code style scripts/checkpatch.pl (linux-3.9-rc1) formatting
[linux-2.6.34.14-moxart.git] / kernel / futex.c
blob8b467b4a437f2f8bb7b8a906af0a452b0e4b24b0
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
63 #include <asm/futex.h>
65 #include "rtmutex_common.h"
67 int __read_mostly futex_cmpxchg_enabled;
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
72 * Priority Inheritance state:
74 struct futex_pi_state {
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
79 struct list_head list;
82 * The PI object:
84 struct rt_mutex pi_mutex;
86 struct task_struct *owner;
87 atomic_t refcount;
89 union futex_key key;
92 /**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103 * we can wake only the relevant ones (hashed queues may be shared).
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107 * The order of wakup is always to make the first condition true, then
108 * the second.
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
113 struct futex_q {
114 struct plist_node list;
116 struct task_struct *task;
117 spinlock_t *lock_ptr;
118 union futex_key key;
119 struct futex_pi_state *pi_state;
120 struct rt_mutex_waiter *rt_waiter;
121 union futex_key *requeue_pi_key;
122 u32 bitset;
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
130 struct futex_hash_bucket {
131 spinlock_t lock;
132 struct plist_head chain;
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
138 * We hash on the keys returned from get_futex_key (see below).
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
149 * Return 1 if two futex_keys are equal, 0 otherwise.
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
153 return (key1 && key2
154 && key1->both.word == key2->both.word
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
164 static void get_futex_key_refs(union futex_key *key)
166 if (!key->both.ptr)
167 return;
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
183 static void drop_futex_key_refs(union futex_key *key)
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
188 return;
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
206 * @rw: mapping needs to be read/write (values: VERIFY_READ,
207 * VERIFY_WRITE)
209 * Returns a negative error code or 0
210 * The key words are stored in *key on success.
212 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
213 * offset_within_page). For private mappings, it's (uaddr, current->mm).
214 * We can usually work out the index without swapping in the page.
216 * lock_page() might sleep, the caller should not hold a spinlock.
218 static int
219 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
221 unsigned long address = (unsigned long)uaddr;
222 struct mm_struct *mm = current->mm;
223 struct page *page;
224 int err, ro = 0;
227 * The futex address must be "naturally" aligned.
229 key->both.offset = address % PAGE_SIZE;
230 if (unlikely((address % sizeof(u32)) != 0))
231 return -EINVAL;
232 address -= key->both.offset;
235 * PROCESS_PRIVATE futexes are fast.
236 * As the mm cannot disappear under us and the 'key' only needs
237 * virtual address, we dont even have to find the underlying vma.
238 * Note : We do have to check 'uaddr' is a valid user address,
239 * but access_ok() should be faster than find_vma()
241 if (!fshared) {
242 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
243 return -EFAULT;
244 key->private.mm = mm;
245 key->private.address = address;
246 get_futex_key_refs(key);
247 return 0;
250 again:
251 err = get_user_pages_fast(address, 1, 1, &page);
253 * If write access is not required (eg. FUTEX_WAIT), try
254 * and get read-only access.
256 if (err == -EFAULT && rw == VERIFY_READ) {
257 err = get_user_pages_fast(address, 1, 0, &page);
258 ro = 1;
260 if (err < 0)
261 return err;
262 else
263 err = 0;
265 page = compound_head(page);
266 lock_page(page);
269 * If page->mapping is NULL, then it cannot be a PageAnon
270 * page; but it might be the ZERO_PAGE or in the gate area or
271 * in a special mapping (all cases which we are happy to fail);
272 * or it may have been a good file page when get_user_pages_fast
273 * found it, but truncated or holepunched or subjected to
274 * invalidate_complete_page2 before we got the page lock (also
275 * cases which we are happy to fail). And we hold a reference,
276 * so refcount care in invalidate_complete_page's remove_mapping
277 * prevents drop_caches from setting mapping to NULL beneath us.
279 * The case we do have to guard against is when memory pressure made
280 * shmem_writepage move it from filecache to swapcache beneath us:
281 * an unlikely race, but we do need to retry for page->mapping.
283 if (!page->mapping) {
284 int shmem_swizzled = PageSwapCache(page);
285 unlock_page(page);
286 put_page(page);
287 if (shmem_swizzled)
288 goto again;
289 return -EFAULT;
293 * Private mappings are handled in a simple way.
295 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
296 * it's a read-only handle, it's expected that futexes attach to
297 * the object not the particular process.
299 if (PageAnon(page)) {
301 * A RO anonymous page will never change and thus doesn't make
302 * sense for futex operations.
304 if (ro) {
305 err = -EFAULT;
306 goto out;
309 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
310 key->private.mm = mm;
311 key->private.address = address;
312 } else {
313 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
314 key->shared.inode = page->mapping->host;
315 key->shared.pgoff = page->index;
318 get_futex_key_refs(key);
320 out:
321 unlock_page(page);
322 put_page(page);
323 return err;
326 static inline
327 void put_futex_key(int fshared, union futex_key *key)
329 drop_futex_key_refs(key);
333 * fault_in_user_writeable() - Fault in user address and verify RW access
334 * @uaddr: pointer to faulting user space address
336 * Slow path to fixup the fault we just took in the atomic write
337 * access to @uaddr.
339 * We have no generic implementation of a non destructive write to the
340 * user address. We know that we faulted in the atomic pagefault
341 * disabled section so we can as well avoid the #PF overhead by
342 * calling get_user_pages() right away.
344 static int fault_in_user_writeable(u32 __user *uaddr)
346 struct mm_struct *mm = current->mm;
347 int ret;
349 down_read(&mm->mmap_sem);
350 ret = get_user_pages(current, mm, (unsigned long)uaddr,
351 1, 1, 0, NULL, NULL);
352 up_read(&mm->mmap_sem);
354 return ret < 0 ? ret : 0;
358 * futex_top_waiter() - Return the highest priority waiter on a futex
359 * @hb: the hash bucket the futex_q's reside in
360 * @key: the futex key (to distinguish it from other futex futex_q's)
362 * Must be called with the hb lock held.
364 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
365 union futex_key *key)
367 struct futex_q *this;
369 plist_for_each_entry(this, &hb->chain, list) {
370 if (match_futex(&this->key, key))
371 return this;
373 return NULL;
376 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
378 u32 curval;
380 pagefault_disable();
381 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
382 pagefault_enable();
384 return curval;
387 static int get_futex_value_locked(u32 *dest, u32 __user *from)
389 int ret;
391 pagefault_disable();
392 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
393 pagefault_enable();
395 return ret ? -EFAULT : 0;
400 * PI code:
402 static int refill_pi_state_cache(void)
404 struct futex_pi_state *pi_state;
406 if (likely(current->pi_state_cache))
407 return 0;
409 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
411 if (!pi_state)
412 return -ENOMEM;
414 INIT_LIST_HEAD(&pi_state->list);
415 /* pi_mutex gets initialized later */
416 pi_state->owner = NULL;
417 atomic_set(&pi_state->refcount, 1);
418 pi_state->key = FUTEX_KEY_INIT;
420 current->pi_state_cache = pi_state;
422 return 0;
425 static struct futex_pi_state * alloc_pi_state(void)
427 struct futex_pi_state *pi_state = current->pi_state_cache;
429 WARN_ON(!pi_state);
430 current->pi_state_cache = NULL;
432 return pi_state;
435 static void free_pi_state(struct futex_pi_state *pi_state)
437 if (!atomic_dec_and_test(&pi_state->refcount))
438 return;
441 * If pi_state->owner is NULL, the owner is most probably dying
442 * and has cleaned up the pi_state already
444 if (pi_state->owner) {
445 raw_spin_lock_irq(&pi_state->owner->pi_lock);
446 list_del_init(&pi_state->list);
447 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
449 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
452 if (current->pi_state_cache)
453 kfree(pi_state);
454 else {
456 * pi_state->list is already empty.
457 * clear pi_state->owner.
458 * refcount is at 0 - put it back to 1.
460 pi_state->owner = NULL;
461 atomic_set(&pi_state->refcount, 1);
462 current->pi_state_cache = pi_state;
467 * Look up the task based on what TID userspace gave us.
468 * We dont trust it.
470 static struct task_struct * futex_find_get_task(pid_t pid)
472 struct task_struct *p;
474 rcu_read_lock();
475 p = find_task_by_vpid(pid);
476 if (p)
477 get_task_struct(p);
479 rcu_read_unlock();
481 return p;
485 * This task is holding PI mutexes at exit time => bad.
