code style scripts/checkpatch.pl (linux-3.9-rc1) formatting
[linux-2.6.34.14-moxart.git] / kernel / sched_fair.c
blob85d9dd0b82e48d106166c73c678093bd49027f6d
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 5;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
157 return 0;
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
162 return se->parent;
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
168 int depth = 0;
170 for_each_sched_entity(se)
171 depth++;
173 return depth;
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
179 int se_depth, pse_depth;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct *task_of(struct sched_entity *se)
212 return container_of(se, struct task_struct, se);
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
217 return container_of(cfs_rq, struct rq, cfs);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
227 return &task_rq(p)->cfs;
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
235 return &rq->cfs;
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
241 return NULL;
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
246 return &cpu_rq(this_cpu)->cfs;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
255 return 1;
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
260 return NULL;
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
281 return min_vruntime;
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
290 return min_vruntime;
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
296 return (s64)(a->vruntime - b->vruntime) < 0;
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
301 return se->vruntime - cfs_rq->min_vruntime;
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
306 u64 vruntime = cfs_rq->min_vruntime;
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
337 * Find the right place in the rbtree:
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
379 struct rb_node *left = cfs_rq->rb_leftmost;
381 if (!left)
382 return NULL;
384 return rb_entry(left, struct sched_entity, run_node);
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
391 if (!last)
392 return NULL;
394 return rb_entry(last, struct sched_entity, run_node);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
409 if (ret || !write)
410 return ret;
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
423 return 0;
425 #endif
428 * delta /= w
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
436 return delta;
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64 __sched_period(unsigned long nr_running)
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
457 return period;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
464 * s = p*P[w/rw]
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
483 slice = calc_delta_mine(slice, se->load.weight, load);
485 return slice;
489 * We calculate the vruntime slice of a to be inserted task
491 * vs = s/w
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
506 unsigned long delta_exec_weighted;
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
510 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec);
512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514 curr->vruntime += delta_exec_weighted;
515 update_min_vruntime(cfs_rq);
518 static void update_curr(struct cfs_rq *cfs_rq)
520 struct sched_entity *curr = cfs_rq->curr;
521 u64 now = rq_of(cfs_rq)->clock;
522 unsigned long delta_exec;
524 if (unlikely(!curr))
525 return;
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
532 delta_exec = (unsigned long)(now - curr->exec_start);
533 if (!delta_exec)
534 return;
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
543 cpuacct_charge(curtask, delta_exec);
544 account_group_exec_runtime(curtask, delta_exec);
548 static inline void
549 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
555 * Task is being enqueued - update stats:
557 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
563 if (se != cfs_rq->curr)
564 update_stats_wait_start(cfs_rq, se);
567 static void
568 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
575 #ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
580 #endif
581 schedstat_set(se->wait_start, 0);
584 static inline void
585 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
591 if (se != cfs_rq->curr)
592 update_stats_wait_end(cfs_rq, se);
596 * We are picking a new current task - update its stats:
598 static inline void
599 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 * We are starting a new run period:
604 se->exec_start = rq_of(cfs_rq)->clock;
607 /**************************************************
608 * Scheduling class queueing methods:
611 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612 static void
613 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 cfs_rq->task_weight += weight;
617 #else
618 static inline void
619 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
622 #endif
624 static void
625 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 update_load_add(&cfs_rq->load, se->load.weight);
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
630 if (entity_is_task(se)) {
631 add_cfs_task_weight(cfs_rq, se->load.weight);
632 list_add(&se->group_node, &cfs_rq->tasks);
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
638 static void
639 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 update_load_sub(&cfs_rq->load, se->load.weight);
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
644 if (entity_is_task(se)) {
645 add_cfs_task_weight(cfs_rq, -se->load.weight);
646 list_del_init(&se->group_node);
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
652 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 #ifdef CONFIG_SCHEDSTATS
655 struct task_struct *tsk = NULL;
657 if (entity_is_task(se))
658 tsk = task_of(se);
660 if (se->sleep_start) {
661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
663 if ((s64)delta < 0)
664 delta = 0;
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
672 if (tsk) {
673 account_scheduler_latency(tsk, delta >> 10, 1);
674 trace_sched_stat_sleep(tsk, delta);
677 if (se->block_start) {
678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
680 if ((s64)delta < 0)
681 delta = 0;
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
689 if (tsk) {
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
693 trace_sched_stat_iowait(tsk, delta);
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
706 account_scheduler_latency(tsk, delta >> 10, 0);
709 #endif
712 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 #ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
717 if (d < 0)
718 d = -d;
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722 #endif
725 static void
726 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 u64 vruntime = cfs_rq->min_vruntime;
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
736 if (initial && sched_feat(START_DEBIT))
737 vruntime += sched_vslice(cfs_rq, se);
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
760 vruntime -= thresh;
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
766 se->vruntime = vruntime;
769 #define ENQUEUE_WAKEUP 1
770 #define ENQUEUE_MIGRATE 2
772 static void
773 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
783 * Update run-time statistics of the 'current'.
785 update_curr(cfs_rq);
786 account_entity_enqueue(cfs_rq, se);
788 if (flags & ENQUEUE_WAKEUP) {
789 place_entity(cfs_rq, se, 0);
790 enqueue_sleeper(cfs_rq, se);
793 update_stats_enqueue(cfs_rq, se);
794 check_spread(cfs_rq, se);
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
799 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
801 if (!se || cfs_rq->last == se)
802 cfs_rq->last = NULL;
804 if (!se || cfs_rq->next == se)
805 cfs_rq->next = NULL;
808 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
814 static void
815 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
818 * Update run-time statistics of the 'current'.
820 update_curr(cfs_rq);
822 update_stats_dequeue(cfs_rq, se);
823 if (sleep) {
824 #ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
828 if (tsk->state & TASK_INTERRUPTIBLE)
829 se->sleep_start = rq_of(cfs_rq)->clock;
830 if (tsk->state & TASK_UNINTERRUPTIBLE)
831 se->block_start = rq_of(cfs_rq)->clock;
833 #endif
836 clear_buddies(cfs_rq, se);
838 if (se != cfs_rq->curr)
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
841 update_min_vruntime(cfs_rq);
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
853 * Preempt the current task with a newly woken task if needed:
855 static void
856 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
858 unsigned long ideal_runtime, delta_exec;
860 ideal_runtime = sched_slice(cfs_rq, curr);
861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
862 if (delta_exec > ideal_runtime) {
863 resched_task(rq_of(cfs_rq)->curr);
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
868 clear_buddies(cfs_rq, curr);
869 return;
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
892 static void
893 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
906 update_stats_curr_start(cfs_rq, se);
907 cfs_rq->curr = se;
908 #ifdef CONFIG_SCHEDSTATS
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
918 #endif
919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
922 static int
923 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
925 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
927 struct sched_entity *se = __pick_next_entity(cfs_rq);
928 struct sched_entity *left = se;
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
934 * Prefer last buddy, try to return the CPU to a preempted task.
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
939 clear_buddies(cfs_rq, se);
941 return se;
944 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
950 if (prev->on_rq)
951 update_curr(cfs_rq);
953 check_spread(cfs_rq, prev);
954 if (prev->on_rq) {
955 update_stats_wait_start(cfs_rq, prev);
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
959 cfs_rq->curr = NULL;
962 static void
963 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
966 * Update run-time statistics of the 'current'.
968 update_curr(cfs_rq);
970 #ifdef CONFIG_SCHED_HRTICK
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
980 * don't let the period tick interfere with the hrtick preemption
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985 #endif
987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
988 check_preempt_tick(cfs_rq, curr);
991 /**************************************************
992 * CFS operations on tasks:
995 #ifdef CONFIG_SCHED_HRTICK
996 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001 WARN_ON(task_rq(p) != rq);
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1018 if (rq->curr != p)
1019 delta = max_t(s64, 10000LL, delta);
1021 hrtick_start(rq, delta);
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1030 static void hrtick_update(struct rq *rq)
1032 struct task_struct *curr = rq->curr;
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1040 #else /* !CONFIG_SCHED_HRTICK */
1041 static inline void
1042 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1046 static inline void hrtick_update(struct rq *rq)
1049 #endif
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1056 static void
1057 enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1059 struct cfs_rq *cfs_rq;
1060 struct sched_entity *se = &p->se;
1061 int flags = 0;
1063 if (wakeup)
1064 flags |= ENQUEUE_WAKEUP;
1065 if (p->state == TASK_WAKING)
1066 flags |= ENQUEUE_MIGRATE;
1068 for_each_sched_entity(se) {
1069 if (se->on_rq)
1070 break;
1071 cfs_rq = cfs_rq_of(se);
1072 enqueue_entity(cfs_rq, se, flags);
1073 flags = ENQUEUE_WAKEUP;
1076 hrtick_update(rq);
1080 * The dequeue_task method is called before nr_running is
1081 * decreased. We remove the task from the rbtree and
1082 * update the fair scheduling stats:
1084 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1086 struct cfs_rq *cfs_rq;
1087 struct sched_entity *se = &p->se;
1089 for_each_sched_entity(se) {
1090 cfs_rq = cfs_rq_of(se);
1091 dequeue_entity(cfs_rq, se, sleep);
1092 /* Don't dequeue parent if it has other entities besides us */
1093 if (cfs_rq->load.weight)
1094 break;
1095 sleep = 1;
1098 hrtick_update(rq);
1102 * sched_yield() support is very simple - we dequeue and enqueue.
1104 * If compat_yield is turned on then we requeue to the end of the tree.
1106 static void yield_task_fair(struct rq *rq)
1108 struct task_struct *curr = rq->curr;
1109 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1110 struct sched_entity *rightmost, *se = &curr->se;
1113 * Are we the only task in the tree?
1115 if (unlikely(cfs_rq->nr_running == 1))
1116 return;
1118 clear_buddies(cfs_rq, se);
1120 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1121 update_rq_clock(rq);
1123 * Update run-time statistics of the 'current'.
1125 update_curr(cfs_rq);
1127 return;
1130 * Find the rightmost entry in the rbtree:
1132 rightmost = __pick_last_entity(cfs_rq);
1134 * Already in the rightmost position?
