MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / include / linux / skbuff.h
blob85577a4ffa618d5e319487ab396648a485c6223c
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/poll.h>
28 #include <linux/net.h>
29 #include <linux/textsearch.h>
30 #include <net/checksum.h>
31 #include <linux/dmaengine.h>
33 #define HAVE_ALLOC_SKB /* For the drivers to know */
34 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_PARTIAL 1
38 #define CHECKSUM_UNNECESSARY 2
39 #define CHECKSUM_COMPLETE 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49 /* A. Checksumming of received packets by device.
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
60 * COMPLETE: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use COMPLETE,
64 * not UNNECESSARY.
66 * B. Checksumming on output.
68 * NONE: skb is checksummed by protocol or csum is not required.
70 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
84 * Any questions? No questions, good. --ANK
87 struct net_device;
89 #ifdef CONFIG_NETFILTER
90 struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
95 #ifdef CONFIG_BRIDGE_NETFILTER
96 struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102 #endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
106 #endif
108 #endif
110 struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
115 __u32 qlen;
116 spinlock_t lock;
119 struct sk_buff;
121 /* To allow 64K frame to be packed as single skb without frag_list */
122 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124 typedef struct skb_frag_struct skb_frag_t;
126 struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
132 /* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
135 struct skb_shared_info {
136 atomic_t dataref;
137 unsigned short nr_frags;
138 unsigned short gso_size;
139 /* Warning: this field is not always filled in (UFO)! */
140 unsigned short gso_segs;
141 unsigned short gso_type;
142 unsigned int ip6_frag_id;
143 struct sk_buff *frag_list;
144 skb_frag_t frags[MAX_SKB_FRAGS];
147 /* We divide dataref into two halves. The higher 16 bits hold references
148 * to the payload part of skb->data. The lower 16 bits hold references to
149 * the entire skb->data. It is up to the users of the skb to agree on
150 * where the payload starts.
152 * All users must obey the rule that the skb->data reference count must be
153 * greater than or equal to the payload reference count.
155 * Holding a reference to the payload part means that the user does not
156 * care about modifications to the header part of skb->data.
158 #define SKB_DATAREF_SHIFT 16
159 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161 struct skb_timeval {
162 u32 off_sec;
163 u32 off_usec;
167 enum {
168 SKB_FCLONE_UNAVAILABLE,
169 SKB_FCLONE_ORIG,
170 SKB_FCLONE_CLONE,
173 enum {
174 SKB_GSO_TCPV4 = 1 << 0,
175 SKB_GSO_UDP = 1 << 1,
177 /* This indicates the skb is from an untrusted source. */
178 SKB_GSO_DODGY = 1 << 2,
180 /* This indicates the tcp segment has CWR set. */
181 SKB_GSO_TCP_ECN = 1 << 3,
183 SKB_GSO_TCPV6 = 1 << 4,
186 /**
187 * struct sk_buff - socket buffer
188 * @next: Next buffer in list
189 * @prev: Previous buffer in list
190 * @sk: Socket we are owned by
191 * @tstamp: Time we arrived
192 * @dev: Device we arrived on/are leaving by
193 * @input_dev: Device we arrived on
194 * @h: Transport layer header
195 * @nh: Network layer header
196 * @mac: Link layer header
197 * @dst: destination entry
198 * @sp: the security path, used for xfrm
199 * @cb: Control buffer. Free for use by every layer. Put private vars here
200 * @len: Length of actual data
201 * @data_len: Data length
202 * @mac_len: Length of link layer header
203 * @csum: Checksum
204 * @local_df: allow local fragmentation
205 * @cloned: Head may be cloned (check refcnt to be sure)
206 * @nohdr: Payload reference only, must not modify header
207 * @pkt_type: Packet class
208 * @fclone: skbuff clone status
209 * @ip_summed: Driver fed us an IP checksum
210 * @priority: Packet queueing priority
211 * @users: User count - see {datagram,tcp}.c
212 * @protocol: Packet protocol from driver
213 * @truesize: Buffer size
214 * @head: Head of buffer
215 * @data: Data head pointer
216 * @tail: Tail pointer
217 * @end: End pointer
218 * @destructor: Destruct function
219 * @nfmark: Can be used for communication between hooks
220 * @nfct: Associated connection, if any
221 * @ipvs_property: skbuff is owned by ipvs
222 * @nfctinfo: Relationship of this skb to the connection
223 * @nfct_reasm: netfilter conntrack re-assembly pointer
224 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
225 * @tc_index: Traffic control index
226 * @tc_verd: traffic control verdict
227 * @dma_cookie: a cookie to one of several possible DMA operations
228 * done by skb DMA functions
229 * @secmark: security marking
232 struct sk_buff {
233 /* These two members must be first. */
234 struct sk_buff *next;
235 struct sk_buff *prev;
237 struct sock *sk;
238 struct skb_timeval tstamp;
239 struct net_device *dev;
240 struct net_device *input_dev;
242 union {
243 struct tcphdr *th;
244 struct udphdr *uh;
245 struct icmphdr *icmph;
246 struct igmphdr *igmph;
247 struct iphdr *ipiph;
248 struct ipv6hdr *ipv6h;
249 unsigned char *raw;
250 } h;
252 union {
253 struct iphdr *iph;
254 struct ipv6hdr *ipv6h;
255 struct arphdr *arph;
256 unsigned char *raw;
257 } nh;
259 union {
260 unsigned char *raw;
261 } mac;
263 struct dst_entry *dst;
264 struct sec_path *sp;
267 * This is the control buffer. It is free to use for every
268 * layer. Please put your private variables there. If you
269 * want to keep them across layers you have to do a skb_clone()
270 * first. This is owned by whoever has the skb queued ATM.