486 * Kernel cleans up PI-state, but userspace is likely hosed.
487 * (Robust-futex cleanup is separate and might save the day for userspace.)
489 void exit_pi_state_list(struct task_struct *curr)
491 struct list_head *next, *head = &curr->pi_state_list;
492 struct futex_pi_state *pi_state;
493 struct futex_hash_bucket *hb;
494 union futex_key key = FUTEX_KEY_INIT;
496 if (!futex_cmpxchg_enabled)
497 return;
499 * We are a ZOMBIE and nobody can enqueue itself on
500 * pi_state_list anymore, but we have to be careful
501 * versus waiters unqueueing themselves:
503 raw_spin_lock_irq(&curr->pi_lock);
504 while (!list_empty(head)) {
506 next = head->next;
507 pi_state = list_entry(next, struct futex_pi_state, list);
508 key = pi_state->key;
509 hb = hash_futex(&key);
510 raw_spin_unlock_irq(&curr->pi_lock);
512 spin_lock(&hb->lock);
514 raw_spin_lock_irq(&curr->pi_lock);
516 * We dropped the pi-lock, so re-check whether this
517 * task still owns the PI-state:
519 if (head->next != next) {
520 spin_unlock(&hb->lock);
521 continue;
524 WARN_ON(pi_state->owner != curr);
525 WARN_ON(list_empty(&pi_state->list));
526 list_del_init(&pi_state->list);
527 pi_state->owner = NULL;
528 raw_spin_unlock_irq(&curr->pi_lock);
530 rt_mutex_unlock(&pi_state->pi_mutex);
532 spin_unlock(&hb->lock);
534 raw_spin_lock_irq(&curr->pi_lock);
536 raw_spin_unlock_irq(&curr->pi_lock);
539 static int
540 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
541 union futex_key *key, struct futex_pi_state **ps)
543 struct futex_pi_state *pi_state = NULL;
544 struct futex_q *this, *next;
545 struct plist_head *head;
546 struct task_struct *p;
547 pid_t pid = uval & FUTEX_TID_MASK;
549 head = &hb->chain;
551 plist_for_each_entry_safe(this, next, head, list) {
552 if (match_futex(&this->key, key)) {
554 * Another waiter already exists - bump up
555 * the refcount and return its pi_state:
557 pi_state = this->pi_state;
559 * Userspace might have messed up non PI and PI futexes
561 if (unlikely(!pi_state))
562 return -EINVAL;
564 WARN_ON(!atomic_read(&pi_state->refcount));
567 * When pi_state->owner is NULL then the owner died
568 * and another waiter is on the fly. pi_state->owner
569 * is fixed up by the task which acquires
570 * pi_state->rt_mutex.
572 * We do not check for pid == 0 which can happen when
573 * the owner died and robust_list_exit() cleared the
574 * TID.
576 if (pid && pi_state->owner) {
578 * Bail out if user space manipulated the
579 * futex value.
581 if (pid != task_pid_vnr(pi_state->owner))
582 return -EINVAL;
585 atomic_inc(&pi_state->refcount);
586 *ps = pi_state;
588 return 0;
593 * We are the first waiter - try to look up the real owner and attach
594 * the new pi_state to it, but bail out when TID = 0
596 if (!pid)
597 return -ESRCH;
598 p = futex_find_get_task(pid);
599 if (!p)
600 return -ESRCH;
603 * We need to look at the task state flags to figure out,
604 * whether the task is exiting. To protect against the do_exit
605 * change of the task flags, we do this protected by
606 * p->pi_lock:
608 raw_spin_lock_irq(&p->pi_lock);
609 if (unlikely(p->flags & PF_EXITING)) {
611 * The task is on the way out. When PF_EXITPIDONE is
612 * set, we know that the task has finished the
613 * cleanup:
615 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
617 raw_spin_unlock_irq(&p->pi_lock);
618 put_task_struct(p);
619 return ret;
622 pi_state = alloc_pi_state();
625 * Initialize the pi_mutex in locked state and make 'p'
626 * the owner of it:
628 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
630 /* Store the key for possible exit cleanups: */
631 pi_state->key = *key;
633 WARN_ON(!list_empty(&pi_state->list));
634 list_add(&pi_state->list, &p->pi_state_list);
635 pi_state->owner = p;
636 raw_spin_unlock_irq(&p->pi_lock);
638 put_task_struct(p);
640 *ps = pi_state;
642 return 0;
646 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
647 * @uaddr: the pi futex user address
648 * @hb: the pi futex hash bucket
649 * @key: the futex key associated with uaddr and hb
650 * @ps: the pi_state pointer where we store the result of the
651 * lookup
652 * @task: the task to perform the atomic lock work for. This will
653 * be "current" except in the case of requeue pi.
654 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
656 * Returns:
657 * 0 - ready to wait
658 * 1 - acquired the lock
659 * <0 - error
661 * The hb->lock and futex_key refs shall be held by the caller.
663 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
664 union futex_key *key,
665 struct futex_pi_state **ps,
666 struct task_struct *task, int set_waiters)
668 int lock_taken, ret, ownerdied = 0;
669 u32 uval, newval, curval;
671 retry:
672 ret = lock_taken = 0;
675 * To avoid races, we attempt to take the lock here again
676 * (by doing a 0 -> TID atomic cmpxchg), while holding all
677 * the locks. It will most likely not succeed.
679 newval = task_pid_vnr(task);
680 if (set_waiters)
681 newval |= FUTEX_WAITERS;
683 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
685 if (unlikely(curval == -EFAULT))
686 return -EFAULT;
689 * Detect deadlocks.
691 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
692 return -EDEADLK;
695 * Surprise - we got the lock. Just return to userspace:
697 if (unlikely(!curval))
698 return 1;
700 uval = curval;
703 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
704 * to wake at the next unlock.
706 newval = curval | FUTEX_WAITERS;
709 * There are two cases, where a futex might have no owner (the
710 * owner TID is 0): OWNER_DIED. We take over the futex in this
711 * case. We also do an unconditional take over, when the owner
712 * of the futex died.
714 * This is safe as we are protected by the hash bucket lock !
716 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
717 /* Keep the OWNER_DIED bit */
718 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
719 ownerdied = 0;
720 lock_taken = 1;
723 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
725 if (unlikely(curval == -EFAULT))
726 return -EFAULT;
727 if (unlikely(curval != uval))
728 goto retry;
731 * We took the lock due to owner died take over.
733 if (unlikely(lock_taken))
734 return 1;
737 * We dont have the lock. Look up the PI state (or create it if
738 * we are the first waiter):
740 ret = lookup_pi_state(uval, hb, key, ps);
742 if (unlikely(ret)) {
743 switch (ret) {
744 case -ESRCH:
746 * No owner found for this futex. Check if the
747 * OWNER_DIED bit is set to figure out whether
748 * this is a robust futex or not.
750 if (get_futex_value_locked(&curval, uaddr))
751 return -EFAULT;
754 * We simply start over in case of a robust
755 * futex. The code above will take the futex
756 * and return happy.
758 if (curval & FUTEX_OWNER_DIED) {
759 ownerdied = 1;
760 goto retry;
762 default:
763 break;
767 return ret;
771 * The hash bucket lock must be held when this is called.
772 * Afterwards, the futex_q must not be accessed.
774 static void wake_futex(struct futex_q *q)
776 struct task_struct *p = q->task;
779 * We set q->lock_ptr = NULL _before_ we wake up the task. If
780 * a non futex wake up happens on another CPU then the task
781 * might exit and p would dereference a non existing task
782 * struct. Prevent this by holding a reference on p across the
783 * wake up.
785 get_task_struct(p);
787 plist_del(&q->list, &q->list.plist);
789 * The waiting task can free the futex_q as soon as
790 * q->lock_ptr = NULL is written, without taking any locks. A
791 * memory barrier is required here to prevent the following
792 * store to lock_ptr from getting ahead of the plist_del.
794 smp_wmb();
795 q->lock_ptr = NULL;
797 wake_up_state(p, TASK_NORMAL);
798 put_task_struct(p);
801 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
803 struct task_struct *new_owner;
804 struct futex_pi_state *pi_state = this->pi_state;
805 u32 curval, newval;
807 if (!pi_state)
808 return -EINVAL;
811 * If current does not own the pi_state then the futex is
812 * inconsistent and user space fiddled with the futex value.
814 if (pi_state->owner != current)
815 return -EINVAL;
817 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
818 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
821 * This happens when we have stolen the lock and the original
822 * pending owner did not enqueue itself back on the rt_mutex.