1136 if (unlikely(!rightmost || entity_before(rightmost, se)))
1137 return;
1140 * Minimally necessary key value to be last in the tree:
1141 * Upon rescheduling, sched_class::put_prev_task() will place
1142 * 'current' within the tree based on its new key value.
1144 se->vruntime = rightmost->vruntime + 1;
1147 #ifdef CONFIG_SMP
1149 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1151 struct sched_entity *se = &p->se;
1152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1154 se->vruntime -= cfs_rq->min_vruntime;
1157 #ifdef CONFIG_FAIR_GROUP_SCHED
1159 * effective_load() calculates the load change as seen from the root_task_group
1161 * Adding load to a group doesn't make a group heavier, but can cause movement
1162 * of group shares between cpus. Assuming the shares were perfectly aligned one
1163 * can calculate the shift in shares.
1165 * The problem is that perfectly aligning the shares is rather expensive, hence
1166 * we try to avoid doing that too often - see update_shares(), which ratelimits
1167 * this change.
1169 * We compensate this by not only taking the current delta into account, but
1170 * also considering the delta between when the shares were last adjusted and
1171 * now.
1173 * We still saw a performance dip, some tracing learned us that between
1174 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1175 * significantly. Therefore try to bias the error in direction of failing
1176 * the affine wakeup.
1179 static long effective_load(struct task_group *tg, int cpu,
1180 long wl, long wg)
1182 struct sched_entity *se = tg->se[cpu];
1184 if (!tg->parent)
1185 return wl;
1188 * By not taking the decrease of shares on the other cpu into
1189 * account our error leans towards reducing the affine wakeups.
1191 if (!wl && sched_feat(ASYM_EFF_LOAD))
1192 return wl;
1194 for_each_sched_entity(se) {
1195 long S, rw, s, a, b;
1196 long more_w;
1199 * Instead of using this increment, also add the difference
1200 * between when the shares were last updated and now.
1202 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1203 wl += more_w;
1204 wg += more_w;
1206 S = se->my_q->tg->shares;
1207 s = se->my_q->shares;
1208 rw = se->my_q->rq_weight;
1210 a = S*(rw + wl);
1211 b = S*rw + s*wg;
1213 wl = s*(a-b);
1215 if (likely(b))
1216 wl /= b;
1219 * Assume the group is already running and will
1220 * thus already be accounted for in the weight.
1222 * That is, moving shares between CPUs, does not
1223 * alter the group weight.
1225 wg = 0;
1228 return wl;
1231 #else
1233 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1234 unsigned long wl, unsigned long wg)
1236 return wl;
1239 #endif
1241 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1243 struct task_struct *curr = current;
1244 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu;
1246 unsigned long tl_per_task;
1247 struct task_group *tg;
1248 unsigned long weight;
1249 int balanced;
1251 idx = sd->wake_idx;
1252 this_cpu = smp_processor_id();
1253 prev_cpu = task_cpu(p);
1254 load = source_load(prev_cpu, idx);
1255 this_load = target_load(this_cpu, idx);
1257 if (sync) {
1258 if (sched_feat(SYNC_LESS) &&
1259 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1260 p->se.avg_overlap > sysctl_sched_migration_cost))
1261 sync = 0;
1262 } else {
1263 if (sched_feat(SYNC_MORE) &&
1264 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1265 p->se.avg_overlap < sysctl_sched_migration_cost))
1266 sync = 1;
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1274 rcu_read_lock();
1275 if (sync) {
1276 tg = task_group(current);
1277 weight = current->se.load.weight;
1279 this_load += effective_load(tg, this_cpu, -weight, -weight);
1280 load += effective_load(tg, prev_cpu, 0, -weight);
1283 tg = task_group(p);
1284 weight = p->se.load.weight;
1287 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1288 * due to the sync cause above having dropped this_load to 0, we'll
1289 * always have an imbalance, but there's really nothing you can do
1290 * about that, so that's good too.
1292 * Otherwise check if either cpus are near enough in load to allow this
1293 * task to be woken on this_cpu.
1295 if (this_load) {
1296 unsigned long this_eff_load, prev_eff_load;
1298 this_eff_load = 100;
1299 this_eff_load *= power_of(prev_cpu);
1300 this_eff_load *= this_load +
1301 effective_load(tg, this_cpu, weight, weight);
1303 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1304 prev_eff_load *= power_of(this_cpu);
1305 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1307 balanced = this_eff_load <= prev_eff_load;
1308 } else
1309 balanced = true;
1311 rcu_read_unlock();
1314 * If the currently running task will sleep within
1315 * a reasonable amount of time then attract this newly
1316 * woken task:
1318 if (sync && balanced)
1319 return 1;
1321 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1322 tl_per_task = cpu_avg_load_per_task(this_cpu);
1324 if (balanced ||
1325 (this_load <= load &&
1326 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1328 * This domain has SD_WAKE_AFFINE and
1329 * p is cache cold in this domain, and
1330 * there is no bad imbalance.
1332 schedstat_inc(sd, ttwu_move_affine);
1333 schedstat_inc(p, se.nr_wakeups_affine);
1335 return 1;
1337 return 0;
1341 * find_idlest_group finds and returns the least busy CPU group within the
1342 * domain.
1344 static struct sched_group *
1345 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1346 int this_cpu, int load_idx)
1348 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1349 unsigned long min_load = ULONG_MAX, this_load = 0;
1350 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1352 do {
1353 unsigned long load, avg_load;
1354 int local_group;
1355 int i;
1357 /* Skip over this group if it has no CPUs allowed */
1358 if (!cpumask_intersects(sched_group_cpus(group),
1359 &p->cpus_allowed))
1360 continue;
1362 local_group = cpumask_test_cpu(this_cpu,
1363 sched_group_cpus(group));
1365 /* Tally up the load of all CPUs in the group */
1366 avg_load = 0;
1368 for_each_cpu(i, sched_group_cpus(group)) {
1369 /* Bias balancing toward cpus of our domain */
1370 if (local_group)
1371 load = source_load(i, load_idx);
1372 else
1373 load = target_load(i, load_idx);
1375 avg_load += load;
1378 /* Adjust by relative CPU power of the group */
1379 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1381 if (local_group) {
1382 this_load = avg_load;
1383 this = group;
1384 } else if (avg_load < min_load) {
1385 min_load = avg_load;
1386 idlest = group;
1388 } while (group = group->next, group != sd->groups);
1390 if (!idlest || 100*this_load < imbalance*min_load)
1391 return NULL;
1392 return idlest;
1396 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1398 static int
1399 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1401 unsigned long load, min_load = ULONG_MAX;
1402 int idlest = -1;
1403 int i;
1405 /* Traverse only the allowed CPUs */
1406 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1407 load = weighted_cpuload(i);
1409 if (load < min_load || (load == min_load && i == this_cpu)) {
1410 min_load = load;
1411 idlest = i;
1415 return idlest;
1419 * Try and locate an idle CPU in the sched_domain.
1421 static int select_idle_sibling(struct task_struct *p, int target)
1423 int cpu = smp_processor_id();
1424 int prev_cpu = task_cpu(p);
1425 struct sched_domain *sd;
1426 int i;
1429 * If the task is going to be woken-up on this cpu and if it is
1430 * already idle, then it is the right target.
1432 if (target == cpu && idle_cpu(cpu))
1433 return cpu;
1436 * If the task is going to be woken-up on the cpu where it previously
1437 * ran and if it is currently idle, then it the right target.
1439 if (target == prev_cpu && idle_cpu(prev_cpu))
1440 return prev_cpu;
1443 * Otherwise, iterate the domains and find an elegible idle cpu.
1445 for_each_domain(target, sd) {
1446 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1447 break;
1449 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1450 if (idle_cpu(i)) {
1451 target = i;
1452 break;
1457 * Lets stop looking for an idle sibling when we reached
1458 * the domain that spans the current cpu and prev_cpu.
1460 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1461 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1462 break;
1465 return target;
1469 * sched_balance_self: balance the current task (running on cpu) in domains
1470 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1471 * SD_BALANCE_EXEC.
1473 * Balance, ie. select the least loaded group.
1475 * Returns the target CPU number, or the same CPU if no balancing is needed.
1477 * preempt must be disabled.
1479 static int
1480 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1482 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1483 int cpu = smp_processor_id();
1484 int prev_cpu = task_cpu(p);
1485 int new_cpu = cpu;
1486 int want_affine = 0;
1487 int want_sd = 1;
1488 int sync = wake_flags & WF_SYNC;
1490 if (sd_flag & SD_BALANCE_WAKE) {
1491 if (sched_feat(AFFINE_WAKEUPS) &&
1492 cpumask_test_cpu(cpu, &p->cpus_allowed))
1493 want_affine = 1;
1494 new_cpu = prev_cpu;
1497 for_each_domain(cpu, tmp) {
1498 if (!(tmp->flags & SD_LOAD_BALANCE))
1499 continue;
1502 * If power savings logic is enabled for a domain, see if we
1503 * are not overloaded, if so, don't balance wider.
1505 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1506 unsigned long power = 0;
1507 unsigned long nr_running = 0;
1508 unsigned long capacity;
1509 int i;
1511 for_each_cpu(i, sched_domain_span(tmp)) {
1512 power += power_of(i);
1513 nr_running += cpu_rq(i)->cfs.nr_running;
1516 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1518 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1519 nr_running /= 2;
1521 if (nr_running < capacity)
1522 want_sd = 0;
1526 * If both cpu and prev_cpu are part of this domain,
1527 * cpu is a valid SD_WAKE_AFFINE target.
