MOXA linux-2.6.x / linux-2.6.9-uc0 from sdlinux-moxaart.tgz
[linux-2.6.9-moxart.git] / drivers / char / rocket.c
blob72af1bec91e56d599d94004af39e785361e05953
1 /*
2 * RocketPort device driver for Linux
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Kernel Synchronization:
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
42 /****** Defines ******/
43 #ifdef PCI_NUM_RESOURCES
44 #define PCI_BASE_ADDRESS(dev, r) ((dev)->resource[r].start)
45 #else
46 #define PCI_BASE_ADDRESS(dev, r) ((dev)->base_address[r])
47 #endif
49 #define ROCKET_PARANOIA_CHECK
50 #define ROCKET_DISABLE_SIMUSAGE
52 #undef ROCKET_SOFT_FLOW
53 #undef ROCKET_DEBUG_OPEN
54 #undef ROCKET_DEBUG_INTR
55 #undef ROCKET_DEBUG_WRITE
56 #undef ROCKET_DEBUG_FLOW
57 #undef ROCKET_DEBUG_THROTTLE
58 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
59 #undef ROCKET_DEBUG_RECEIVE
60 #undef ROCKET_DEBUG_HANGUP
61 #undef REV_PCI_ORDER
62 #undef ROCKET_DEBUG_IO
64 #define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */
66 /****** Kernel includes ******/
68 #ifdef MODVERSIONS
69 #include <config/modversions.h>
70 #endif
72 #include <linux/module.h>
73 #include <linux/errno.h>
74 #include <linux/major.h>
75 #include <linux/kernel.h>
76 #include <linux/signal.h>
77 #include <linux/slab.h>
78 #include <linux/mm.h>
79 #include <linux/sched.h>
80 #include <linux/timer.h>
81 #include <linux/interrupt.h>
82 #include <linux/tty.h>
83 #include <linux/tty_driver.h>
84 #include <linux/tty_flip.h>
85 #include <linux/string.h>
86 #include <linux/fcntl.h>
87 #include <linux/ptrace.h>
88 #include <linux/ioport.h>
89 #include <linux/delay.h>
90 #include <linux/wait.h>
91 #include <linux/pci.h>
92 #include <asm/uaccess.h>
93 #include <asm/atomic.h>
94 #include <asm/bitops.h>
95 #include <linux/spinlock.h>
96 #include <asm/semaphore.h>
97 #include <linux/init.h>
99 /****** RocketPort includes ******/
101 #include "rocket_int.h"
102 #include "rocket.h"
104 #define ROCKET_VERSION "2.09"
105 #define ROCKET_DATE "12-June-2003"
107 /****** RocketPort Local Variables ******/
109 static struct tty_driver *rocket_driver;
111 static struct rocket_version driver_version = {
112 ROCKET_VERSION, ROCKET_DATE
115 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
116 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
117 /* eg. Bit 0 indicates port 0 has xmit data, ... */
118 static atomic_t rp_num_ports_open; /* Number of serial ports open */
119 static struct timer_list rocket_timer;
121 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
122 static unsigned long board2;
123 static unsigned long board3;
124 static unsigned long board4;
125 static unsigned long controller;
126 static unsigned long support_low_speed;
127 static unsigned long modem1;
128 static unsigned long modem2;
129 static unsigned long modem3;
130 static unsigned long modem4;
131 static unsigned long pc104_1[8];
132 static unsigned long pc104_2[8];
133 static unsigned long pc104_3[8];
134 static unsigned long pc104_4[8];
135 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
137 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
138 static unsigned long rcktpt_io_addr[NUM_BOARDS];
139 static int rcktpt_type[NUM_BOARDS];
140 static int is_PCI[NUM_BOARDS];
141 static rocketModel_t rocketModel[NUM_BOARDS];
142 static int max_board;
145 * The following arrays define the interrupt bits corresponding to each AIOP.
146 * These bits are different between the ISA and regular PCI boards and the
147 * Universal PCI boards.
150 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
151 AIOP_INTR_BIT_0,
152 AIOP_INTR_BIT_1,
153 AIOP_INTR_BIT_2,
154 AIOP_INTR_BIT_3
157 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
158 UPCI_AIOP_INTR_BIT_0,
159 UPCI_AIOP_INTR_BIT_1,
160 UPCI_AIOP_INTR_BIT_2,
161 UPCI_AIOP_INTR_BIT_3
165 * Line number is the ttySIx number (x), the Minor number. We
166 * assign them sequentially, starting at zero. The following
167 * array keeps track of the line number assigned to a given board/aiop/channel.
169 static unsigned char lineNumbers[MAX_RP_PORTS];
170 static unsigned long nextLineNumber;
172 /***** RocketPort Static Prototypes *********/
173 static int __init init_ISA(int i);
174 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
175 static void rp_flush_buffer(struct tty_struct *tty);
176 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
177 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
178 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
179 static void rp_start(struct tty_struct *tty);
181 #ifdef MODULE
182 MODULE_AUTHOR("Theodore Ts'o");
183 MODULE_DESCRIPTION("Comtrol RocketPort driver");
184 MODULE_PARM(board1, "i");
185 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
186 MODULE_PARM(board2, "i");
187 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
188 MODULE_PARM(board3, "i");
189 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
190 MODULE_PARM(board4, "i");
191 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
192 MODULE_PARM(controller, "i");
193 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
194 MODULE_PARM(support_low_speed, "i");
195 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
196 MODULE_PARM(modem1, "i");
197 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
198 MODULE_PARM(modem2, "i");
199 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
200 MODULE_PARM(modem3, "i");
201 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
202 MODULE_PARM(modem4, "i");
203 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
204 MODULE_PARM(pc104_1, "1-8i");
205 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
206 MODULE_PARM(pc104_2, "1-8i");
207 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
208 MODULE_PARM(pc104_3, "1-8i");
209 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
210 MODULE_PARM(pc104_4, "1-8i");
211 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
213 int rp_init(void);
214 static void rp_cleanup_module(void);
216 module_init(rp_init);
217 module_exit(rp_cleanup_module);
219 #endif
221 #ifdef MODULE_LICENSE
222 MODULE_LICENSE("Dual BSD/GPL");
223 #endif
225 /*************************************************************************/
226 /* Module code starts here */
228 static inline int rocket_paranoia_check(struct r_port *info,
229 const char *routine)
231 #ifdef ROCKET_PARANOIA_CHECK
232 if (!info)
233 return 1;
234 if (info->magic != RPORT_MAGIC) {
235 printk(KERN_INFO "Warning: bad magic number for rocketport struct in %s\n",
236 routine);
237 return 1;
239 #endif
240 return 0;
244 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
245 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
246 * tty layer.
248 static void rp_do_receive(struct r_port *info,
249 struct tty_struct *tty,
250 CHANNEL_t * cp, unsigned int ChanStatus)
252 unsigned int CharNStat;
253 int ToRecv, wRecv, space = 0, count;
254 unsigned char *cbuf;
255 char *fbuf;
256 struct tty_ldisc *ld;
258 ld = tty_ldisc_ref(tty);
260 ToRecv = sGetRxCnt(cp);
261 if (ld)
262 space = ld->receive_room(tty);
263 if (space > 2 * TTY_FLIPBUF_SIZE)
264 space = 2 * TTY_FLIPBUF_SIZE;
265 cbuf = tty->flip.char_buf;
266 fbuf = tty->flip.flag_buf;
267 count = 0;
268 #ifdef ROCKET_DEBUG_INTR
269 printk(KERN_INFO "rp_do_receive(%d, %d)...", ToRecv, space);
270 #endif
273 * determine how many we can actually read in. If we can't
274 * read any in then we have a software overrun condition.
276 if (ToRecv > space)
277 ToRecv = space;
279 if (ToRecv <= 0)
280 return;
283 * if status indicates there are errored characters in the
284 * FIFO, then enter status mode (a word in FIFO holds
285 * character and status).
287 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
288 if (!(ChanStatus & STATMODE)) {
289 #ifdef ROCKET_DEBUG_RECEIVE
290 printk(KERN_INFO "Entering STATMODE...");
291 #endif
292 ChanStatus |= STATMODE;
293 sEnRxStatusMode(cp);
298 * if we previously entered status mode, then read down the
299 * FIFO one word at a time, pulling apart the character and
300 * the status. Update error counters depending on status
302 if (ChanStatus & STATMODE) {
303 #ifdef ROCKET_DEBUG_RECEIVE
304 printk(KERN_INFO "Ignore %x, read %x...", info->ignore_status_mask,
305 info->read_status_mask);
306 #endif
307 while (ToRecv) {
308 CharNStat = sInW(sGetTxRxDataIO(cp));
309 #ifdef ROCKET_DEBUG_RECEIVE
310 printk(KERN_INFO "%x...", CharNStat);
311 #endif
312 if (CharNStat & STMBREAKH)
313 CharNStat &= ~(STMFRAMEH | STMPARITYH);
314 if (CharNStat & info->ignore_status_mask) {
315 ToRecv--;
316 continue;
318 CharNStat &= info->read_status_mask;
319 if (CharNStat & STMBREAKH)
320 *fbuf++ = TTY_BREAK;
321 else if (CharNStat & STMPARITYH)
322 *fbuf++ = TTY_PARITY;
323 else if (CharNStat & STMFRAMEH)
324 *fbuf++ = TTY_FRAME;
325 else if (CharNStat & STMRCVROVRH)
326 *fbuf++ = TTY_OVERRUN;
327 else
328 *fbuf++ = 0;
329 *cbuf++ = CharNStat & 0xff;
330 count++;
331 ToRecv--;
335 * after we've emptied the FIFO in status mode, turn
336 * status mode back off
338 if (sGetRxCnt(cp) == 0) {
339 #ifdef ROCKET_DEBUG_RECEIVE
340 printk(KERN_INFO "Status mode off.\n");
341 #endif
342 sDisRxStatusMode(cp);
344 } else {
346 * we aren't in status mode, so read down the FIFO two
347 * characters at time by doing repeated word IO
348 * transfer.
350 wRecv = ToRecv >> 1;
351 if (wRecv)
352 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
353 if (ToRecv & 1)
354 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
355 memset(fbuf, 0, ToRecv);
356 cbuf += ToRecv;
357 fbuf += ToRecv;
358 count += ToRecv;
360 /* Push the data up to the tty layer */
361 ld->receive_buf(tty, tty->flip.char_buf, tty->flip.flag_buf, count);
362 tty_ldisc_deref(ld);
366 * Serial port transmit data function. Called from the timer polling loop as a
367 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
368 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
369 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
371 static void rp_do_transmit(struct r_port *info)
373 int c;
374 CHANNEL_t *cp = &info->channel;
375 struct tty_struct *tty;
376 unsigned long flags;
378 #ifdef ROCKET_DEBUG_INTR
379 printk(KERN_INFO "rp_do_transmit ");
380 #endif
381 if (!info)
382 return;
383 if (!info->tty) {
384 printk(KERN_INFO "rp: WARNING rp_do_transmit called with info->tty==NULL\n");
385 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
386 return;
389 spin_lock_irqsave(&info->slock, flags);
390 tty = info->tty;
391 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
393 /* Loop sending data to FIFO until done or FIFO full */
394 while (1) {
395 if (tty->stopped || tty->hw_stopped)
396 break;
397 c = min(info->xmit_fifo_room, min(info->xmit_cnt, XMIT_BUF_SIZE - info->xmit_tail));
398 if (c <= 0 || info->xmit_fifo_room <= 0)
399 break;
400 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
401 if (c & 1)
402 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
403 info->xmit_tail += c;
404 info->xmit_tail &= XMIT_BUF_SIZE - 1;
405 info->xmit_cnt -= c;
406 info->xmit_fifo_room -= c;
407 #ifdef ROCKET_DEBUG_INTR
408 printk(KERN_INFO "tx %d chars...", c);
409 #endif
412 if (info->xmit_cnt == 0)
413 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
415 if (info->xmit_cnt < WAKEUP_CHARS) {
416 tty_wakeup(tty);
417 wake_up_interruptible(&tty->write_wait);
418 #ifdef ROCKETPORT_HAVE_POLL_WAIT
419 wake_up_interruptible(&tty->poll_wait);
420 #endif
423 spin_unlock_irqrestore(&info->slock, flags);
425 #ifdef ROCKET_DEBUG_INTR
426 printk(KERN_INFO "(%d,%d,%d,%d)...", info->xmit_cnt, info->xmit_head,
427 info->xmit_tail, info->xmit_fifo_room);
428 #endif
432 * Called when a serial port signals it has read data in it's RX FIFO.