823 * Thats not a tragedy. We know that way, that a lock waiter
824 * is on the fly. We make the futex_q waiter the pending owner.
826 if (!new_owner)
827 new_owner = this->task;
830 * We pass it to the next owner. (The WAITERS bit is always
831 * kept enabled while there is PI state around. We must also
832 * preserve the owner died bit.)
834 if (!(uval & FUTEX_OWNER_DIED)) {
835 int ret = 0;
837 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
839 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
841 if (curval == -EFAULT)
842 ret = -EFAULT;
843 else if (curval != uval)
844 ret = -EINVAL;
845 if (ret) {
846 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
847 return ret;
851 raw_spin_lock_irq(&pi_state->owner->pi_lock);
852 WARN_ON(list_empty(&pi_state->list));
853 list_del_init(&pi_state->list);
854 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
856 raw_spin_lock_irq(&new_owner->pi_lock);
857 WARN_ON(!list_empty(&pi_state->list));
858 list_add(&pi_state->list, &new_owner->pi_state_list);
859 pi_state->owner = new_owner;
860 raw_spin_unlock_irq(&new_owner->pi_lock);
862 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
863 rt_mutex_unlock(&pi_state->pi_mutex);
865 return 0;
868 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
870 u32 oldval;
873 * There is no waiter, so we unlock the futex. The owner died
874 * bit has not to be preserved here. We are the owner:
876 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
878 if (oldval == -EFAULT)
879 return oldval;
880 if (oldval != uval)
881 return -EAGAIN;
883 return 0;
887 * Express the locking dependencies for lockdep:
889 static inline void
890 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
892 if (hb1 <= hb2) {
893 spin_lock(&hb1->lock);
894 if (hb1 < hb2)
895 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
896 } else { /* hb1 > hb2 */
897 spin_lock(&hb2->lock);
898 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
902 static inline void
903 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
905 spin_unlock(&hb1->lock);
906 if (hb1 != hb2)
907 spin_unlock(&hb2->lock);
911 * Wake up waiters matching bitset queued on this futex (uaddr).
913 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
915 struct futex_hash_bucket *hb;
916 struct futex_q *this, *next;
917 struct plist_head *head;
918 union futex_key key = FUTEX_KEY_INIT;
919 int ret;
921 if (!bitset)
922 return -EINVAL;
924 ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
925 if (unlikely(ret != 0))
926 goto out;
928 hb = hash_futex(&key);
929 spin_lock(&hb->lock);
930 head = &hb->chain;
932 plist_for_each_entry_safe(this, next, head, list) {
933 if (match_futex (&this->key, &key)) {
934 if (this->pi_state || this->rt_waiter) {
935 ret = -EINVAL;
936 break;
939 /* Check if one of the bits is set in both bitsets */
940 if (!(this->bitset & bitset))
941 continue;
943 wake_futex(this);
944 if (++ret >= nr_wake)
945 break;
949 spin_unlock(&hb->lock);
950 put_futex_key(fshared, &key);
951 out:
952 return ret;
956 * Wake up all waiters hashed on the physical page that is mapped
957 * to this virtual address:
959 static int
960 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
961 int nr_wake, int nr_wake2, int op)
963 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
964 struct futex_hash_bucket *hb1, *hb2;
965 struct plist_head *head;
966 struct futex_q *this, *next;
967 int ret, op_ret;
969 retry:
970 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
971 if (unlikely(ret != 0))
972 goto out;
973 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
974 if (unlikely(ret != 0))
975 goto out_put_key1;
977 hb1 = hash_futex(&key1);
978 hb2 = hash_futex(&key2);
980 retry_private:
981 double_lock_hb(hb1, hb2);
982 op_ret = futex_atomic_op_inuser(op, uaddr2);
983 if (unlikely(op_ret < 0)) {
985 double_unlock_hb(hb1, hb2);
987 #ifndef CONFIG_MMU
989 * we don't get EFAULT from MMU faults if we don't have an MMU,
990 * but we might get them from range checking
992 ret = op_ret;
993 goto out_put_keys;
994 #endif
996 if (unlikely(op_ret != -EFAULT)) {
997 ret = op_ret;
998 goto out_put_keys;
1001 ret = fault_in_user_writeable(uaddr2);
1002 if (ret)
1003 goto out_put_keys;
1005 if (!fshared)
1006 goto retry_private;
1008 put_futex_key(fshared, &key2);
1009 put_futex_key(fshared, &key1);
1010 goto retry;
1013 head = &hb1->chain;
1015 plist_for_each_entry_safe(this, next, head, list) {
1016 if (match_futex (&this->key, &key1)) {
1017 wake_futex(this);
1018 if (++ret >= nr_wake)
1019 break;
1023 if (op_ret > 0) {
1024 head = &hb2->chain;
1026 op_ret = 0;
1027 plist_for_each_entry_safe(this, next, head, list) {
1028 if (match_futex (&this->key, &key2)) {
1029 wake_futex(this);
1030 if (++op_ret >= nr_wake2)
1031 break;
1034 ret += op_ret;
1037 double_unlock_hb(hb1, hb2);
1038 out_put_keys:
1039 put_futex_key(fshared, &key2);
1040 out_put_key1:
1041 put_futex_key(fshared, &key1);
1042 out:
1043 return ret;
1047 * requeue_futex() - Requeue a futex_q from one hb to another
1048 * @q: the futex_q to requeue
1049 * @hb1: the source hash_bucket
1050 * @hb2: the target hash_bucket
1051 * @key2: the new key for the requeued futex_q
1053 static inline
1054 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1055 struct futex_hash_bucket *hb2, union futex_key *key2)
1059 * If key1 and key2 hash to the same bucket, no need to
1060 * requeue.
1062 if (likely(&hb1->chain != &hb2->chain)) {
1063 plist_del(&q->list, &hb1->chain);
1064 plist_add(&q->list, &hb2->chain);
1065 q->lock_ptr = &hb2->lock;
1066 #ifdef CONFIG_DEBUG_PI_LIST
1067 q->list.plist.spinlock = &hb2->lock;
1068 #endif
1070 get_futex_key_refs(key2);
1071 q->key = *key2;
1075 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1076 * @q: the futex_q
1077 * @key: the key of the requeue target futex
1078 * @hb: the hash_bucket of the requeue target futex
1080 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1081 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1082 * to the requeue target futex so the waiter can detect the wakeup on the right
1083 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1084 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1085 * to protect access to the pi_state to fixup the owner later. Must be called
1086 * with both q->lock_ptr and hb->lock held.
1088 static inline
1089 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1090 struct futex_hash_bucket *hb)
1092 get_futex_key_refs(key);
1093 q->key = *key;
1095 WARN_ON(plist_node_empty(&q->list));
1096 plist_del(&q->list, &q->list.plist);
1098 WARN_ON(!q->rt_waiter);
1099 q->rt_waiter = NULL;
1101 q->lock_ptr = &hb->lock;
1102 #ifdef CONFIG_DEBUG_PI_LIST
1103 q->list.plist.spinlock = &hb->lock;
1104 #endif
1106 wake_up_state(q->task, TASK_NORMAL);
1110 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1111 * @pifutex: the user address of the to futex
1112 * @hb1: the from futex hash bucket, must be locked by the caller
1113 * @hb2: the to futex hash bucket, must be locked by the caller
1114 * @key1: the from futex key
1115 * @key2: the to futex key
1116 * @ps: address to store the pi_state pointer
1117 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1119 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1120 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1121 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1122 * hb1 and hb2 must be held by the caller.
1124 * Returns:
1125 * 0 - failed to acquire the lock atomicly
1126 * 1 - acquired the lock
1127 * <0 - error
1129 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1130 struct futex_hash_bucket *hb1,
1131 struct futex_hash_bucket *hb2,
1132 union futex_key *key1, union futex_key *key2,
1133 struct futex_pi_state **ps, int set_waiters)
1135 struct futex_q *top_waiter = NULL;
1136 u32 curval;
1137 int ret;
1139 if (get_futex_value_locked(&curval, pifutex))
1140 return -EFAULT;
1143 * Find the top_waiter and determine if there are additional waiters.
1144 * If the caller intends to requeue more than 1 waiter to pifutex,
1145 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1146 * as we have means to handle the possible fault. If not, don't set
1147 * the bit unecessarily as it will force the subsequent unlock to enter
1148 * the kernel.