272 char cb[48];
274 unsigned int len,
275 data_len,
276 mac_len,
277 csum;
278 __u32 priority;
279 __u8 local_df:1,
280 cloned:1,
281 ip_summed:2,
282 nohdr:1,
283 nfctinfo:3;
284 __u8 pkt_type:3,
285 fclone:2,
286 ipvs_property:1;
287 __be16 protocol;
289 void (*destructor)(struct sk_buff *skb);
290 #ifdef CONFIG_NETFILTER
291 struct nf_conntrack *nfct;
292 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
293 struct sk_buff *nfct_reasm;
294 #endif
295 #ifdef CONFIG_BRIDGE_NETFILTER
296 struct nf_bridge_info *nf_bridge;
297 #endif
298 __u32 nfmark;
299 #endif /* CONFIG_NETFILTER */
300 #ifdef CONFIG_NET_SCHED
301 __u16 tc_index; /* traffic control index */
302 #ifdef CONFIG_NET_CLS_ACT
303 __u16 tc_verd; /* traffic control verdict */
304 #endif
305 #endif
306 #ifdef CONFIG_NET_DMA
307 dma_cookie_t dma_cookie;
308 #endif
309 #ifdef CONFIG_NETWORK_SECMARK
310 __u32 secmark;
311 #endif
314 /* These elements must be at the end, see alloc_skb() for details. */
315 unsigned int truesize;
316 atomic_t users;
317 unsigned char *head,
318 *data,
319 *tail,
320 *end;
323 #ifdef __KERNEL__
325 * Handling routines are only of interest to the kernel
327 #include <linux/slab.h>
329 #include <asm/system.h>
331 extern void kfree_skb(struct sk_buff *skb);
332 extern void __kfree_skb(struct sk_buff *skb);
333 extern struct sk_buff *__alloc_skb(unsigned int size,
334 gfp_t priority, int fclone);
335 static inline struct sk_buff *alloc_skb(unsigned int size,
336 gfp_t priority)
338 return __alloc_skb(size, priority, 0);
341 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
342 gfp_t priority)
344 return __alloc_skb(size, priority, 1);
347 extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
348 unsigned int size,
349 gfp_t priority);
350 extern void kfree_skbmem(struct sk_buff *skb);
351 extern struct sk_buff *skb_clone(struct sk_buff *skb,
352 gfp_t priority);
353 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
354 gfp_t priority);
355 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
356 gfp_t gfp_mask);
357 extern int pskb_expand_head(struct sk_buff *skb,
358 int nhead, int ntail,
359 gfp_t gfp_mask);
360 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
361 unsigned int headroom);
362 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
363 int newheadroom, int newtailroom,
364 gfp_t priority);
365 extern int skb_pad(struct sk_buff *skb, int pad);
366 #define dev_kfree_skb(a) kfree_skb(a)
367 extern void skb_over_panic(struct sk_buff *skb, int len,
368 void *here);
369 extern void skb_under_panic(struct sk_buff *skb, int len,
370 void *here);
371 extern void skb_truesize_bug(struct sk_buff *skb);
373 static inline void skb_truesize_check(struct sk_buff *skb)
375 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
376 skb_truesize_bug(skb);
379 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
380 int getfrag(void *from, char *to, int offset,
381 int len,int odd, struct sk_buff *skb),
382 void *from, int length);
384 struct skb_seq_state
386 __u32 lower_offset;
387 __u32 upper_offset;
388 __u32 frag_idx;
389 __u32 stepped_offset;
390 struct sk_buff *root_skb;
391 struct sk_buff *cur_skb;
392 __u8 *frag_data;
395 extern void skb_prepare_seq_read(struct sk_buff *skb,
396 unsigned int from, unsigned int to,
397 struct skb_seq_state *st);
398 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
399 struct skb_seq_state *st);
400 extern void skb_abort_seq_read(struct skb_seq_state *st);
402 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
403 unsigned int to, struct ts_config *config,
404 struct ts_state *state);
406 /* Internal */
407 #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
410 * skb_queue_empty - check if a queue is empty
411 * @list: queue head
413 * Returns true if the queue is empty, false otherwise.
