2021 net_family_write_lock();
2022 net_families[family]=NULL;
2023 net_family_write_unlock();
2024 printk(KERN_INFO "NET: Unregistered protocol family %d\n",
2025 family);
2026 return 0;
2030 extern void sk_init(void);
2032 void __init sock_init(void)
2034 int i;
2037 * Initialize all address (protocol) families.
2040 for (i = 0; i < NPROTO; i++)
2041 net_families[i] = NULL;
2044 * Initialize sock SLAB cache.
2047 sk_init();
2049 #ifdef SLAB_SKB
2051 * Initialize skbuff SLAB cache
2053 skb_init();
2054 #endif
2057 * Initialize the protocols module.
2060 init_inodecache();
2061 register_filesystem(&sock_fs_type);
2062 sock_mnt = kern_mount(&sock_fs_type);
2063 /* The real protocol initialization is performed when
2064 * do_initcalls is run.
2067 #ifdef CONFIG_NETFILTER
2068 netfilter_init();
2069 #endif
2072 #ifdef CONFIG_PROC_FS
2073 void socket_seq_show(struct seq_file *seq)
2075 int cpu;
2076 int counter = 0;
2078 for (cpu = 0; cpu < NR_CPUS; cpu++)
2079 counter += per_cpu(sockets_in_use, cpu);
2081 /* It can be negative, by the way. 8) */
2082 if (counter < 0)
2083 counter = 0;
2085 seq_printf(seq, "sockets: used %d\n", counter);
2087 #endif /* CONFIG_PROC_FS */
2089 /* ABI emulation layers need these two */
2090 EXPORT_SYMBOL(move_addr_to_kernel);
2091 EXPORT_SYMBOL(move_addr_to_user);
2092 EXPORT_SYMBOL(sock_alloc);
2093 EXPORT_SYMBOL(sock_alloc_inode);
2094 EXPORT_SYMBOL(sock_create);
2095 EXPORT_SYMBOL(sock_create_kern);
2096 EXPORT_SYMBOL(sock_create_lite);
2097 EXPORT_SYMBOL(sock_map_fd);
2098 EXPORT_SYMBOL(sock_recvmsg);
2099 EXPORT_SYMBOL(sock_register);
2100 EXPORT_SYMBOL(sock_release);
2101 EXPORT_SYMBOL(sock_sendmsg);
2102 EXPORT_SYMBOL(sock_unregister);
2103 EXPORT_SYMBOL(sock_wake_async);
2104 EXPORT_SYMBOL(sockfd_lookup);
2105 EXPORT_SYMBOL(kernel_sendmsg);
2106 EXPORT_SYMBOL(kernel_recvmsg);