433 * It checks what interrupts are pending and services them, including
434 * receiving serial data.
436 static void rp_handle_port(struct r_port *info)
438 CHANNEL_t *cp;
439 struct tty_struct *tty;
440 unsigned int IntMask, ChanStatus;
442 if (!info)
443 return;
445 if ((info->flags & ROCKET_INITIALIZED) == 0) {
446 printk(KERN_INFO "rp: WARNING: rp_handle_port called with info->flags & NOT_INIT\n");
447 return;
449 if (!info->tty) {
450 printk(KERN_INFO "rp: WARNING: rp_handle_port called with info->tty==NULL\n");
451 return;
453 cp = &info->channel;
454 tty = info->tty;
456 IntMask = sGetChanIntID(cp) & info->intmask;
457 #ifdef ROCKET_DEBUG_INTR
458 printk(KERN_INFO "rp_interrupt %02x...", IntMask);
459 #endif
460 ChanStatus = sGetChanStatus(cp);
461 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
462 rp_do_receive(info, tty, cp, ChanStatus);
464 if (IntMask & DELTA_CD) { /* CD change */
465 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
466 printk(KERN_INFO "ttyR%d CD now %s...", info->line,
467 (ChanStatus & CD_ACT) ? "on" : "off");
468 #endif
469 if (!(ChanStatus & CD_ACT) && info->cd_status) {
470 #ifdef ROCKET_DEBUG_HANGUP
471 printk(KERN_INFO "CD drop, calling hangup.\n");
472 #endif
473 tty_hangup(tty);
475 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
476 wake_up_interruptible(&info->open_wait);
478 #ifdef ROCKET_DEBUG_INTR
479 if (IntMask & DELTA_CTS) { /* CTS change */
480 printk(KERN_INFO "CTS change...\n");
482 if (IntMask & DELTA_DSR) { /* DSR change */
483 printk(KERN_INFO "DSR change...\n");
485 #endif
489 * The top level polling routine. Repeats every 1/100 HZ (10ms).
491 static void rp_do_poll(unsigned long dummy)
493 CONTROLLER_t *ctlp;
494 int ctrl, aiop, ch, line, i;
495 unsigned int xmitmask;
496 unsigned int CtlMask;
497 unsigned char AiopMask;
498 Word_t bit;
500 /* Walk through all the boards (ctrl's) */
501 for (ctrl = 0; ctrl < max_board; ctrl++) {
502 if (rcktpt_io_addr[ctrl] <= 0)
503 continue;
505 /* Get a ptr to the board's control struct */
506 ctlp = sCtlNumToCtlPtr(ctrl);
508 /* Get the interupt status from the board */
509 #ifdef CONFIG_PCI
510 if (ctlp->BusType == isPCI)
511 CtlMask = sPCIGetControllerIntStatus(ctlp);
512 else
513 #endif
514 CtlMask = sGetControllerIntStatus(ctlp);
516 /* Check if any AIOP read bits are set */
517 for (aiop = 0; CtlMask; aiop++) {
518 bit = ctlp->AiopIntrBits[aiop];
519 if (CtlMask & bit) {
520 CtlMask &= ~bit;
521 AiopMask = sGetAiopIntStatus(ctlp, aiop);
523 /* Check if any port read bits are set */
524 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
525 if (AiopMask & 1) {
527 /* Get the line number (/dev/ttyRx number). */
528 /* Read the data from the port. */
529 line = GetLineNumber(ctrl, aiop, ch);
530 rp_handle_port(rp_table[line]);
536 xmitmask = xmit_flags[ctrl];
539 * xmit_flags contains bit-significant flags, indicating there is data
540 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
541 * 1, ... (32 total possible). The variable i has the aiop and ch
542 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
544 if (xmitmask) {
545 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
546 if (xmitmask & (1 << i)) {
547 aiop = (i & 0x18) >> 3;
548 ch = i & 0x07;
549 line = GetLineNumber(ctrl, aiop, ch);
550 rp_do_transmit(rp_table[line]);
557 * Reset the timer so we get called at the next clock tick (10ms).
559 if (atomic_read(&rp_num_ports_open))
560 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
564 * Initializes the r_port structure for a port, as well as enabling the port on
565 * the board.
566 * Inputs: board, aiop, chan numbers
568 static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
570 unsigned rocketMode;
571 struct r_port *info;
572 int line;
573 CONTROLLER_T *ctlp;
575 /* Get the next available line number */
576 line = SetLineNumber(board, aiop, chan);
578 ctlp = sCtlNumToCtlPtr(board);
580 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
581 info = kmalloc(sizeof (struct r_port), GFP_KERNEL);
582 if (!info) {
583 printk(KERN_INFO "Couldn't allocate info struct for line #%d\n", line);
584 return;
586 memset(info, 0, sizeof (struct r_port));
588 info->magic = RPORT_MAGIC;
589 info->line = line;
590 info->ctlp = ctlp;
591 info->board = board;
592 info->aiop = aiop;
593 info->chan = chan;
594 info->closing_wait = 3000;
595 info->close_delay = 50;
596 init_waitqueue_head(&info->open_wait);
597 init_waitqueue_head(&info->close_wait);
598 info->flags &= ~ROCKET_MODE_MASK;
599 switch (pc104[board][line]) {
600 case 422:
601 info->flags |= ROCKET_MODE_RS422;
602 break;
603 case 485:
604 info->flags |= ROCKET_MODE_RS485;
605 break;
606 case 232:
607 default:
608 info->flags |= ROCKET_MODE_RS232;
609 break;
612 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
613 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
614 printk(KERN_INFO "RocketPort sInitChan(%d, %d, %d) failed!\n", board, aiop, chan);
615 kfree(info);
616 return;
619 rocketMode = info->flags & ROCKET_MODE_MASK;
621 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
622 sEnRTSToggle(&info->channel);
623 else
624 sDisRTSToggle(&info->channel);
626 if (ctlp->boardType == ROCKET_TYPE_PC104) {
627 switch (rocketMode) {
628 case ROCKET_MODE_RS485:
629 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
630 break;
631 case ROCKET_MODE_RS422:
632 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
633 break;
634 case ROCKET_MODE_RS232:
635 default:
636 if (info->flags & ROCKET_RTS_TOGGLE)
637 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
638 else
639 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
640 break;
643 spin_lock_init(&info->slock);
644 sema_init(&info->write_sem, 1);
645 rp_table[line] = info;
646 if (pci_dev)
647 tty_register_device(rocket_driver, line, &pci_dev->dev);
651 * Configures a rocketport port according to its termio settings. Called from
652 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
654 static void configure_r_port(struct r_port *info,
655 struct termios *old_termios)
657 unsigned cflag;
658 unsigned long flags;
659 unsigned rocketMode;
660 int bits, baud, divisor;
661 CHANNEL_t *cp;
663 if (!info->tty || !info->tty->termios)
664 return;
665 cp = &info->channel;
666 cflag = info->tty->termios->c_cflag;
668 /* Byte size and parity */
669 if ((cflag & CSIZE) == CS8) {
670 sSetData8(cp);
671 bits = 10;
672 } else {
673 sSetData7(cp);
674 bits = 9;
676 if (cflag & CSTOPB) {
677 sSetStop2(cp);
678 bits++;
679 } else {
680 sSetStop1(cp);
683 if (cflag & PARENB) {
684 sEnParity(cp);
685 bits++;
686 if (cflag & PARODD) {
687 sSetOddParity(cp);
688 } else {
689 sSetEvenParity(cp);
691 } else {
692 sDisParity(cp);
695 /* baud rate */
696 baud = tty_get_baud_rate(info->tty);
697 if (!baud)
698 baud = 9600;
699 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
700 if ((divisor >= 8192 || divisor < 0) && old_termios) {
701 info->tty->termios->c_cflag &= ~CBAUD;
702 info->tty->termios->c_cflag |=
703 (old_termios->c_cflag & CBAUD);
704 baud = tty_get_baud_rate(info->tty);
705 if (!baud)
706 baud = 9600;
707 divisor = (rp_baud_base[info->board] / baud) - 1;
709 if (divisor >= 8192 || divisor < 0) {
710 baud = 9600;
711 divisor = (rp_baud_base[info->board] / baud) - 1;
713 info->cps = baud / bits;
714 sSetBaud(cp, divisor);
716 if (cflag & CRTSCTS) {
717 info->intmask |= DELTA_CTS;
718 sEnCTSFlowCtl(cp);
719 } else {
720 info->intmask &= ~DELTA_CTS;
721 sDisCTSFlowCtl(cp);
723 if (cflag & CLOCAL) {
724 info->intmask &= ~DELTA_CD;
725 } else {
726 spin_lock_irqsave(&info->slock, flags);
727 if (sGetChanStatus(cp) & CD_ACT)
728 info->cd_status = 1;
729 else
730 info->cd_status = 0;
731 info->intmask |= DELTA_CD;
732 spin_unlock_irqrestore(&info->slock, flags);
736 * Handle software flow control in the board
738 #ifdef ROCKET_SOFT_FLOW
739 if (I_IXON(info->tty)) {
740 sEnTxSoftFlowCtl(cp);
741 if (I_IXANY(info->tty)) {
742 sEnIXANY(cp);
743 } else {
744 sDisIXANY(cp);
746 sSetTxXONChar(cp, START_CHAR(info->tty));
747 sSetTxXOFFChar(cp, STOP_CHAR(info->tty));
748 } else {
749 sDisTxSoftFlowCtl(cp);
750 sDisIXANY(cp);
751 sClrTxXOFF(cp);
753 #endif
756 * Set up ignore/read mask words
758 info->read_status_mask = STMRCVROVRH | 0xFF;
759 if (I_INPCK(info->tty))
760 info->read_status_mask |= STMFRAMEH | STMPARITYH;
761 if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
762 info->read_status_mask |= STMBREAKH;
765 * Characters to ignore
767 info->ignore_status_mask = 0;
768 if (I_IGNPAR(info->tty))
769 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
770 if (I_IGNBRK(info->tty)) {
771 info->ignore_status_mask |= STMBREAKH;
773 * If we're ignoring parity and break indicators,
774 * ignore overruns too. (For real raw support).
776 if (I_IGNPAR(info->tty))
777 info->ignore_status_mask |= STMRCVROVRH;
780 rocketMode = info->flags & ROCKET_MODE_MASK;
782 if ((info->flags & ROCKET_RTS_TOGGLE)
783 || (rocketMode == ROCKET_MODE_RS485))
784 sEnRTSToggle(cp);
785 else
786 sDisRTSToggle(cp);
788 sSetRTS(&info->channel);
790 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
791 switch (rocketMode) {
792 case ROCKET_MODE_RS485:
793 sSetInterfaceMode(cp, InterfaceModeRS485);
794 break;
795 case ROCKET_MODE_RS422:
796 sSetInterfaceMode(cp, InterfaceModeRS422);
797 break;
798 case ROCKET_MODE_RS232:
799 default:
800 if (info->flags & ROCKET_RTS_TOGGLE)
801 sSetInterfaceMode(cp, InterfaceModeRS232T);
802 else
803 sSetInterfaceMode(cp, InterfaceModeRS232);
804 break;
809 /* info->count is considered critical, protected by spinlocks. */
810 static int block_til_ready(struct tty_struct *tty, struct file *filp,
811 struct r_port *info)
813 DECLARE_WAITQUEUE(wait, current);
814 int retval;
815 int do_clocal = 0, extra_count = 0;
816 unsigned long flags;
819 * If the device is in the middle of being closed, then block
820 * until it's done, and then try again.
822 if (tty_hung_up_p(filp))
823 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
824 if (info->flags & ROCKET_CLOSING) {
825 interruptible_sleep_on(&info->close_wait);
826 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
830 * If non-blocking mode is set, or the port is not enabled,
831 * then make the check up front and then exit.
833 if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) {
834 info->flags |= ROCKET_NORMAL_ACTIVE;
835 return 0;
837 if (tty->termios->c_cflag & CLOCAL)
838 do_clocal = 1;
841 * Block waiting for the carrier detect and the line to become free. While we are in
842 * this loop, info->count is dropped by one, so that rp_close() knows when to free things.
843 * We restore it upon exit, either normal or abnormal.