415 static inline int skb_queue_empty(const struct sk_buff_head *list)
417 return list->next == (struct sk_buff *)list;
421 * skb_get - reference buffer
422 * @skb: buffer to reference
424 * Makes another reference to a socket buffer and returns a pointer
425 * to the buffer.
427 static inline struct sk_buff *skb_get(struct sk_buff *skb)
429 atomic_inc(&skb->users);
430 return skb;
434 * If users == 1, we are the only owner and are can avoid redundant
435 * atomic change.
439 * skb_cloned - is the buffer a clone
440 * @skb: buffer to check
442 * Returns true if the buffer was generated with skb_clone() and is
443 * one of multiple shared copies of the buffer. Cloned buffers are
444 * shared data so must not be written to under normal circumstances.
446 static inline int skb_cloned(const struct sk_buff *skb)
448 return skb->cloned &&
449 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
453 * skb_header_cloned - is the header a clone
454 * @skb: buffer to check
456 * Returns true if modifying the header part of the buffer requires
457 * the data to be copied.
459 static inline int skb_header_cloned(const struct sk_buff *skb)
461 int dataref;
463 if (!skb->cloned)
464 return 0;
466 dataref = atomic_read(&skb_shinfo(skb)->dataref);
467 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
468 return dataref != 1;
472 * skb_header_release - release reference to header
473 * @skb: buffer to operate on
475 * Drop a reference to the header part of the buffer. This is done
476 * by acquiring a payload reference. You must not read from the header
477 * part of skb->data after this.
479 static inline void skb_header_release(struct sk_buff *skb)
481 BUG_ON(skb->nohdr);
482 skb->nohdr = 1;
483 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
487 * skb_shared - is the buffer shared
488 * @skb: buffer to check
490 * Returns true if more than one person has a reference to this
491 * buffer.
493 static inline int skb_shared(const struct sk_buff *skb)
495 return atomic_read(&skb->users) != 1;
499 * skb_share_check - check if buffer is shared and if so clone it
500 * @skb: buffer to check
501 * @pri: priority for memory allocation
503 * If the buffer is shared the buffer is cloned and the old copy
504 * drops a reference. A new clone with a single reference is returned.
505 * If the buffer is not shared the original buffer is returned. When
506 * being called from interrupt status or with spinlocks held pri must
507 * be GFP_ATOMIC.
509 * NULL is returned on a memory allocation failure.
511 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
512 gfp_t pri)
514 might_sleep_if(pri & __GFP_WAIT);
515 if (skb_shared(skb)) {
516 struct sk_buff *nskb = skb_clone(skb, pri);
517 kfree_skb(skb);
518 skb = nskb;
520 return skb;
524 * Copy shared buffers into a new sk_buff. We effectively do COW on
525 * packets to handle cases where we have a local reader and forward
526 * and a couple of other messy ones. The normal one is tcpdumping
527 * a packet thats being forwarded.
531 * skb_unshare - make a copy of a shared buffer
532 * @skb: buffer to check
533 * @pri: priority for memory allocation
535 * If the socket buffer is a clone then this function creates a new
536 * copy of the data, drops a reference count on the old copy and returns
537 * the new copy with the reference count at 1. If the buffer is not a clone
538 * the original buffer is returned. When called with a spinlock held or
539 * from interrupt state @pri must be %GFP_ATOMIC
541 * %NULL is returned on a memory allocation failure.
543 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
544 gfp_t pri)
546 might_sleep_if(pri & __GFP_WAIT);
547 if (skb_cloned(skb)) {
548 struct sk_buff *nskb = skb_copy(skb, pri);
549 kfree_skb(skb); /* Free our shared copy */
550 skb = nskb;
552 return skb;
556 * skb_peek
557 * @list_: list to peek at
559 * Peek an &sk_buff. Unlike most other operations you _MUST_
560 * be careful with this one. A peek leaves the buffer on the
561 * list and someone else may run off with it. You must hold
562 * the appropriate locks or have a private queue to do this.
