MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / kernel / exit.c
blob06de6c4e8ca3a66937ce8763d33ca42852fbb698
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/smp_lock.h>
11 #include <linux/module.h>
12 #include <linux/capability.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/mempolicy.h>
30 #include <linux/taskstats_kern.h>
31 #include <linux/delayacct.h>
32 #include <linux/cpuset.h>
33 #include <linux/syscalls.h>
34 #include <linux/signal.h>
35 #include <linux/posix-timers.h>
36 #include <linux/cn_proc.h>
37 #include <linux/mutex.h>
38 #include <linux/futex.h>
39 #include <linux/compat.h>
40 #include <linux/pipe_fs_i.h>
41 #include <linux/audit.h> /* for audit_free() */
42 #include <linux/resource.h>
43 #include <linux/blkdev.h>
45 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
47 #include <asm/pgtable.h>
48 #include <asm/mmu_context.h>
50 extern void sem_exit (void);
51 extern struct task_struct *child_reaper;
53 static void exit_mm(struct task_struct * tsk);
55 static void __unhash_process(struct task_struct *p)
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
71 * This function expects the tasklist_lock write-locked.
73 static void __exit_signal(struct task_struct *tsk)
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
90 * If there is any task waiting for the group exit
91 * then notify it:
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
94 wake_up_process(sig->group_exit_task);
95 sig->group_exit_task = NULL;
97 if (tsk == sig->curr_target)
98 sig->curr_target = next_thread(tsk);
100 * Accumulate here the counters for all threads but the
101 * group leader as they die, so they can be added into
102 * the process-wide totals when those are taken.
103 * The group leader stays around as a zombie as long
104 * as there are other threads. When it gets reaped,
105 * the exit.c code will add its counts into these totals.
106 * We won't ever get here for the group leader, since it
107 * will have been the last reference on the signal_struct.
109 sig->utime = cputime_add(sig->utime, tsk->utime);
110 sig->stime = cputime_add(sig->stime, tsk->stime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->sched_time += tsk->sched_time;
116 sig = NULL; /* Marker for below. */
119 __unhash_process(tsk);
121 tsk->signal = NULL;
122 tsk->sighand = NULL;
123 spin_unlock(&sighand->siglock);
124 rcu_read_unlock();
126 __cleanup_sighand(sighand);
127 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
128 flush_sigqueue(&tsk->pending);
129 if (sig) {
130 flush_sigqueue(&sig->shared_pending);
131 taskstats_tgid_free(sig);
132 __cleanup_signal(sig);
136 static void delayed_put_task_struct(struct rcu_head *rhp)
138 put_task_struct(container_of(rhp, struct task_struct, rcu));
141 void release_task(struct task_struct * p)
143 struct task_struct *leader;
144 int zap_leader;
145 repeat:
146 atomic_dec(&p->user->processes);
147 write_lock_irq(&tasklist_lock);
148 ptrace_unlink(p);
149 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
150 __exit_signal(p);
153 * If we are the last non-leader member of the thread
154 * group, and the leader is zombie, then notify the
155 * group leader's parent process. (if it wants notification.)
157 zap_leader = 0;
158 leader = p->group_leader;
159 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
160 BUG_ON(leader->exit_signal == -1);
161 do_notify_parent(leader, leader->exit_signal);
163 * If we were the last child thread and the leader has
164 * exited already, and the leader's parent ignores SIGCHLD,
165 * then we are the one who should release the leader.
167 * do_notify_parent() will have marked it self-reaping in
168 * that case.
170 zap_leader = (leader->exit_signal == -1);
173 sched_exit(p);
174 write_unlock_irq(&tasklist_lock);
175 proc_flush_task(p);
176 release_thread(p);
177 call_rcu(&p->rcu, delayed_put_task_struct);
179 p = leader;
180 if (unlikely(zap_leader))
181 goto repeat;
185 * This checks not only the pgrp, but falls back on the pid if no
186 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
187 * without this...
189 int session_of_pgrp(int pgrp)
191 struct task_struct *p;
192 int sid = -1;
194 read_lock(&tasklist_lock);
195 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
196 if (p->signal->session > 0) {
197 sid = p->signal->session;
198 goto out;
200 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
201 p = find_task_by_pid(pgrp);
202 if (p)
203 sid = p->signal->session;
204 out:
205 read_unlock(&tasklist_lock);
207 return sid;
211 * Determine if a process group is "orphaned", according to the POSIX
212 * definition in 2.2.2.52. Orphaned process groups are not to be affected
213 * by terminal-generated stop signals. Newly orphaned process groups are
214 * to receive a SIGHUP and a SIGCONT.
216 * "I ask you, have you ever known what it is to be an orphan?"
218 static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task)
220 struct task_struct *p;
221 int ret = 1;
223 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
224 if (p == ignored_task
225 || p->exit_state
226 || is_init(p->real_parent))
227 continue;
228 if (process_group(p->real_parent) != pgrp
229 && p->real_parent->signal->session == p->signal->session) {
230 ret = 0;
231 break;
233 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
234 return ret; /* (sighing) "Often!" */
237 int is_orphaned_pgrp(int pgrp)
239 int retval;
241 read_lock(&tasklist_lock);
242 retval = will_become_orphaned_pgrp(pgrp, NULL);
243 read_unlock(&tasklist_lock);
245 return retval;
248 static int has_stopped_jobs(int pgrp)
250 int retval = 0;
251 struct task_struct *p;
253 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
254 if (p->state != TASK_STOPPED)
255 continue;
256 retval = 1;
257 break;
258 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
259 return retval;
263 * reparent_to_init - Reparent the calling kernel thread to the init task.