845 retval = 0;
846 add_wait_queue(&info->open_wait, &wait);
847 #ifdef ROCKET_DEBUG_OPEN
848 printk(KERN_INFO "block_til_ready before block: ttyR%d, count = %d\n", info->line, info->count);
849 #endif
850 spin_lock_irqsave(&info->slock, flags);
852 #ifdef ROCKET_DISABLE_SIMUSAGE
853 info->flags |= ROCKET_NORMAL_ACTIVE;
854 #else
855 if (!tty_hung_up_p(filp)) {
856 extra_count = 1;
857 info->count--;
859 #endif
860 info->blocked_open++;
862 spin_unlock_irqrestore(&info->slock, flags);
864 while (1) {
865 if (tty->termios->c_cflag & CBAUD) {
866 sSetDTR(&info->channel);
867 sSetRTS(&info->channel);
869 set_current_state(TASK_INTERRUPTIBLE);
870 if (tty_hung_up_p(filp) || !(info->flags & ROCKET_INITIALIZED)) {
871 if (info->flags & ROCKET_HUP_NOTIFY)
872 retval = -EAGAIN;
873 else
874 retval = -ERESTARTSYS;
875 break;
877 if (!(info->flags & ROCKET_CLOSING) && (do_clocal || (sGetChanStatusLo(&info->channel) & CD_ACT)))
878 break;
879 if (signal_pending(current)) {
880 retval = -ERESTARTSYS;
881 break;
883 #ifdef ROCKET_DEBUG_OPEN
884 printk(KERN_INFO "block_til_ready blocking: ttyR%d, count = %d, flags=0x%0x\n",
885 info->line, info->count, info->flags);
886 #endif
887 schedule(); /* Don't hold spinlock here, will hang PC */
889 current->state = TASK_RUNNING;
890 remove_wait_queue(&info->open_wait, &wait);
892 spin_lock_irqsave(&info->slock, flags);
894 if (extra_count)
895 info->count++;
896 info->blocked_open--;
898 spin_unlock_irqrestore(&info->slock, flags);
900 #ifdef ROCKET_DEBUG_OPEN
901 printk(KERN_INFO "block_til_ready after blocking: ttyR%d, count = %d\n",
902 info->line, info->count);
903 #endif
904 if (retval)
905 return retval;
906 info->flags |= ROCKET_NORMAL_ACTIVE;
907 return 0;
911 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
912 * port's r_port struct. Initializes the port hardware.
914 static int rp_open(struct tty_struct *tty, struct file *filp)
916 struct r_port *info;
917 int line = 0, retval;
918 CHANNEL_t *cp;
919 unsigned long page;
921 line = TTY_GET_LINE(tty);
922 if ((line < 0) || (line >= MAX_RP_PORTS) || ((info = rp_table[line]) == NULL))
923 return -ENXIO;
925 page = __get_free_page(GFP_KERNEL);
926 if (!page)
927 return -ENOMEM;
929 if (info->flags & ROCKET_CLOSING) {
930 interruptible_sleep_on(&info->close_wait);
931 free_page(page);
932 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
936 * We must not sleep from here until the port is marked fully in use.
938 if (info->xmit_buf)
939 free_page(page);
940 else
941 info->xmit_buf = (unsigned char *) page;
943 tty->driver_data = info;
944 info->tty = tty;
946 if (info->count++ == 0) {
947 atomic_inc(&rp_num_ports_open);
949 #ifdef ROCKET_DEBUG_OPEN
950 printk(KERN_INFO "rocket mod++ = %d...", atomic_read(&rp_num_ports_open));
951 #endif
953 #ifdef ROCKET_DEBUG_OPEN
954 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->count);
955 #endif
958 * Info->count is now 1; so it's safe to sleep now.
960 info->session = current->signal->session;
961 info->pgrp = process_group(current);
963 if ((info->flags & ROCKET_INITIALIZED) == 0) {
964 cp = &info->channel;
965 sSetRxTrigger(cp, TRIG_1);
966 if (sGetChanStatus(cp) & CD_ACT)
967 info->cd_status = 1;
968 else
969 info->cd_status = 0;
970 sDisRxStatusMode(cp);
971 sFlushRxFIFO(cp);
972 sFlushTxFIFO(cp);
974 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
975 sSetRxTrigger(cp, TRIG_1);
977 sGetChanStatus(cp);
978 sDisRxStatusMode(cp);
979 sClrTxXOFF(cp);
981 sDisCTSFlowCtl(cp);
982 sDisTxSoftFlowCtl(cp);
984 sEnRxFIFO(cp);
985 sEnTransmit(cp);
987 info->flags |= ROCKET_INITIALIZED;
990 * Set up the tty->alt_speed kludge
992 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
993 info->tty->alt_speed = 57600;
994 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
995 info->tty->alt_speed = 115200;
996 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
997 info->tty->alt_speed = 230400;
998 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
999 info->tty->alt_speed = 460800;
1001 configure_r_port(info, NULL);
1002 if (tty->termios->c_cflag & CBAUD) {
1003 sSetDTR(cp);
1004 sSetRTS(cp);
1007 /* Starts (or resets) the maint polling loop */
1008 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
1010 retval = block_til_ready(tty, filp, info);
1011 if (retval) {
1012 #ifdef ROCKET_DEBUG_OPEN
1013 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
1014 #endif
1015 return retval;
1017 return 0;
1021 * Exception handler that closes a serial port. info->count is considered critical.
1023 static void rp_close(struct tty_struct *tty, struct file *filp)
1025 struct r_port *info = (struct r_port *) tty->driver_data;
1026 unsigned long flags;
1027 int timeout;
1028 CHANNEL_t *cp;
1030 if (rocket_paranoia_check(info, "rp_close"))
1031 return;
1033 #ifdef ROCKET_DEBUG_OPEN
1034 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->count);
1035 #endif
1037 if (tty_hung_up_p(filp))
1038 return;
1039 spin_lock_irqsave(&info->slock, flags);
1041 if ((tty->count == 1) && (info->count != 1)) {
1043 * Uh, oh. tty->count is 1, which means that the tty
1044 * structure will be freed. Info->count should always
1045 * be one in these conditions. If it's greater than
1046 * one, we've got real problems, since it means the
1047 * serial port won't be shutdown.
1049 printk(KERN_INFO "rp_close: bad serial port count; tty->count is 1, "
1050 "info->count is %d\n", info->count);
1051 info->count = 1;
1053 if (--info->count < 0) {
1054 printk(KERN_INFO "rp_close: bad serial port count for ttyR%d: %d\n",
1055 info->line, info->count);
1056 info->count = 0;
1058 if (info->count) {
1059 spin_unlock_irqrestore(&info->slock, flags);
1060 return;
1062 info->flags |= ROCKET_CLOSING;
1063 spin_unlock_irqrestore(&info->slock, flags);
1065 cp = &info->channel;
1068 * Notify the line discpline to only process XON/XOFF characters
1070 tty->closing = 1;
1073 * If transmission was throttled by the application request,
1074 * just flush the xmit buffer.
1076 if (tty->flow_stopped)
1077 rp_flush_buffer(tty);
1080 * Wait for the transmit buffer to clear
1082 if (info->closing_wait != ROCKET_CLOSING_WAIT_NONE)
1083 tty_wait_until_sent(tty, info->closing_wait);
1085 * Before we drop DTR, make sure the UART transmitter
1086 * has completely drained; this is especially
1087 * important if there is a transmit FIFO!
1089 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1090 if (timeout == 0)
1091 timeout = 1;
1092 rp_wait_until_sent(tty, timeout);
1093 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1095 sDisTransmit(cp);
1096 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1097 sDisCTSFlowCtl(cp);
1098 sDisTxSoftFlowCtl(cp);
1099 sClrTxXOFF(cp);
1100 sFlushRxFIFO(cp);
1101 sFlushTxFIFO(cp);
1102 sClrRTS(cp);
1103 if (C_HUPCL(tty))
1104 sClrDTR(cp);
1106 if (TTY_DRIVER_FLUSH_BUFFER_EXISTS(tty))
1107 TTY_DRIVER_FLUSH_BUFFER(tty);
1109 tty_ldisc_flush(tty);
1111 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1113 if (info->blocked_open) {
1114 if (info->close_delay) {
1115 current->state = TASK_INTERRUPTIBLE;
1116 schedule_timeout(info->close_delay);
1118 wake_up_interruptible(&info->open_wait);
1119 } else {
1120 if (info->xmit_buf) {
1121 free_page((unsigned long) info->xmit_buf);
1122 info->xmit_buf = NULL;
1125 info->flags &= ~(ROCKET_INITIALIZED | ROCKET_CLOSING | ROCKET_NORMAL_ACTIVE);
1126 tty->closing = 0;
1127 wake_up_interruptible(&info->close_wait);
1128 atomic_dec(&rp_num_ports_open);
1130 #ifdef ROCKET_DEBUG_OPEN
1131 printk(KERN_INFO "rocket mod-- = %d...", atomic_read(&rp_num_ports_open));
1132 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1133 #endif
1137 static void rp_set_termios(struct tty_struct *tty,
1138 struct termios *old_termios)
1140 struct r_port *info = (struct r_port *) tty->driver_data;
1141 CHANNEL_t *cp;
1142 unsigned cflag;
1144 if (rocket_paranoia_check(info, "rp_set_termios"))
1145 return;
1147 cflag = tty->termios->c_cflag;
1149 if (cflag == old_termios->c_cflag)
1150 return;
1153 * This driver doesn't support CS5 or CS6
1155 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1156 tty->termios->c_cflag =
1157 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1159 configure_r_port(info, old_termios);
1161 cp = &info->channel;
1163 /* Handle transition to B0 status */
1164 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1165 sClrDTR(cp);
1166 sClrRTS(cp);
1169 /* Handle transition away from B0 status */
1170 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1171 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1172 sSetRTS(cp);
1173 sSetDTR(cp);
1176 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1177 tty->hw_stopped = 0;
1178 rp_start(tty);
1182 static void rp_break(struct tty_struct *tty, int break_state)
1184 struct r_port *info = (struct r_port *) tty->driver_data;
1185 unsigned long flags;
1187 if (rocket_paranoia_check(info, "rp_break"))
1188 return;
1190 spin_lock_irqsave(&info->slock, flags);
1191 if (break_state == -1)
1192 sSendBreak(&info->channel);
1193 else
1194 sClrBreak(&info->channel);
1195 spin_unlock_irqrestore(&info->slock, flags);
1199 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1200 * the UPCI boards was added, it was decided to make this a function because
1201 * the macro was getting too complicated. All cases except the first one
1202 * (UPCIRingInd) are taken directly from the original macro.
1204 static int sGetChanRI(CHANNEL_T * ChP)
1206 CONTROLLER_t *CtlP = ChP->CtlP;
1207 int ChanNum = ChP->ChanNum;
1208 int RingInd = 0;
1210 if (CtlP->UPCIRingInd)
1211 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1212 else if (CtlP->AltChanRingIndicator)
1213 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1214 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1215 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1217 return RingInd;
1220 /********************************************************************************************/
1221 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1224 * Returns the state of the serial modem control lines. These next 2 functions
1225 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1227 static int rp_tiocmget(struct tty_struct *tty, struct file *file)
1229 struct r_port *info = (struct r_port *)tty->driver_data;
1230 unsigned int control, result, ChanStatus;
1232 ChanStatus = sGetChanStatusLo(&info->channel);
1233 control = info->channel.TxControl[3];
1234 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1235 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1236 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1237 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1238 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1239 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1241 return result;
1245 * Sets the modem control lines
1247 static int rp_tiocmset(struct tty_struct *tty, struct file *file,
1248 unsigned int set, unsigned int clear)
1250 struct r_port *info = (struct r_port *)tty->driver_data;
1252 if (set & TIOCM_RTS)
1253 info->channel.TxControl[3] |= SET_RTS;
1254 if (set & TIOCM_DTR)
1255 info->channel.TxControl[3] |= SET_DTR;
1256 if (clear & TIOCM_RTS)
1257 info->channel.TxControl[3] &= ~SET_RTS;
1258 if (clear & TIOCM_DTR)
1259 info->channel.TxControl[3] &= ~SET_DTR;
1261 sOutDW(info->channel.IndexAddr, *(DWord_t *) & (info->channel.TxControl[0]));
1262 return 0;
1265 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1267 struct rocket_config tmp;
1269 if (!retinfo)
1270 return -EFAULT;
1271 memset(&tmp, 0, sizeof (tmp));
1272 tmp.line = info->line;
1273 tmp.flags = info->flags;
1274 tmp.close_delay = info->close_delay;
1275 tmp.closing_wait = info->closing_wait;
1276 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1278 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1279 return -EFAULT;
1280 return 0;
1283 static int set_config(struct r_port *info, struct rocket_config __user *new_info)
1285 struct rocket_config new_serial;
1287 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1288 return -EFAULT;
1290 if (!capable(CAP_SYS_ADMIN))
1292 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK))
1293 return -EPERM;
1294 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1295 configure_r_port(info, NULL);
1296 return 0;
1299 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1300 info->close_delay = new_serial.close_delay;
1301 info->closing_wait = new_serial.closing_wait;
1303 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1304 info->tty->alt_speed = 57600;
1305 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1306 info->tty->alt_speed = 115200;
1307 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1308 info->tty->alt_speed = 230400;
1309 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1310 info->tty->alt_speed = 460800;
1312 configure_r_port(info, NULL);
1313 return 0;
1317 * This function fills in a rocket_ports struct with information
1318 * about what boards/ports are in the system. This info is passed
1319 * to user space. See setrocket.c where the info is used to create
1320 * the /dev/ttyRx ports.