564 * Returns %NULL for an empty list or a pointer to the head element.
565 * The reference count is not incremented and the reference is therefore
566 * volatile. Use with caution.
568 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
570 struct sk_buff *list = ((struct sk_buff *)list_)->next;
571 if (list == (struct sk_buff *)list_)
572 list = NULL;
573 return list;
577 * skb_peek_tail
578 * @list_: list to peek at
580 * Peek an &sk_buff. Unlike most other operations you _MUST_
581 * be careful with this one. A peek leaves the buffer on the
582 * list and someone else may run off with it. You must hold
583 * the appropriate locks or have a private queue to do this.
585 * Returns %NULL for an empty list or a pointer to the tail element.
586 * The reference count is not incremented and the reference is therefore
587 * volatile. Use with caution.
589 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
591 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
592 if (list == (struct sk_buff *)list_)
593 list = NULL;
594 return list;
598 * skb_queue_len - get queue length
599 * @list_: list to measure
601 * Return the length of an &sk_buff queue.
603 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
605 return list_->qlen;
609 * This function creates a split out lock class for each invocation;
610 * this is needed for now since a whole lot of users of the skb-queue
611 * infrastructure in drivers have different locking usage (in hardirq)
612 * than the networking core (in softirq only). In the long run either the
613 * network layer or drivers should need annotation to consolidate the
614 * main types of usage into 3 classes.
616 static inline void skb_queue_head_init(struct sk_buff_head *list)
618 spin_lock_init(&list->lock);
619 list->prev = list->next = (struct sk_buff *)list;
620 list->qlen = 0;
624 * Insert an sk_buff at the start of a list.
626 * The "__skb_xxxx()" functions are the non-atomic ones that
627 * can only be called with interrupts disabled.
631 * __skb_queue_after - queue a buffer at the list head
632 * @list: list to use
633 * @prev: place after this buffer
634 * @newsk: buffer to queue
636 * Queue a buffer int the middle of a list. This function takes no locks
637 * and you must therefore hold required locks before calling it.
639 * A buffer cannot be placed on two lists at the same time.
641 static inline void __skb_queue_after(struct sk_buff_head *list,
642 struct sk_buff *prev,
643 struct sk_buff *newsk)
645 struct sk_buff *next;
646 list->qlen++;
648 next = prev->next;
649 newsk->next = next;
650 newsk->prev = prev;
651 next->prev = prev->next = newsk;
655 * __skb_queue_head - queue a buffer at the list head
656 * @list: list to use
657 * @newsk: buffer to queue
659 * Queue a buffer at the start of a list. This function takes no locks
660 * and you must therefore hold required locks before calling it.
662 * A buffer cannot be placed on two lists at the same time.
664 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
665 static inline void __skb_queue_head(struct sk_buff_head *list,
666 struct sk_buff *newsk)
668 __skb_queue_after(list, (struct sk_buff *)list, newsk);
672 * __skb_queue_tail - queue a buffer at the list tail
673 * @list: list to use
674 * @newsk: buffer to queue
676 * Queue a buffer at the end of a list. This function takes no locks
677 * and you must therefore hold required locks before calling it.
679 * A buffer cannot be placed on two lists at the same time.
681 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
682 static inline void __skb_queue_tail(struct sk_buff_head *list,
683 struct sk_buff *newsk)
685 struct sk_buff *prev, *next;
687 list->qlen++;
688 next = (struct sk_buff *)list;
689 prev = next->prev;
690 newsk->next = next;
691 newsk->prev = prev;
692 next->prev = prev->next = newsk;
697 * __skb_dequeue - remove from the head of the queue
698 * @list: list to dequeue from
700 * Remove the head of the list. This function does not take any locks
701 * so must be used with appropriate locks held only. The head item is
702 * returned or %NULL if the list is empty.
704 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
705 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
707 struct sk_buff *next, *prev, *result;
709 prev = (struct sk_buff *) list;
710 next = prev->next;
711 result = NULL;
712 if (next != prev) {
713 result = next;
714 next = next->next;
715 list->qlen--;
716 next->prev = prev;
717 prev->next = next;
718 result->next = result->prev = NULL;
720 return result;
725 * Insert a packet on a list.
727 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
728 static inline void __skb_insert(struct sk_buff *newsk,
729 struct sk_buff *prev, struct sk_buff *next,
730 struct sk_buff_head *list)
732 newsk->next = next;
733 newsk->prev = prev;
734 next->prev = prev->next = newsk;
735 list->qlen++;
739 * Place a packet after a given packet in a list.