1529 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1530 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1531 affine_sd = tmp;
1532 want_affine = 0;
1535 if (!want_sd && !want_affine)
1536 break;
1538 if (!(tmp->flags & sd_flag))
1539 continue;
1541 if (want_sd)
1542 sd = tmp;
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1546 if (sched_feat(LB_SHARES_UPDATE)) {
1548 * Pick the largest domain to update shares over
1550 tmp = sd;
1551 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1552 tmp = affine_sd;
1554 if (tmp) {
1555 raw_spin_unlock(&rq->lock);
1556 update_shares(tmp);
1557 raw_spin_lock(&rq->lock);
1560 #endif
1562 if (affine_sd) {
1563 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1564 return select_idle_sibling(p, cpu);
1565 else
1566 return select_idle_sibling(p, prev_cpu);
1569 while (sd) {
1570 int load_idx = sd->forkexec_idx;
1571 struct sched_group *group;
1572 int weight;
1574 if (!(sd->flags & sd_flag)) {
1575 sd = sd->child;
1576 continue;
1579 if (sd_flag & SD_BALANCE_WAKE)
1580 load_idx = sd->wake_idx;
1582 group = find_idlest_group(sd, p, cpu, load_idx);
1583 if (!group) {
1584 sd = sd->child;
1585 continue;
1588 new_cpu = find_idlest_cpu(group, p, cpu);
1589 if (new_cpu == -1 || new_cpu == cpu) {
1590 /* Now try balancing at a lower domain level of cpu */
1591 sd = sd->child;
1592 continue;
1595 /* Now try balancing at a lower domain level of new_cpu */
1596 cpu = new_cpu;
1597 weight = sd->span_weight;
1598 sd = NULL;
1599 for_each_domain(cpu, tmp) {
1600 if (weight <= tmp->span_weight)
1601 break;
1602 if (tmp->flags & sd_flag)
1603 sd = tmp;
1605 /* while loop will break here if sd == NULL */
1608 return new_cpu;
1610 #endif /* CONFIG_SMP */
1613 * Adaptive granularity
1615 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1616 * with the limit of wakeup_gran -- when it never does a wakeup.
1618 * So the smaller avg_wakeup is the faster we want this task to preempt,
1619 * but we don't want to treat the preemptee unfairly and therefore allow it
1620 * to run for at least the amount of time we'd like to run.
1622 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1624 * NOTE: we use *nr_running to scale with load, this nicely matches the
1625 * degrading latency on load.
1627 static unsigned long
1628 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1630 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1631 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1632 u64 gran = 0;
1634 if (this_run < expected_wakeup)
1635 gran = expected_wakeup - this_run;
1637 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1640 static unsigned long
1641 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1643 unsigned long gran = sysctl_sched_wakeup_granularity;
1645 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1646 gran = adaptive_gran(curr, se);
1649 * Since its curr running now, convert the gran from real-time
1650 * to virtual-time in his units.
1652 if (sched_feat(ASYM_GRAN)) {
1654 * By using 'se' instead of 'curr' we penalize light tasks, so
1655 * they get preempted easier. That is, if 'se' < 'curr' then
1656 * the resulting gran will be larger, therefore penalizing the
1657 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1658 * be smaller, again penalizing the lighter task.
1660 * This is especially important for buddies when the leftmost
1661 * task is higher priority than the buddy.
1663 if (unlikely(se->load.weight != NICE_0_LOAD))
1664 gran = calc_delta_fair(gran, se);
1665 } else {
1666 if (unlikely(curr->load.weight != NICE_0_LOAD))
1667 gran = calc_delta_fair(gran, curr);
1670 return gran;
1674 * Should 'se' preempt 'curr'.
1676 * |s1
1677 * |s2
1678 * |s3
1680 * |<--->|c
1682 * w(c, s1) = -1
1683 * w(c, s2) = 0
1684 * w(c, s3) = 1
1687 static int
1688 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1690 s64 gran, vdiff = curr->vruntime - se->vruntime;
1692 if (vdiff <= 0)
1693 return -1;
1695 gran = wakeup_gran(curr, se);
1696 if (vdiff > gran)
1697 return 1;
1699 return 0;
1702 static void set_last_buddy(struct sched_entity *se)
1704 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1705 for_each_sched_entity(se)
1706 cfs_rq_of(se)->last = se;
1710 static void set_next_buddy(struct sched_entity *se)
1712 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1713 for_each_sched_entity(se)
1714 cfs_rq_of(se)->next = se;
1719 * Preempt the current task with a newly woken task if needed:
1721 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1723 struct task_struct *curr = rq->curr;
1724 struct sched_entity *se = &curr->se, *pse = &p->se;
1725 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1726 int sync = wake_flags & WF_SYNC;
1727 int scale = cfs_rq->nr_running >= sched_nr_latency;
1729 if (unlikely(rt_prio(p->prio)))
1730 goto preempt;
1732 if (unlikely(p->sched_class != &fair_sched_class))
1733 return;
1735 if (unlikely(se == pse))
1736 return;
1738 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1739 set_next_buddy(pse);
1742 * We can come here with TIF_NEED_RESCHED already set from new task
1743 * wake up path.
1745 if (test_tsk_need_resched(curr))
1746 return;
1749 * Batch and idle tasks do not preempt (their preemption is driven by
1750 * the tick):
1752 if (unlikely(p->policy != SCHED_NORMAL))
1753 return;
1755 /* Idle tasks are by definition preempted by everybody. */
1756 if (unlikely(curr->policy == SCHED_IDLE))
1757 goto preempt;
1759 if (sched_feat(WAKEUP_SYNC) && sync)
1760 goto preempt;
1762 if (sched_feat(WAKEUP_OVERLAP) &&
1763 se->avg_overlap < sysctl_sched_migration_cost &&
1764 pse->avg_overlap < sysctl_sched_migration_cost)
1765 goto preempt;
1767 if (!sched_feat(WAKEUP_PREEMPT))
1768 return;
1770 update_curr(cfs_rq);
1771 find_matching_se(&se, &pse);
1772 BUG_ON(!pse);
1773 if (wakeup_preempt_entity(se, pse) == 1)
1774 goto preempt;
1776 return;
1778 preempt:
1779 resched_task(curr);
1781 * Only set the backward buddy when the current task is still
1782 * on the rq. This can happen when a wakeup gets interleaved
1783 * with schedule on the ->pre_schedule() or idle_balance()
1784 * point, either of which can * drop the rq lock.
1786 * Also, during early boot the idle thread is in the fair class,
1787 * for obvious reasons its a bad idea to schedule back to it.
1789 if (unlikely(!se->on_rq || curr == rq->idle))
1790 return;
1792 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1793 set_last_buddy(se);
1796 static struct task_struct *pick_next_task_fair(struct rq *rq)
1798 struct task_struct *p;
1799 struct cfs_rq *cfs_rq = &rq->cfs;
1800 struct sched_entity *se;
1802 if (!cfs_rq->nr_running)
1803 return NULL;
1805 do {
1806 se = pick_next_entity(cfs_rq);
1807 set_next_entity(cfs_rq, se);
1808 cfs_rq = group_cfs_rq(se);
1809 } while (cfs_rq);
1811 p = task_of(se);
1812 hrtick_start_fair(rq, p);
1814 return p;
1818 * Account for a descheduled task:
1820 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1822 struct sched_entity *se = &prev->se;
1823 struct cfs_rq *cfs_rq;
1825 for_each_sched_entity(se) {
1826 cfs_rq = cfs_rq_of(se);
1827 put_prev_entity(cfs_rq, se);
1831 #ifdef CONFIG_SMP
1832 /**************************************************
1833 * Fair scheduling class load-balancing methods:
1837 * pull_task - move a task from a remote runqueue to the local runqueue.
1838 * Both runqueues must be locked.
1840 static void pull_task(struct rq *src_rq, struct task_struct *p,
1841 struct rq *this_rq, int this_cpu)
1843 deactivate_task(src_rq, p, 0);
1844 set_task_cpu(p, this_cpu);
1845 activate_task(this_rq, p, 0);
1846 check_preempt_curr(this_rq, p, 0);
1850 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1852 static
1853 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1854 struct sched_domain *sd, enum cpu_idle_type idle,
1855 int *all_pinned)
1857 int tsk_cache_hot = 0;
1859 * We do not migrate tasks that are:
1860 * 1) running (obviously), or
1861 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1862 * 3) are cache-hot on their current CPU.
1864 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1865 schedstat_inc(p, se.nr_failed_migrations_affine);
1866 return 0;
1868 *all_pinned = 0;
1870 if (task_running(rq, p)) {
1871 schedstat_inc(p, se.nr_failed_migrations_running);
1872 return 0;
1876 * Aggressive migration if:
1877 * 1) task is cache cold, or
1878 * 2) too many balance attempts have failed.
1881 tsk_cache_hot = task_hot(p, rq->clock, sd);
1882 if (!tsk_cache_hot ||
1883 sd->nr_balance_failed > sd->cache_nice_tries) {
1884 #ifdef CONFIG_SCHEDSTATS
1885 if (tsk_cache_hot) {
1886 schedstat_inc(sd, lb_hot_gained[idle]);
1887 schedstat_inc(p, se.nr_forced_migrations);
1889 #endif
1890 return 1;
1893 if (tsk_cache_hot) {
1894 schedstat_inc(p, se.nr_failed_migrations_hot);
1895 return 0;
1897 return 1;
1901 * move_one_task tries to move exactly one task from busiest to this_rq, as
1902 * part of active balancing operations within "domain".
1903 * Returns 1 if successful and 0 otherwise.
1905 * Called with both runqueues locked.
1907 static int
1908 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1909 struct sched_domain *sd, enum cpu_idle_type idle)
1911 struct task_struct *p, *n;
1912 struct cfs_rq *cfs_rq;
1913 int pinned = 0;
1915 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1916 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1918 if (!can_migrate_task(p, busiest, this_cpu,
1919 sd, idle, &pinned))
1920 continue;
1922 pull_task(busiest, p, this_rq, this_cpu);
1924 * Right now, this is only the second place pull_task()
1925 * is called, so we can safely collect pull_task()
1926 * stats here rather than inside pull_task().
1928 schedstat_inc(sd, lb_gained[idle]);
1929 return 1;
1933 return 0;
1936 static unsigned long
1937 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1938 unsigned long max_load_move, struct sched_domain *sd,
1939 enum cpu_idle_type idle, int *all_pinned,
1940 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1942 int loops = 0, pulled = 0, pinned = 0;
1943 long rem_load_move = max_load_move;
1944 struct task_struct *p, *n;
1946 if (max_load_move == 0)
1947 goto out;
1949 pinned = 1;
1951 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1952 if (loops++ > sysctl_sched_nr_migrate)
1953 break;
1955 if ((p->se.load.weight >> 1) > rem_load_move ||
1956 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1957 continue;
1959 pull_task(busiest, p, this_rq, this_cpu);
1960 pulled++;
1961 rem_load_move -= p->se.load.weight;
1963 #ifdef CONFIG_PREEMPT
1965 * NEWIDLE balancing is a source of latency, so preemptible
1966 * kernels will stop after the first task is pulled to minimize
1967 * the critical section.