265 * If a kernel thread is launched as a result of a system call, or if
266 * it ever exits, it should generally reparent itself to init so that
267 * it is correctly cleaned up on exit.
269 * The various task state such as scheduling policy and priority may have
270 * been inherited from a user process, so we reset them to sane values here.
272 * NOTE that reparent_to_init() gives the caller full capabilities.
274 static void reparent_to_init(void)
276 write_lock_irq(&tasklist_lock);
278 ptrace_unlink(current);
279 /* Reparent to init */
280 remove_parent(current);
281 current->parent = child_reaper;
282 current->real_parent = child_reaper;
283 add_parent(current);
285 /* Set the exit signal to SIGCHLD so we signal init on exit */
286 current->exit_signal = SIGCHLD;
288 if (!has_rt_policy(current) && (task_nice(current) < 0))
289 set_user_nice(current, 0);
290 /* cpus_allowed? */
291 /* rt_priority? */
292 /* signals? */
293 security_task_reparent_to_init(current);
294 memcpy(current->signal->rlim, init_task.signal->rlim,
295 sizeof(current->signal->rlim));
296 atomic_inc(&(INIT_USER->__count));
297 write_unlock_irq(&tasklist_lock);
298 switch_uid(INIT_USER);
301 void __set_special_pids(pid_t session, pid_t pgrp)
303 struct task_struct *curr = current->group_leader;
305 if (curr->signal->session != session) {
306 detach_pid(curr, PIDTYPE_SID);
307 curr->signal->session = session;
308 attach_pid(curr, PIDTYPE_SID, session);
310 if (process_group(curr) != pgrp) {
311 detach_pid(curr, PIDTYPE_PGID);
312 curr->signal->pgrp = pgrp;
313 attach_pid(curr, PIDTYPE_PGID, pgrp);
317 void set_special_pids(pid_t session, pid_t pgrp)
319 write_lock_irq(&tasklist_lock);
320 __set_special_pids(session, pgrp);
321 write_unlock_irq(&tasklist_lock);
325 * Let kernel threads use this to say that they
326 * allow a certain signal (since daemonize() will
327 * have disabled all of them by default).
329 int allow_signal(int sig)
331 if (!valid_signal(sig) || sig < 1)
332 return -EINVAL;
334 spin_lock_irq(&current->sighand->siglock);
335 sigdelset(&current->blocked, sig);
336 if (!current->mm) {
337 /* Kernel threads handle their own signals.
338 Let the signal code know it'll be handled, so
339 that they don't get converted to SIGKILL or
340 just silently dropped */
341 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
343 recalc_sigpending();
344 spin_unlock_irq(&current->sighand->siglock);
345 return 0;
348 EXPORT_SYMBOL(allow_signal);
350 int disallow_signal(int sig)
352 if (!valid_signal(sig) || sig < 1)
353 return -EINVAL;
355 spin_lock_irq(&current->sighand->siglock);
356 sigaddset(&current->blocked, sig);
357 recalc_sigpending();
358 spin_unlock_irq(&current->sighand->siglock);
359 return 0;
362 EXPORT_SYMBOL(disallow_signal);
365 * Put all the gunge required to become a kernel thread without
366 * attached user resources in one place where it belongs.
369 void daemonize(const char *name, ...)
371 va_list args;
372 struct fs_struct *fs;
373 sigset_t blocked;
375 va_start(args, name);
376 vsnprintf(current->comm, sizeof(current->comm), name, args);
377 va_end(args);
380 * If we were started as result of loading a module, close all of the
381 * user space pages. We don't need them, and if we didn't close them
382 * they would be locked into memory.
384 exit_mm(current);
386 set_special_pids(1, 1);
387 mutex_lock(&tty_mutex);
388 current->signal->tty = NULL;
389 mutex_unlock(&tty_mutex);
391 /* Block and flush all signals */
392 sigfillset(&blocked);
393 sigprocmask(SIG_BLOCK, &blocked, NULL);
394 flush_signals(current);
396 /* Become as one with the init task */
398 exit_fs(current); /* current->fs->count--; */
399 fs = init_task.fs;
400 current->fs = fs;
401 atomic_inc(&fs->count);
403 exit_task_namespaces(current);
404 current->nsproxy = init_task.nsproxy;
405 get_task_namespaces(current);
407 exit_files(current);
408 current->files = init_task.files;
409 atomic_inc(&current->files->count);
411 reparent_to_init();
414 EXPORT_SYMBOL(daemonize);
416 static void close_files(struct files_struct * files)
418 int i, j;
419 struct fdtable *fdt;
421 j = 0;
424 * It is safe to dereference the fd table without RCU or
425 * ->file_lock because this is the last reference to the
426 * files structure.
428 fdt = files_fdtable(files);
429 for (;;) {
430 unsigned long set;
431 i = j * __NFDBITS;
432 if (i >= fdt->max_fdset || i >= fdt->max_fds)
433 break;
434 set = fdt->open_fds->fds_bits[j++];
435 while (set) {
436 if (set & 1) {
437 struct file * file = xchg(&fdt->fd[i], NULL);
438 if (file)
439 filp_close(file, files);
441 i++;
442 set >>= 1;
447 struct files_struct *get_files_struct(struct task_struct *task)
449 struct files_struct *files;
451 task_lock(task);
452 files = task->files;
453 if (files)
454 atomic_inc(&files->count);
455 task_unlock(task);
457 return files;
460 void fastcall put_files_struct(struct files_struct *files)
462 struct fdtable *fdt;
464 if (atomic_dec_and_test(&files->count)) {
465 close_files(files);
467 * Free the fd and fdset arrays if we expanded them.