741 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
742 static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
744 __skb_insert(newsk, old, old->next, list);
748 * remove sk_buff from list. _Must_ be called atomically, and with
749 * the list known..
751 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
752 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
754 struct sk_buff *next, *prev;
756 list->qlen--;
757 next = skb->next;
758 prev = skb->prev;
759 skb->next = skb->prev = NULL;
760 next->prev = prev;
761 prev->next = next;
765 /* XXX: more streamlined implementation */
768 * __skb_dequeue_tail - remove from the tail of the queue
769 * @list: list to dequeue from
771 * Remove the tail of the list. This function does not take any locks
772 * so must be used with appropriate locks held only. The tail item is
773 * returned or %NULL if the list is empty.
775 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
776 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
778 struct sk_buff *skb = skb_peek_tail(list);
779 if (skb)
780 __skb_unlink(skb, list);
781 return skb;
785 static inline int skb_is_nonlinear(const struct sk_buff *skb)
787 return skb->data_len;
790 static inline unsigned int skb_headlen(const struct sk_buff *skb)
792 return skb->len - skb->data_len;
795 static inline int skb_pagelen(const struct sk_buff *skb)
797 int i, len = 0;
799 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
800 len += skb_shinfo(skb)->frags[i].size;
801 return len + skb_headlen(skb);
804 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
805 struct page *page, int off, int size)
807 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
809 frag->page = page;
810 frag->page_offset = off;
811 frag->size = size;
812 skb_shinfo(skb)->nr_frags = i + 1;
815 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
816 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
817 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
820 * Add data to an sk_buff
822 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
824 unsigned char *tmp = skb->tail;
825 SKB_LINEAR_ASSERT(skb);
826 skb->tail += len;
827 skb->len += len;
828 return tmp;
832 * skb_put - add data to a buffer
833 * @skb: buffer to use
834 * @len: amount of data to add
836 * This function extends the used data area of the buffer. If this would
837 * exceed the total buffer size the kernel will panic. A pointer to the
838 * first byte of the extra data is returned.
840 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
842 unsigned char *tmp = skb->tail;
843 SKB_LINEAR_ASSERT(skb);
844 skb->tail += len;
845 skb->len += len;
846 if (unlikely(skb->tail>skb->end))
847 skb_over_panic(skb, len, current_text_addr());
848 return tmp;
851 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
853 skb->data -= len;
854 skb->len += len;
855 return skb->data;
859 * skb_push - add data to the start of a buffer
860 * @skb: buffer to use
861 * @len: amount of data to add
863 * This function extends the used data area of the buffer at the buffer
864 * start. If this would exceed the total buffer headroom the kernel will
865 * panic. A pointer to the first byte of the extra data is returned.
867 static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
869 skb->data -= len;
870 skb->len += len;
871 if (unlikely(skb->data<skb->head))
872 skb_under_panic(skb, len, current_text_addr());
873 return skb->data;
876 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
878 skb->len -= len;
879 BUG_ON(skb->len < skb->data_len);
880 return skb->data += len;
884 * skb_pull - remove data from the start of a buffer
885 * @skb: buffer to use
886 * @len: amount of data to remove
888 * This function removes data from the start of a buffer, returning
889 * the memory to the headroom. A pointer to the next data in the buffer
890 * is returned. Once the data has been pulled future pushes will overwrite
891 * the old data.
893 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
895 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
898 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
900 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
902 if (len > skb_headlen(skb) &&
903 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
904 return NULL;
905 skb->len -= len;
906 return skb->data += len;
909 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
911 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
914 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
916 if (likely(len <= skb_headlen(skb)))
917 return 1;
918 if (unlikely(len > skb->len))
919 return 0;
920 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
924 * skb_headroom - bytes at buffer head
925 * @skb: buffer to check
927 * Return the number of bytes of free space at the head of an &sk_buff.
929 static inline int skb_headroom(const struct sk_buff *skb)
931 return skb->data - skb->head;
935 * skb_tailroom - bytes at buffer end
936 * @skb: buffer to check
938 * Return the number of bytes of free space at the tail of an sk_buff
940 static inline int skb_tailroom(const struct sk_buff *skb)
942 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
946 * skb_reserve - adjust headroom
947 * @skb: buffer to alter
948 * @len: bytes to move
950 * Increase the headroom of an empty &sk_buff by reducing the tail
951 * room. This is only allowed for an empty buffer.
953 static inline void skb_reserve(struct sk_buff *skb, int len)
955 skb->data += len;
956 skb->tail += len;
960 * CPUs often take a performance hit when accessing unaligned memory
961 * locations. The actual performance hit varies, it can be small if the
962 * hardware handles it or large if we have to take an exception and fix it
963 * in software.