1322 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1324 struct rocket_ports tmp;
1325 int board;
1327 if (!retports)
1328 return -EFAULT;
1329 memset(&tmp, 0, sizeof (tmp));
1330 tmp.tty_major = rocket_driver->major;
1332 for (board = 0; board < 4; board++) {
1333 tmp.rocketModel[board].model = rocketModel[board].model;
1334 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1335 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1336 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1337 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1339 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1340 return -EFAULT;
1341 return 0;
1344 static int reset_rm2(struct r_port *info, void __user *arg)
1346 int reset;
1348 if (copy_from_user(&reset, arg, sizeof (int)))
1349 return -EFAULT;
1350 if (reset)
1351 reset = 1;
1353 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1354 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1355 return -EINVAL;
1357 if (info->ctlp->BusType == isISA)
1358 sModemReset(info->ctlp, info->chan, reset);
1359 else
1360 sPCIModemReset(info->ctlp, info->chan, reset);
1362 return 0;
1365 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1367 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1368 return -EFAULT;
1369 return 0;
1372 /* IOCTL call handler into the driver */
1373 static int rp_ioctl(struct tty_struct *tty, struct file *file,
1374 unsigned int cmd, unsigned long arg)
1376 struct r_port *info = (struct r_port *) tty->driver_data;
1377 void __user *argp = (void __user *)arg;
1379 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1380 return -ENXIO;
1382 switch (cmd) {
1383 case RCKP_GET_STRUCT:
1384 if (copy_to_user(argp, info, sizeof (struct r_port)))
1385 return -EFAULT;
1386 return 0;
1387 case RCKP_GET_CONFIG:
1388 return get_config(info, argp);
1389 case RCKP_SET_CONFIG:
1390 return set_config(info, argp);
1391 case RCKP_GET_PORTS:
1392 return get_ports(info, argp);
1393 case RCKP_RESET_RM2:
1394 return reset_rm2(info, argp);
1395 case RCKP_GET_VERSION:
1396 return get_version(info, argp);
1397 default:
1398 return -ENOIOCTLCMD;
1400 return 0;
1403 static void rp_send_xchar(struct tty_struct *tty, char ch)
1405 struct r_port *info = (struct r_port *) tty->driver_data;
1406 CHANNEL_t *cp;
1408 if (rocket_paranoia_check(info, "rp_send_xchar"))
1409 return;
1411 cp = &info->channel;
1412 if (sGetTxCnt(cp))
1413 sWriteTxPrioByte(cp, ch);
1414 else
1415 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1418 static void rp_throttle(struct tty_struct *tty)
1420 struct r_port *info = (struct r_port *) tty->driver_data;
1421 CHANNEL_t *cp;
1423 #ifdef ROCKET_DEBUG_THROTTLE
1424 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1425 tty->ldisc.chars_in_buffer(tty));
1426 #endif
1428 if (rocket_paranoia_check(info, "rp_throttle"))
1429 return;
1431 cp = &info->channel;
1432 if (I_IXOFF(tty))
1433 rp_send_xchar(tty, STOP_CHAR(tty));
1435 sClrRTS(&info->channel);
1438 static void rp_unthrottle(struct tty_struct *tty)
1440 struct r_port *info = (struct r_port *) tty->driver_data;
1441 CHANNEL_t *cp;
1442 #ifdef ROCKET_DEBUG_THROTTLE
1443 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1444 tty->ldisc.chars_in_buffer(tty));
1445 #endif
1447 if (rocket_paranoia_check(info, "rp_throttle"))
1448 return;
1450 cp = &info->channel;
1451 if (I_IXOFF(tty))
1452 rp_send_xchar(tty, START_CHAR(tty));
1454 sSetRTS(&info->channel);
1458 * ------------------------------------------------------------
1459 * rp_stop() and rp_start()
1461 * This routines are called before setting or resetting tty->stopped.
1462 * They enable or disable transmitter interrupts, as necessary.
1463 * ------------------------------------------------------------
1465 static void rp_stop(struct tty_struct *tty)
1467 struct r_port *info = (struct r_port *) tty->driver_data;
1469 #ifdef ROCKET_DEBUG_FLOW
1470 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1471 info->xmit_cnt, info->xmit_fifo_room);
1472 #endif
1474 if (rocket_paranoia_check(info, "rp_stop"))
1475 return;
1477 if (sGetTxCnt(&info->channel))
1478 sDisTransmit(&info->channel);
1481 static void rp_start(struct tty_struct *tty)
1483 struct r_port *info = (struct r_port *) tty->driver_data;
1485 #ifdef ROCKET_DEBUG_FLOW
1486 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1487 info->xmit_cnt, info->xmit_fifo_room);
1488 #endif
1490 if (rocket_paranoia_check(info, "rp_stop"))
1491 return;
1493 sEnTransmit(&info->channel);
1494 set_bit((info->aiop * 8) + info->chan,
1495 (void *) &xmit_flags[info->board]);
1499 * rp_wait_until_sent() --- wait until the transmitter is empty
1501 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1503 struct r_port *info = (struct r_port *) tty->driver_data;
1504 CHANNEL_t *cp;
1505 unsigned long orig_jiffies;
1506 int check_time, exit_time;
1507 int txcnt;
1509 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1510 return;
1512 cp = &info->channel;
1514 orig_jiffies = jiffies;
1515 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1516 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...", timeout,
1517 jiffies);
1518 printk(KERN_INFO "cps=%d...", info->cps);
1519 #endif
1520 while (1) {
1521 txcnt = sGetTxCnt(cp);
1522 if (!txcnt) {
1523 if (sGetChanStatusLo(cp) & TXSHRMT)
1524 break;
1525 check_time = (HZ / info->cps) / 5;
1526 } else {
1527 check_time = HZ * txcnt / info->cps;
1529 if (timeout) {
1530 exit_time = orig_jiffies + timeout - jiffies;
1531 if (exit_time <= 0)
1532 break;
1533 if (exit_time < check_time)
1534 check_time = exit_time;
1536 if (check_time == 0)
1537 check_time = 1;
1538 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1539 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...", txcnt, jiffies, check_time);
1540 #endif
1541 current->state = TASK_INTERRUPTIBLE;
1542 schedule_timeout(check_time);
1543 if (signal_pending(current))
1544 break;
1546 current->state = TASK_RUNNING;
1547 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1548 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1549 #endif
1553 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1555 static void rp_hangup(struct tty_struct *tty)
1557 CHANNEL_t *cp;
1558 struct r_port *info = (struct r_port *) tty->driver_data;
1560 if (rocket_paranoia_check(info, "rp_hangup"))
1561 return;
1563 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1564 printk(KERN_INFO "rp_hangup of ttyR%d...", info->line);
1565 #endif
1566 rp_flush_buffer(tty);
1567 if (info->flags & ROCKET_CLOSING)
1568 return;
1569 if (info->count)
1570 atomic_dec(&rp_num_ports_open);
1571 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1573 info->count = 0;
1574 info->flags &= ~ROCKET_NORMAL_ACTIVE;
1575 info->tty = NULL;
1577 cp = &info->channel;
1578 sDisRxFIFO(cp);
1579 sDisTransmit(cp);
1580 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1581 sDisCTSFlowCtl(cp);
1582 sDisTxSoftFlowCtl(cp);
1583 sClrTxXOFF(cp);
1584 info->flags &= ~ROCKET_INITIALIZED;
1586 wake_up_interruptible(&info->open_wait);
1590 * Exception handler - write char routine. The RocketPort driver uses a
1591 * double-buffering strategy, with the twist that if the in-memory CPU
1592 * buffer is empty, and there's space in the transmit FIFO, the
1593 * writing routines will write directly to transmit FIFO.
1594 * Write buffer and counters protected by spinlocks
1596 static void rp_put_char(struct tty_struct *tty, unsigned char ch)
1598 struct r_port *info = (struct r_port *) tty->driver_data;
1599 CHANNEL_t *cp;
1600 unsigned long flags;
1602 if (rocket_paranoia_check(info, "rp_put_char"))
1603 return;
1605 /* Grab the port write semaphore, locking out other processes that try to write to this port */
1606 down(&info->write_sem);
1608 #ifdef ROCKET_DEBUG_WRITE
1609 printk(KERN_INFO "rp_put_char %c...", ch);
1610 #endif
1612 spin_lock_irqsave(&info->slock, flags);
1613 cp = &info->channel;
1615 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1616 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1618 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1619 info->xmit_buf[info->xmit_head++] = ch;
1620 info->xmit_head &= XMIT_BUF_SIZE - 1;
1621 info->xmit_cnt++;
1622 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1623 } else {
1624 sOutB(sGetTxRxDataIO(cp), ch);
1625 info->xmit_fifo_room--;
1627 spin_unlock_irqrestore(&info->slock, flags);
1628 up(&info->write_sem);
1632 * Exception handler - write routine, called when user app writes to the device.
1633 * A per port write semaphore is used to protect from another process writing to
1634 * this port at the same time. This other process could be running on the other CPU
1635 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1636 * Spinlocks protect the info xmit members.
1638 static int rp_write(struct tty_struct *tty, int from_user,
1639 const unsigned char *buf, int count)
1641 struct r_port *info = (struct r_port *) tty->driver_data;
1642 CHANNEL_t *cp;
1643 const unsigned char *b;
1644 int c, retval = 0;
1645 unsigned long flags;
1647 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1648 return 0;
1650 down_interruptible(&info->write_sem);
1652 #ifdef ROCKET_DEBUG_WRITE
1653 printk(KERN_INFO "rp_write %d chars...", count);
1654 #endif
1655 cp = &info->channel;
1657 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1658 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1661 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1662 * into FIFO. Use the write queue for temp storage.
1664 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1665 c = min(count, info->xmit_fifo_room);
1666 b = buf;
1667 if (from_user) {
1668 if (copy_from_user(info->xmit_buf, buf, c)) {
1669 retval = -EFAULT;
1670 goto end;
1672 if (info->tty == 0)
1673 goto end;
1674 b = info->xmit_buf;
1675 c = min(c, info->xmit_fifo_room);
1678 /* Push data into FIFO, 2 bytes at a time */
1679 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1681 /* If there is a byte remaining, write it */
1682 if (c & 1)
1683 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1685 retval += c;
1686 buf += c;
1687 count -= c;
1689 spin_lock_irqsave(&info->slock, flags);
1690 info->xmit_fifo_room -= c;
1691 spin_unlock_irqrestore(&info->slock, flags);
1694 /* If count is zero, we wrote it all and are done */
1695 if (!count)
1696 goto end;
1698 /* Write remaining data into the port's xmit_buf */
1699 while (1) {
1700 if (info->tty == 0) /* Seemingly obligatory check... */
1701 goto end;
1703 c = min(count, min(XMIT_BUF_SIZE - info->xmit_cnt - 1, XMIT_BUF_SIZE - info->xmit_head));
1704 if (c <= 0)
1705 break;
1707 b = buf;
1708 if (from_user) {
1709 if (copy_from_user(info->xmit_buf + info->xmit_head, b, c)) {
1710 retval = -EFAULT;
1711 goto end_intr;
1712 } else {
1713 memcpy(info->xmit_buf + info->xmit_head, b, c);
1717 spin_lock_irqsave(&info->slock, flags);
1718 info->xmit_head =
1719 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1720 info->xmit_cnt += c;
1721 spin_unlock_irqrestore(&info->slock, flags);
1723 buf += c;
1724 count -= c;
1725 retval += c;
1728 end_intr:
1729 if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1730 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1732 end:
1733 if (info->xmit_cnt < WAKEUP_CHARS) {
1734 tty_wakeup(tty);
1735 wake_up_interruptible(&tty->write_wait);
1736 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1737 wake_up_interruptible(&tty->poll_wait);
1738 #endif
1740 up(&info->write_sem);
1741 return retval;
1745 * Return the number of characters that can be sent. We estimate
1746 * only using the in-memory transmit buffer only, and ignore the
1747 * potential space in the transmit FIFO.