468 * If the fdtable was embedded, pass files for freeing
469 * at the end of the RCU grace period. Otherwise,
470 * you can free files immediately.
472 fdt = files_fdtable(files);
473 if (fdt == &files->fdtab)
474 fdt->free_files = files;
475 else
476 kmem_cache_free(files_cachep, files);
477 free_fdtable(fdt);
481 EXPORT_SYMBOL(put_files_struct);
483 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
485 struct files_struct *old;
487 old = tsk->files;
488 task_lock(tsk);
489 tsk->files = files;
490 task_unlock(tsk);
491 put_files_struct(old);
493 EXPORT_SYMBOL(reset_files_struct);
495 static inline void __exit_files(struct task_struct *tsk)
497 struct files_struct * files = tsk->files;
499 if (files) {
500 task_lock(tsk);
501 tsk->files = NULL;
502 task_unlock(tsk);
503 put_files_struct(files);
507 void exit_files(struct task_struct *tsk)
509 __exit_files(tsk);
512 static inline void __put_fs_struct(struct fs_struct *fs)
514 /* No need to hold fs->lock if we are killing it */
515 if (atomic_dec_and_test(&fs->count)) {
516 dput(fs->root);
517 mntput(fs->rootmnt);
518 dput(fs->pwd);
519 mntput(fs->pwdmnt);
520 if (fs->altroot) {
521 dput(fs->altroot);
522 mntput(fs->altrootmnt);
524 kmem_cache_free(fs_cachep, fs);
528 void put_fs_struct(struct fs_struct *fs)
530 __put_fs_struct(fs);
533 static inline void __exit_fs(struct task_struct *tsk)
535 struct fs_struct * fs = tsk->fs;
537 if (fs) {
538 task_lock(tsk);
539 tsk->fs = NULL;
540 task_unlock(tsk);
541 __put_fs_struct(fs);
545 void exit_fs(struct task_struct *tsk)
547 __exit_fs(tsk);
550 EXPORT_SYMBOL_GPL(exit_fs);
553 * Turn us into a lazy TLB process if we
554 * aren't already..
556 static void exit_mm(struct task_struct * tsk)
558 struct mm_struct *mm = tsk->mm;
560 mm_release(tsk, mm);
561 if (!mm)
562 return;
564 * Serialize with any possible pending coredump.
565 * We must hold mmap_sem around checking core_waiters
566 * and clearing tsk->mm. The core-inducing thread
567 * will increment core_waiters for each thread in the
568 * group with ->mm != NULL.
570 down_read(&mm->mmap_sem);
571 if (mm->core_waiters) {
572 up_read(&mm->mmap_sem);
573 down_write(&mm->mmap_sem);
574 if (!--mm->core_waiters)
575 complete(mm->core_startup_done);
576 up_write(&mm->mmap_sem);
578 wait_for_completion(&mm->core_done);
579 down_read(&mm->mmap_sem);
581 atomic_inc(&mm->mm_count);
582 BUG_ON(mm != tsk->active_mm);
583 /* more a memory barrier than a real lock */
584 task_lock(tsk);
585 tsk->mm = NULL;
586 up_read(&mm->mmap_sem);
587 enter_lazy_tlb(mm, current);
588 task_unlock(tsk);
589 mmput(mm);
592 static inline void
593 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
596 * Make sure we're not reparenting to ourselves and that
597 * the parent is not a zombie.
599 BUG_ON(p == reaper || reaper->exit_state);
600 p->real_parent = reaper;
603 static void
604 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
606 /* We don't want people slaying init. */
607 if (p->exit_signal != -1)
608 p->exit_signal = SIGCHLD;
610 if (p->pdeath_signal)
611 /* We already hold the tasklist_lock here. */
612 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
614 /* Move the child from its dying parent to the new one. */
615 if (unlikely(traced)) {
616 /* Preserve ptrace links if someone else is tracing this child. */
617 list_del_init(&p->ptrace_list);
618 if (p->parent != p->real_parent)
619 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
620 } else {
621 /* If this child is being traced, then we're the one tracing it
622 * anyway, so let go of it.
624 p->ptrace = 0;
625 remove_parent(p);
626 p->parent = p->real_parent;
627 add_parent(p);
629 /* If we'd notified the old parent about this child's death,
630 * also notify the new parent.
632 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
633 thread_group_empty(p))
634 do_notify_parent(p, p->exit_signal);
635 else if (p->state == TASK_TRACED) {
637 * If it was at a trace stop, turn it into
638 * a normal stop since it's no longer being
639 * traced.
641 ptrace_untrace(p);
646 * process group orphan check
647 * Case ii: Our child is in a different pgrp
648 * than we are, and it was the only connection
649 * outside, so the child pgrp is now orphaned.
651 if ((process_group(p) != process_group(father)) &&
652 (p->signal->session == father->signal->session)) {
653 int pgrp = process_group(p);
655 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
656 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
663 * When we die, we re-parent all our children.
664 * Try to give them to another thread in our thread
665 * group, and if no such member exists, give it to
666 * the global child reaper process (ie "init")
668 static void
669 forget_original_parent(struct task_struct *father, struct list_head *to_release)
671 struct task_struct *p, *reaper = father;
672 struct list_head *_p, *_n;
674 do {
675 reaper = next_thread(reaper);
676 if (reaper == father) {
677 reaper = child_reaper;
678 break;
680 } while (reaper->exit_state);
683 * There are only two places where our children can be:
685 * - in our child list
686 * - in our ptraced child list
688 * Search them and reparent children.