965 * Since an ethernet header is 14 bytes network drivers often end up with
966 * the IP header at an unaligned offset. The IP header can be aligned by
967 * shifting the start of the packet by 2 bytes. Drivers should do this
968 * with:
970 * skb_reserve(NET_IP_ALIGN);
972 * The downside to this alignment of the IP header is that the DMA is now
973 * unaligned. On some architectures the cost of an unaligned DMA is high
974 * and this cost outweighs the gains made by aligning the IP header.
976 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
977 * to be overridden.
979 #ifndef NET_IP_ALIGN
980 #define NET_IP_ALIGN 2
981 #endif
984 * The networking layer reserves some headroom in skb data (via
985 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
986 * the header has to grow. In the default case, if the header has to grow
987 * 16 bytes or less we avoid the reallocation.
989 * Unfortunately this headroom changes the DMA alignment of the resulting
990 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
991 * on some architectures. An architecture can override this value,
992 * perhaps setting it to a cacheline in size (since that will maintain
993 * cacheline alignment of the DMA). It must be a power of 2.
995 * Various parts of the networking layer expect at least 16 bytes of
996 * headroom, you should not reduce this.
998 #ifndef NET_SKB_PAD
999 #define NET_SKB_PAD 16
1000 #endif
1002 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1004 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1006 if (unlikely(skb->data_len)) {
1007 WARN_ON(1);
1008 return;
1010 skb->len = len;
1011 skb->tail = skb->data + len;
1015 * skb_trim - remove end from a buffer
1016 * @skb: buffer to alter
1017 * @len: new length
1019 * Cut the length of a buffer down by removing data from the tail. If
1020 * the buffer is already under the length specified it is not modified.
1021 * The skb must be linear.
1023 static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1025 if (skb->len > len)
1026 __skb_trim(skb, len);
1030 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1032 if (skb->data_len)
1033 return ___pskb_trim(skb, len);
1034 __skb_trim(skb, len);
1035 return 0;
1038 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1040 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1044 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1045 * @skb: buffer to alter
1046 * @len: new length
1048 * This is identical to pskb_trim except that the caller knows that
1049 * the skb is not cloned so we should never get an error due to out-
1050 * of-memory.
1052 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1054 int err = pskb_trim(skb, len);
1055 BUG_ON(err);
1059 * skb_orphan - orphan a buffer
1060 * @skb: buffer to orphan
1062 * If a buffer currently has an owner then we call the owner's
1063 * destructor function and make the @skb unowned. The buffer continues
1064 * to exist but is no longer charged to its former owner.
1066 static inline void skb_orphan(struct sk_buff *skb)
1068 if (skb->destructor)
1069 skb->destructor(skb);
1070 skb->destructor = NULL;
1071 skb->sk = NULL;
1075 * __skb_queue_purge - empty a list
1076 * @list: list to empty
1078 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1079 * the list and one reference dropped. This function does not take the
1080 * list lock and the caller must hold the relevant locks to use it.
1082 extern void skb_queue_purge(struct sk_buff_head *list);
1083 static inline void __skb_queue_purge(struct sk_buff_head *list)
1085 struct sk_buff *skb;
1086 while ((skb = __skb_dequeue(list)) != NULL)
1087 kfree_skb(skb);
1091 * __dev_alloc_skb - allocate an skbuff for receiving
1092 * @length: length to allocate
1093 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1095 * Allocate a new &sk_buff and assign it a usage count of one. The
1096 * buffer has unspecified headroom built in. Users should allocate
1097 * the headroom they think they need without accounting for the
1098 * built in space. The built in space is used for optimisations.
1100 * %NULL is returned if there is no free memory.
1102 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1103 gfp_t gfp_mask)
1105 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1106 if (likely(skb))
1107 skb_reserve(skb, NET_SKB_PAD);
1108 return skb;
1112 * dev_alloc_skb - allocate an skbuff for receiving
1113 * @length: length to allocate
1115 * Allocate a new &sk_buff and assign it a usage count of one. The
1116 * buffer has unspecified headroom built in. Users should allocate
1117 * the headroom they think they need without accounting for the
1118 * built in space. The built in space is used for optimisations.
1120 * %NULL is returned if there is no free memory. Although this function
1121 * allocates memory it can be called from an interrupt.
1123 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1125 return __dev_alloc_skb(length, GFP_ATOMIC);
1128 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1129 unsigned int length, gfp_t gfp_mask);
1132 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1133 * @dev: network device to receive on
1134 * @length: length to allocate
1136 * Allocate a new &sk_buff and assign it a usage count of one. The
1137 * buffer has unspecified headroom built in. Users should allocate
1138 * the headroom they think they need without accounting for the
1139 * built in space. The built in space is used for optimisations.