1749 static int rp_write_room(struct tty_struct *tty)
1751 struct r_port *info = (struct r_port *) tty->driver_data;
1752 int ret;
1754 if (rocket_paranoia_check(info, "rp_write_room"))
1755 return 0;
1757 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1758 if (ret < 0)
1759 ret = 0;
1760 #ifdef ROCKET_DEBUG_WRITE
1761 printk(KERN_INFO "rp_write_room returns %d...", ret);
1762 #endif
1763 return ret;
1767 * Return the number of characters in the buffer. Again, this only
1768 * counts those characters in the in-memory transmit buffer.
1770 static int rp_chars_in_buffer(struct tty_struct *tty)
1772 struct r_port *info = (struct r_port *) tty->driver_data;
1773 CHANNEL_t *cp;
1775 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1776 return 0;
1778 cp = &info->channel;
1780 #ifdef ROCKET_DEBUG_WRITE
1781 printk(KERN_INFO "rp_chars_in_buffer returns %d...", info->xmit_cnt);
1782 #endif
1783 return info->xmit_cnt;
1787 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1788 * r_port struct for the port. Note that spinlock are used to protect info members,
1789 * do not call this function if the spinlock is already held.
1791 static void rp_flush_buffer(struct tty_struct *tty)
1793 struct r_port *info = (struct r_port *) tty->driver_data;
1794 CHANNEL_t *cp;
1795 unsigned long flags;
1797 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1798 return;
1800 spin_lock_irqsave(&info->slock, flags);
1801 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1802 spin_unlock_irqrestore(&info->slock, flags);
1804 wake_up_interruptible(&tty->write_wait);
1805 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1806 wake_up_interruptible(&tty->poll_wait);
1807 #endif
1808 tty_wakeup(tty);
1810 cp = &info->channel;
1811 sFlushTxFIFO(cp);
1814 #ifdef CONFIG_PCI
1817 * Called when a PCI card is found. Retrieves and stores model information,
1818 * init's aiopic and serial port hardware.
1819 * Inputs: i is the board number (0-n)
1821 __init int register_PCI(int i, struct pci_dev *dev)
1823 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1824 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1825 char *str, *board_type;
1826 CONTROLLER_t *ctlp;
1828 int fast_clock = 0;
1829 int altChanRingIndicator = 0;
1830 int ports_per_aiop = 8;
1831 int ret;
1832 unsigned int class_rev;
1833 WordIO_t ConfigIO = 0;
1834 ByteIO_t UPCIRingInd = 0;
1836 if (!dev || pci_enable_device(dev))
1837 return 0;
1839 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1840 ret = pci_read_config_dword(dev, PCI_CLASS_REVISION, &class_rev);
1842 if (ret) {
1843 printk(KERN_INFO " Error during register_PCI(), unable to read config dword \n");
1844 return 0;
1847 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1848 rocketModel[i].loadrm2 = 0;
1849 rocketModel[i].startingPortNumber = nextLineNumber;
1851 /* Depending on the model, set up some config variables */
1852 switch (dev->device) {
1853 case PCI_DEVICE_ID_RP4QUAD:
1854 str = "Quadcable";
1855 max_num_aiops = 1;
1856 ports_per_aiop = 4;
1857 rocketModel[i].model = MODEL_RP4QUAD;
1858 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1859 rocketModel[i].numPorts = 4;
1860 break;
1861 case PCI_DEVICE_ID_RP8OCTA:
1862 str = "Octacable";
1863 max_num_aiops = 1;
1864 rocketModel[i].model = MODEL_RP8OCTA;
1865 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1866 rocketModel[i].numPorts = 8;
1867 break;
1868 case PCI_DEVICE_ID_URP8OCTA:
1869 str = "Octacable";
1870 max_num_aiops = 1;
1871 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1872 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1873 rocketModel[i].numPorts = 8;
1874 break;
1875 case PCI_DEVICE_ID_RP8INTF:
1876 str = "8";
1877 max_num_aiops = 1;
1878 rocketModel[i].model = MODEL_RP8INTF;
1879 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1880 rocketModel[i].numPorts = 8;
1881 break;
1882 case PCI_DEVICE_ID_URP8INTF:
1883 str = "8";
1884 max_num_aiops = 1;
1885 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1886 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1887 rocketModel[i].numPorts = 8;
1888 break;
1889 case PCI_DEVICE_ID_RP8J:
1890 str = "8J";
1891 max_num_aiops = 1;
1892 rocketModel[i].model = MODEL_RP8J;
1893 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1894 rocketModel[i].numPorts = 8;
1895 break;
1896 case PCI_DEVICE_ID_RP4J:
1897 str = "4J";
1898 max_num_aiops = 1;
1899 ports_per_aiop = 4;
1900 rocketModel[i].model = MODEL_RP4J;
1901 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1902 rocketModel[i].numPorts = 4;
1903 break;
1904 case PCI_DEVICE_ID_RP8SNI:
1905 str = "8 (DB78 Custom)";
1906 max_num_aiops = 1;
1907 rocketModel[i].model = MODEL_RP8SNI;
1908 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1909 rocketModel[i].numPorts = 8;
1910 break;
1911 case PCI_DEVICE_ID_RP16SNI:
1912 str = "16 (DB78 Custom)";
1913 max_num_aiops = 2;
1914 rocketModel[i].model = MODEL_RP16SNI;
1915 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1916 rocketModel[i].numPorts = 16;
1917 break;
1918 case PCI_DEVICE_ID_RP16INTF:
1919 str = "16";
1920 max_num_aiops = 2;
1921 rocketModel[i].model = MODEL_RP16INTF;
1922 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1923 rocketModel[i].numPorts = 16;
1924 break;
1925 case PCI_DEVICE_ID_URP16INTF:
1926 str = "16";
1927 max_num_aiops = 2;
1928 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1929 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1930 rocketModel[i].numPorts = 16;
1931 break;
1932 case PCI_DEVICE_ID_CRP16INTF:
1933 str = "16";
1934 max_num_aiops = 2;
1935 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1936 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1937 rocketModel[i].numPorts = 16;
1938 break;
1939 case PCI_DEVICE_ID_RP32INTF:
1940 str = "32";
1941 max_num_aiops = 4;
1942 rocketModel[i].model = MODEL_RP32INTF;
1943 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1944 rocketModel[i].numPorts = 32;
1945 break;
1946 case PCI_DEVICE_ID_URP32INTF:
1947 str = "32";
1948 max_num_aiops = 4;
1949 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1950 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1951 rocketModel[i].numPorts = 32;
1952 break;
1953 case PCI_DEVICE_ID_RPP4:
1954 str = "Plus Quadcable";
1955 max_num_aiops = 1;
1956 ports_per_aiop = 4;
1957 altChanRingIndicator++;
1958 fast_clock++;
1959 rocketModel[i].model = MODEL_RPP4;
1960 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1961 rocketModel[i].numPorts = 4;
1962 break;
1963 case PCI_DEVICE_ID_RPP8:
1964 str = "Plus Octacable";
1965 max_num_aiops = 2;
1966 ports_per_aiop = 4;
1967 altChanRingIndicator++;
1968 fast_clock++;
1969 rocketModel[i].model = MODEL_RPP8;
1970 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1971 rocketModel[i].numPorts = 8;
1972 break;
1973 case PCI_DEVICE_ID_RP2_232:
1974 str = "Plus 2 (RS-232)";
1975 max_num_aiops = 1;
1976 ports_per_aiop = 2;
1977 altChanRingIndicator++;
1978 fast_clock++;
1979 rocketModel[i].model = MODEL_RP2_232;
1980 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
1981 rocketModel[i].numPorts = 2;
1982 break;
1983 case PCI_DEVICE_ID_RP2_422:
1984 str = "Plus 2 (RS-422)";
1985 max_num_aiops = 1;
1986 ports_per_aiop = 2;
1987 altChanRingIndicator++;
1988 fast_clock++;
1989 rocketModel[i].model = MODEL_RP2_422;
1990 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
1991 rocketModel[i].numPorts = 2;
1992 break;
1993 case PCI_DEVICE_ID_RP6M:
1995 max_num_aiops = 1;
1996 ports_per_aiop = 6;
1997 str = "6-port";
1999 /* If class_rev is 1, the rocketmodem flash must be loaded. If it is 2 it is a "socketed" version. */
2000 if ((class_rev & 0xFF) == 1) {
2001 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2002 rocketModel[i].loadrm2 = 1;
2003 } else {
2004 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2007 rocketModel[i].model = MODEL_RP6M;
2008 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2009 rocketModel[i].numPorts = 6;
2010 break;
2011 case PCI_DEVICE_ID_RP4M:
2012 max_num_aiops = 1;
2013 ports_per_aiop = 4;
2014 str = "4-port";
2015 if ((class_rev & 0xFF) == 1) {
2016 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2017 rocketModel[i].loadrm2 = 1;
2018 } else {
2019 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2022 rocketModel[i].model = MODEL_RP4M;
2023 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2024 rocketModel[i].numPorts = 4;
2025 break;
2026 default:
2027 str = "(unknown/unsupported)";
2028 max_num_aiops = 0;
2029 break;
2033 * Check for UPCI boards.
2036 switch (dev->device) {
2037 case PCI_DEVICE_ID_URP32INTF:
2038 case PCI_DEVICE_ID_URP8INTF:
2039 case PCI_DEVICE_ID_URP16INTF:
2040 case PCI_DEVICE_ID_CRP16INTF:
2041 case PCI_DEVICE_ID_URP8OCTA:
2042 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2043 ConfigIO = pci_resource_start(dev, 1);
2044 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2045 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2048 * Check for octa or quad cable.
2050 if (!