690 list_for_each_safe(_p, _n, &father->children) {
691 int ptrace;
692 p = list_entry(_p, struct task_struct, sibling);
694 ptrace = p->ptrace;
696 /* if father isn't the real parent, then ptrace must be enabled */
697 BUG_ON(father != p->real_parent && !ptrace);
699 if (father == p->real_parent) {
700 /* reparent with a reaper, real father it's us */
701 choose_new_parent(p, reaper);
702 reparent_thread(p, father, 0);
703 } else {
704 /* reparent ptraced task to its real parent */
705 __ptrace_unlink (p);
706 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
707 thread_group_empty(p))
708 do_notify_parent(p, p->exit_signal);
712 * if the ptraced child is a zombie with exit_signal == -1
713 * we must collect it before we exit, or it will remain
714 * zombie forever since we prevented it from self-reap itself
715 * while it was being traced by us, to be able to see it in wait4.
717 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
718 list_add(&p->ptrace_list, to_release);
720 list_for_each_safe(_p, _n, &father->ptrace_children) {
721 p = list_entry(_p, struct task_struct, ptrace_list);
722 choose_new_parent(p, reaper);
723 reparent_thread(p, father, 1);
728 * Send signals to all our closest relatives so that they know
729 * to properly mourn us..
731 static void exit_notify(struct task_struct *tsk)
733 int state;
734 struct task_struct *t;
735 struct list_head ptrace_dead, *_p, *_n;
737 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
738 && !thread_group_empty(tsk)) {
740 * This occurs when there was a race between our exit
741 * syscall and a group signal choosing us as the one to
742 * wake up. It could be that we are the only thread
743 * alerted to check for pending signals, but another thread
744 * should be woken now to take the signal since we will not.
745 * Now we'll wake all the threads in the group just to make
746 * sure someone gets all the pending signals.
748 read_lock(&tasklist_lock);
749 spin_lock_irq(&tsk->sighand->siglock);
750 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
751 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
752 recalc_sigpending_tsk(t);
753 if (signal_pending(t))
754 signal_wake_up(t, 0);
756 spin_unlock_irq(&tsk->sighand->siglock);
757 read_unlock(&tasklist_lock);
760 write_lock_irq(&tasklist_lock);
763 * This does two things:
765 * A. Make init inherit all the child processes
766 * B. Check to see if any process groups have become orphaned
767 * as a result of our exiting, and if they have any stopped
768 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
771 INIT_LIST_HEAD(&ptrace_dead);
772 forget_original_parent(tsk, &ptrace_dead);
773 BUG_ON(!list_empty(&tsk->children));
774 BUG_ON(!list_empty(&tsk->ptrace_children));
777 * Check to see if any process groups have become orphaned
778 * as a result of our exiting, and if they have any stopped
779 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
781 * Case i: Our father is in a different pgrp than we are
782 * and we were the only connection outside, so our pgrp
783 * is about to become orphaned.
786 t = tsk->real_parent;
788 if ((process_group(t) != process_group(tsk)) &&
789 (t->signal->session == tsk->signal->session) &&
790 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
791 has_stopped_jobs(process_group(tsk))) {
792 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
793 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
796 /* Let father know we died
798 * Thread signals are configurable, but you aren't going to use
799 * that to send signals to arbitary processes.
800 * That stops right now.
802 * If the parent exec id doesn't match the exec id we saved
803 * when we started then we know the parent has changed security
804 * domain.
806 * If our self_exec id doesn't match our parent_exec_id then
807 * we have changed execution domain as these two values started
808 * the same after a fork.
812 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
813 ( tsk->parent_exec_id != t->self_exec_id ||
814 tsk->self_exec_id != tsk->parent_exec_id)
815 && !capable(CAP_KILL))
816 tsk->exit_signal = SIGCHLD;
819 /* If something other than our normal parent is ptracing us, then
820 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
821 * only has special meaning to our real parent.
823 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
824 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
825 do_notify_parent(tsk, signal);
826 } else if (tsk->ptrace) {
827 do_notify_parent(tsk, SIGCHLD);
830 state = EXIT_ZOMBIE;
831 if (tsk->exit_signal == -1 &&
832 (likely(tsk->ptrace == 0) ||
833 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
834 state = EXIT_DEAD;
835 tsk->exit_state = state;
837 write_unlock_irq(&tasklist_lock);
839 list_for_each_safe(_p, _n, &ptrace_dead) {
840 list_del_init(_p);
841 t = list_entry(_p, struct task_struct, ptrace_list);
842 release_task(t);
845 /* If the process is dead, release it - nobody will wait for it */
846 if (state == EXIT_DEAD)
847 release_task(tsk);
850 fastcall NORET_TYPE void do_exit(long code)
852 struct task_struct *tsk = current;
853 struct taskstats *tidstats;
854 int group_dead;
855 unsigned int mycpu;
857 profile_task_exit(tsk);
859 WARN_ON(atomic_read(&tsk->fs_excl));
861 if (unlikely(in_interrupt()))
862 panic("Aiee, killing interrupt handler!");
863 if (unlikely(!tsk->pid))
864 panic("Attempted to kill the idle task!");
865 if (unlikely(tsk == child_reaper))
866 panic("Attempted to kill init!");
868 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
869 current->ptrace_message = code;
870 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
874 * We're taking recursive faults here in do_exit. Safest is to just
875 * leave this task alone and wait for reboot.