1141 * %NULL is returned if there is no free memory. Although this function
1142 * allocates memory it can be called from an interrupt.
1144 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1145 unsigned int length)
1147 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1151 * skb_cow - copy header of skb when it is required
1152 * @skb: buffer to cow
1153 * @headroom: needed headroom
1155 * If the skb passed lacks sufficient headroom or its data part
1156 * is shared, data is reallocated. If reallocation fails, an error
1157 * is returned and original skb is not changed.
1159 * The result is skb with writable area skb->head...skb->tail
1160 * and at least @headroom of space at head.
1162 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1164 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1165 skb_headroom(skb);
1167 if (delta < 0)
1168 delta = 0;
1170 if (delta || skb_cloned(skb))
1171 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1172 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1173 return 0;
1177 * skb_padto - pad an skbuff up to a minimal size
1178 * @skb: buffer to pad
1179 * @len: minimal length
1181 * Pads up a buffer to ensure the trailing bytes exist and are
1182 * blanked. If the buffer already contains sufficient data it
1183 * is untouched. Otherwise it is extended. Returns zero on
1184 * success. The skb is freed on error.
1187 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1189 unsigned int size = skb->len;
1190 if (likely(size >= len))
1191 return 0;
1192 return skb_pad(skb, len-size);
1195 static inline int skb_add_data(struct sk_buff *skb,
1196 char __user *from, int copy)
1198 const int off = skb->len;
1200 if (skb->ip_summed == CHECKSUM_NONE) {
1201 int err = 0;
1202 unsigned int csum = csum_and_copy_from_user(from,
1203 skb_put(skb, copy),
1204 copy, 0, &err);
1205 if (!err) {
1206 skb->csum = csum_block_add(skb->csum, csum, off);
1207 return 0;
1209 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1210 return 0;
1212 __skb_trim(skb, off);
1213 return -EFAULT;
1216 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1217 struct page *page, int off)
1219 if (i) {
1220 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1222 return page == frag->page &&
1223 off == frag->page_offset + frag->size;
1225 return 0;
1228 static inline int __skb_linearize(struct sk_buff *skb)
1230 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1234 * skb_linearize - convert paged skb to linear one
1235 * @skb: buffer to linarize
1237 * If there is no free memory -ENOMEM is returned, otherwise zero
1238 * is returned and the old skb data released.
1240 static inline int skb_linearize(struct sk_buff *skb)
1242 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1246 * skb_linearize_cow - make sure skb is linear and writable
1247 * @skb: buffer to process
1249 * If there is no free memory -ENOMEM is returned, otherwise zero
1250 * is returned and the old skb data released.
1252 static inline int skb_linearize_cow(struct sk_buff *skb)
1254 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1255 __skb_linearize(skb) : 0;
1259 * skb_postpull_rcsum - update checksum for received skb after pull
1260 * @skb: buffer to update
1261 * @start: start of data before pull
1262 * @len: length of data pulled
1264 * After doing a pull on a received packet, you need to call this to
1265 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1266 * CHECKSUM_NONE so that it can be recomputed from scratch.
1269 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1270 const void *start, unsigned int len)
1272 if (skb->ip_summed == CHECKSUM_COMPLETE)
1273 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1276 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1279 * pskb_trim_rcsum - trim received skb and update checksum
1280 * @skb: buffer to trim
1281 * @len: new length
1283 * This is exactly the same as pskb_trim except that it ensures the
1284 * checksum of received packets are still valid after the operation.