1969 if (idle == CPU_NEWLY_IDLE)
1970 break;
1971 #endif
1974 * We only want to steal up to the prescribed amount of
1975 * weighted load.
1977 if (rem_load_move <= 0)
1978 break;
1980 if (p->prio < *this_best_prio)
1981 *this_best_prio = p->prio;
1983 out:
1985 * Right now, this is one of only two places pull_task() is called,
1986 * so we can safely collect pull_task() stats here rather than
1987 * inside pull_task().
1989 schedstat_add(sd, lb_gained[idle], pulled);
1991 if (all_pinned)
1992 *all_pinned = pinned;
1994 return max_load_move - rem_load_move;
1997 #ifdef CONFIG_FAIR_GROUP_SCHED
1998 static unsigned long
1999 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2000 unsigned long max_load_move,
2001 struct sched_domain *sd, enum cpu_idle_type idle,
2002 int *all_pinned, int *this_best_prio)
2004 long rem_load_move = max_load_move;
2005 int busiest_cpu = cpu_of(busiest);
2006 struct task_group *tg;
2008 rcu_read_lock();
2009 update_h_load(busiest_cpu);
2011 list_for_each_entry_rcu(tg, &task_groups, list) {
2012 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2013 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2014 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2015 u64 rem_load, moved_load;
2018 * empty group
2020 if (!busiest_cfs_rq->task_weight)
2021 continue;
2023 rem_load = (u64)rem_load_move * busiest_weight;
2024 rem_load = div_u64(rem_load, busiest_h_load + 1);
2026 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2027 rem_load, sd, idle, all_pinned, this_best_prio,
2028 busiest_cfs_rq);
2030 if (!moved_load)
2031 continue;
2033 moved_load *= busiest_h_load;
2034 moved_load = div_u64(moved_load, busiest_weight + 1);
2036 rem_load_move -= moved_load;
2037 if (rem_load_move < 0)
2038 break;
2040 rcu_read_unlock();
2042 return max_load_move - rem_load_move;
2044 #else
2045 static unsigned long
2046 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2047 unsigned long max_load_move,
2048 struct sched_domain *sd, enum cpu_idle_type idle,
2049 int *all_pinned, int *this_best_prio)
2051 return balance_tasks(this_rq, this_cpu, busiest,
2052 max_load_move, sd, idle, all_pinned,
2053 this_best_prio, &busiest->cfs);
2055 #endif
2058 * move_tasks tries to move up to max_load_move weighted load from busiest to
2059 * this_rq, as part of a balancing operation within domain "sd".
2060 * Returns 1 if successful and 0 otherwise.
2062 * Called with both runqueues locked.
2064 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2065 unsigned long max_load_move,
2066 struct sched_domain *sd, enum cpu_idle_type idle,
2067 int *all_pinned)
2069 unsigned long total_load_moved = 0, load_moved;
2070 int this_best_prio = this_rq->curr->prio;
2072 do {
2073 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2074 max_load_move - total_load_moved,
2075 sd, idle, all_pinned, &this_best_prio);
2077 total_load_moved += load_moved;
2079 #ifdef CONFIG_PREEMPT
2081 * NEWIDLE balancing is a source of latency, so preemptible
2082 * kernels will stop after the first task is pulled to minimize
2083 * the critical section.
2085 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2086 break;
2088 if (raw_spin_is_contended(&this_rq->lock) ||
2089 raw_spin_is_contended(&busiest->lock))
2090 break;
2091 #endif
2092 } while (load_moved && max_load_move > total_load_moved);
2094 return total_load_moved > 0;
2097 /********** Helpers for find_busiest_group ************************/
2099 * sd_lb_stats - Structure to store the statistics of a sched_domain
2100 * during load balancing.
2102 struct sd_lb_stats {
2103 struct sched_group *busiest; /* Busiest group in this sd */
2104 struct sched_group *this; /* Local group in this sd */
2105 unsigned long total_load; /* Total load of all groups in sd */
2106 unsigned long total_pwr; /* Total power of all groups in sd */
2107 unsigned long avg_load; /* Average load across all groups in sd */
2109 /** Statistics of this group */
2110 unsigned long this_load;
2111 unsigned long this_load_per_task;
2112 unsigned long this_nr_running;
2114 /* Statistics of the busiest group */
2115 unsigned long max_load;
2116 unsigned long busiest_load_per_task;
2117 unsigned long busiest_nr_running;
2118 unsigned long busiest_group_capacity;
2120 int group_imb; /* Is there imbalance in this sd */
2121 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2122 int power_savings_balance; /* Is powersave balance needed for this sd */
2123 struct sched_group *group_min; /* Least loaded group in sd */
2124 struct sched_group *group_leader; /* Group which relieves group_min */
2125 unsigned long min_load_per_task; /* load_per_task in group_min */
2126 unsigned long leader_nr_running; /* Nr running of group_leader */
2127 unsigned long min_nr_running; /* Nr running of group_min */
2128 #endif
2132 * sg_lb_stats - stats of a sched_group required for load_balancing
2134 struct sg_lb_stats {
2135 unsigned long avg_load; /*Avg load across the CPUs of the group */
2136 unsigned long group_load; /* Total load over the CPUs of the group */
2137 unsigned long sum_nr_running; /* Nr tasks running in the group */
2138 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2139 unsigned long group_capacity;
2140 int group_imb; /* Is there an imbalance in the group ? */
2144 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2145 * @group: The group whose first cpu is to be returned.
2147 static inline unsigned int group_first_cpu(struct sched_group *group)
2149 return cpumask_first(sched_group_cpus(group));
2153 * get_sd_load_idx - Obtain the load index for a given sched domain.
2154 * @sd: The sched_domain whose load_idx is to be obtained.
2155 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2157 static inline int get_sd_load_idx(struct sched_domain *sd,
2158 enum cpu_idle_type idle)
2160 int load_idx;
2162 switch (idle) {
2163 case CPU_NOT_IDLE:
2164 load_idx = sd->busy_idx;
2165 break;
2167 case CPU_NEWLY_IDLE:
2168 load_idx = sd->newidle_idx;
2169 break;
2170 default:
2171 load_idx = sd->idle_idx;
2172 break;
2175 return load_idx;
2179 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2181 * init_sd_power_savings_stats - Initialize power savings statistics for
2182 * the given sched_domain, during load balancing.
2184 * @sd: Sched domain whose power-savings statistics are to be initialized.
2185 * @sds: Variable containing the statistics for sd.
2186 * @idle: Idle status of the CPU at which we're performing load-balancing.
2188 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2189 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2192 * Busy processors will not participate in power savings
2193 * balance.
2195 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2196 sds->power_savings_balance = 0;
2197 else {
2198 sds->power_savings_balance = 1;
2199 sds->min_nr_running = ULONG_MAX;
2200 sds->leader_nr_running = 0;
2205 * update_sd_power_savings_stats - Update the power saving stats for a
2206 * sched_domain while performing load balancing.
2208 * @group: sched_group belonging to the sched_domain under consideration.
2209 * @sds: Variable containing the statistics of the sched_domain
2210 * @local_group: Does group contain the CPU for which we're performing
2211 * load balancing ?
2212 * @sgs: Variable containing the statistics of the group.
2214 static inline void update_sd_power_savings_stats(struct sched_group *group,
2215 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2218 if (!sds->power_savings_balance)
2219 return;
2222 * If the local group is idle or completely loaded
2223 * no need to do power savings balance at this domain
2225 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2226 !sds->this_nr_running))
2227 sds->power_savings_balance = 0;
2230 * If a group is already running at full capacity or idle,
2231 * don't include that group in power savings calculations
2233 if (!sds->power_savings_balance ||
2234 sgs->sum_nr_running >= sgs->group_capacity ||
2235 !sgs->sum_nr_running)
2236 return;
2239 * Calculate the group which has the least non-idle load.
2240 * This is the group from where we need to pick up the load
2241 * for saving power
2243 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2244 (sgs->sum_nr_running == sds->min_nr_running &&
2245 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2246 sds->group_min = group;
2247 sds->min_nr_running = sgs->sum_nr_running;
2248 sds->min_load_per_task = sgs->sum_weighted_load /
2249 sgs->sum_nr_running;
2253 * Calculate the group which is almost near its
2254 * capacity but still has some space to pick up some load
2255 * from other group and save more power
2257 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2258 return;
2260 if (sgs->sum_nr_running > sds->leader_nr_running ||
2261 (sgs->sum_nr_running == sds->leader_nr_running &&
2262 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2263 sds->group_leader = group;
2264 sds->leader_nr_running = sgs->sum_nr_running;
2269 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2270 * @sds: Variable containing the statistics of the sched_domain
2271 * under consideration.
2272 * @this_cpu: Cpu at which we're currently performing load-balancing.
2273 * @imbalance: Variable to store the imbalance.
2275 * Description:
2276 * Check if we have potential to perform some power-savings balance.
2277 * If yes, set the busiest group to be the least loaded group in the
2278 * sched_domain, so that it's CPUs can be put to idle.
2280 * Returns 1 if there is potential to perform power-savings balance.
2281 * Else returns 0.