1150 top_waiter = futex_top_waiter(hb1, key1);
1152 /* There are no waiters, nothing for us to do. */
1153 if (!top_waiter)
1154 return 0;
1156 /* Ensure we requeue to the expected futex. */
1157 if (!match_futex(top_waiter->requeue_pi_key, key2))
1158 return -EINVAL;
1161 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1162 * the contended case or if set_waiters is 1. The pi_state is returned
1163 * in ps in contended cases.
1165 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1166 set_waiters);
1167 if (ret == 1)
1168 requeue_pi_wake_futex(top_waiter, key2, hb2);
1170 return ret;
1174 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1175 * uaddr1: source futex user address
1176 * uaddr2: target futex user address
1177 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1178 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1179 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1180 * pi futex (pi to pi requeue is not supported)
1182 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1183 * uaddr2 atomically on behalf of the top waiter.
1185 * Returns:
1186 * >=0 - on success, the number of tasks requeued or woken
1187 * <0 - on error
1189 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1190 int nr_wake, int nr_requeue, u32 *cmpval,
1191 int requeue_pi)
1193 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1194 int drop_count = 0, task_count = 0, ret;
1195 struct futex_pi_state *pi_state = NULL;
1196 struct futex_hash_bucket *hb1, *hb2;
1197 struct plist_head *head1;
1198 struct futex_q *this, *next;
1199 u32 curval2;
1201 if (requeue_pi) {
1203 * requeue_pi requires a pi_state, try to allocate it now
1204 * without any locks in case it fails.
1206 if (refill_pi_state_cache())
1207 return -ENOMEM;
1209 * requeue_pi must wake as many tasks as it can, up to nr_wake
1210 * + nr_requeue, since it acquires the rt_mutex prior to
1211 * returning to userspace, so as to not leave the rt_mutex with
1212 * waiters and no owner. However, second and third wake-ups
1213 * cannot be predicted as they involve race conditions with the
1214 * first wake and a fault while looking up the pi_state. Both
1215 * pthread_cond_signal() and pthread_cond_broadcast() should
1216 * use nr_wake=1.
1218 if (nr_wake != 1)
1219 return -EINVAL;
1222 retry:
1223 if (pi_state != NULL) {
1225 * We will have to lookup the pi_state again, so free this one
1226 * to keep the accounting correct.
1228 free_pi_state(pi_state);
1229 pi_state = NULL;
1232 ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1233 if (unlikely(ret != 0))
1234 goto out;
1235 ret = get_futex_key(uaddr2, fshared, &key2,
1236 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1237 if (unlikely(ret != 0))
1238 goto out_put_key1;
1240 hb1 = hash_futex(&key1);
1241 hb2 = hash_futex(&key2);
1243 retry_private:
1244 double_lock_hb(hb1, hb2);
1246 if (likely(cmpval != NULL)) {
1247 u32 curval;
1249 ret = get_futex_value_locked(&curval, uaddr1);
1251 if (unlikely(ret)) {
1252 double_unlock_hb(hb1, hb2);
1254 ret = get_user(curval, uaddr1);
1255 if (ret)
1256 goto out_put_keys;
1258 if (!fshared)
1259 goto retry_private;
1261 put_futex_key(fshared, &key2);
1262 put_futex_key(fshared, &key1);
1263 goto retry;
1265 if (curval != *cmpval) {
1266 ret = -EAGAIN;
1267 goto out_unlock;
1271 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1273 * Attempt to acquire uaddr2 and wake the top waiter. If we
1274 * intend to requeue waiters, force setting the FUTEX_WAITERS
1275 * bit. We force this here where we are able to easily handle
1276 * faults rather in the requeue loop below.
1278 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1279 &key2, &pi_state, nr_requeue);
1282 * At this point the top_waiter has either taken uaddr2 or is
1283 * waiting on it. If the former, then the pi_state will not
1284 * exist yet, look it up one more time to ensure we have a
1285 * reference to it.
1287 if (ret == 1) {
1288 WARN_ON(pi_state);
1289 drop_count++;
1290 task_count++;
1291 ret = get_futex_value_locked(&curval2, uaddr2);
1292 if (!ret)
1293 ret = lookup_pi_state(curval2, hb2, &key2,
1294 &pi_state);
1297 switch (ret) {
1298 case 0:
1299 break;
1300 case -EFAULT:
1301 double_unlock_hb(hb1, hb2);
1302 put_futex_key(fshared, &key2);
1303 put_futex_key(fshared, &key1);
1304 ret = fault_in_user_writeable(uaddr2);
1305 if (!ret)
1306 goto retry;
1307 goto out;
1308 case -EAGAIN:
1309 /* The owner was exiting, try again. */
1310 double_unlock_hb(hb1, hb2);
1311 put_futex_key(fshared, &key2);
1312 put_futex_key(fshared, &key1);
1313 cond_resched();
1314 goto retry;
1315 default:
1316 goto out_unlock;
1320 head1 = &hb1->chain;
1321 plist_for_each_entry_safe(this, next, head1, list) {
1322 if (task_count - nr_wake >= nr_requeue)
1323 break;
1325 if (!match_futex(&this->key, &key1))
1326 continue;
1329 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1330 * be paired with each other and no other futex ops.
1332 if ((requeue_pi && !this->rt_waiter) ||
1333 (!requeue_pi && this->rt_waiter)) {
1334 ret = -EINVAL;
1335 break;
1339 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1340 * lock, we already woke the top_waiter. If not, it will be
1341 * woken by futex_unlock_pi().
1343 if (++task_count <= nr_wake && !requeue_pi) {
1344 wake_futex(this);
1345 continue;
1348 /* Ensure we requeue to the expected futex for requeue_pi. */
1349 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1350 ret = -EINVAL;
1351 break;
1355 * Requeue nr_requeue waiters and possibly one more in the case
1356 * of requeue_pi if we couldn't acquire the lock atomically.
1358 if (requeue_pi) {
1359 /* Prepare the waiter to take the rt_mutex. */
1360 atomic_inc(&pi_state->refcount);
1361 this->pi_state = pi_state;
1362 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1363 this->rt_waiter,
1364 this->task, 1);
1365 if (ret == 1) {
1366 /* We got the lock. */
1367 requeue_pi_wake_futex(this, &key2, hb2);
1368 drop_count++;
1369 continue;
1370 } else if (ret) {
1371 /* -EDEADLK */
1372 this->pi_state = NULL;
1373 free_pi_state(pi_state);
1374 goto out_unlock;
1377 requeue_futex(this, hb1, hb2, &key2);
1378 drop_count++;
1381 out_unlock:
1382 double_unlock_hb(hb1, hb2);
1385 * drop_futex_key_refs() must be called outside the spinlocks. During
1386 * the requeue we moved futex_q's from the hash bucket at key1 to the
1387 * one at key2 and updated their key pointer. We no longer need to
1388 * hold the references to key1.
1390 while (--drop_count >= 0)
1391 drop_futex_key_refs(&key1);
1393 out_put_keys:
1394 put_futex_key(fshared, &key2);
1395 out_put_key1:
1396 put_futex_key(fshared, &key1);
1397 out:
1398 if (pi_state != NULL)
1399 free_pi_state(pi_state);
1400 return ret ? ret : task_count;
1403 /* The key must be already stored in q->key. */
1404 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1406 struct futex_hash_bucket *hb;
1408 hb = hash_futex(&q->key);
1409 q->lock_ptr = &hb->lock;
1411 spin_lock(&hb->lock);
1412 return hb;
1415 static inline void
1416 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1418 spin_unlock(&hb->lock);
1422 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1423 * @q: The futex_q to enqueue
1424 * @hb: The destination hash bucket
1426 * The hb->lock must be held by the caller, and is released here. A call to
1427 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1428 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1429 * or nothing if the unqueue is done as part of the wake process and the unqueue
1430 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1431 * an example).
1433 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1435 int prio;
1438 * The priority used to register this element is
1439 * - either the real thread-priority for the real-time threads
1440 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1441 * - or MAX_RT_PRIO for non-RT threads.
1442 * Thus, all RT-threads are woken first in priority order, and
1443 * the others are woken last, in FIFO order.
1445 prio = min(current->normal_prio, MAX_RT_PRIO);
1447 plist_node_init(&q->list, prio);
1448 #ifdef CONFIG_DEBUG_PI_LIST
1449 q->list.plist.spinlock = &hb->lock;
1450 #endif
1451 plist_add(&q->list, &hb->chain);
1452 q->task = current;
1453 spin_unlock(&hb->lock);
1457 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1458 * @q: The futex_q to unqueue
1460 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1461 * be paired with exactly one earlier call to queue_me().