877 if (unlikely(tsk->flags & PF_EXITING)) {
878 printk(KERN_ALERT
879 "Fixing recursive fault but reboot is needed!\n");
880 if (tsk->io_context)
881 exit_io_context();
882 set_current_state(TASK_UNINTERRUPTIBLE);
883 schedule();
886 tsk->flags |= PF_EXITING;
888 if (unlikely(in_atomic()))
889 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
890 current->comm, current->pid,
891 preempt_count());
893 taskstats_exit_alloc(&tidstats, &mycpu);
895 acct_update_integrals(tsk);
896 if (tsk->mm) {
897 update_hiwater_rss(tsk->mm);
898 update_hiwater_vm(tsk->mm);
900 group_dead = atomic_dec_and_test(&tsk->signal->live);
901 if (group_dead) {
902 hrtimer_cancel(&tsk->signal->real_timer);
903 exit_itimers(tsk->signal);
905 acct_collect(code, group_dead);
906 if (unlikely(tsk->robust_list))
907 exit_robust_list(tsk);
908 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
909 if (unlikely(tsk->compat_robust_list))
910 compat_exit_robust_list(tsk);
911 #endif
912 if (unlikely(tsk->audit_context))
913 audit_free(tsk);
914 taskstats_exit_send(tsk, tidstats, group_dead, mycpu);
915 taskstats_exit_free(tidstats);
917 exit_mm(tsk);
919 if (group_dead)
920 acct_process();
921 exit_sem(tsk);
922 __exit_files(tsk);
923 __exit_fs(tsk);
924 exit_thread();
925 cpuset_exit(tsk);
926 exit_keys(tsk);
928 if (group_dead && tsk->signal->leader)
929 disassociate_ctty(1);
931 module_put(task_thread_info(tsk)->exec_domain->module);
932 if (tsk->binfmt)
933 module_put(tsk->binfmt->module);
935 tsk->exit_code = code;
936 proc_exit_connector(tsk);
937 exit_notify(tsk);
938 exit_task_namespaces(tsk);
939 #ifdef CONFIG_NUMA
940 mpol_free(tsk->mempolicy);
941 tsk->mempolicy = NULL;
942 #endif
944 * This must happen late, after the PID is not
945 * hashed anymore:
947 if (unlikely(!list_empty(&tsk->pi_state_list)))
948 exit_pi_state_list(tsk);
949 if (unlikely(current->pi_state_cache))
950 kfree(current->pi_state_cache);
952 * Make sure we are holding no locks:
954 debug_check_no_locks_held(tsk);
956 if (tsk->io_context)
957 exit_io_context();
959 if (tsk->splice_pipe)
960 __free_pipe_info(tsk->splice_pipe);
962 preempt_disable();
963 /* causes final put_task_struct in finish_task_switch(). */
964 tsk->state = TASK_DEAD;
966 schedule();
967 BUG();
968 /* Avoid "noreturn function does return". */
969 for (;;)
970 cpu_relax(); /* For when BUG is null */
973 EXPORT_SYMBOL_GPL(do_exit);
975 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
977 if (comp)
978 complete(comp);
980 do_exit(code);
983 EXPORT_SYMBOL(complete_and_exit);
985 asmlinkage long sys_exit(int error_code)
987 do_exit((error_code&0xff)<<8);
991 * Take down every thread in the group. This is called by fatal signals
992 * as well as by sys_exit_group (below).
994 NORET_TYPE void
995 do_group_exit(int exit_code)
997 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
999 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1000 exit_code = current->signal->group_exit_code;
1001 else if (!thread_group_empty(current)) {
1002 struct signal_struct *const sig = current->signal;
1003 struct sighand_struct *const sighand = current->sighand;
1004 spin_lock_irq(&sighand->siglock);
1005 if (sig->flags & SIGNAL_GROUP_EXIT)
1006 /* Another thread got here before we took the lock. */
1007 exit_code = sig->group_exit_code;
1008 else {
1009 sig->group_exit_code = exit_code;
1010 zap_other_threads(current);
1012 spin_unlock_irq(&sighand->siglock);
1015 do_exit(exit_code);
1016 /* NOTREACHED */
1020 * this kills every thread in the thread group. Note that any externally
1021 * wait4()-ing process will get the correct exit code - even if this
1022 * thread is not the thread group leader.
1024 asmlinkage void sys_exit_group(int error_code)
1026 do_group_exit((error_code & 0xff) << 8);
1029 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1031 if (pid > 0) {
1032 if (p->pid != pid)
1033 return 0;
1034 } else if (!pid) {
1035 if (process_group(p) != process_group(current))
1036 return 0;
1037 } else if (pid != -1) {
1038 if (process_group(p) != -pid)
1039 return 0;
1043 * Do not consider detached threads that are
1044 * not ptraced:
1046 if (p->exit_signal == -1 && !p->ptrace)
1047 return 0;
1049 /* Wait for all children (clone and not) if __WALL is set;
1050 * otherwise, wait for clone children *only* if __WCLONE is
1051 * set; otherwise, wait for non-clone children *only*. (Note:
1052 * A "clone" child here is one that reports to its parent
1053 * using a signal other than SIGCHLD.) */
1054 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1055 && !(options & __WALL))
1056 return 0;
1058 * Do not consider thread group leaders that are
1059 * in a non-empty thread group:
1061 if (delay_group_leader(p))
1062 return 2;
1064 if (security_task_wait(p))
1065 return 0;
1067 return 1;
1070 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1071 int why, int status,
1072 struct siginfo __user *infop,
1073 struct rusage __user *rusagep)
1075 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1077 put_task_struct(p);
1078 if (!retval)
1079 retval = put_user(SIGCHLD, &infop->si_signo);
1080 if (!retval)
1081 retval = put_user(0, &infop->si_errno);
1082 if (!retval)
1083 retval = put_user((short)why, &infop->si_code);
1084 if (!retval)
1085 retval = put_user(pid, &infop->si_pid);
1086 if (!retval)
1087 retval = put_user(uid, &infop->si_uid);
1088 if (!retval)
1089 retval = put_user(status, &infop->si_status);
1090 if (!retval)
1091 retval = pid;
1092 return retval;
1096 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1097 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1098 * the lock and this task is uninteresting. If we return nonzero, we have
1099 * released the lock and the system call should return.