2051 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2052 PCI_GPIO_CTRL_8PORT)) {
2053 str = "Quadcable";
2054 ports_per_aiop = 4;
2055 rocketModel[i].numPorts = 4;
2058 break;
2059 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2060 str = "8 ports";
2061 max_num_aiops = 1;
2062 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2063 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2064 rocketModel[i].numPorts = 8;
2065 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2066 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2067 ConfigIO = pci_resource_start(dev, 1);
2068 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2069 break;
2070 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2071 str = "4 ports";
2072 max_num_aiops = 1;
2073 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2074 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2075 rocketModel[i].numPorts = 4;
2076 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2077 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2078 ConfigIO = pci_resource_start(dev, 1);
2079 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2080 break;
2081 default:
2082 break;
2085 switch (rcktpt_type[i]) {
2086 case ROCKET_TYPE_MODEM:
2087 board_type = "RocketModem";
2088 break;
2089 case ROCKET_TYPE_MODEMII:
2090 board_type = "RocketModem II";
2091 break;
2092 case ROCKET_TYPE_MODEMIII:
2093 board_type = "RocketModem III";
2094 break;
2095 default:
2096 board_type = "RocketPort";
2097 break;
2100 if (fast_clock) {
2101 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2102 rp_baud_base[i] = 921600;
2103 } else {
2105 * If support_low_speed is set, use the slow clock
2106 * prescale, which supports 50 bps
2108 if (support_low_speed) {
2109 /* mod 9 (divide by 10) prescale */
2110 sClockPrescale = 0x19;
2111 rp_baud_base[i] = 230400;
2112 } else {
2113 /* mod 4 (devide by 5) prescale */
2114 sClockPrescale = 0x14;
2115 rp_baud_base[i] = 460800;
2119 for (aiop = 0; aiop < max_num_aiops; aiop++)
2120 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2121 ctlp = sCtlNumToCtlPtr(i);
2122 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2123 for (aiop = 0; aiop < max_num_aiops; aiop++)
2124 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2126 printk("Comtrol PCI controller #%d ID 0x%x found in bus:slot:fn %s at address %04lx, "
2127 "%d AIOP(s) (%s)\n", i, dev->device, pci_name(dev),
2128 rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString);
2129 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2130 rocketModel[i].modelString,
2131 rocketModel[i].startingPortNumber,
2132 rocketModel[i].startingPortNumber +
2133 rocketModel[i].numPorts - 1);
2135 if (num_aiops <= 0) {
2136 rcktpt_io_addr[i] = 0;
2137 return (0);
2139 is_PCI[i] = 1;
2141 /* Reset the AIOPIC, init the serial ports */
2142 for (aiop = 0; aiop < num_aiops; aiop++) {
2143 sResetAiopByNum(ctlp, aiop);
2144 num_chan = ports_per_aiop;
2145 for (chan = 0; chan < num_chan; chan++)
2146 init_r_port(i, aiop, chan, dev);
2149 /* Rocket modems must be reset */
2150 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2151 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2152 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2153 num_chan = ports_per_aiop;
2154 for (chan = 0; chan < num_chan; chan++)
2155 sPCIModemReset(ctlp, chan, 1);
2156 mdelay(500);
2157 for (chan = 0; chan < num_chan; chan++)
2158 sPCIModemReset(ctlp, chan, 0);
2159 mdelay(500);
2160 rmSpeakerReset(ctlp, rocketModel[i].model);
2162 return (1);
2166 * Probes for PCI cards, inits them if found
2167 * Input: board_found = number of ISA boards already found, or the
2168 * starting board number
2169 * Returns: Number of PCI boards found
2171 static int __init init_PCI(int boards_found)
2173 struct pci_dev *dev = NULL;
2174 int count = 0;
2176 /* Work through the PCI device list, pulling out ours */
2177 while ((dev = pci_find_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2178 if (register_PCI(count + boards_found, dev))
2179 count++;
2181 return (count);
2184 #endif /* CONFIG_PCI */
2187 * Probes for ISA cards
2188 * Input: i = the board number to look for
2189 * Returns: 1 if board found, 0 else
2191 static int __init init_ISA(int i)
2193 int num_aiops, num_chan = 0, total_num_chan = 0;
2194 int aiop, chan;
2195 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2196 CONTROLLER_t *ctlp;
2197 char *type_string;
2199 /* If io_addr is zero, no board configured */
2200 if (rcktpt_io_addr[i] == 0)
2201 return (0);
2203 /* Reserve the IO region */
2204 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2205 printk(KERN_INFO "Unable to reserve IO region for configured ISA RocketPort at address 0x%lx, board not installed...\n", rcktpt_io_addr[i]);
2206 rcktpt_io_addr[i] = 0;
2207 return (0);
2210 ctlp = sCtlNumToCtlPtr(i);
2212 ctlp->boardType = rcktpt_type[i];
2214 switch (rcktpt_type[i]) {
2215 case ROCKET_TYPE_PC104:
2216 type_string = "(PC104)";
2217 break;
2218 case ROCKET_TYPE_MODEM:
2219 type_string = "(RocketModem)";
2220 break;
2221 case ROCKET_TYPE_MODEMII:
2222 type_string = "(RocketModem II)";
2223 break;
2224 default:
2225 type_string = "";
2226 break;
2230 * If support_low_speed is set, use the slow clock prescale,
2231 * which supports 50 bps
2233 if (support_low_speed) {
2234 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2235 rp_baud_base[i] = 230400;
2236 } else {
2237 sClockPrescale = 0x14; /* mod 4 (devide by 5) prescale */
2238 rp_baud_base[i] = 460800;
2241 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2242 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2244 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2246 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2247 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2248 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2251 /* If something went wrong initing the AIOP's release the ISA IO memory */
2252 if (num_aiops <= 0) {
2253 release_region(rcktpt_io_addr[i], 64);
2254 rcktpt_io_addr[i] = 0;
2255 return (0);
2258 rocketModel[i].startingPortNumber = nextLineNumber;
2260 for (aiop = 0; aiop < num_aiops; aiop++) {
2261 sResetAiopByNum(ctlp, aiop);
2262 sEnAiop(ctlp, aiop);
2263 num_chan = sGetAiopNumChan(ctlp, aiop);
2264 total_num_chan += num_chan;
2265 for (chan = 0; chan < num_chan; chan++)
2266 init_r_port(i, aiop, chan, NULL);
2268 is_PCI[i] = 0;
2269 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2270 num_chan = sGetAiopNumChan(ctlp, 0);
2271 total_num_chan = num_chan;
2272 for (chan = 0; chan < num_chan; chan++)
2273 sModemReset(ctlp, chan, 1);
2274 mdelay(500);
2275 for (chan = 0; chan < num_chan; chan++)
2276 sModemReset(ctlp, chan, 0);
2277 mdelay(500);
2278 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2279 } else {
2280 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2282 rocketModel[i].numPorts = total_num_chan;
2283 rocketModel[i].model = MODEL_ISA;
2285 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2286 i, rcktpt_io_addr[i], num_aiops, type_string);
2288 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2289 rocketModel[i].modelString,
2290 rocketModel[i].startingPortNumber,
2291 rocketModel[i].startingPortNumber +
2292 rocketModel[i].numPorts - 1);
2294 return (1);
2297 static struct tty_operations rocket_ops = {
2298 .open = rp_open,
2299 .close = rp_close,
2300 .write = rp_write,
2301 .put_char = rp_put_char,
2302 .write_room = rp_write_room,
2303 .chars_in_buffer = rp_chars_in_buffer,
2304 .flush_buffer = rp_flush_buffer,
2305 .ioctl = rp_ioctl,
2306 .throttle = rp_throttle,
2307 .unthrottle = rp_unthrottle,
2308 .set_termios = rp_set_termios,
2309 .stop = rp_stop,
2310 .start = rp_start,
2311 .hangup = rp_hangup,
2312 .break_ctl = rp_break,
2313 .send_xchar = rp_send_xchar,
2314 .wait_until_sent = rp_wait_until_sent,
2315 .tiocmget = rp_tiocmget,
2316 .tiocmset = rp_tiocmset,
2320 * The module "startup" routine; it's run when the module is loaded.
2322 int __init rp_init(void)
2324 int retval, pci_boards_found, isa_boards_found, i;
2326 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2327 ROCKET_VERSION, ROCKET_DATE);
2329 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2330 if (!rocket_driver)
2331 return -ENOMEM;
2334 * Set up the timer channel.
2336 init_timer(&rocket_timer);
2337 rocket_timer.function = rp_do_poll;
2340 * Initialize the array of pointers to our own internal state
2341 * structures.
2343 memset(rp_table, 0, sizeof (rp_table));
2344 memset(xmit_flags, 0, sizeof (xmit_flags));
2346 for (i = 0; i < MAX_RP_PORTS; i++)
2347 lineNumbers[i] = 0;
2348 nextLineNumber = 0;
2349 memset(rocketModel, 0, sizeof (rocketModel));
2352 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2353 * zero, use the default controller IO address of board1 + 0x40.
2355 if (board1) {
2356 if (controller == 0)
2357 controller = board1 + 0x40;
2358 } else {
2359 controller = 0; /* Used as a flag, meaning no ISA boards */
2362 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2363 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2364 printk(KERN_INFO "Unable to reserve IO region for first configured ISA RocketPort controller 0x%lx. Driver exiting \n", controller);
2365 return -EBUSY;
2368 /* Store ISA variable retrieved from command line or .conf file. */
2369 rcktpt_io_addr[0] = board1;
2370 rcktpt_io_addr[1] = board2;
2371 rcktpt_io_addr[2] = board3;
2372 rcktpt_io_addr[3] = board4;
2374 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2375 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2376 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2377 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2378 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2379 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2380 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2384 * Set up the tty driver structure and then register this
2385 * driver with the tty layer.
2388 rocket_driver->owner = THIS_MODULE;
2389 rocket_driver->flags = TTY_DRIVER_NO_DEVFS;
2390 rocket_driver->devfs_name = "tts/R";
2391 rocket_driver->name = "ttyR";
2392 rocket_driver->driver_name = "Comtrol RocketPort";
2393 rocket_driver->major = TTY_ROCKET_MAJOR;
2394 rocket_driver->minor_start = 0;
2395 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2396 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2397 rocket_driver->init_termios = tty_std_termios;
2398 rocket_driver->init_termios.c_cflag =
2399 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2400 #ifdef ROCKET_SOFT_FLOW
2401 rocket_driver->flags |= TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS;
2402 #endif
2403 tty_set_operations(rocket_driver, &rocket_ops);
2405 retval = tty_register_driver(rocket_driver);
2406 if (retval < 0) {
2407 printk(KERN_INFO "Couldn't install tty RocketPort driver (error %d)\n", -retval);
2408 put_tty_driver(rocket_driver);
2409 return -1;
2412 #ifdef ROCKET_DEBUG_OPEN
2413 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2414 #endif
2417 * OK, let's probe each of the controllers looking for boards. Any boards found
2418 * will be initialized here.
2420 isa_boards_found = 0;
2421 pci_boards_found = 0;
2423 for (i = 0; i < NUM_BOARDS; i++) {
2424 if (init_ISA(i))
2425 isa_boards_found++;
2428 #ifdef CONFIG_PCI
2429 if (isa_boards_found < NUM_BOARDS)
2430 pci_boards_found = init_PCI(isa_boards_found);
2431 #endif
2433 max_board = pci_boards_found + isa_boards_found;
2435 if (max_board == 0) {
2436 printk(KERN_INFO "No rocketport ports found; unloading driver.\n");
2437 del_timer_sync(&rocket_timer);
2438 tty_unregister_driver(rocket_driver);
2439 put_tty_driver(rocket_driver);
2440 return -ENXIO;
2443 return 0;
2446 #ifdef MODULE
2448 static void rp_cleanup_module(void)
2450 int retval;
2451 int i;
2453 del_timer_sync(&rocket_timer);
2455 retval = tty_unregister_driver(rocket_driver);
2456 if (retval)
2457 printk(KERN_INFO "Error %d while trying to unregister "
2458 "rocketport driver\n", -retval);
2459 put_tty_driver(rocket_driver);
2461 for (i = 0; i < MAX_RP_PORTS; i++) {
2462 if (rp_table[i])
2463 kfree(rp_table[i]);
2466 for (i = 0; i < NUM_BOARDS; i++) {
2467 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2468 continue;
2469 release_region(rcktpt_io_addr[i], 64);
2471 if (controller)
2472 release_region(controller, 4);
2474 #endif
2476 /***********************************************************************
2477 Copyright 1994 Comtrol Corporation.
2478 All Rights Reserved.
2480 The following source code is subject to Comtrol Corporation's
2481 Developer's License Agreement.
2483 This source code is protected by United States copyright law and
2484 international copyright treaties.
2486 This source code may only be used to develop software products that
2487 will operate with Comtrol brand hardware.
2489 You may not reproduce nor distribute this source code in its original
2490 form but must produce a derivative work which includes portions of
2491 this source code only.
2493 The portions of this source code which you use in your derivative
2494 work must bear Comtrol's copyright notice:
2496 Copyright 1994 Comtrol Corporation.
2498 ***********************************************************************/
2500 #ifndef TRUE
2501 #define TRUE 1
2502 #endif
2504 #ifndef FALSE
2505 #define FALSE 0
2506 #endif
2508 static Byte_t RData[RDATASIZE] = {
2509 0x00, 0x09, 0xf6, 0x82,
2510 0x02, 0x09, 0x86, 0xfb,
2511 0x04, 0x09, 0x00, 0x0a,
2512 0x06, 0x09, 0x01, 0x0a,
2513 0x08, 0x09, 0x8a, 0x13,
2514 0x0a, 0x09, 0xc5, 0x11,
2515 0x0c, 0x09, 0x86, 0x85,
2516 0x0e, 0x09, 0x20, 0x0a,
2517 0x10, 0x09, 0x21, 0x0a,
2518 0x12, 0x09, 0x41, 0xff,
2519 0x14, 0x09, 0x82, 0x00,
2520 0x16, 0x09, 0x82, 0x7b,
2521 0x18, 0x09, 0x8a, 0x7d,
2522 0x1a, 0x09, 0x88, 0x81,
2523 0x1c, 0x09, 0x86, 0x7a,
2524 0x1e, 0x09, 0x84, 0x81,
2525 0x20, 0x09, 0x82, 0x7c,
2526 0x22, 0x09, 0x0a, 0x0a
2529 static Byte_t RRegData[RREGDATASIZE] = {
2530 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
2531 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
2532 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
2533 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
2534 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
2535 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
2536 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
2537 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
2538 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
2539 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
2540 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
2541 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
2542 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
2545 CONTROLLER_T sController[CTL_SIZE] = {
2546 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
2547 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
2548 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
2549 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
2550 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
2551 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
2552 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
2553 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
2556 Byte_t sBitMapClrTbl[8] = {
2557 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
2560 Byte_t sBitMapSetTbl[8] = {
2561 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
2564 int sClockPrescale = 0x14;
2566 /***************************************************************************
2567 Function: sInitController
2568 Purpose: Initialization of controller global registers and controller
2569 structure.