2283 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2284 int this_cpu, unsigned long *imbalance)
2286 if (!sds->power_savings_balance)
2287 return 0;
2289 if (sds->this != sds->group_leader ||
2290 sds->group_leader == sds->group_min)
2291 return 0;
2293 *imbalance = sds->min_load_per_task;
2294 sds->busiest = sds->group_min;
2296 return 1;
2299 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2300 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2301 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2303 return;
2306 static inline void update_sd_power_savings_stats(struct sched_group *group,
2307 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2309 return;
2312 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2313 int this_cpu, unsigned long *imbalance)
2315 return 0;
2317 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2320 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2322 return SCHED_LOAD_SCALE;
2325 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2327 return default_scale_freq_power(sd, cpu);
2330 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2332 unsigned long weight = sd->span_weight;
2333 unsigned long smt_gain = sd->smt_gain;
2335 smt_gain /= weight;
2337 return smt_gain;
2340 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2342 return default_scale_smt_power(sd, cpu);
2345 unsigned long scale_rt_power(int cpu)
2347 struct rq *rq = cpu_rq(cpu);
2348 u64 total, available;
2350 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2351 available = total - rq->rt_avg;
2353 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2354 total = SCHED_LOAD_SCALE;
2356 total >>= SCHED_LOAD_SHIFT;
2358 return div_u64(available, total);
2361 static void update_cpu_power(struct sched_domain *sd, int cpu)
2363 unsigned long weight = sd->span_weight;
2364 unsigned long power = SCHED_LOAD_SCALE;
2365 struct sched_group *sdg = sd->groups;
2367 if (sched_feat(ARCH_POWER))
2368 power *= arch_scale_freq_power(sd, cpu);
2369 else
2370 power *= default_scale_freq_power(sd, cpu);
2372 power >>= SCHED_LOAD_SHIFT;
2374 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2375 if (sched_feat(ARCH_POWER))
2376 power *= arch_scale_smt_power(sd, cpu);
2377 else
2378 power *= default_scale_smt_power(sd, cpu);
2380 power >>= SCHED_LOAD_SHIFT;
2383 power *= scale_rt_power(cpu);
2384 power >>= SCHED_LOAD_SHIFT;
2386 if (!power)
2387 power = 1;
2389 cpu_rq(cpu)->cpu_power = power;
2390 sdg->cpu_power = power;
2393 static void update_group_power(struct sched_domain *sd, int cpu)
2395 struct sched_domain *child = sd->child;
2396 struct sched_group *group, *sdg = sd->groups;
2397 unsigned long power;
2399 if (!child) {
2400 update_cpu_power(sd, cpu);
2401 return;
2404 power = 0;
2406 group = child->groups;
2407 do {
2408 power += group->cpu_power;
2409 group = group->next;
2410 } while (group != child->groups);
2412 sdg->cpu_power = power;
2416 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2417 * @sd: The sched_domain whose statistics are to be updated.
2418 * @group: sched_group whose statistics are to be updated.
2419 * @this_cpu: Cpu for which load balance is currently performed.
2420 * @idle: Idle status of this_cpu
2421 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2422 * @sd_idle: Idle status of the sched_domain containing group.
2423 * @local_group: Does group contain this_cpu.
2424 * @cpus: Set of cpus considered for load balancing.
2425 * @balance: Should we balance.
2426 * @sgs: variable to hold the statistics for this group.
2428 static inline void update_sg_lb_stats(struct sched_domain *sd,
2429 struct sched_group *group, int this_cpu,
2430 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2431 int local_group, const struct cpumask *cpus,
2432 int *balance, struct sg_lb_stats *sgs)
2434 unsigned long load, max_cpu_load, min_cpu_load;
2435 int i;
2436 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2437 unsigned long avg_load_per_task = 0;
2439 if (local_group)
2440 balance_cpu = group_first_cpu(group);
2442 /* Tally up the load of all CPUs in the group */
2443 max_cpu_load = 0;
2444 min_cpu_load = ~0UL;
2446 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2447 struct rq *rq = cpu_rq(i);
2449 if (*sd_idle && rq->nr_running)
2450 *sd_idle = 0;
2452 /* Bias balancing toward cpus of our domain */
2453 if (local_group) {
2454 if (idle_cpu(i) && !first_idle_cpu) {
2455 first_idle_cpu = 1;
2456 balance_cpu = i;
2459 load = target_load(i, load_idx);
2460 } else {
2461 load = source_load(i, load_idx);
2462 if (load > max_cpu_load)
2463 max_cpu_load = load;
2464 if (min_cpu_load > load)
2465 min_cpu_load = load;
2468 sgs->group_load += load;
2469 sgs->sum_nr_running += rq->nr_running;
2470 sgs->sum_weighted_load += weighted_cpuload(i);
2475 * First idle cpu or the first cpu(busiest) in this sched group
2476 * is eligible for doing load balancing at this and above
2477 * domains. In the newly idle case, we will allow all the cpu's
2478 * to do the newly idle load balance.
2480 if (idle != CPU_NEWLY_IDLE && local_group &&
2481 balance_cpu != this_cpu) {
2482 *balance = 0;
2483 return;
2486 update_group_power(sd, this_cpu);
2488 /* Adjust by relative CPU power of the group */
2489 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2492 * Consider the group unbalanced when the imbalance is larger
2493 * than the average weight of two tasks.
2495 * APZ: with cgroup the avg task weight can vary wildly and
2496 * might not be a suitable number - should we keep a
2497 * normalized nr_running number somewhere that negates
2498 * the hierarchy?
2500 if (sgs->sum_nr_running)
2501 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2503 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2504 sgs->group_imb = 1;
2506 sgs->group_capacity =
2507 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2511 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2512 * @sd: sched_domain whose statistics are to be updated.
2513 * @this_cpu: Cpu for which load balance is currently performed.
2514 * @idle: Idle status of this_cpu
2515 * @sd_idle: Idle status of the sched_domain containing group.
2516 * @cpus: Set of cpus considered for load balancing.
2517 * @balance: Should we balance.
2518 * @sds: variable to hold the statistics for this sched_domain.
2520 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2521 enum cpu_idle_type idle, int *sd_idle,
2522 const struct cpumask *cpus, int *balance,
2523 struct sd_lb_stats *sds)
2525 struct sched_domain *child = sd->child;
2526 struct sched_group *group = sd->groups;
2527 struct sg_lb_stats sgs;
2528 int load_idx, prefer_sibling = 0;
2530 if (child && child->flags & SD_PREFER_SIBLING)
2531 prefer_sibling = 1;
2533 init_sd_power_savings_stats(sd, sds, idle);
2534 load_idx = get_sd_load_idx(sd, idle);
2536 do {
2537 int local_group;
2539 local_group = cpumask_test_cpu(this_cpu,
2540 sched_group_cpus(group));
2541 memset(&sgs, 0, sizeof(sgs));
2542 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2543 local_group, cpus, balance, &sgs);
2545 if (local_group && !(*balance))
2546 return;
2548 sds->total_load += sgs.group_load;
2549 sds->total_pwr += group->cpu_power;
2552 * In case the child domain prefers tasks go to siblings
2553 * first, lower the group capacity to one so that we'll try
2554 * and move all the excess tasks away.
2556 if (prefer_sibling)
2557 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2559 if (local_group) {
2560 sds->this_load = sgs.avg_load;
2561 sds->this = group;
2562 sds->this_nr_running = sgs.sum_nr_running;
2563 sds->this_load_per_task = sgs.sum_weighted_load;
2564 } else if (sgs.avg_load > sds->max_load &&
2565 (sgs.sum_nr_running > sgs.group_capacity ||
2566 sgs.group_imb)) {
2567 sds->max_load = sgs.avg_load;
2568 sds->busiest = group;
2569 sds->busiest_nr_running = sgs.sum_nr_running;
2570 sds->busiest_group_capacity = sgs.group_capacity;
2571 sds->busiest_load_per_task = sgs.sum_weighted_load;
2572 sds->group_imb = sgs.group_imb;
2575 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2576 group = group->next;
2577 } while (group != sd->groups);
2581 * fix_small_imbalance - Calculate the minor imbalance that exists
2582 * amongst the groups of a sched_domain, during
2583 * load balancing.
2584 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2585 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2586 * @imbalance: Variable to store the imbalance.
2588 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2589 int this_cpu, unsigned long *imbalance)
2591 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2592 unsigned int imbn = 2;
2593 unsigned long scaled_busy_load_per_task;
2595 if (sds->this_nr_running) {
2596 sds->this_load_per_task /= sds->this_nr_running;
2597 if (sds->busiest_load_per_task >
2598 sds->this_load_per_task)
2599 imbn = 1;
2600 } else
2601 sds->this_load_per_task =
2602 cpu_avg_load_per_task(this_cpu);
2604 scaled_busy_load_per_task = sds->busiest_load_per_task
2605 * SCHED_LOAD_SCALE;
2606 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2608 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2609 (scaled_busy_load_per_task * imbn)) {
2610 *imbalance = sds->busiest_load_per_task;
2611 return;
2615 * OK, we don't have enough imbalance to justify moving tasks,
2616 * however we may be able to increase total CPU power used by
2617 * moving them.
2620 pwr_now += sds->busiest->cpu_power *
2621 min(sds->busiest_load_per_task, sds->max_load);
2622 pwr_now += sds->this->cpu_power *
2623 min(sds->this_load_per_task, sds->this_load);
2624 pwr_now /= SCHED_LOAD_SCALE;
2626 /* Amount of load we'd subtract */
2627 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2628 sds->busiest->cpu_power;
2629 if (sds->max_load > tmp)
2630 pwr_move += sds->busiest->cpu_power *
2631 min(sds->busiest_load_per_task, sds->max_load - tmp);
2633 /* Amount of load we'd add */
2634 if (sds->max_load * sds->busiest->cpu_power <
2635 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2636 tmp = (sds->max_load * sds->busiest->cpu_power) /
2637 sds->this->cpu_power;
2638 else
2639 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2640 sds->this->cpu_power;
2641 pwr_move += sds->this->cpu_power *
2642 min(sds->this_load_per_task, sds->this_load + tmp);
2643 pwr_move /= SCHED_LOAD_SCALE;
2645 /* Move if we gain throughput */
2646 if (pwr_move > pwr_now)
2647 *imbalance = sds->busiest_load_per_task;
2651 * calculate_imbalance - Calculate the amount of imbalance present within the
2652 * groups of a given sched_domain during load balance.
2653 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2654 * @this_cpu: Cpu for which currently load balance is being performed.
2655 * @imbalance: The variable to store the imbalance.