1463 * Returns:
1464 * 1 - if the futex_q was still queued (and we removed unqueued it)
1465 * 0 - if the futex_q was already removed by the waking thread
1467 static int unqueue_me(struct futex_q *q)
1469 spinlock_t *lock_ptr;
1470 int ret = 0;
1472 /* In the common case we don't take the spinlock, which is nice. */
1473 retry:
1474 lock_ptr = q->lock_ptr;
1475 barrier();
1476 if (lock_ptr != NULL) {
1477 spin_lock(lock_ptr);
1479 * q->lock_ptr can change between reading it and
1480 * spin_lock(), causing us to take the wrong lock. This
1481 * corrects the race condition.
1483 * Reasoning goes like this: if we have the wrong lock,
1484 * q->lock_ptr must have changed (maybe several times)
1485 * between reading it and the spin_lock(). It can
1486 * change again after the spin_lock() but only if it was
1487 * already changed before the spin_lock(). It cannot,
1488 * however, change back to the original value. Therefore
1489 * we can detect whether we acquired the correct lock.
1491 if (unlikely(lock_ptr != q->lock_ptr)) {
1492 spin_unlock(lock_ptr);
1493 goto retry;
1495 WARN_ON(plist_node_empty(&q->list));
1496 plist_del(&q->list, &q->list.plist);
1498 BUG_ON(q->pi_state);
1500 spin_unlock(lock_ptr);
1501 ret = 1;
1504 drop_futex_key_refs(&q->key);
1505 return ret;
1509 * PI futexes can not be requeued and must remove themself from the
1510 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1511 * and dropped here.
1513 static void unqueue_me_pi(struct futex_q *q)
1515 WARN_ON(plist_node_empty(&q->list));
1516 plist_del(&q->list, &q->list.plist);
1518 BUG_ON(!q->pi_state);
1519 free_pi_state(q->pi_state);
1520 q->pi_state = NULL;
1522 spin_unlock(q->lock_ptr);
1526 * Fixup the pi_state owner with the new owner.
1528 * Must be called with hash bucket lock held and mm->sem held for non
1529 * private futexes.
1531 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1532 struct task_struct *newowner, int fshared)
1534 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1535 struct futex_pi_state *pi_state = q->pi_state;
1536 struct task_struct *oldowner = pi_state->owner;
1537 u32 uval, curval, newval;
1538 int ret;
1540 /* Owner died? */
1541 if (!pi_state->owner)
1542 newtid |= FUTEX_OWNER_DIED;
1545 * We are here either because we stole the rtmutex from the
1546 * pending owner or we are the pending owner which failed to
1547 * get the rtmutex. We have to replace the pending owner TID
1548 * in the user space variable. This must be atomic as we have
1549 * to preserve the owner died bit here.
1551 * Note: We write the user space value _before_ changing the pi_state
1552 * because we can fault here. Imagine swapped out pages or a fork
1553 * that marked all the anonymous memory readonly for cow.
1555 * Modifying pi_state _before_ the user space value would
1556 * leave the pi_state in an inconsistent state when we fault
1557 * here, because we need to drop the hash bucket lock to
1558 * handle the fault. This might be observed in the PID check
1559 * in lookup_pi_state.
1561 retry:
1562 if (get_futex_value_locked(&uval, uaddr))
1563 goto handle_fault;
1565 while (1) {
1566 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1568 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1570 if (curval == -EFAULT)
1571 goto handle_fault;
1572 if (curval == uval)
1573 break;
1574 uval = curval;
1578 * We fixed up user space. Now we need to fix the pi_state
1579 * itself.
1581 if (pi_state->owner != NULL) {
1582 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1583 WARN_ON(list_empty(&pi_state->list));
1584 list_del_init(&pi_state->list);
1585 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1588 pi_state->owner = newowner;
1590 raw_spin_lock_irq(&newowner->pi_lock);
1591 WARN_ON(!list_empty(&pi_state->list));
1592 list_add(&pi_state->list, &newowner->pi_state_list);
1593 raw_spin_unlock_irq(&newowner->pi_lock);
1594 return 0;
1597 * To handle the page fault we need to drop the hash bucket
1598 * lock here. That gives the other task (either the pending
1599 * owner itself or the task which stole the rtmutex) the
1600 * chance to try the fixup of the pi_state. So once we are
1601 * back from handling the fault we need to check the pi_state
1602 * after reacquiring the hash bucket lock and before trying to
1603 * do another fixup. When the fixup has been done already we
1604 * simply return.
1606 handle_fault:
1607 spin_unlock(q->lock_ptr);
1609 ret = fault_in_user_writeable(uaddr);
1611 spin_lock(q->lock_ptr);
1614 * Check if someone else fixed it for us:
1616 if (pi_state->owner != oldowner)
1617 return 0;
1619 if (ret)
1620 return ret;
1622 goto retry;
1626 * In case we must use restart_block to restart a futex_wait,
1627 * we encode in the 'flags' shared capability
1629 #define FLAGS_SHARED 0x01
1630 #define FLAGS_CLOCKRT 0x02
1631 #define FLAGS_HAS_TIMEOUT 0x04
1633 static long futex_wait_restart(struct restart_block *restart);
1636 * fixup_owner() - Post lock pi_state and corner case management
1637 * @uaddr: user address of the futex
1638 * @fshared: whether the futex is shared (1) or not (0)
1639 * @q: futex_q (contains pi_state and access to the rt_mutex)
1640 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1642 * After attempting to lock an rt_mutex, this function is called to cleanup
1643 * the pi_state owner as well as handle race conditions that may allow us to
1644 * acquire the lock. Must be called with the hb lock held.
1646 * Returns:
1647 * 1 - success, lock taken
1648 * 0 - success, lock not taken
1649 * <0 - on error (-EFAULT)
1651 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1652 int locked)
1654 struct task_struct *owner;
1655 int ret = 0;
1657 if (locked) {
1659 * Got the lock. We might not be the anticipated owner if we
1660 * did a lock-steal - fix up the PI-state in that case:
1662 if (q->pi_state->owner != current)
1663 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1664 goto out;
1668 * Catch the rare case, where the lock was released when we were on the
1669 * way back before we locked the hash bucket.
1671 if (q->pi_state->owner == current) {
1673 * Try to get the rt_mutex now. This might fail as some other
1674 * task acquired the rt_mutex after we removed ourself from the
1675 * rt_mutex waiters list.
1677 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1678 locked = 1;
1679 goto out;
1683 * pi_state is incorrect, some other task did a lock steal and
1684 * we returned due to timeout or signal without taking the
1685 * rt_mutex. Too late. We can access the rt_mutex_owner without
1686 * locking, as the other task is now blocked on the hash bucket
1687 * lock. Fix the state up.
1689 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1690 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1691 goto out;
1695 * Paranoia check. If we did not take the lock, then we should not be
1696 * the owner, nor the pending owner, of the rt_mutex.
1698 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1699 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1700 "pi-state %p\n", ret,
1701 q->pi_state->pi_mutex.owner,
1702 q->pi_state->owner);
1704 out:
1705 return ret ? ret : locked;
1709 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1710 * @hb: the futex hash bucket, must be locked by the caller
1711 * @q: the futex_q to queue up on
1712 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1714 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1715 struct hrtimer_sleeper *timeout)
1718 * The task state is guaranteed to be set before another task can
1719 * wake it. set_current_state() is implemented using set_mb() and
1720 * queue_me() calls spin_unlock() upon completion, both serializing
1721 * access to the hash list and forcing another memory barrier.
1723 set_current_state(TASK_INTERRUPTIBLE);
1724 queue_me(q, hb);
1726 /* Arm the timer */
1727 if (timeout) {
1728 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1729 if (!hrtimer_active(&timeout->timer))
1730 timeout->task = NULL;
1734 * If we have been removed from the hash list, then another task
1735 * has tried to wake us, and we can skip the call to schedule().
1737 if (likely(!plist_node_empty(&q->list))) {
1739 * If the timer has already expired, current will already be
1740 * flagged for rescheduling. Only call schedule if there
1741 * is no timeout, or if it has yet to expire.
1743 if (!timeout || timeout->task)
1744 schedule();
1746 __set_current_state(TASK_RUNNING);
1750 * futex_wait_setup() - Prepare to wait on a futex
1751 * @uaddr: the futex userspace address
1752 * @val: the expected value
1753 * @fshared: whether the futex is shared (1) or not (0)
1754 * @q: the associated futex_q
1755 * @hb: storage for hash_bucket pointer to be returned to caller
1757 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1758 * compare it with the expected value. Handle atomic faults internally.