2570 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2571 IRQNum,Frequency,PeriodicOnly)
2572 CONTROLLER_T *CtlP; Ptr to controller structure
2573 int CtlNum; Controller number
2574 ByteIO_t MudbacIO; Mudbac base I/O address.
2575 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2576 This list must be in the order the AIOPs will be found on the
2577 controller. Once an AIOP in the list is not found, it is
2578 assumed that there are no more AIOPs on the controller.
2579 int AiopIOListSize; Number of addresses in AiopIOList
2580 int IRQNum; Interrupt Request number. Can be any of the following:
2581 0: Disable global interrupts
2582 3: IRQ 3
2583 4: IRQ 4
2584 5: IRQ 5
2585 9: IRQ 9
2586 10: IRQ 10
2587 11: IRQ 11
2588 12: IRQ 12
2589 15: IRQ 15
2590 Byte_t Frequency: A flag identifying the frequency
2591 of the periodic interrupt, can be any one of the following:
2592 FREQ_DIS - periodic interrupt disabled
2593 FREQ_137HZ - 137 Hertz
2594 FREQ_69HZ - 69 Hertz
2595 FREQ_34HZ - 34 Hertz
2596 FREQ_17HZ - 17 Hertz
2597 FREQ_9HZ - 9 Hertz
2598 FREQ_4HZ - 4 Hertz
2599 If IRQNum is set to 0 the Frequency parameter is
2600 overidden, it is forced to a value of FREQ_DIS.
2601 int PeriodicOnly: TRUE if all interrupts except the periodic
2602 interrupt are to be blocked.
2603 FALSE is both the periodic interrupt and
2604 other channel interrupts are allowed.
2605 If IRQNum is set to 0 the PeriodicOnly parameter is
2606 overidden, it is forced to a value of FALSE.
2607 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2608 initialization failed.
2610 Comments:
2611 If periodic interrupts are to be disabled but AIOP interrupts
2612 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to FALSE.
2614 If interrupts are to be completely disabled set IRQNum to 0.
2616 Setting Frequency to FREQ_DIS and PeriodicOnly to TRUE is an
2617 invalid combination.
2619 This function performs initialization of global interrupt modes,
2620 but it does not actually enable global interrupts. To enable
2621 and disable global interrupts use functions sEnGlobalInt() and
2622 sDisGlobalInt(). Enabling of global interrupts is normally not
2623 done until all other initializations are complete.
2625 Even if interrupts are globally enabled, they must also be
2626 individually enabled for each channel that is to generate
2627 interrupts.
2629 Warnings: No range checking on any of the parameters is done.
2631 No context switches are allowed while executing this function.
2633 After this function all AIOPs on the controller are disabled,
2634 they can be enabled with sEnAiop().
2636 int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2637 ByteIO_t * AiopIOList, int AiopIOListSize, int IRQNum,
2638 Byte_t Frequency, int PeriodicOnly)
2640 int i;
2641 ByteIO_t io;
2642 int done;
2644 CtlP->AiopIntrBits = aiop_intr_bits;
2645 CtlP->AltChanRingIndicator = 0;
2646 CtlP->CtlNum = CtlNum;
2647 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2648 CtlP->BusType = isISA;
2649 CtlP->MBaseIO = MudbacIO;
2650 CtlP->MReg1IO = MudbacIO + 1;
2651 CtlP->MReg2IO = MudbacIO + 2;
2652 CtlP->MReg3IO = MudbacIO + 3;
2653 #if 1
2654 CtlP->MReg2 = 0; /* interrupt disable */
2655 CtlP->MReg3 = 0; /* no periodic interrupts */
2656 #else
2657 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2658 CtlP->MReg2 = 0; /* interrupt disable */
2659 CtlP->MReg3 = 0; /* no periodic interrupts */
2660 } else {
2661 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2662 CtlP->MReg3 = Frequency; /* set frequency */
2663 if (PeriodicOnly) { /* periodic interrupt only */
2664 CtlP->MReg3 |= PERIODIC_ONLY;
2667 #endif
2668 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2669 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2670 sControllerEOI(CtlP); /* clear EOI if warm init */
2671 /* Init AIOPs */
2672 CtlP->NumAiop = 0;
2673 for (i = done = 0; i < AiopIOListSize; i++) {
2674 io = AiopIOList[i];
2675 CtlP->AiopIO[i] = (WordIO_t) io;
2676 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2677 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2678 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2679 if (done)
2680 continue;
2681 sEnAiop(CtlP, i); /* enable the AIOP */
2682 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2683 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2684 done = 1; /* done looking for AIOPs */
2685 else {
2686 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2687 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2688 sOutB(io + _INDX_DATA, sClockPrescale);
2689 CtlP->NumAiop++; /* bump count of AIOPs */
2691 sDisAiop(CtlP, i); /* disable AIOP */
2694 if (CtlP->NumAiop == 0)
2695 return (-1);
2696 else
2697 return (CtlP->NumAiop);
2700 /***************************************************************************
2701 Function: sPCIInitController
2702 Purpose: Initialization of controller global registers and controller
2703 structure.
2704 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2705 IRQNum,Frequency,PeriodicOnly)
2706 CONTROLLER_T *CtlP; Ptr to controller structure
2707 int CtlNum; Controller number
2708 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2709 This list must be in the order the AIOPs will be found on the
2710 controller. Once an AIOP in the list is not found, it is
2711 assumed that there are no more AIOPs on the controller.
2712 int AiopIOListSize; Number of addresses in AiopIOList
2713 int IRQNum; Interrupt Request number. Can be any of the following:
2714 0: Disable global interrupts
2715 3: IRQ 3
2716 4: IRQ 4
2717 5: IRQ 5
2718 9: IRQ 9
2719 10: IRQ 10
2720 11: IRQ 11
2721 12: IRQ 12
2722 15: IRQ 15
2723 Byte_t Frequency: A flag identifying the frequency
2724 of the periodic interrupt, can be any one of the following:
2725 FREQ_DIS - periodic interrupt disabled
2726 FREQ_137HZ - 137 Hertz
2727 FREQ_69HZ - 69 Hertz
2728 FREQ_34HZ - 34 Hertz
2729 FREQ_17HZ - 17 Hertz
2730 FREQ_9HZ - 9 Hertz
2731 FREQ_4HZ - 4 Hertz
2732 If IRQNum is set to 0 the Frequency parameter is
2733 overidden, it is forced to a value of FREQ_DIS.
2734 int PeriodicOnly: TRUE if all interrupts except the periodic
2735 interrupt are to be blocked.
2736 FALSE is both the periodic interrupt and
2737 other channel interrupts are allowed.
2738 If IRQNum is set to 0 the PeriodicOnly parameter is
2739 overidden, it is forced to a value of FALSE.
2740 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2741 initialization failed.
2743 Comments:
2744 If periodic interrupts are to be disabled but AIOP interrupts
2745 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to FALSE.
2747 If interrupts are to be completely disabled set IRQNum to 0.
2749 Setting Frequency to FREQ_DIS and PeriodicOnly to TRUE is an
2750 invalid combination.
2752 This function performs initialization of global interrupt modes,
2753 but it does not actually enable global interrupts. To enable
2754 and disable global interrupts use functions sEnGlobalInt() and
2755 sDisGlobalInt(). Enabling of global interrupts is normally not
2756 done until all other initializations are complete.
2758 Even if interrupts are globally enabled, they must also be
2759 individually enabled for each channel that is to generate
2760 interrupts.
2762 Warnings: No range checking on any of the parameters is done.
2764 No context switches are allowed while executing this function.
2766 After this function all AIOPs on the controller are disabled,
2767 they can be enabled with sEnAiop().
2769 int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2770 ByteIO_t * AiopIOList, int AiopIOListSize,
2771 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2772 int PeriodicOnly, int altChanRingIndicator,
2773 int UPCIRingInd)
2775 int i;
2776 ByteIO_t io;
2778 CtlP->AltChanRingIndicator = altChanRingIndicator;
2779 CtlP->UPCIRingInd = UPCIRingInd;
2780 CtlP->CtlNum = CtlNum;
2781 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2782 CtlP->BusType = isPCI; /* controller release 1 */
2784 if (ConfigIO) {
2785 CtlP->isUPCI = 1;
2786 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2787 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2788 CtlP->AiopIntrBits = upci_aiop_intr_bits;
2789 } else {
2790 CtlP->isUPCI = 0;
2791 CtlP->PCIIO =
2792 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2793 CtlP->AiopIntrBits = aiop_intr_bits;
2796 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
2797 /* Init AIOPs */
2798 CtlP->NumAiop = 0;
2799 for (i = 0; i < AiopIOListSize; i++) {
2800 io = AiopIOList[i];
2801 CtlP->AiopIO[i] = (WordIO_t) io;
2802 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2804 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2805 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2806 break; /* done looking for AIOPs */
2808 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2809 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2810 sOutB(io + _INDX_DATA, sClockPrescale);
2811 CtlP->NumAiop++; /* bump count of AIOPs */
2814 if (CtlP->NumAiop == 0)
2815 return (-1);
2816 else
2817 return (CtlP->NumAiop);
2820 /***************************************************************************
2821 Function: sReadAiopID
2822 Purpose: Read the AIOP idenfication number directly from an AIOP.
2823 Call: sReadAiopID(io)
2824 ByteIO_t io: AIOP base I/O address
2825 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2826 is replace by an identifying number.
2827 Flag AIOPID_NULL if no valid AIOP is found
2828 Warnings: No context switches are allowed while executing this function.
2831 int sReadAiopID(ByteIO_t io)
2833 Byte_t AiopID; /* ID byte from AIOP */
2835 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2836 sOutB(io + _CMD_REG, 0x0);
2837 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2838 if (AiopID == 0x06)
2839 return (1);
2840 else /* AIOP does not exist */
2841 return (-1);
2844 /***************************************************************************
2845 Function: sReadAiopNumChan
2846 Purpose: Read the number of channels available in an AIOP directly from
2847 an AIOP.
2848 Call: sReadAiopNumChan(io)
2849 WordIO_t io: AIOP base I/O address
2850 Return: int: The number of channels available
2851 Comments: The number of channels is determined by write/reads from identical
2852 offsets within the SRAM address spaces for channels 0 and 4.
2853 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2854 AIOP, otherwise it is an 8 channel.
2855 Warnings: No context switches are allowed while executing this function.
2857 int sReadAiopNumChan(WordIO_t io)
2859 Word_t x;
2860 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2862 /* write to chan 0 SRAM */
2863 sOutDW((DWordIO_t) io + _INDX_ADDR, *((DWord_t *) & R[0]));
2864 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2865 x = sInW(io + _INDX_DATA);
2866 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2867 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2868 return (8);
2869 else
2870 return (4);
2873 /***************************************************************************
2874 Function: sInitChan
2875 Purpose: Initialization of a channel and channel structure
2876 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2877 CONTROLLER_T *CtlP; Ptr to controller structure
2878 CHANNEL_T *ChP; Ptr to channel structure
2879 int AiopNum; AIOP number within controller
2880 int ChanNum; Channel number within AIOP
2881 Return: int: TRUE if initialization succeeded, FALSE if it fails because channel
2882 number exceeds number of channels available in AIOP.