2657 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2658 unsigned long *imbalance)
2660 unsigned long max_pull, load_above_capacity = ~0UL;
2662 sds->busiest_load_per_task /= sds->busiest_nr_running;
2663 if (sds->group_imb) {
2664 sds->busiest_load_per_task =
2665 min(sds->busiest_load_per_task, sds->avg_load);
2669 * In the presence of smp nice balancing, certain scenarios can have
2670 * max load less than avg load(as we skip the groups at or below
2671 * its cpu_power, while calculating max_load..)
2673 if (sds->max_load < sds->avg_load) {
2674 *imbalance = 0;
2675 return fix_small_imbalance(sds, this_cpu, imbalance);
2678 if (!sds->group_imb) {
2680 * Don't want to pull so many tasks that a group would go idle.
2682 load_above_capacity = (sds->busiest_nr_running -
2683 sds->busiest_group_capacity);
2685 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2687 load_above_capacity /= sds->busiest->cpu_power;
2691 * We're trying to get all the cpus to the average_load, so we don't
2692 * want to push ourselves above the average load, nor do we wish to
2693 * reduce the max loaded cpu below the average load. At the same time,
2694 * we also don't want to reduce the group load below the group capacity
2695 * (so that we can implement power-savings policies etc). Thus we look
2696 * for the minimum possible imbalance.
2697 * Be careful of negative numbers as they'll appear as very large values
2698 * with unsigned longs.
2700 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2702 /* How much load to actually move to equalise the imbalance */
2703 *imbalance = min(max_pull * sds->busiest->cpu_power,
2704 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2705 / SCHED_LOAD_SCALE;
2708 * if *imbalance is less than the average load per runnable task
2709 * there is no gaurantee that any tasks will be moved so we'll have
2710 * a think about bumping its value to force at least one task to be
2711 * moved
2713 if (*imbalance < sds->busiest_load_per_task)
2714 return fix_small_imbalance(sds, this_cpu, imbalance);
2717 /******* find_busiest_group() helpers end here *********************/
2720 * find_busiest_group - Returns the busiest group within the sched_domain
2721 * if there is an imbalance. If there isn't an imbalance, and
2722 * the user has opted for power-savings, it returns a group whose
2723 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2724 * such a group exists.
2726 * Also calculates the amount of weighted load which should be moved
2727 * to restore balance.
2729 * @sd: The sched_domain whose busiest group is to be returned.
2730 * @this_cpu: The cpu for which load balancing is currently being performed.
2731 * @imbalance: Variable which stores amount of weighted load which should
2732 * be moved to restore balance/put a group to idle.
2733 * @idle: The idle status of this_cpu.
2734 * @sd_idle: The idleness of sd
2735 * @cpus: The set of CPUs under consideration for load-balancing.
2736 * @balance: Pointer to a variable indicating if this_cpu
2737 * is the appropriate cpu to perform load balancing at this_level.
2739 * Returns: - the busiest group if imbalance exists.
2740 * - If no imbalance and user has opted for power-savings balance,
2741 * return the least loaded group whose CPUs can be
2742 * put to idle by rebalancing its tasks onto our group.
2744 static struct sched_group *
2745 find_busiest_group(struct sched_domain *sd, int this_cpu,
2746 unsigned long *imbalance, enum cpu_idle_type idle,
2747 int *sd_idle, const struct cpumask *cpus, int *balance)
2749 struct sd_lb_stats sds;
2751 memset(&sds, 0, sizeof(sds));
2754 * Compute the various statistics relavent for load balancing at
2755 * this level.
2757 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2758 balance, &sds);
2760 /* Cases where imbalance does not exist from POV of this_cpu */
2761 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2762 * at this level.
2763 * 2) There is no busy sibling group to pull from.
2764 * 3) This group is the busiest group.
2765 * 4) This group is more busy than the avg busieness at this
2766 * sched_domain.
2767 * 5) The imbalance is within the specified limit.
2769 if (!(*balance))
2770 goto ret;
2772 if (!sds.busiest || sds.busiest_nr_running == 0)
2773 goto out_balanced;
2775 if (sds.this_load >= sds.max_load)
2776 goto out_balanced;
2778 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2780 if (sds.this_load >= sds.avg_load)
2781 goto out_balanced;
2783 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2784 goto out_balanced;
2786 /* Looks like there is an imbalance. Compute it */
2787 calculate_imbalance(&sds, this_cpu, imbalance);
2788 return sds.busiest;
2790 out_balanced:
2792 * There is no obvious imbalance. But check if we can do some balancing
2793 * to save power.
2795 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2796 return sds.busiest;
2797 ret:
2798 *imbalance = 0;
2799 return NULL;
2803 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2805 static struct rq *
2806 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2807 unsigned long imbalance, const struct cpumask *cpus)
2809 struct rq *busiest = NULL, *rq;
2810 unsigned long max_load = 0;
2811 int i;
2813 for_each_cpu(i, sched_group_cpus(group)) {
2814 unsigned long power = power_of(i);
2815 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2816 unsigned long wl;
2818 if (!cpumask_test_cpu(i, cpus))
2819 continue;
2821 rq = cpu_rq(i);
2822 wl = weighted_cpuload(i);
2825 * When comparing with imbalance, use weighted_cpuload()
2826 * which is not scaled with the cpu power.
2828 if (capacity && rq->nr_running == 1 && wl > imbalance)
2829 continue;
2832 * For the load comparisons with the other cpu's, consider
2833 * the weighted_cpuload() scaled with the cpu power, so that
2834 * the load can be moved away from the cpu that is potentially
2835 * running at a lower capacity.
2837 wl = (wl * SCHED_LOAD_SCALE) / power;
2839 if (wl > max_load) {
2840 max_load = wl;
2841 busiest = rq;
2845 return busiest;
2849 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2850 * so long as it is large enough.
2852 #define MAX_PINNED_INTERVAL 512
2854 /* Working cpumask for load_balance and load_balance_newidle. */
2855 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2857 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2859 if (idle == CPU_NEWLY_IDLE) {
2861 * The only task running in a non-idle cpu can be moved to this
2862 * cpu in an attempt to completely freeup the other CPU
2863 * package.
2865 * The package power saving logic comes from
2866 * find_busiest_group(). If there are no imbalance, then
2867 * f_b_g() will return NULL. However when sched_mc={1,2} then
2868 * f_b_g() will select a group from which a running task may be
2869 * pulled to this cpu in order to make the other package idle.
2870 * If there is no opportunity to make a package idle and if
2871 * there are no imbalance, then f_b_g() will return NULL and no
2872 * action will be taken in load_balance_newidle().
2874 * Under normal task pull operation due to imbalance, there
2875 * will be more than one task in the source run queue and
2876 * move_tasks() will succeed. ld_moved will be true and this
2877 * active balance code will not be triggered.
2879 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2880 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2881 return 0;
2883 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2884 return 0;
2887 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2891 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2892 * tasks if there is an imbalance.
2894 static int load_balance(int this_cpu, struct rq *this_rq,
2895 struct sched_domain *sd, enum cpu_idle_type idle,
2896 int *balance)
2898 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2899 struct sched_group *group;
2900 unsigned long imbalance;
2901 struct rq *busiest;
2902 unsigned long flags;
2903 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2905 cpumask_copy(cpus, cpu_active_mask);
2908 * When power savings policy is enabled for the parent domain, idle
2909 * sibling can pick up load irrespective of busy siblings. In this case,
2910 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2911 * portraying it as CPU_NOT_IDLE.
2913 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2914 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2915 sd_idle = 1;
2917 schedstat_inc(sd, lb_count[idle]);
2919 redo:
2920 update_shares(sd);
2921 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2922 cpus, balance);
2924 if (*balance == 0)
2925 goto out_balanced;
2927 if (!group) {
2928 schedstat_inc(sd, lb_nobusyg[idle]);
2929 goto out_balanced;
2932 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2933 if (!busiest) {
2934 schedstat_inc(sd, lb_nobusyq[idle]);
2935 goto out_balanced;
2938 BUG_ON(busiest == this_rq);
2940 schedstat_add(sd, lb_imbalance[idle], imbalance);
2942 ld_moved = 0;
2943 if (busiest->nr_running > 1) {
2945 * Attempt to move tasks. If find_busiest_group has found
2946 * an imbalance but busiest->nr_running <= 1, the group is
2947 * still unbalanced. ld_moved simply stays zero, so it is
2948 * correctly treated as an imbalance.
2950 local_irq_save(flags);
2951 double_rq_lock(this_rq, busiest);
2952 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2953 imbalance, sd, idle, &all_pinned);
2954 double_rq_unlock(this_rq, busiest);
2955 local_irq_restore(flags);
2958 * some other cpu did the load balance for us.
2960 if (ld_moved && this_cpu != smp_processor_id())
2961 resched_cpu(this_cpu);
2963 /* All tasks on this runqueue were pinned by CPU affinity */
2964 if (unlikely(all_pinned)) {
2965 cpumask_clear_cpu(cpu_of(busiest), cpus);
2966 if (!cpumask_empty(cpus))
2967 goto redo;
2968 goto out_balanced;
2972 if (!ld_moved) {
2973 schedstat_inc(sd, lb_failed[idle]);
2974 sd->nr_balance_failed++;
2976 if (need_active_balance(sd, sd_idle, idle)) {
2977 raw_spin_lock_irqsave(&busiest->lock, flags);
2979 /* don't kick the migration_thread, if the curr
2980 * task on busiest cpu can't be moved to this_cpu
2982 if (!cpumask_test_cpu(this_cpu,
2983 &busiest->curr->cpus_allowed)) {
2984 raw_spin_unlock_irqrestore(&busiest->lock,
2985 flags);
2986 all_pinned = 1;
2987 goto out_one_pinned;
2990 if (!busiest->active_balance) {
2991 busiest->active_balance = 1;
2992 busiest->push_cpu = this_cpu;
2993 active_balance = 1;
2995 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2996 if (active_balance)
2997 wake_up_process(busiest->migration_thread);
3000 * We've kicked active balancing, reset the failure
3001 * counter.