1759 * Return with the hb lock held and a q.key reference on success, and unlocked
1760 * with no q.key reference on failure.
1762 * Returns:
1763 * 0 - uaddr contains val and hb has been locked
1764 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1766 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1767 struct futex_q *q, struct futex_hash_bucket **hb)
1769 u32 uval;
1770 int ret;
1773 * Access the page AFTER the hash-bucket is locked.
1774 * Order is important:
1776 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1777 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1779 * The basic logical guarantee of a futex is that it blocks ONLY
1780 * if cond(var) is known to be true at the time of blocking, for
1781 * any cond. If we queued after testing *uaddr, that would open
1782 * a race condition where we could block indefinitely with
1783 * cond(var) false, which would violate the guarantee.
1785 * A consequence is that futex_wait() can return zero and absorb
1786 * a wakeup when *uaddr != val on entry to the syscall. This is
1787 * rare, but normal.
1789 retry:
1790 q->key = FUTEX_KEY_INIT;
1791 ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1792 if (unlikely(ret != 0))
1793 return ret;
1795 retry_private:
1796 *hb = queue_lock(q);
1798 ret = get_futex_value_locked(&uval, uaddr);
1800 if (ret) {
1801 queue_unlock(q, *hb);
1803 ret = get_user(uval, uaddr);
1804 if (ret)
1805 goto out;
1807 if (!fshared)
1808 goto retry_private;
1810 put_futex_key(fshared, &q->key);
1811 goto retry;
1814 if (uval != val) {
1815 queue_unlock(q, *hb);
1816 ret = -EWOULDBLOCK;
1819 out:
1820 if (ret)
1821 put_futex_key(fshared, &q->key);
1822 return ret;
1825 static int futex_wait(u32 __user *uaddr, int fshared,
1826 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1828 struct hrtimer_sleeper timeout, *to = NULL;
1829 struct restart_block *restart;
1830 struct futex_hash_bucket *hb;
1831 struct futex_q q;
1832 int ret;
1834 if (!bitset)
1835 return -EINVAL;
1837 q.pi_state = NULL;
1838 q.bitset = bitset;
1839 q.rt_waiter = NULL;
1840 q.requeue_pi_key = NULL;
1842 if (abs_time) {
1843 to = &timeout;
1845 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1846 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1847 hrtimer_init_sleeper(to, current);
1848 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1849 current->timer_slack_ns);
1852 retry:
1854 * Prepare to wait on uaddr. On success, holds hb lock and increments
1855 * q.key refs.
1857 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1858 if (ret)
1859 goto out;
1861 /* queue_me and wait for wakeup, timeout, or a signal. */
1862 futex_wait_queue_me(hb, &q, to);
1864 /* If we were woken (and unqueued), we succeeded, whatever. */
1865 ret = 0;
1866 /* unqueue_me() drops q.key ref */
1867 if (!unqueue_me(&q))
1868 goto out;
1869 ret = -ETIMEDOUT;
1870 if (to && !to->task)
1871 goto out;
1874 * We expect signal_pending(current), but we might be the
1875 * victim of a spurious wakeup as well.
1877 if (!signal_pending(current))
1878 goto retry;
1880 ret = -ERESTARTSYS;
1881 if (!abs_time)
1882 goto out;
1884 restart = &current_thread_info()->restart_block;
1885 restart->fn = futex_wait_restart;
1886 restart->futex.uaddr = (u32 *)uaddr;
1887 restart->futex.val = val;
1888 restart->futex.time = abs_time->tv64;
1889 restart->futex.bitset = bitset;
1890 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1892 if (fshared)
1893 restart->futex.flags |= FLAGS_SHARED;
1894 if (clockrt)
1895 restart->futex.flags |= FLAGS_CLOCKRT;
1897 ret = -ERESTART_RESTARTBLOCK;
1899 out:
1900 if (to) {
1901 hrtimer_cancel(&to->timer);
1902 destroy_hrtimer_on_stack(&to->timer);
1904 return ret;
1908 static long futex_wait_restart(struct restart_block *restart)
1910 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1911 int fshared = 0;
1912 ktime_t t, *tp = NULL;
1914 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1915 t.tv64 = restart->futex.time;
1916 tp = &t;
1918 restart->fn = do_no_restart_syscall;
1919 if (restart->futex.flags & FLAGS_SHARED)
1920 fshared = 1;
1921 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1922 restart->futex.bitset,
1923 restart->futex.flags & FLAGS_CLOCKRT);
1928 * Userspace tried a 0 -> TID atomic transition of the futex value
1929 * and failed. The kernel side here does the whole locking operation:
1930 * if there are waiters then it will block, it does PI, etc. (Due to
1931 * races the kernel might see a 0 value of the futex too.)
1933 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1934 int detect, ktime_t *time, int trylock)
1936 struct hrtimer_sleeper timeout, *to = NULL;
1937 struct futex_hash_bucket *hb;
1938 struct futex_q q;
1939 int res, ret;
1941 if (refill_pi_state_cache())
1942 return -ENOMEM;
1944 if (time) {
1945 to = &timeout;
1946 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1947 HRTIMER_MODE_ABS);
1948 hrtimer_init_sleeper(to, current);
1949 hrtimer_set_expires(&to->timer, *time);
1952 q.pi_state = NULL;
1953 q.rt_waiter = NULL;
1954 q.requeue_pi_key = NULL;
1955 retry:
1956 q.key = FUTEX_KEY_INIT;
1957 ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1958 if (unlikely(ret != 0))
1959 goto out;
1961 retry_private:
1962 hb = queue_lock(&q);
1964 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1965 if (unlikely(ret)) {
1966 switch (ret) {
1967 case 1:
1968 /* We got the lock. */
1969 ret = 0;
1970 goto out_unlock_put_key;
1971 case -EFAULT:
1972 goto uaddr_faulted;
1973 case -EAGAIN:
1975 * Task is exiting and we just wait for the
1976 * exit to complete.
1978 queue_unlock(&q, hb);
1979 put_futex_key(fshared, &q.key);
1980 cond_resched();
1981 goto retry;
1982 default:
1983 goto out_unlock_put_key;
1988 * Only actually queue now that the atomic ops are done:
1990 queue_me(&q, hb);
1992 WARN_ON(!q.pi_state);
1994 * Block on the PI mutex:
1996 if (!trylock)
1997 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1998 else {
1999 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2000 /* Fixup the trylock return value: */
2001 ret = ret ? 0 : -EWOULDBLOCK;
2004 spin_lock(q.lock_ptr);
2006 * Fixup the pi_state owner and possibly acquire the lock if we
2007 * haven't already.
2009 res = fixup_owner(uaddr, fshared, &q, !ret);
2011 * If fixup_owner() returned an error, proprogate that. If it acquired
2012 * the lock, clear our -ETIMEDOUT or -EINTR.
2014 if (res)
2015 ret = (res < 0) ? res : 0;
2018 * If fixup_owner() faulted and was unable to handle the fault, unlock
2019 * it and return the fault to userspace.
2021 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2022 rt_mutex_unlock(&q.pi_state->pi_mutex);
2024 /* Unqueue and drop the lock */
2025 unqueue_me_pi(&q);
2027 goto out_put_key;
2029 out_unlock_put_key:
2030 queue_unlock(&q, hb);
2032 out_put_key:
2033 put_futex_key(fshared, &q.key);
2034 out:
2035 if (to)
2036 destroy_hrtimer_on_stack(&to->timer);
2037 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2039 uaddr_faulted:
2040 queue_unlock(&q, hb);
2042 ret = fault_in_user_writeable(uaddr);
2043 if (ret)
2044 goto out_put_key;
2046 if (!fshared)
2047 goto retry_private;
2049 put_futex_key(fshared, &q.key);
2050 goto retry;
2054 * Userspace attempted a TID -> 0 atomic transition, and failed.
2055 * This is the in-kernel slowpath: we look up the PI state (if any),
2056 * and do the rt-mutex unlock.
