MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / drivers / rtc / rtc-vr41xx.c
blobe40322b71938100a2dc5578c010ba7c523344cb3
1 /*
2 * Driver for NEC VR4100 series Real Time Clock unit.
4 * Copyright (C) 2003-2006 Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/fs.h>
21 #include <linux/init.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/rtc.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
30 #include <asm/div64.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 #include <asm/vr41xx/irq.h>
35 MODULE_AUTHOR("Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>");
36 MODULE_DESCRIPTION("NEC VR4100 series RTC driver");
37 MODULE_LICENSE("GPL");
39 #define RTC1_TYPE1_START 0x0b0000c0UL
40 #define RTC1_TYPE1_END 0x0b0000dfUL
41 #define RTC2_TYPE1_START 0x0b0001c0UL
42 #define RTC2_TYPE1_END 0x0b0001dfUL
44 #define RTC1_TYPE2_START 0x0f000100UL
45 #define RTC1_TYPE2_END 0x0f00011fUL
46 #define RTC2_TYPE2_START 0x0f000120UL
47 #define RTC2_TYPE2_END 0x0f00013fUL
49 #define RTC1_SIZE 0x20
50 #define RTC2_SIZE 0x20
52 /* RTC 1 registers */
53 #define ETIMELREG 0x00
54 #define ETIMEMREG 0x02
55 #define ETIMEHREG 0x04
56 /* RFU */
57 #define ECMPLREG 0x08
58 #define ECMPMREG 0x0a
59 #define ECMPHREG 0x0c
60 /* RFU */
61 #define RTCL1LREG 0x10
62 #define RTCL1HREG 0x12
63 #define RTCL1CNTLREG 0x14
64 #define RTCL1CNTHREG 0x16
65 #define RTCL2LREG 0x18
66 #define RTCL2HREG 0x1a
67 #define RTCL2CNTLREG 0x1c
68 #define RTCL2CNTHREG 0x1e
70 /* RTC 2 registers */
71 #define TCLKLREG 0x00
72 #define TCLKHREG 0x02
73 #define TCLKCNTLREG 0x04
74 #define TCLKCNTHREG 0x06
75 /* RFU */
76 #define RTCINTREG 0x1e
77 #define TCLOCK_INT 0x08
78 #define RTCLONG2_INT 0x04
79 #define RTCLONG1_INT 0x02
80 #define ELAPSEDTIME_INT 0x01
82 #define RTC_FREQUENCY 32768
83 #define MAX_PERIODIC_RATE 6553
85 static void __iomem *rtc1_base;
86 static void __iomem *rtc2_base;
88 #define rtc1_read(offset) readw(rtc1_base + (offset))
89 #define rtc1_write(offset, value) writew((value), rtc1_base + (offset))
91 #define rtc2_read(offset) readw(rtc2_base + (offset))
92 #define rtc2_write(offset, value) writew((value), rtc2_base + (offset))
94 static unsigned long epoch = 1970; /* Jan 1 1970 00:00:00 */
96 static DEFINE_SPINLOCK(rtc_lock);
97 static char rtc_name[] = "RTC";
98 static unsigned long periodic_frequency;
99 static unsigned long periodic_count;
101 struct resource rtc_resource[2] = {
102 { .name = rtc_name,
103 .flags = IORESOURCE_MEM, },
104 { .name = rtc_name,
105 .flags = IORESOURCE_MEM, },
108 static inline unsigned long read_elapsed_second(void)
111 unsigned long first_low, first_mid, first_high;
113 unsigned long second_low, second_mid, second_high;
115 do {
116 first_low = rtc1_read(ETIMELREG);
117 first_mid = rtc1_read(ETIMEMREG);
118 first_high = rtc1_read(ETIMEHREG);
119 second_low = rtc1_read(ETIMELREG);
120 second_mid = rtc1_read(ETIMEMREG);
121 second_high = rtc1_read(ETIMEHREG);
122 } while (first_low != second_low || first_mid != second_mid ||
123 first_high != second_high);
125 return (first_high << 17) | (first_mid << 1) | (first_low >> 15);
128 static inline void write_elapsed_second(unsigned long sec)
130 spin_lock_irq(&rtc_lock);
132 rtc1_write(ETIMELREG, (uint16_t)(sec << 15));
133 rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1));
134 rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17));
136 spin_unlock_irq(&rtc_lock);
139 static void vr41xx_rtc_release(struct device *dev)
142 spin_lock_irq(&rtc_lock);
144 rtc1_write(ECMPLREG, 0);
145 rtc1_write(ECMPMREG, 0);
146 rtc1_write(ECMPHREG, 0);
147 rtc1_write(RTCL1LREG, 0);
148 rtc1_write(RTCL1HREG, 0);
150 spin_unlock_irq(&rtc_lock);