3003 sd->nr_balance_failed = sd->cache_nice_tries+1;
3005 } else
3006 sd->nr_balance_failed = 0;
3008 if (likely(!active_balance)) {
3009 /* We were unbalanced, so reset the balancing interval */
3010 sd->balance_interval = sd->min_interval;
3011 } else {
3013 * If we've begun active balancing, start to back off. This
3014 * case may not be covered by the all_pinned logic if there
3015 * is only 1 task on the busy runqueue (because we don't call
3016 * move_tasks).
3018 if (sd->balance_interval < sd->max_interval)
3019 sd->balance_interval *= 2;
3022 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 ld_moved = -1;
3026 goto out;
3028 out_balanced:
3029 schedstat_inc(sd, lb_balanced[idle]);
3031 sd->nr_balance_failed = 0;
3033 out_one_pinned:
3034 /* tune up the balancing interval */
3035 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3036 (sd->balance_interval < sd->max_interval))
3037 sd->balance_interval *= 2;
3039 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3040 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3041 ld_moved = -1;
3042 else
3043 ld_moved = 0;
3044 out:
3045 if (ld_moved)
3046 update_shares(sd);
3047 return ld_moved;
3051 * idle_balance is called by schedule() if this_cpu is about to become
3052 * idle. Attempts to pull tasks from other CPUs.
3054 static void idle_balance(int this_cpu, struct rq *this_rq)
3056 struct sched_domain *sd;
3057 int pulled_task = 0;
3058 unsigned long next_balance = jiffies + HZ;
3060 this_rq->idle_stamp = this_rq->clock;
3062 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3063 return;
3066 * Drop the rq->lock, but keep IRQ/preempt disabled.
3068 raw_spin_unlock(&this_rq->lock);
3070 for_each_domain(this_cpu, sd) {
3071 unsigned long interval;
3072 int balance = 1;
3074 if (!(sd->flags & SD_LOAD_BALANCE))
3075 continue;
3077 if (sd->flags & SD_BALANCE_NEWIDLE) {
3078 /* If we've pulled tasks over stop searching: */
3079 pulled_task = load_balance(this_cpu, this_rq,
3080 sd, CPU_NEWLY_IDLE, &balance);
3083 interval = msecs_to_jiffies(sd->balance_interval);
3084 if (time_after(next_balance, sd->last_balance + interval))
3085 next_balance = sd->last_balance + interval;
3086 if (pulled_task) {
3087 this_rq->idle_stamp = 0;
3088 break;
3092 raw_spin_lock(&this_rq->lock);
3094 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3096 * We are going idle. next_balance may be set based on
3097 * a busy processor. So reset next_balance.
3099 this_rq->next_balance = next_balance;
3104 * active_load_balance is run by migration threads. It pushes running tasks
3105 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3106 * running on each physical CPU where possible, and avoids physical /
3107 * logical imbalances.
3109 * Called with busiest_rq locked.
3111 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3113 int target_cpu = busiest_rq->push_cpu;
3114 struct sched_domain *sd;
3115 struct rq *target_rq;
3117 /* Is there any task to move? */
3118 if (busiest_rq->nr_running <= 1)
3119 return;
3121 target_rq = cpu_rq(target_cpu);
3124 * This condition is "impossible", if it occurs
3125 * we need to fix it. Originally reported by
3126 * Bjorn Helgaas on a 128-cpu setup.
3128 BUG_ON(busiest_rq == target_rq);
3130 /* move a task from busiest_rq to target_rq */
3131 double_lock_balance(busiest_rq, target_rq);
3132 update_rq_clock(busiest_rq);
3133 update_rq_clock(target_rq);
3135 /* Search for an sd spanning us and the target CPU. */
3136 for_each_domain(target_cpu, sd) {
3137 if ((sd->flags & SD_LOAD_BALANCE) &&
3138 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3139 break;
3142 if (likely(sd)) {
3143 schedstat_inc(sd, alb_count);
3145 if (move_one_task(target_rq, target_cpu, busiest_rq,
3146 sd, CPU_IDLE))
3147 schedstat_inc(sd, alb_pushed);
3148 else
3149 schedstat_inc(sd, alb_failed);
3151 double_unlock_balance(busiest_rq, target_rq);
3154 #ifdef CONFIG_NO_HZ
3155 static struct {
3156 atomic_t load_balancer;
3157 cpumask_var_t cpu_mask;
3158 cpumask_var_t ilb_grp_nohz_mask;
3159 } nohz ____cacheline_aligned = {
3160 .load_balancer = ATOMIC_INIT(-1),
3163 int get_nohz_load_balancer(void)
3165 return atomic_read(&nohz.load_balancer);
3168 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3170 * lowest_flag_domain - Return lowest sched_domain containing flag.
3171 * @cpu: The cpu whose lowest level of sched domain is to
3172 * be returned.
3173 * @flag: The flag to check for the lowest sched_domain
3174 * for the given cpu.
3176 * Returns the lowest sched_domain of a cpu which contains the given flag.
3178 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3180 struct sched_domain *sd;
3182 for_each_domain(cpu, sd)
3183 if (sd && (sd->flags & flag))
3184 break;
3186 return sd;
3190 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3191 * @cpu: The cpu whose domains we're iterating over.
3192 * @sd: variable holding the value of the power_savings_sd
3193 * for cpu.
3194 * @flag: The flag to filter the sched_domains to be iterated.
3196 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3197 * set, starting from the lowest sched_domain to the highest.
3199 #define for_each_flag_domain(cpu, sd, flag) \
3200 for (sd = lowest_flag_domain(cpu, flag); \
3201 (sd && (sd->flags & flag)); sd = sd->parent)
3204 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3205 * @ilb_group: group to be checked for semi-idleness
3207 * Returns: 1 if the group is semi-idle. 0 otherwise.
3209 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3210 * and atleast one non-idle CPU. This helper function checks if the given
3211 * sched_group is semi-idle or not.
3213 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3215 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3216 sched_group_cpus(ilb_group));
3219 * A sched_group is semi-idle when it has atleast one busy cpu
3220 * and atleast one idle cpu.
3222 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3223 return 0;
3225 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3226 return 0;
3228 return 1;
3231 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3232 * @cpu: The cpu which is nominating a new idle_load_balancer.
3234 * Returns: Returns the id of the idle load balancer if it exists,
3235 * Else, returns >= nr_cpu_ids.
3237 * This algorithm picks the idle load balancer such that it belongs to a
3238 * semi-idle powersavings sched_domain. The idea is to try and avoid
3239 * completely idle packages/cores just for the purpose of idle load balancing
3240 * when there are other idle cpu's which are better suited for that job.
3242 static int find_new_ilb(int cpu)
3244 struct sched_domain *sd;
3245 struct sched_group *ilb_group;
3248 * Have idle load balancer selection from semi-idle packages only
3249 * when power-aware load balancing is enabled
3251 if (!(sched_smt_power_savings || sched_mc_power_savings))
3252 goto out_done;
3255 * Optimize for the case when we have no idle CPUs or only one
3256 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3258 if (cpumask_weight(nohz.cpu_mask) < 2)
3259 goto out_done;
3261 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3262 ilb_group = sd->groups;
3264 do {
3265 if (is_semi_idle_group(ilb_group))
3266 return cpumask_first(nohz.ilb_grp_nohz_mask);
3268 ilb_group = ilb_group->next;
3270 } while (ilb_group != sd->groups);
3273 out_done:
3274 return cpumask_first(nohz.cpu_mask);
3276 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3277 static inline int find_new_ilb(int call_cpu)
3279 return cpumask_first(nohz.cpu_mask);
3281 #endif
3284 * This routine will try to nominate the ilb (idle load balancing)
3285 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3286 * load balancing on behalf of all those cpus. If all the cpus in the system
3287 * go into this tickless mode, then there will be no ilb owner (as there is
3288 * no need for one) and all the cpus will sleep till the next wakeup event
3289 * arrives...
3291 * For the ilb owner, tick is not stopped. And this tick will be used
3292 * for idle load balancing. ilb owner will still be part of
3293 * nohz.cpu_mask..
3295 * While stopping the tick, this cpu will become the ilb owner if there
3296 * is no other owner. And will be the owner till that cpu becomes busy
3297 * or if all cpus in the system stop their ticks at which point
3298 * there is no need for ilb owner.
3300 * When the ilb owner becomes busy, it nominates another owner, during the
3301 * next busy scheduler_tick()
3303 int select_nohz_load_balancer(int stop_tick)
3305 int cpu = smp_processor_id();
3307 if (stop_tick) {
3308 cpu_rq(cpu)->in_nohz_recently = 1;
3310 if (!cpu_active(cpu)) {
3311 if (atomic_read(&nohz.load_balancer) != cpu)
3312 return 0;
3315 * If we are going offline and still the leader,
3316 * give up!
3318 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3319 BUG();
3321 return 0;
3324 cpumask_set_cpu(cpu, nohz.cpu_mask);
3326 /* time for ilb owner also to sleep */
3327 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3328 if (atomic_read(&nohz.load_balancer) == cpu)
3329 atomic_set(&nohz.load_balancer, -1);
3330 return 0;
3333 if (atomic_read(&nohz.load_balancer) == -1) {
3334 /* make me the ilb owner */
3335 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3336 return 1;
3337 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3338 int new_ilb;
3340 if (!(sched_smt_power_savings ||
3341 sched_mc_power_savings))
3342 return 1;
3344 * Check to see if there is a more power-efficient
3345 * ilb.
3347 new_ilb = find_new_ilb(cpu);
3348 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3349 atomic_set(&nohz.load_balancer, -1);
3350 resched_cpu(new_ilb);
3351 return 0;
3353 return 1;
3355 } else {
3356 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3357 return 0;
3359 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3361 if (atomic_read(&nohz.load_balancer) == cpu)
3362 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3363 BUG();
3365 return 0;
3367 #endif
3369 static DEFINE_SPINLOCK(balancing);
3372 * It checks each scheduling domain to see if it is due to be balanced,
3373 * and initiates a balancing operation if so.
3375 * Balancing parameters are set up in arch_init_sched_domains.