1101 static int wait_task_zombie(struct task_struct *p, int noreap,
1102 struct siginfo __user *infop,
1103 int __user *stat_addr, struct rusage __user *ru)
1105 unsigned long state;
1106 int retval;
1107 int status;
1109 if (unlikely(noreap)) {
1110 pid_t pid = p->pid;
1111 uid_t uid = p->uid;
1112 int exit_code = p->exit_code;
1113 int why, status;
1115 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1116 return 0;
1117 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1118 return 0;
1119 get_task_struct(p);
1120 read_unlock(&tasklist_lock);
1121 if ((exit_code & 0x7f) == 0) {
1122 why = CLD_EXITED;
1123 status = exit_code >> 8;
1124 } else {
1125 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1126 status = exit_code & 0x7f;
1128 return wait_noreap_copyout(p, pid, uid, why,
1129 status, infop, ru);
1133 * Try to move the task's state to DEAD
1134 * only one thread is allowed to do this:
1136 state = xchg(&p->exit_state, EXIT_DEAD);
1137 if (state != EXIT_ZOMBIE) {
1138 BUG_ON(state != EXIT_DEAD);
1139 return 0;
1141 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1143 * This can only happen in a race with a ptraced thread
1144 * dying on another processor.
1146 return 0;
1149 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1150 struct signal_struct *psig;
1151 struct signal_struct *sig;
1154 * The resource counters for the group leader are in its
1155 * own task_struct. Those for dead threads in the group
1156 * are in its signal_struct, as are those for the child
1157 * processes it has previously reaped. All these
1158 * accumulate in the parent's signal_struct c* fields.
1160 * We don't bother to take a lock here to protect these
1161 * p->signal fields, because they are only touched by
1162 * __exit_signal, which runs with tasklist_lock
1163 * write-locked anyway, and so is excluded here. We do
1164 * need to protect the access to p->parent->signal fields,
1165 * as other threads in the parent group can be right
1166 * here reaping other children at the same time.
1168 spin_lock_irq(&p->parent->sighand->siglock);
1169 psig = p->parent->signal;
1170 sig = p->signal;
1171 psig->cutime =
1172 cputime_add(psig->cutime,
1173 cputime_add(p->utime,
1174 cputime_add(sig->utime,
1175 sig->cutime)));
1176 psig->cstime =
1177 cputime_add(psig->cstime,
1178 cputime_add(p->stime,
1179 cputime_add(sig->stime,
1180 sig->cstime)));
1181 psig->cmin_flt +=
1182 p->min_flt + sig->min_flt + sig->cmin_flt;
1183 psig->cmaj_flt +=
1184 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1185 psig->cnvcsw +=
1186 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1187 psig->cnivcsw +=
1188 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1189 spin_unlock_irq(&p->parent->sighand->siglock);
1193 * Now we are sure this task is interesting, and no other
1194 * thread can reap it because we set its state to EXIT_DEAD.
1196 read_unlock(&tasklist_lock);
1198 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1199 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1200 ? p->signal->group_exit_code : p->exit_code;
1201 if (!retval && stat_addr)
1202 retval = put_user(status, stat_addr);
1203 if (!retval && infop)
1204 retval = put_user(SIGCHLD, &infop->si_signo);
1205 if (!retval && infop)
1206 retval = put_user(0, &infop->si_errno);
1207 if (!retval && infop) {
1208 int why;
1210 if ((status & 0x7f) == 0) {
1211 why = CLD_EXITED;
1212 status >>= 8;
1213 } else {
1214 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 status &= 0x7f;
1217 retval = put_user((short)why, &infop->si_code);
1218 if (!retval)
1219 retval = put_user(status, &infop->si_status);
1221 if (!retval && infop)
1222 retval = put_user(p->pid, &infop->si_pid);
1223 if (!retval && infop)
1224 retval = put_user(p->uid, &infop->si_uid);
1225 if (retval) {
1226 // TODO: is this safe?
1227 p->exit_state = EXIT_ZOMBIE;
1228 return retval;
1230 retval = p->pid;
1231 if (p->real_parent != p->parent) {
1232 write_lock_irq(&tasklist_lock);
1233 /* Double-check with lock held. */
1234 if (p->real_parent != p->parent) {
1235 __ptrace_unlink(p);
1236 // TODO: is this safe?
1237 p->exit_state = EXIT_ZOMBIE;
1239 * If this is not a detached task, notify the parent.
1240 * If it's still not detached after that, don't release
1241 * it now.
1243 if (p->exit_signal != -1) {
1244 do_notify_parent(p, p->exit_signal);
1245 if (p->exit_signal != -1)
1246 p = NULL;
1249 write_unlock_irq(&tasklist_lock);
1251 if (p != NULL)
1252 release_task(p);
1253 BUG_ON(!retval);
1254 return retval;
1258 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1259 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1260 * the lock and this task is uninteresting. If we return nonzero, we have
1261 * released the lock and the system call should return.
1263 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1264 int noreap, struct siginfo __user *infop,
1265 int __user *stat_addr, struct rusage __user *ru)
1267 int retval, exit_code;
1269 if (!p->exit_code)
1270 return 0;
1271 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1272 p->signal && p->signal->group_stop_count > 0)
1274 * A group stop is in progress and this is the group leader.