2058 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2060 struct futex_hash_bucket *hb;
2061 struct futex_q *this, *next;
2062 u32 uval;
2063 struct plist_head *head;
2064 union futex_key key = FUTEX_KEY_INIT;
2065 int ret;
2067 retry:
2068 if (get_user(uval, uaddr))
2069 return -EFAULT;
2071 * We release only a lock we actually own:
2073 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2074 return -EPERM;
2076 ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2077 if (unlikely(ret != 0))
2078 goto out;
2080 hb = hash_futex(&key);
2081 spin_lock(&hb->lock);
2084 * To avoid races, try to do the TID -> 0 atomic transition
2085 * again. If it succeeds then we can return without waking
2086 * anyone else up:
2088 if (!(uval & FUTEX_OWNER_DIED))
2089 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2092 if (unlikely(uval == -EFAULT))
2093 goto pi_faulted;
2095 * Rare case: we managed to release the lock atomically,
2096 * no need to wake anyone else up:
2098 if (unlikely(uval == task_pid_vnr(current)))
2099 goto out_unlock;
2102 * Ok, other tasks may need to be woken up - check waiters
2103 * and do the wakeup if necessary:
2105 head = &hb->chain;
2107 plist_for_each_entry_safe(this, next, head, list) {
2108 if (!match_futex (&this->key, &key))
2109 continue;
2110 ret = wake_futex_pi(uaddr, uval, this);
2112 * The atomic access to the futex value
2113 * generated a pagefault, so retry the
2114 * user-access and the wakeup:
2116 if (ret == -EFAULT)
2117 goto pi_faulted;
2118 goto out_unlock;
2121 * No waiters - kernel unlocks the futex:
2123 if (!(uval & FUTEX_OWNER_DIED)) {
2124 ret = unlock_futex_pi(uaddr, uval);
2125 if (ret == -EFAULT)
2126 goto pi_faulted;
2129 out_unlock:
2130 spin_unlock(&hb->lock);
2131 put_futex_key(fshared, &key);
2133 out:
2134 return ret;
2136 pi_faulted:
2137 spin_unlock(&hb->lock);
2138 put_futex_key(fshared, &key);
2140 ret = fault_in_user_writeable(uaddr);
2141 if (!ret)
2142 goto retry;
2144 return ret;
2148 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2149 * @hb: the hash_bucket futex_q was original enqueued on
2150 * @q: the futex_q woken while waiting to be requeued
2151 * @key2: the futex_key of the requeue target futex
2152 * @timeout: the timeout associated with the wait (NULL if none)
2154 * Detect if the task was woken on the initial futex as opposed to the requeue
2155 * target futex. If so, determine if it was a timeout or a signal that caused
2156 * the wakeup and return the appropriate error code to the caller. Must be
2157 * called with the hb lock held.
2159 * Returns
2160 * 0 - no early wakeup detected
2161 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2163 static inline
2164 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2165 struct futex_q *q, union futex_key *key2,
2166 struct hrtimer_sleeper *timeout)
2168 int ret = 0;
2171 * With the hb lock held, we avoid races while we process the wakeup.
2172 * We only need to hold hb (and not hb2) to ensure atomicity as the
2173 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2174 * It can't be requeued from uaddr2 to something else since we don't
2175 * support a PI aware source futex for requeue.
2177 if (!match_futex(&q->key, key2)) {
2178 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2180 * We were woken prior to requeue by a timeout or a signal.
2181 * Unqueue the futex_q and determine which it was.
2183 plist_del(&q->list, &q->list.plist);
2185 /* Handle spurious wakeups gracefully */
2186 ret = -EWOULDBLOCK;
2187 if (timeout && !timeout->task)
2188 ret = -ETIMEDOUT;
2189 else if (signal_pending(current))
2190 ret = -ERESTARTNOINTR;
2192 return ret;
2196 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2197 * @uaddr: the futex we initially wait on (non-pi)
2198 * @fshared: whether the futexes are shared (1) or not (0). They must be
2199 * the same type, no requeueing from private to shared, etc.
2200 * @val: the expected value of uaddr
2201 * @abs_time: absolute timeout
2202 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2203 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2204 * @uaddr2: the pi futex we will take prior to returning to user-space
2206 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2207 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2208 * complete the acquisition of the rt_mutex prior to returning to userspace.
2209 * This ensures the rt_mutex maintains an owner when it has waiters; without
2210 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2211 * need to.
2213 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2214 * via the following:
2215 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2216 * 2) wakeup on uaddr2 after a requeue
2217 * 3) signal
2218 * 4) timeout
2220 * If 3, cleanup and return -ERESTARTNOINTR.
2222 * If 2, we may then block on trying to take the rt_mutex and return via:
2223 * 5) successful lock
2224 * 6) signal
2225 * 7) timeout
2226 * 8) other lock acquisition failure
2228 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2230 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2232 * Returns:
2233 * 0 - On success
2234 * <0 - On error
2236 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2237 u32 val, ktime_t *abs_time, u32 bitset,
2238 int clockrt, u32 __user *uaddr2)
2240 struct hrtimer_sleeper timeout, *to = NULL;
2241 struct rt_mutex_waiter rt_waiter;
2242 struct rt_mutex *pi_mutex = NULL;
2243 struct futex_hash_bucket *hb;
2244 union futex_key key2;
2245 struct futex_q q;
2246 int res, ret;
2248 if (!bitset)
2249 return -EINVAL;
2251 if (abs_time) {
2252 to = &timeout;
2253 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2254 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2255 hrtimer_init_sleeper(to, current);
2256 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2257 current->timer_slack_ns);
2261 * The waiter is allocated on our stack, manipulated by the requeue
2262 * code while we sleep on uaddr.
2264 debug_rt_mutex_init_waiter(&rt_waiter);
2265 rt_waiter.task = NULL;
2267 key2 = FUTEX_KEY_INIT;
2268 ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2269 if (unlikely(ret != 0))
2270 goto out;
2272 q.pi_state = NULL;
2273 q.bitset = bitset;
2274 q.rt_waiter = &rt_waiter;
2275 q.requeue_pi_key = &key2;
2278 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2279 * count.
2281 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2282 if (ret)
2283 goto out_key2;
2285 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2286 futex_wait_queue_me(hb, &q, to);
2288 spin_lock(&hb->lock);
2289 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2290 spin_unlock(&hb->lock);
2291 if (ret)
2292 goto out_put_keys;
2295 * In order for us to be here, we know our q.key == key2, and since
2296 * we took the hb->lock above, we also know that futex_requeue() has
2297 * completed and we no longer have to concern ourselves with a wakeup
2298 * race with the atomic proxy lock acquisition by the requeue code. The
2299 * futex_requeue dropped our key1 reference and incremented our key2
2300 * reference count.
2303 /* Check if the requeue code acquired the second futex for us. */
2304 if (!q.rt_waiter) {
2306 * Got the lock. We might not be the anticipated owner if we
2307 * did a lock-steal - fix up the PI-state in that case.
2309 if (q.pi_state && (q.pi_state->owner != current)) {
2310 spin_lock(q.lock_ptr);
2311 ret = fixup_pi_state_owner(uaddr2, &q, current,
2312 fshared);
2313 spin_unlock(q.lock_ptr);
2315 } else {
2317 * We have been woken up by futex_unlock_pi(), a timeout, or a
2318 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2319 * the pi_state.
2321 WARN_ON(!&q.pi_state);
2322 pi_mutex = &q.pi_state->pi_mutex;
2323 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2324 debug_rt_mutex_free_waiter(&rt_waiter);
2326 spin_lock(q.lock_ptr);
2328 * Fixup the pi_state owner and possibly acquire the lock if we
2329 * haven't already.
2331 res = fixup_owner(uaddr2, fshared, &q, !ret);
2333 * If fixup_owner() returned an error, proprogate that. If it
2334 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2336 if (res)
2337 ret = (res < 0) ? res : 0;
2339 /* Unqueue and drop the lock. */
2340 unqueue_me_pi(&q);
2344 * If fixup_pi_state_owner() faulted and was unable to handle the
2345 * fault, unlock the rt_mutex and return the fault to userspace.
2347 if (ret == -EFAULT) {
2348 if (rt_mutex_owner(pi_mutex) == current)
2349 rt_mutex_unlock(pi_mutex);
2350 } else if (ret == -EINTR) {
2352 * We've already been requeued, but cannot restart by calling
2353 * futex_lock_pi() directly. We could restart this syscall, but
2354 * it would detect that the user space "val" changed and return
2355 * -EWOULDBLOCK. Save the overhead of the restart and return
2356 * -EWOULDBLOCK directly.
2358 ret = -EWOULDBLOCK;
2361 out_put_keys:
2362 put_futex_key(fshared, &q.key);
2363 out_key2:
2364 put_futex_key(fshared, &key2);
2366 out:
2367 if (to) {
2368 hrtimer_cancel(&to->timer);
2369 destroy_hrtimer_on_stack(&to->timer);
2371 return ret;
2375 * Support for robust futexes: the kernel cleans up held futexes at
2376 * thread exit time.