3377 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3379 int balance = 1;
3380 struct rq *rq = cpu_rq(cpu);
3381 unsigned long interval;
3382 struct sched_domain *sd;
3383 /* Earliest time when we have to do rebalance again */
3384 unsigned long next_balance = jiffies + 60*HZ;
3385 int update_next_balance = 0;
3386 int need_serialize;
3388 for_each_domain(cpu, sd) {
3389 if (!(sd->flags & SD_LOAD_BALANCE))
3390 continue;
3392 interval = sd->balance_interval;
3393 if (idle != CPU_IDLE)
3394 interval *= sd->busy_factor;
3396 /* scale ms to jiffies */
3397 interval = msecs_to_jiffies(interval);
3398 if (unlikely(!interval))
3399 interval = 1;
3400 if (interval > HZ*NR_CPUS/10)
3401 interval = HZ*NR_CPUS/10;
3403 need_serialize = sd->flags & SD_SERIALIZE;
3405 if (need_serialize) {
3406 if (!spin_trylock(&balancing))
3407 goto out;
3410 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3411 if (load_balance(cpu, rq, sd, idle, &balance)) {
3413 * We've pulled tasks over so either we're no
3414 * longer idle, or one of our SMT siblings is
3415 * not idle.
3417 idle = CPU_NOT_IDLE;
3419 sd->last_balance = jiffies;
3421 if (need_serialize)
3422 spin_unlock(&balancing);
3423 out:
3424 if (time_after(next_balance, sd->last_balance + interval)) {
3425 next_balance = sd->last_balance + interval;
3426 update_next_balance = 1;
3430 * Stop the load balance at this level. There is another
3431 * CPU in our sched group which is doing load balancing more
3432 * actively.
3434 if (!balance)
3435 break;
3439 * next_balance will be updated only when there is a need.
3440 * When the cpu is attached to null domain for ex, it will not be
3441 * updated.
3443 if (likely(update_next_balance))
3444 rq->next_balance = next_balance;
3448 * run_rebalance_domains is triggered when needed from the scheduler tick.
3449 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3450 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3452 static void run_rebalance_domains(struct softirq_action *h)
3454 int this_cpu = smp_processor_id();
3455 struct rq *this_rq = cpu_rq(this_cpu);
3456 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3457 CPU_IDLE : CPU_NOT_IDLE;
3459 rebalance_domains(this_cpu, idle);
3461 #ifdef CONFIG_NO_HZ
3463 * If this cpu is the owner for idle load balancing, then do the
3464 * balancing on behalf of the other idle cpus whose ticks are
3465 * stopped.
3467 if (this_rq->idle_at_tick &&
3468 atomic_read(&nohz.load_balancer) == this_cpu) {
3469 struct rq *rq;
3470 int balance_cpu;
3472 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3473 if (balance_cpu == this_cpu)
3474 continue;
3477 * If this cpu gets work to do, stop the load balancing
3478 * work being done for other cpus. Next load
3479 * balancing owner will pick it up.
3481 if (need_resched())
3482 break;
3484 rebalance_domains(balance_cpu, CPU_IDLE);
3486 rq = cpu_rq(balance_cpu);
3487 if (time_after(this_rq->next_balance, rq->next_balance))
3488 this_rq->next_balance = rq->next_balance;
3491 #endif
3494 static inline int on_null_domain(int cpu)
3496 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3500 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3502 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3503 * idle load balancing owner or decide to stop the periodic load balancing,
3504 * if the whole system is idle.
3506 static inline void trigger_load_balance(struct rq *rq, int cpu)
3508 #ifdef CONFIG_NO_HZ
3510 * If we were in the nohz mode recently and busy at the current
3511 * scheduler tick, then check if we need to nominate new idle
3512 * load balancer.
3514 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3515 rq->in_nohz_recently = 0;
3517 if (atomic_read(&nohz.load_balancer) == cpu) {
3518 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3519 atomic_set(&nohz.load_balancer, -1);
3522 if (atomic_read(&nohz.load_balancer) == -1) {
3523 int ilb = find_new_ilb(cpu);
3525 if (ilb < nr_cpu_ids)
3526 resched_cpu(ilb);
3531 * If this cpu is idle and doing idle load balancing for all the
3532 * cpus with ticks stopped, is it time for that to stop?
3534 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3535 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3536 resched_cpu(cpu);
3537 return;
3541 * If this cpu is idle and the idle load balancing is done by
3542 * someone else, then no need raise the SCHED_SOFTIRQ
3544 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3545 cpumask_test_cpu(cpu, nohz.cpu_mask))
3546 return;
3547 #endif
3548 /* Don't need to rebalance while attached to NULL domain */
3549 if (time_after_eq(jiffies, rq->next_balance) &&
3550 likely(!on_null_domain(cpu)))
3551 raise_softirq(SCHED_SOFTIRQ);
3554 static void rq_online_fair(struct rq *rq)
3556 update_sysctl();
3559 static void rq_offline_fair(struct rq *rq)
3561 update_sysctl();
3564 #else /* CONFIG_SMP */
3567 * on UP we do not need to balance between CPUs:
3569 static inline void idle_balance(int cpu, struct rq *rq)
3573 #endif /* CONFIG_SMP */
3576 * scheduler tick hitting a task of our scheduling class:
3578 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3580 struct cfs_rq *cfs_rq;
3581 struct sched_entity *se = &curr->se;
3583 for_each_sched_entity(se) {
3584 cfs_rq = cfs_rq_of(se);
3585 entity_tick(cfs_rq, se, queued);
3590 * called on fork with the child task as argument from the parent's context
3591 * - child not yet on the tasklist
3592 * - preemption disabled
3594 static void task_fork_fair(struct task_struct *p)
3596 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3597 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3598 int this_cpu = smp_processor_id();
3599 struct rq *rq = this_rq();
3600 unsigned long flags;
3602 raw_spin_lock_irqsave(&rq->lock, flags);
3604 update_rq_clock(rq);
3606 if (unlikely(task_cpu(p) != this_cpu)) {
3607 rcu_read_lock();
3608 __set_task_cpu(p, this_cpu);
3609 rcu_read_unlock();
3612 update_curr(cfs_rq);
3614 if (curr)
3615 se->vruntime = curr->vruntime;
3616 place_entity(cfs_rq, se, 1);
3618 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3620 * Upon rescheduling, sched_class::put_prev_task() will place
3621 * 'current' within the tree based on its new key value.
3623 swap(curr->vruntime, se->vruntime);
3624 resched_task(rq->curr);
3627 se->vruntime -= cfs_rq->min_vruntime;
3629 raw_spin_unlock_irqrestore(&rq->lock, flags);
3633 * Priority of the task has changed. Check to see if we preempt
3634 * the current task.
3636 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3637 int oldprio, int running)
3640 * Reschedule if we are currently running on this runqueue and
3641 * our priority decreased, or if we are not currently running on
3642 * this runqueue and our priority is higher than the current's
3644 if (running) {
3645 if (p->prio > oldprio)
3646 resched_task(rq->curr);
3647 } else
3648 check_preempt_curr(rq, p, 0);
3652 * We switched to the sched_fair class.
3654 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3655 int running)
3658 * We were most likely switched from sched_rt, so
3659 * kick off the schedule if running, otherwise just see
3660 * if we can still preempt the current task.
3662 if (running)
3663 resched_task(rq->curr);
3664 else
3665 check_preempt_curr(rq, p, 0);
3668 /* Account for a task changing its policy or group.
3670 * This routine is mostly called to set cfs_rq->curr field when a task
3671 * migrates between groups/classes.
3673 static void set_curr_task_fair(struct rq *rq)
3675 struct sched_entity *se = &rq->curr->se;
3677 for_each_sched_entity(se)
3678 set_next_entity(cfs_rq_of(se), se);
3681 #ifdef CONFIG_FAIR_GROUP_SCHED
3682 static void task_move_group_fair(struct task_struct *p, int on_rq)
3685 * If the task was not on the rq at the time of this cgroup movement
3686 * it must have been asleep, sleeping tasks keep their ->vruntime
3687 * absolute on their old rq until wakeup (needed for the fair sleeper
3688 * bonus in place_entity()).
3690 * If it was on the rq, we've just 'preempted' it, which does convert
3691 * ->vruntime to a relative base.
3693 * Make sure both cases convert their relative position when migrating
3694 * to another cgroup's rq. This does somewhat interfere with the
3695 * fair sleeper stuff for the first placement, but who cares.
3697 if (!on_rq)
3698 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
3699 set_task_rq(p, task_cpu(p));
3700 if (!on_rq)
3701 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
3703 #endif
3705 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3707 struct sched_entity *se = &task->se;
3708 unsigned int rr_interval = 0;
3711 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3712 * idle runqueue:
3714 if (rq->cfs.load.weight)
3715 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3717 return rr_interval;
3721 * All the scheduling class methods:
3723 static const struct sched_class fair_sched_class = {
3724 .next = &idle_sched_class,
3725 .enqueue_task = enqueue_task_fair,
3726 .dequeue_task = dequeue_task_fair,
3727 .yield_task = yield_task_fair,
3729 .check_preempt_curr = check_preempt_wakeup,
3731 .pick_next_task = pick_next_task_fair,
3732 .put_prev_task = put_prev_task_fair,
3734 #ifdef CONFIG_SMP
3735 .select_task_rq = select_task_rq_fair,
3737 .rq_online = rq_online_fair,
3738 .rq_offline = rq_offline_fair,
3740 .task_waking = task_waking_fair,
3741 #endif
3743 .set_curr_task = set_curr_task_fair,
3744 .task_tick = task_tick_fair,
3745 .task_fork = task_fork_fair,
3747 .prio_changed = prio_changed_fair,
3748 .switched_to = switched_to_fair,
3750 .get_rr_interval = get_rr_interval_fair,
3752 #ifdef CONFIG_FAIR_GROUP_SCHED
3753 .task_move_group = task_move_group_fair,
3754 #endif
3757 #ifdef CONFIG_SCHED_DEBUG
3758 static void print_cfs_stats(struct seq_file *m, int cpu)
3760 struct cfs_rq *cfs_rq;
3762 rcu_read_lock();
3763 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3764 print_cfs_rq(m, cpu, cfs_rq);
3765 rcu_read_unlock();
3767 #endif