152 disable_irq(ELAPSEDTIME_IRQ);
153 disable_irq(RTCLONG1_IRQ);
156 static int vr41xx_rtc_read_time(struct device *dev, struct rtc_time *time)
158 unsigned long epoch_sec, elapsed_sec;
160 epoch_sec = mktime(epoch, 1, 1, 0, 0, 0);
161 elapsed_sec = read_elapsed_second();
163 rtc_time_to_tm(epoch_sec + elapsed_sec, time);
165 return 0;
168 static int vr41xx_rtc_set_time(struct device *dev, struct rtc_time *time)
170 unsigned long epoch_sec, current_sec;
172 epoch_sec = mktime(epoch, 1, 1, 0, 0, 0);
173 current_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday,
174 time->tm_hour, time->tm_min, time->tm_sec);
176 write_elapsed_second(current_sec - epoch_sec);
178 return 0;
181 static int vr41xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
183 unsigned long low, mid, high;
184 struct rtc_time *time = &wkalrm->time;
186 spin_lock_irq(&rtc_lock);
188 low = rtc1_read(ECMPLREG);
189 mid = rtc1_read(ECMPMREG);
190 high = rtc1_read(ECMPHREG);
192 spin_unlock_irq(&rtc_lock);
194 rtc_time_to_tm((high << 17) | (mid << 1) | (low >> 15), time);
196 return 0;
199 static int vr41xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
201 unsigned long alarm_sec;
202 struct rtc_time *time = &wkalrm->time;
204 alarm_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday,
205 time->tm_hour, time->tm_min, time->tm_sec);
207 spin_lock_irq(&rtc_lock);
209 rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15));
210 rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1));
211 rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17));
213 spin_unlock_irq(&rtc_lock);
215 return 0;
218 static int vr41xx_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
220 unsigned long count;
222 switch (cmd) {
223 case RTC_AIE_ON:
224 enable_irq(ELAPSEDTIME_IRQ);
225 break;
226 case RTC_AIE_OFF:
227 disable_irq(ELAPSEDTIME_IRQ);
228 break;
229 case RTC_PIE_ON:
230 enable_irq(RTCLONG1_IRQ);
231 break;
232 case RTC_PIE_OFF:
233 disable_irq(RTCLONG1_IRQ);
234 break;
235 case RTC_IRQP_READ:
236 return put_user(periodic_frequency, (unsigned long __user *)arg);
237 break;
238 case RTC_IRQP_SET:
239 if (arg > MAX_PERIODIC_RATE)
240 return -EINVAL;
242 periodic_frequency = arg;
244 count = RTC_FREQUENCY;
245 do_div(count, arg);
247 periodic_count = count;
249 spin_lock_irq(&rtc_lock);
251 rtc1_write(RTCL1LREG, count);
252 rtc1_write(RTCL1HREG, count >> 16);
254 spin_unlock_irq(&rtc_lock);
255 break;
256 case RTC_EPOCH_READ:
257 return put_user(epoch, (unsigned long __user *)arg);
258 case RTC_EPOCH_SET:
259 /* Doesn't support before 1900 */
260 if (arg < 1900)
261 return -EINVAL;
262 epoch = arg;
263 break;
264 default:
265 return -ENOIOCTLCMD;
268 return 0;
271 static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id)
273 struct platform_device *pdev = (struct platform_device *)dev_id;
274 struct rtc_device *rtc = platform_get_drvdata(pdev);
276 rtc2_write(RTCINTREG, ELAPSEDTIME_INT);
278 rtc_update_irq(&rtc->class_dev, 1, RTC_AF);
280 return IRQ_HANDLED;
283 static irqreturn_t rtclong1_interrupt(int irq, void *dev_id)
285 struct platform_device *pdev = (struct platform_device *)dev_id;
286 struct rtc_device *rtc = platform_get_drvdata(pdev);
287 unsigned long count = periodic_count;
289 rtc2_write(RTCINTREG, RTCLONG1_INT);
291 rtc1_write(RTCL1LREG, count);
292 rtc1_write(RTCL1HREG, count >> 16);
294 rtc_update_irq(&rtc->class_dev, 1, RTC_PF);
296 return IRQ_HANDLED;
299 static const struct rtc_class_ops vr41xx_rtc_ops = {
300 .release = vr41xx_rtc_release,
301 .ioctl = vr41xx_rtc_ioctl,
302 .read_time = vr41xx_rtc_read_time,
303 .set_time = vr41xx_rtc_set_time,
304 .read_alarm = vr41xx_rtc_read_alarm,