2883 Comments: This function must be called before a channel can be used.
2884 Warnings: No range checking on any of the parameters is done.
2886 No context switches are allowed while executing this function.
2888 int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2889 int ChanNum)
2891 int i;
2892 WordIO_t AiopIO;
2893 WordIO_t ChIOOff;
2894 Byte_t *ChR;
2895 Word_t ChOff;
2896 static Byte_t R[4];
2897 int brd9600;
2899 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2900 return (FALSE); /* exceeds num chans in AIOP */
2902 /* Channel, AIOP, and controller identifiers */
2903 ChP->CtlP = CtlP;
2904 ChP->ChanID = CtlP->AiopID[AiopNum];
2905 ChP->AiopNum = AiopNum;
2906 ChP->ChanNum = ChanNum;
2908 /* Global direct addresses */
2909 AiopIO = CtlP->AiopIO[AiopNum];
2910 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2911 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2912 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2913 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2914 ChP->IndexData = AiopIO + _INDX_DATA;
2916 /* Channel direct addresses */
2917 ChIOOff = AiopIO + ChP->ChanNum * 2;
2918 ChP->TxRxData = ChIOOff + _TD0;
2919 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2920 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2921 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2923 /* Initialize the channel from the RData array */
2924 for (i = 0; i < RDATASIZE; i += 4) {
2925 R[0] = RData[i];
2926 R[1] = RData[i + 1] + 0x10 * ChanNum;
2927 R[2] = RData[i + 2];
2928 R[3] = RData[i + 3];
2929 sOutDW(ChP->IndexAddr, *((DWord_t *) & R[0]));
2932 ChR = ChP->R;
2933 for (i = 0; i < RREGDATASIZE; i += 4) {
2934 ChR[i] = RRegData[i];
2935 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2936 ChR[i + 2] = RRegData[i + 2];
2937 ChR[i + 3] = RRegData[i + 3];
2940 /* Indexed registers */
2941 ChOff = (Word_t) ChanNum *0x1000;
2943 if (sClockPrescale == 0x14)
2944 brd9600 = 47;
2945 else
2946 brd9600 = 23;
2948 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2949 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2950 ChP->BaudDiv[2] = (Byte_t) brd9600;
2951 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2952 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->BaudDiv[0]);
2954 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2955 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2956 ChP->TxControl[2] = 0;
2957 ChP->TxControl[3] = 0;
2958 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxControl[0]);
2960 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2961 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2962 ChP->RxControl[2] = 0;
2963 ChP->RxControl[3] = 0;
2964 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->RxControl[0]);
2966 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2967 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2968 ChP->TxEnables[2] = 0;
2969 ChP->TxEnables[3] = 0;
2970 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxEnables[0]);
2972 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2973 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2974 ChP->TxCompare[2] = 0;
2975 ChP->TxCompare[3] = 0;
2976 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxCompare[0]);
2978 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2979 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2980 ChP->TxReplace1[2] = 0;
2981 ChP->TxReplace1[3] = 0;
2982 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxReplace1[0]);
2984 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2985 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2986 ChP->TxReplace2[2] = 0;
2987 ChP->TxReplace2[3] = 0;
2988 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxReplace2[0]);
2990 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2991 ChP->TxFIFO = ChOff + _TX_FIFO;
2993 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2994 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2995 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2996 sOutW(ChP->IndexData, 0);
2997 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2998 ChP->RxFIFO = ChOff + _RX_FIFO;
3000 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
3001 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
3002 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
3003 sOutW(ChP->IndexData, 0);
3004 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
3005 sOutW(ChP->IndexData, 0);
3006 ChP->TxPrioCnt = ChOff + _TXP_CNT;
3007 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
3008 sOutB(ChP->IndexData, 0);
3009 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
3010 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
3011 sOutB(ChP->IndexData, 0);
3012 ChP->TxPrioBuf = ChOff + _TXP_BUF;
3013 sEnRxProcessor(ChP); /* start the Rx processor */
3015 return (TRUE);
3018 /***************************************************************************
3019 Function: sStopRxProcessor
3020 Purpose: Stop the receive processor from processing a channel.
3021 Call: sStopRxProcessor(ChP)
3022 CHANNEL_T *ChP; Ptr to channel structure
3024 Comments: The receive processor can be started again with sStartRxProcessor().
3025 This function causes the receive processor to skip over the
3026 stopped channel. It does not stop it from processing other channels.
3028 Warnings: No context switches are allowed while executing this function.
3030 Do not leave the receive processor stopped for more than one
3031 character time.
3033 After calling this function a delay of 4 uS is required to ensure
3034 that the receive processor is no longer processing this channel.
3036 void sStopRxProcessor(CHANNEL_T * ChP)
3038 Byte_t R[4];
3040 R[0] = ChP->R[0];
3041 R[1] = ChP->R[1];
3042 R[2] = 0x0a;
3043 R[3] = ChP->R[3];
3044 sOutDW(ChP->IndexAddr, *(DWord_t *) & R[0]);
3047 /***************************************************************************
3048 Function: sFlushRxFIFO
3049 Purpose: Flush the Rx FIFO
3050 Call: sFlushRxFIFO(ChP)
3051 CHANNEL_T *ChP; Ptr to channel structure
3052 Return: void
3053 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
3054 while it is being flushed the receive processor is stopped
3055 and the transmitter is disabled. After these operations a
3056 4 uS delay is done before clearing the pointers to allow
3057 the receive processor to stop. These items are handled inside
3058 this function.
3059 Warnings: No context switches are allowed while executing this function.
3061 void sFlushRxFIFO(CHANNEL_T * ChP)
3063 int i;
3064 Byte_t Ch; /* channel number within AIOP */
3065 int RxFIFOEnabled; /* TRUE if Rx FIFO enabled */
3067 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
3068 return; /* don't need to flush */
3070 RxFIFOEnabled = FALSE;
3071 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
3072 RxFIFOEnabled = TRUE;
3073 sDisRxFIFO(ChP); /* disable it */
3074 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
3075 sInB(ChP->IntChan); /* depends on bus i/o timing */
3077 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
3078 Ch = (Byte_t) sGetChanNum(ChP);
3079 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
3080 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
3081 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
3082 sOutW(ChP->IndexData, 0);
3083 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
3084 sOutW(ChP->IndexData, 0);
3085 if (RxFIFOEnabled)
3086 sEnRxFIFO(ChP); /* enable Rx FIFO */
3089 /***************************************************************************
3090 Function: sFlushTxFIFO
3091 Purpose: Flush the Tx FIFO
3092 Call: sFlushTxFIFO(ChP)
3093 CHANNEL_T *ChP; Ptr to channel structure
3094 Return: void
3095 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
3096 while it is being flushed the receive processor is stopped
3097 and the transmitter is disabled. After these operations a
3098 4 uS delay is done before clearing the pointers to allow
3099 the receive processor to stop. These items are handled inside
3100 this function.
3101 Warnings: No context switches are allowed while executing this function.
3103 void sFlushTxFIFO(CHANNEL_T * ChP)
3105 int i;
3106 Byte_t Ch; /* channel number within AIOP */
3107 int TxEnabled; /* TRUE if transmitter enabled */
3109 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
3110 return; /* don't need to flush */
3112 TxEnabled = FALSE;
3113 if (ChP->TxControl[3] & TX_ENABLE) {
3114 TxEnabled = TRUE;
3115 sDisTransmit(ChP); /* disable transmitter */
3117 sStopRxProcessor(ChP); /* stop Rx processor */
3118 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
3119 sInB(ChP->IntChan); /* depends on bus i/o timing */
3120 Ch = (Byte_t) sGetChanNum(ChP);
3121 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
3122 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
3123 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
3124 sOutW(ChP->IndexData, 0);
3125 if (TxEnabled)
3126 sEnTransmit(ChP); /* enable transmitter */
3127 sStartRxProcessor(ChP); /* restart Rx processor */
3130 /***************************************************************************
3131 Function: sWriteTxPrioByte
3132 Purpose: Write a byte of priority transmit data to a channel
3133 Call: sWriteTxPrioByte(ChP,Data)
3134 CHANNEL_T *ChP; Ptr to channel structure
3135 Byte_t Data; The transmit data byte
3137 Return: int: 1 if the bytes is successfully written, otherwise 0.
3139 Comments: The priority byte is transmitted before any data in the Tx FIFO.
3141 Warnings: No context switches are allowed while executing this function.
3143 int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
3145 Byte_t DWBuf[4]; /* buffer for double word writes */
3146 Word_t *WordPtr; /* must be far because Win SS != DS */
3147 register DWordIO_t IndexAddr;
3149 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
3150 IndexAddr = ChP->IndexAddr;
3151 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
3152 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
3153 return (0); /* nothing sent */
3155 WordPtr = (Word_t *) (&DWBuf[0]);
3156 *WordPtr = ChP->TxPrioBuf; /* data byte address */
3158 DWBuf[2] = Data; /* data byte value */
3159 sOutDW(IndexAddr, *((DWord_t *) (&DWBuf[0]))); /* write it out */
3161 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
3163 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
3164 DWBuf[3] = 0; /* priority buffer pointer */
3165 sOutDW(IndexAddr, *((DWord_t *) (&DWBuf[0]))); /* write it out */
3166 } else { /* write it to Tx FIFO */
3168 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
3170 return (1); /* 1 byte sent */
3173 /***************************************************************************
3174 Function: sEnInterrupts
3175 Purpose: Enable one or more interrupts for a channel
3176 Call: sEnInterrupts(ChP,Flags)
3177 CHANNEL_T *ChP; Ptr to channel structure
3178 Word_t Flags: Interrupt enable flags, can be any combination
3179 of the following flags:
3180 TXINT_EN: Interrupt on Tx FIFO empty
3181 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3182 sSetRxTrigger())
3183 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3184 MCINT_EN: Interrupt on modem input change
3185 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3186 Interrupt Channel Register.
3187 Return: void
3188 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3189 enabled. If an interrupt enable flag is not set in Flags, that
3190 interrupt will not be changed. Interrupts can be disabled with
3191 function sDisInterrupts().
3193 This function sets the appropriate bit for the channel in the AIOP's
3194 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3195 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3197 Interrupts must also be globally enabled before channel interrupts
3198 will be passed on to the host. This is done with function
3199 sEnGlobalInt().
3201 In some cases it may be desirable to disable interrupts globally but
3202 enable channel interrupts. This would allow the global interrupt
3203 status register to be used to determine which AIOPs need service.
3205 void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3207 Byte_t Mask; /* Interrupt Mask Register */
3209 ChP->RxControl[2] |=
3210 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3212 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->RxControl[0]);
3214 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3216 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxControl[0]);
3218 if (Flags & CHANINT_EN) {
3219 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3220 sOutB(ChP->IntMask, Mask);
3224 /***************************************************************************
3225 Function: sDisInterrupts
3226 Purpose: Disable one or more interrupts for a channel
3227 Call: sDisInterrupts(ChP,Flags)
3228 CHANNEL_T *ChP; Ptr to channel structure
3229 Word_t Flags: Interrupt flags, can be any combination
3230 of the following flags:
3231 TXINT_EN: Interrupt on Tx FIFO empty
3232 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3233 sSetRxTrigger())
3234 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3235 MCINT_EN: Interrupt on modem input change
3236 CHANINT_EN: Disable channel interrupt signal to the
3237 AIOP's Interrupt Channel Register.
3238 Return: void
3239 Comments: If an interrupt flag is set in Flags, that interrupt will be
3240 disabled. If an interrupt flag is not set in Flags, that
3241 interrupt will not be changed. Interrupts can be enabled with
3242 function sEnInterrupts().
3244 This function clears the appropriate bit for the channel in the AIOP's
3245 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3246 this channel's bit from being set in the AIOP's Interrupt Channel
3247 Register.
3249 void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3251 Byte_t Mask; /* Interrupt Mask Register */
3253 ChP->RxControl[2] &=
3254 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3255 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->RxControl[0]);
3256 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3257 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxControl[0]);
3259 if (Flags & CHANINT_EN) {
3260 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3261 sOutB(ChP->IntMask, Mask);
3265 void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3267 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3271 * Not an official SSCI function, but how to reset RocketModems.
3272 * ISA bus version
3274 void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3276 ByteIO_t addr;
3277 Byte_t val;
3279 addr = CtlP->AiopIO[0] + 0x400;
3280 val = sInB(CtlP->MReg3IO);
3281 /* if AIOP[1] is not enabled, enable it */
3282 if ((val & 2) == 0) {
3283 val = sInB(CtlP->MReg2IO);
3284 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3285 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3288 sEnAiop(CtlP, 1);
3289 if (!on)
3290 addr += 8;
3291 sOutB(addr + chan, 0); /* apply or remove reset */
3292 sDisAiop(CtlP, 1);
3296 * Not an official SSCI function, but how to reset RocketModems.
3297 * PCI bus version
3299 void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3301 ByteIO_t addr;
3303 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3304 if (!on)
3305 addr += 8;
3306 sOutB(addr + chan, 0); /* apply or remove reset */
3309 /* Resets the speaker controller on RocketModem II and III devices */
3310 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3312 ByteIO_t addr;
3314 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3315 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3316 addr = CtlP->AiopIO[0] + 0x4F;
3317 sOutB(addr, 0);
3320 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3321 if ((model == MODEL_UPCI_RM3_8PORT)
3322 || (model == MODEL_UPCI_RM3_4PORT)) {
3323 addr = CtlP->AiopIO[0] + 0x88;
3324 sOutB(addr, 0);
3328 /* Returns the line number given the controller (board), aiop and channel number */
3329 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3331 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3335 * Stores the line number associated with a given controller (board), aiop
3336 * and channel number.
3337 * Returns: The line number assigned
3339 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3341 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3342 return (nextLineNumber - 1);