1275 * We won't report until all threads have stopped.
1277 return 0;
1280 * Now we are pretty sure this task is interesting.
1281 * Make sure it doesn't get reaped out from under us while we
1282 * give up the lock and then examine it below. We don't want to
1283 * keep holding onto the tasklist_lock while we call getrusage and
1284 * possibly take page faults for user memory.
1286 get_task_struct(p);
1287 read_unlock(&tasklist_lock);
1289 if (unlikely(noreap)) {
1290 pid_t pid = p->pid;
1291 uid_t uid = p->uid;
1292 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1294 exit_code = p->exit_code;
1295 if (unlikely(!exit_code) ||
1296 unlikely(p->state & TASK_TRACED))
1297 goto bail_ref;
1298 return wait_noreap_copyout(p, pid, uid,
1299 why, (exit_code << 8) | 0x7f,
1300 infop, ru);
1303 write_lock_irq(&tasklist_lock);
1306 * This uses xchg to be atomic with the thread resuming and setting
1307 * it. It must also be done with the write lock held to prevent a
1308 * race with the EXIT_ZOMBIE case.
1310 exit_code = xchg(&p->exit_code, 0);
1311 if (unlikely(p->exit_state)) {
1313 * The task resumed and then died. Let the next iteration
1314 * catch it in EXIT_ZOMBIE. Note that exit_code might
1315 * already be zero here if it resumed and did _exit(0).
1316 * The task itself is dead and won't touch exit_code again;
1317 * other processors in this function are locked out.
1319 p->exit_code = exit_code;
1320 exit_code = 0;
1322 if (unlikely(exit_code == 0)) {
1324 * Another thread in this function got to it first, or it
1325 * resumed, or it resumed and then died.
1327 write_unlock_irq(&tasklist_lock);
1328 bail_ref:
1329 put_task_struct(p);
1331 * We are returning to the wait loop without having successfully
1332 * removed the process and having released the lock. We cannot
1333 * continue, since the "p" task pointer is potentially stale.
1335 * Return -EAGAIN, and do_wait() will restart the loop from the
1336 * beginning. Do _not_ re-acquire the lock.
1338 return -EAGAIN;
1341 /* move to end of parent's list to avoid starvation */
1342 remove_parent(p);
1343 add_parent(p);
1345 write_unlock_irq(&tasklist_lock);
1347 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1348 if (!retval && stat_addr)
1349 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1350 if (!retval && infop)
1351 retval = put_user(SIGCHLD, &infop->si_signo);
1352 if (!retval && infop)
1353 retval = put_user(0, &infop->si_errno);
1354 if (!retval && infop)
1355 retval = put_user((short)((p->ptrace & PT_PTRACED)
1356 ? CLD_TRAPPED : CLD_STOPPED),
1357 &infop->si_code);
1358 if (!retval && infop)
1359 retval = put_user(exit_code, &infop->si_status);
1360 if (!retval && infop)
1361 retval = put_user(p->pid, &infop->si_pid);
1362 if (!retval && infop)
1363 retval = put_user(p->uid, &infop->si_uid);
1364 if (!retval)
1365 retval = p->pid;
1366 put_task_struct(p);
1368 BUG_ON(!retval);
1369 return retval;
1373 * Handle do_wait work for one task in a live, non-stopped state.
1374 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1375 * the lock and this task is uninteresting. If we return nonzero, we have
1376 * released the lock and the system call should return.
1378 static int wait_task_continued(struct task_struct *p, int noreap,
1379 struct siginfo __user *infop,
1380 int __user *stat_addr, struct rusage __user *ru)
1382 int retval;
1383 pid_t pid;
1384 uid_t uid;
1386 if (unlikely(!p->signal))
1387 return 0;
1389 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1390 return 0;
1392 spin_lock_irq(&p->sighand->siglock);
1393 /* Re-check with the lock held. */
1394 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1395 spin_unlock_irq(&p->sighand->siglock);
1396 return 0;
1398 if (!noreap)
1399 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1400 spin_unlock_irq(&p->sighand->siglock);
1402 pid = p->pid;
1403 uid = p->uid;
1404 get_task_struct(p);
1405 read_unlock(&tasklist_lock);
1407 if (!infop) {
1408 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1409 put_task_struct(p);
1410 if (!retval && stat_addr)
1411 retval = put_user(0xffff, stat_addr);
1412 if (!retval)
1413 retval = p->pid;
1414 } else {
1415 retval = wait_noreap_copyout(p, pid, uid,
1416 CLD_CONTINUED, SIGCONT,
1417 infop, ru);
1418 BUG_ON(retval == 0);
1421 return retval;
1425 static inline int my_ptrace_child(struct task_struct *p)
1427 if (!(p->ptrace & PT_PTRACED))
1428 return 0;
1429 if (!(p->ptrace & PT_ATTACHED))
1430 return 1;
1432 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1433 * we are the attacher. If we are the real parent, this is a race
1434 * inside ptrace_attach. It is waiting for the tasklist_lock,
1435 * which we have to switch the parent links, but has already set
1436 * the flags in p->ptrace.
1438 return (p->parent != p->real_parent);
1441 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1442 int __user *stat_addr, struct rusage __user *ru)
1444 DECLARE_WAITQUEUE(wait, current);
1445 struct task_struct *tsk;
1446 int flag, retval;
1448 add_wait_queue(&current->signal->wait_chldexit,&wait);
1449 repeat:
1451 * We will set this flag if we see any child that might later
1452 * match our criteria, even if we are not able to reap it yet.