305 .set_alarm = vr41xx_rtc_set_alarm,
308 static int __devinit rtc_probe(struct platform_device *pdev)
310 struct rtc_device *rtc;
311 unsigned int irq;
312 int retval;
314 if (pdev->num_resources != 2)
315 return -EBUSY;
317 rtc1_base = ioremap(pdev->resource[0].start, RTC1_SIZE);
318 if (rtc1_base == NULL)
319 return -EBUSY;
321 rtc2_base = ioremap(pdev->resource[1].start, RTC2_SIZE);
322 if (rtc2_base == NULL) {
323 iounmap(rtc1_base);
324 rtc1_base = NULL;
325 return -EBUSY;
328 rtc = rtc_device_register(rtc_name, &pdev->dev, &vr41xx_rtc_ops, THIS_MODULE);
329 if (IS_ERR(rtc)) {
330 iounmap(rtc1_base);
331 iounmap(rtc2_base);
332 rtc1_base = NULL;
333 rtc2_base = NULL;
334 return PTR_ERR(rtc);
337 spin_lock_irq(&rtc_lock);
339 rtc1_write(ECMPLREG, 0);
340 rtc1_write(ECMPMREG, 0);
341 rtc1_write(ECMPHREG, 0);
342 rtc1_write(RTCL1LREG, 0);
343 rtc1_write(RTCL1HREG, 0);
345 spin_unlock_irq(&rtc_lock);
347 irq = ELAPSEDTIME_IRQ;
348 retval = request_irq(irq, elapsedtime_interrupt, IRQF_DISABLED,
349 "elapsed_time", pdev);
350 if (retval == 0) {
351 irq = RTCLONG1_IRQ;
352 retval = request_irq(irq, rtclong1_interrupt, IRQF_DISABLED,
353 "rtclong1", pdev);
356 if (retval < 0) {
357 printk(KERN_ERR "rtc: IRQ%d is busy\n", irq);
358 rtc_device_unregister(rtc);
359 if (irq == RTCLONG1_IRQ)
360 free_irq(ELAPSEDTIME_IRQ, NULL);
361 iounmap(rtc1_base);
362 iounmap(rtc2_base);
363 rtc1_base = NULL;
364 rtc2_base = NULL;
365 return retval;
368 platform_set_drvdata(pdev, rtc);
370 disable_irq(ELAPSEDTIME_IRQ);
371 disable_irq(RTCLONG1_IRQ);
373 printk(KERN_INFO "rtc: Real Time Clock of NEC VR4100 series\n");
375 return 0;
378 static int __devexit rtc_remove(struct platform_device *pdev)
380 struct rtc_device *rtc;
382 rtc = platform_get_drvdata(pdev);
383 if (rtc != NULL)
384 rtc_device_unregister(rtc);
386 platform_set_drvdata(pdev, NULL);
388 free_irq(ELAPSEDTIME_IRQ, NULL);
389 free_irq(RTCLONG1_IRQ, NULL);
390 if (rtc1_base != NULL)
391 iounmap(rtc1_base);
392 if (rtc2_base != NULL)
393 iounmap(rtc2_base);
395 return 0;
398 static struct platform_device *rtc_platform_device;
400 static struct platform_driver rtc_platform_driver = {
401 .probe = rtc_probe,
402 .remove = __devexit_p(rtc_remove),
403 .driver = {
404 .name = rtc_name,
405 .owner = THIS_MODULE,
409 static int __init vr41xx_rtc_init(void)
411 int retval;
413 switch (current_cpu_data.cputype) {
414 case CPU_VR4111:
415 case CPU_VR4121:
416 rtc_resource[0].start = RTC1_TYPE1_START;
417 rtc_resource[0].end = RTC1_TYPE1_END;
418 rtc_resource[1].start = RTC2_TYPE1_START;
419 rtc_resource[1].end = RTC2_TYPE1_END;
420 break;
421 case CPU_VR4122:
422 case CPU_VR4131:
423 case CPU_VR4133:
424 rtc_resource[0].start = RTC1_TYPE2_START;
425 rtc_resource[0].end = RTC1_TYPE2_END;
426 rtc_resource[1].start = RTC2_TYPE2_START;
427 rtc_resource[1].end = RTC2_TYPE2_END;
428 break;
429 default:
430 return -ENODEV;
431 break;
434 rtc_platform_device = platform_device_alloc("RTC", -1);
435 if (rtc_platform_device == NULL)
436 return -ENOMEM;
438 retval = platform_device_add_resources(rtc_platform_device,
439 rtc_resource, ARRAY_SIZE(rtc_resource));
441 if (retval == 0)
442 retval = platform_device_add(rtc_platform_device);
444 if (retval < 0) {
445 platform_device_put(rtc_platform_device);
446 return retval;
449 retval = platform_driver_register(&rtc_platform_driver);
450 if (retval < 0)
451 platform_device_unregister(rtc_platform_device);
453 return retval;
456 static void __exit vr41xx_rtc_exit(void)
458 platform_driver_unregister(&rtc_platform_driver);
459 platform_device_unregister(rtc_platform_device);
462 module_init(vr41xx_rtc_init);
463 module_exit(vr41xx_rtc_exit);