1287 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1289 if (likely(len >= skb->len))
1290 return 0;
1291 if (skb->ip_summed == CHECKSUM_COMPLETE)
1292 skb->ip_summed = CHECKSUM_NONE;
1293 return __pskb_trim(skb, len);
1296 static inline void *kmap_skb_frag(const skb_frag_t *frag)
1298 #ifdef CONFIG_HIGHMEM
1299 BUG_ON(in_irq());
1301 local_bh_disable();
1302 #endif
1303 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1306 static inline void kunmap_skb_frag(void *vaddr)
1308 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1309 #ifdef CONFIG_HIGHMEM
1310 local_bh_enable();
1311 #endif
1314 #define skb_queue_walk(queue, skb) \
1315 for (skb = (queue)->next; \
1316 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1317 skb = skb->next)
1319 #define skb_queue_reverse_walk(queue, skb) \
1320 for (skb = (queue)->prev; \
1321 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1322 skb = skb->prev)
1325 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1326 int noblock, int *err);
1327 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1328 struct poll_table_struct *wait);
1329 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1330 int offset, struct iovec *to,
1331 int size);
1332 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1333 int hlen,
1334 struct iovec *iov);
1335 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1336 extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1337 unsigned int flags);
1338 extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1339 int len, unsigned int csum);
1340 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1341 void *to, int len);
1342 extern int skb_store_bits(const struct sk_buff *skb, int offset,
1343 void *from, int len);
1344 extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1345 int offset, u8 *to, int len,
1346 unsigned int csum);
1347 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1348 extern void skb_split(struct sk_buff *skb,
1349 struct sk_buff *skb1, const u32 len);
1351 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1353 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1354 int len, void *buffer)
1356 int hlen = skb_headlen(skb);
1358 if (hlen - offset >= len)
1359 return skb->data + offset;
1361 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1362 return NULL;
1364 return buffer;
1367 extern void skb_init(void);
1368 extern void skb_add_mtu(int mtu);
1371 * skb_get_timestamp - get timestamp from a skb
1372 * @skb: skb to get stamp from
1373 * @stamp: pointer to struct timeval to store stamp in
1375 * Timestamps are stored in the skb as offsets to a base timestamp.
1376 * This function converts the offset back to a struct timeval and stores
1377 * it in stamp.
1379 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1381 stamp->tv_sec = skb->tstamp.off_sec;
1382 stamp->tv_usec = skb->tstamp.off_usec;
1386 * skb_set_timestamp - set timestamp of a skb
1387 * @skb: skb to set stamp of
1388 * @stamp: pointer to struct timeval to get stamp from
1390 * Timestamps are stored in the skb as offsets to a base timestamp.
1391 * This function converts a struct timeval to an offset and stores
1392 * it in the skb.
1394 static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
1396 skb->tstamp.off_sec = stamp->tv_sec;
1397 skb->tstamp.off_usec = stamp->tv_usec;
1400 extern void __net_timestamp(struct sk_buff *skb);
1402 extern unsigned int __skb_checksum_complete(struct sk_buff *skb);
1405 * skb_checksum_complete - Calculate checksum of an entire packet
1406 * @skb: packet to process
1408 * This function calculates the checksum over the entire packet plus
1409 * the value of skb->csum. The latter can be used to supply the
1410 * checksum of a pseudo header as used by TCP/UDP. It returns the
1411 * checksum.
1413 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1414 * this function can be used to verify that checksum on received
1415 * packets. In that case the function should return zero if the
1416 * checksum is correct. In particular, this function will return zero
1417 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1418 * hardware has already verified the correctness of the checksum.
1420 static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1422 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1423 __skb_checksum_complete(skb);
1426 #ifdef CONFIG_NETFILTER
1427 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1429 if (nfct && atomic_dec_and_test(&nfct->use))
1430 nfct->destroy(nfct);
1432 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1434 if (nfct)
1435 atomic_inc(&nfct->use);
1437 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1438 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1440 if (skb)
1441 atomic_inc(&skb->users);
1443 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1445 if (skb)
1446 kfree_skb(skb);
1448 #endif
1449 #ifdef CONFIG_BRIDGE_NETFILTER
1450 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1452 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1453 kfree(nf_bridge);
1455 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1457 if (nf_bridge)
1458 atomic_inc(&nf_bridge->use);
1460 #endif /* CONFIG_BRIDGE_NETFILTER */
1461 static inline void nf_reset(struct sk_buff *skb)
1463 nf_conntrack_put(skb->nfct);
1464 skb->nfct = NULL;
1465 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1466 nf_conntrack_put_reasm(skb->nfct_reasm);
1467 skb->nfct_reasm = NULL;
1468 #endif
1469 #ifdef CONFIG_BRIDGE_NETFILTER
1470 nf_bridge_put(skb->nf_bridge);
1471 skb->nf_bridge = NULL;
1472 #endif
1475 #else /* CONFIG_NETFILTER */
1476 static inline void nf_reset(struct sk_buff *skb) {}
1477 #endif /* CONFIG_NETFILTER */
1479 #ifdef CONFIG_NETWORK_SECMARK
1480 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1482 to->secmark = from->secmark;
1485 static inline void skb_init_secmark(struct sk_buff *skb)
1487 skb->secmark = 0;
1489 #else
1490 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1493 static inline void skb_init_secmark(struct sk_buff *skb)
1495 #endif
1497 static inline int skb_is_gso(const struct sk_buff *skb)
1499 return skb_shinfo(skb)->gso_size;
1502 #endif /* __KERNEL__ */
1503 #endif /* _LINUX_SKBUFF_H */