1454 flag = 0;
1455 current->state = TASK_INTERRUPTIBLE;
1456 read_lock(&tasklist_lock);
1457 tsk = current;
1458 do {
1459 struct task_struct *p;
1460 struct list_head *_p;
1461 int ret;
1463 list_for_each(_p,&tsk->children) {
1464 p = list_entry(_p, struct task_struct, sibling);
1466 ret = eligible_child(pid, options, p);
1467 if (!ret)
1468 continue;
1470 switch (p->state) {
1471 case TASK_TRACED:
1473 * When we hit the race with PTRACE_ATTACH,
1474 * we will not report this child. But the
1475 * race means it has not yet been moved to
1476 * our ptrace_children list, so we need to
1477 * set the flag here to avoid a spurious ECHILD
1478 * when the race happens with the only child.
1480 flag = 1;
1481 if (!my_ptrace_child(p))
1482 continue;
1483 /*FALLTHROUGH*/
1484 case TASK_STOPPED:
1486 * It's stopped now, so it might later
1487 * continue, exit, or stop again.
1489 flag = 1;
1490 if (!(options & WUNTRACED) &&
1491 !my_ptrace_child(p))
1492 continue;
1493 retval = wait_task_stopped(p, ret == 2,
1494 (options & WNOWAIT),
1495 infop,
1496 stat_addr, ru);
1497 if (retval == -EAGAIN)
1498 goto repeat;
1499 if (retval != 0) /* He released the lock. */
1500 goto end;
1501 break;
1502 default:
1503 // case EXIT_DEAD:
1504 if (p->exit_state == EXIT_DEAD)
1505 continue;
1506 // case EXIT_ZOMBIE:
1507 if (p->exit_state == EXIT_ZOMBIE) {
1509 * Eligible but we cannot release
1510 * it yet:
1512 if (ret == 2)
1513 goto check_continued;
1514 if (!likely(options & WEXITED))
1515 continue;
1516 retval = wait_task_zombie(
1517 p, (options & WNOWAIT),
1518 infop, stat_addr, ru);
1519 /* He released the lock. */
1520 if (retval != 0)
1521 goto end;
1522 break;
1524 check_continued:
1526 * It's running now, so it might later
1527 * exit, stop, or stop and then continue.
1529 flag = 1;
1530 if (!unlikely(options & WCONTINUED))
1531 continue;
1532 retval = wait_task_continued(
1533 p, (options & WNOWAIT),
1534 infop, stat_addr, ru);
1535 if (retval != 0) /* He released the lock. */
1536 goto end;
1537 break;
1540 if (!flag) {
1541 list_for_each(_p, &tsk->ptrace_children) {
1542 p = list_entry(_p, struct task_struct,
1543 ptrace_list);
1544 if (!eligible_child(pid, options, p))
1545 continue;
1546 flag = 1;
1547 break;
1550 if (options & __WNOTHREAD)
1551 break;
1552 tsk = next_thread(tsk);
1553 BUG_ON(tsk->signal != current->signal);
1554 } while (tsk != current);
1556 read_unlock(&tasklist_lock);
1557 if (flag) {
1558 retval = 0;
1559 if (options & WNOHANG)
1560 goto end;
1561 retval = -ERESTARTSYS;
1562 if (signal_pending(current))
1563 goto end;
1564 schedule();
1565 goto repeat;
1567 retval = -ECHILD;
1568 end:
1569 current->state = TASK_RUNNING;
1570 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1571 if (infop) {
1572 if (retval > 0)
1573 retval = 0;
1574 else {
1576 * For a WNOHANG return, clear out all the fields
1577 * we would set so the user can easily tell the
1578 * difference.
1580 if (!retval)
1581 retval = put_user(0, &infop->si_signo);
1582 if (!retval)
1583 retval = put_user(0, &infop->si_errno);
1584 if (!retval)
1585 retval = put_user(0, &infop->si_code);
1586 if (!retval)
1587 retval = put_user(0, &infop->si_pid);
1588 if (!retval)
1589 retval = put_user(0, &infop->si_uid);
1590 if (!retval)
1591 retval = put_user(0, &infop->si_status);
1594 return retval;
1597 asmlinkage long sys_waitid(int which, pid_t pid,
1598 struct siginfo __user *infop, int options,
1599 struct rusage __user *ru)
1601 long ret;
1603 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1604 return -EINVAL;
1605 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1606 return -EINVAL;
1608 switch (which) {
1609 case P_ALL:
1610 pid = -1;
1611 break;
1612 case P_PID:
1613 if (pid <= 0)
1614 return -EINVAL;
1615 break;
1616 case P_PGID:
1617 if (pid <= 0)
1618 return -EINVAL;
1619 pid = -pid;
1620 break;
1621 default:
1622 return -EINVAL;
1625 ret = do_wait(pid, options, infop, NULL, ru);
1627 /* avoid REGPARM breakage on x86: */
1628 prevent_tail_call(ret);
1629 return ret;
1632 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1633 int options, struct rusage __user *ru)
1635 long ret;
1637 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1638 __WNOTHREAD|__WCLONE|__WALL))
1639 return -EINVAL;
1640 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1642 /* avoid REGPARM breakage on x86: */
1643 prevent_tail_call(ret);
1644 return ret;
1647 #ifdef __ARCH_WANT_SYS_WAITPID
1650 * sys_waitpid() remains for compatibility. waitpid() should be
1651 * implemented by calling sys_wait4() from libc.a.
1653 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1655 return sys_wait4(pid, stat_addr, options, NULL);
1658 #endif