2378 * Implementation: user-space maintains a per-thread list of locks it
2379 * is holding. Upon do_exit(), the kernel carefully walks this list,
2380 * and marks all locks that are owned by this thread with the
2381 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2382 * always manipulated with the lock held, so the list is private and
2383 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2384 * field, to allow the kernel to clean up if the thread dies after
2385 * acquiring the lock, but just before it could have added itself to
2386 * the list. There can only be one such pending lock.
2390 * sys_set_robust_list() - Set the robust-futex list head of a task
2391 * @head: pointer to the list-head
2392 * @len: length of the list-head, as userspace expects
2394 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2395 size_t, len)
2397 if (!futex_cmpxchg_enabled)
2398 return -ENOSYS;
2400 * The kernel knows only one size for now:
2402 if (unlikely(len != sizeof(*head)))
2403 return -EINVAL;
2405 current->robust_list = head;
2407 return 0;
2411 * sys_get_robust_list() - Get the robust-futex list head of a task
2412 * @pid: pid of the process [zero for current task]
2413 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2414 * @len_ptr: pointer to a length field, the kernel fills in the header size
2416 SYSCALL_DEFINE3(get_robust_list, int, pid,
2417 struct robust_list_head __user * __user *, head_ptr,
2418 size_t __user *, len_ptr)
2420 struct robust_list_head __user *head;
2421 unsigned long ret;
2422 const struct cred *cred = current_cred(), *pcred;
2424 if (!futex_cmpxchg_enabled)
2425 return -ENOSYS;
2427 if (!pid)
2428 head = current->robust_list;
2429 else {
2430 struct task_struct *p;
2432 ret = -ESRCH;
2433 rcu_read_lock();
2434 p = find_task_by_vpid(pid);
2435 if (!p)
2436 goto err_unlock;
2437 ret = -EPERM;
2438 pcred = __task_cred(p);
2439 if (cred->euid != pcred->euid &&
2440 cred->euid != pcred->uid &&
2441 !capable(CAP_SYS_PTRACE))
2442 goto err_unlock;
2443 head = p->robust_list;
2444 rcu_read_unlock();
2447 if (put_user(sizeof(*head), len_ptr))
2448 return -EFAULT;
2449 return put_user(head, head_ptr);
2451 err_unlock:
2452 rcu_read_unlock();
2454 return ret;
2458 * Process a futex-list entry, check whether it's owned by the
2459 * dying task, and do notification if so:
2461 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2463 u32 uval, nval, mval;
2465 retry:
2466 if (get_user(uval, uaddr))
2467 return -1;
2469 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2471 * Ok, this dying thread is truly holding a futex
2472 * of interest. Set the OWNER_DIED bit atomically
2473 * via cmpxchg, and if the value had FUTEX_WAITERS
2474 * set, wake up a waiter (if any). (We have to do a
2475 * futex_wake() even if OWNER_DIED is already set -
2476 * to handle the rare but possible case of recursive
2477 * thread-death.) The rest of the cleanup is done in
2478 * userspace.
2480 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2481 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2483 if (nval == -EFAULT)
2484 return -1;
2486 if (nval != uval)
2487 goto retry;
2490 * Wake robust non-PI futexes here. The wakeup of
2491 * PI futexes happens in exit_pi_state():
2493 if (!pi && (uval & FUTEX_WAITERS))
2494 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2496 return 0;
2500 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2502 static inline int fetch_robust_entry(struct robust_list __user **entry,
2503 struct robust_list __user * __user *head,
2504 int *pi)
2506 unsigned long uentry;
2508 if (get_user(uentry, (unsigned long __user *)head))
2509 return -EFAULT;
2511 *entry = (void __user *)(uentry & ~1UL);
2512 *pi = uentry & 1;
2514 return 0;
2518 * Walk curr->robust_list (very carefully, it's a userspace list!)
2519 * and mark any locks found there dead, and notify any waiters.
2521 * We silently return on any sign of list-walking problem.
2523 void exit_robust_list(struct task_struct *curr)
2525 struct robust_list_head __user *head = curr->robust_list;
2526 struct robust_list __user *entry, *next_entry, *pending;
2527 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2528 unsigned long futex_offset;
2529 int rc;
2531 if (!futex_cmpxchg_enabled)
2532 return;
2535 * Fetch the list head (which was registered earlier, via
2536 * sys_set_robust_list()):
2538 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2539 return;
2541 * Fetch the relative futex offset:
2543 if (get_user(futex_offset, &head->futex_offset))
2544 return;
2546 * Fetch any possibly pending lock-add first, and handle it
2547 * if it exists:
2549 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2550 return;
2552 next_entry = NULL; /* avoid warning with gcc */
2553 while (entry != &head->list) {
2555 * Fetch the next entry in the list before calling
2556 * handle_futex_death:
2558 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2560 * A pending lock might already be on the list, so
2561 * don't process it twice:
2563 if (entry != pending)
2564 if (handle_futex_death((void __user *)entry + futex_offset,
2565 curr, pi))
2566 return;
2567 if (rc)
2568 return;
2569 entry = next_entry;
2570 pi = next_pi;
2572 * Avoid excessively long or circular lists:
2574 if (!--limit)
2575 break;
2577 cond_resched();
2580 if (pending)
2581 handle_futex_death((void __user *)pending + futex_offset,
2582 curr, pip);
2585 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2586 u32 __user *uaddr2, u32 val2, u32 val3)
2588 int clockrt, ret = -ENOSYS;
2589 int cmd = op & FUTEX_CMD_MASK;
2590 int fshared = 0;
2592 if (!(op & FUTEX_PRIVATE_FLAG))
2593 fshared = 1;
2595 clockrt = op & FUTEX_CLOCK_REALTIME;
2596 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2597 return -ENOSYS;
2599 switch (cmd) {
2600 case FUTEX_WAIT:
2601 val3 = FUTEX_BITSET_MATCH_ANY;
2602 case FUTEX_WAIT_BITSET:
2603 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2604 break;
2605 case FUTEX_WAKE:
2606 val3 = FUTEX_BITSET_MATCH_ANY;
2607 case FUTEX_WAKE_BITSET:
2608 ret = futex_wake(uaddr, fshared, val, val3);
2609 break;
2610 case FUTEX_REQUEUE:
2611 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2612 break;
2613 case FUTEX_CMP_REQUEUE:
2614 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2616 break;
2617 case FUTEX_WAKE_OP:
2618 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2619 break;
2620 case FUTEX_LOCK_PI:
2621 if (futex_cmpxchg_enabled)
2622 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2623 break;
2624 case FUTEX_UNLOCK_PI:
2625 if (futex_cmpxchg_enabled)
2626 ret = futex_unlock_pi(uaddr, fshared);
2627 break;
2628 case FUTEX_TRYLOCK_PI:
2629 if (futex_cmpxchg_enabled)
2630 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2631 break;
2632 case FUTEX_WAIT_REQUEUE_PI:
2633 val3 = FUTEX_BITSET_MATCH_ANY;
2634 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2635 clockrt, uaddr2);
2636 break;
2637 case FUTEX_CMP_REQUEUE_PI:
2638 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2640 break;
2641 default:
2642 ret = -ENOSYS;
2644 return ret;
2648 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2649 struct timespec __user *, utime, u32 __user *, uaddr2,
2650 u32, val3)
2652 struct timespec ts;
2653 ktime_t t, *tp = NULL;
2654 u32 val2 = 0;
2655 int cmd = op & FUTEX_CMD_MASK;
2657 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2658 cmd == FUTEX_WAIT_BITSET ||
2659 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2660 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2661 return -EFAULT;
2662 if (!timespec_valid(&ts))
2663 return -EINVAL;
2665 t = timespec_to_ktime(ts);
2666 if (cmd == FUTEX_WAIT)
2667 t = ktime_add_safe(ktime_get(), t);
2668 tp = &t;
2671 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2672 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2674 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2675 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2676 val2 = (u32) (unsigned long) utime;
2678 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2681 static int __init futex_init(void)
2683 u32 curval;
2684 int i;
2687 * This will fail and we want it. Some arch implementations do
2688 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2689 * functionality. We want to know that before we call in any
2690 * of the complex code paths. Also we want to prevent
2691 * registration of robust lists in that case. NULL is
2692 * guaranteed to fault and we get -EFAULT on functional
2693 * implementation, the non functional ones will return
2694 * -ENOSYS.
2696 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2697 if (curval == -EFAULT)
2698 futex_cmpxchg_enabled = 1;
2700 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2701 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2702 spin_lock_init(&futex_queues[i].lock);
2705 return 0;
2707 __initcall(futex_init);