MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / drivers / cdrom / cm206.c
blobe6d8e9ededeaeb57e562e84ad5987f89c8262f0c
1 /* cm206.c. A linux-driver for the cm206 cdrom player with cm260 adapter card.
2 Copyright (c) 1995--1997 David A. van Leeuwen.
3 $Id: cm206.c,v 1.5 1997/12/26 11:02:51 david Exp $
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 History:
20 Started 25 jan 1994. Waiting for documentation...
21 22 feb 1995: 0.1a first reasonably safe polling driver.
22 Two major bugs, one in read_sector and one in
23 do_cm206_request, happened to cancel!
24 25 feb 1995: 0.2a first reasonable interrupt driven version of above.
25 uart writes are still done in polling mode.
26 25 feb 1995: 0.21a writes also in interrupt mode, still some
27 small bugs to be found... Larger buffer.
28 2 mrt 1995: 0.22 Bug found (cd-> nowhere, interrupt was called in
29 initialization), read_ahead of 16. Timeouts implemented.
30 unclear if they do something...
31 7 mrt 1995: 0.23 Start of background read-ahead.
32 18 mrt 1995: 0.24 Working background read-ahead. (still problems)
33 26 mrt 1995: 0.25 Multi-session ioctl added (kernel v1.2).
34 Statistics implemented, though separate stats206.h.
35 Accessible through ioctl 0x1000 (just a number).
36 Hard to choose between v1.2 development and 1.1.75.
37 Bottom-half doesn't work with 1.2...
38 0.25a: fixed... typo. Still problems...
39 1 apr 1995: 0.26 Module support added. Most bugs found. Use kernel 1.2.n.
40 5 apr 1995: 0.27 Auto-probe for the adapter card base address.
41 Auto-probe for the adaptor card irq line.
42 7 apr 1995: 0.28 Added lilo setup support for base address and irq.
43 Use major number 32 (not in this source), officially
44 assigned to this driver.
45 9 apr 1995: 0.29 Added very limited audio support. Toc_header, stop, pause,
46 resume, eject. Play_track ignores track info, because we can't
47 read a table-of-contents entry. Toc_entry is implemented
48 as a `placebo' function: always returns start of disc.
49 3 may 1995: 0.30 Audio support completed. The get_toc_entry function
50 is implemented as a binary search.
51 15 may 1995: 0.31 More work on audio stuff. Workman is not easy to
52 satisfy; changed binary search into linear search.
53 Auto-probe for base address somewhat relaxed.
54 1 jun 1995: 0.32 Removed probe_irq_on/off for module version.
55 10 jun 1995: 0.33 Workman still behaves funny, but you should be
56 able to eject and substitute another disc.
58 An adaptation of 0.33 is included in linux-1.3.7 by Eberhard Moenkeberg
60 18 jul 1995: 0.34 Patch by Heiko Eissfeldt included, mainly considering
61 verify_area's in the ioctls. Some bugs introduced by
62 EM considering the base port and irq fixed.
64 18 dec 1995: 0.35 Add some code for error checking... no luck...
66 We jump to reach our goal: version 1.0 in the next stable linux kernel.
68 19 mar 1996: 0.95 Different implementation of CDROM_GET_UPC, on
69 request of Thomas Quinot.
70 25 mar 1996: 0.96 Interpretation of opening with O_WRONLY or O_RDWR:
71 open only for ioctl operation, e.g., for operation of
72 tray etc.
73 4 apr 1996: 0.97 First implementation of layer between VFS and cdrom
74 driver, a generic interface. Much of the functionality
75 of cm206_open() and cm206_ioctl() is transferred to a
76 new file cdrom.c and its header ucdrom.h.
78 Upgrade to Linux kernel 1.3.78.
80 11 apr 1996 0.98 Upgrade to Linux kernel 1.3.85
81 More code moved to cdrom.c
83 0.99 Some more small changes to decrease number
84 of oopses at module load;
86 27 jul 1996 0.100 Many hours of debugging, kernel change from 1.2.13
87 to 2.0.7 seems to have introduced some weird behavior
88 in (interruptible_)sleep_on(&cd->data): the process
89 seems to be woken without any explicit wake_up in my own
90 code. Patch to try 100x in case such untriggered wake_up's
91 occur.
93 28 jul 1996 0.101 Rewriting of the code that receives the command echo,
94 using a fifo to store echoed bytes.
96 Branch from 0.99:
98 0.99.1.0 Update to kernel release 2.0.10 dev_t -> kdev_t
99 (emoenke) various typos found by others. extra
100 module-load oops protection.
102 0.99.1.1 Initialization constant cdrom_dops.speed
103 changed from float (2.0) to int (2); Cli()-sti() pair
104 around cm260_reset() in module initialization code.
106 0.99.1.2 Changes literally as proposed by Scott Snyder
107 <snyder@d0sgif.fnal.gov> for the 2.1 kernel line, which
108 have to do mainly with the poor minor support i had. The
109 major new concept is to change a cdrom driver's
110 operations struct from the capabilities struct. This
111 reflects the fact that there is one major for a driver,
112 whilst there can be many minors whith completely
113 different capabilities.
115 0.99.1.3 More changes for operations/info separation.
117 0.99.1.4 Added speed selection (someone had to do this
118 first).
120 23 jan 1997 0.99.1.5 MODULE_PARMS call added.
122 23 jan 1997 0.100.1.2--0.100.1.5 following similar lines as
123 0.99.1.1--0.99.1.5. I get too many complaints about the
124 drive making read errors. What't wrong with the 2.0+
125 kernel line? Why get i (and othe cm206 owners) weird
126 results? Why were things good in the good old 1.1--1.2
127 era? Why don't i throw away the drive?
129 2 feb 1997 0.102 Added `volatile' to values in cm206_struct. Seems to
130 reduce many of the problems. Rewrote polling routines
131 to use fixed delays between polls.
132 0.103 Changed printk behavior.
133 0.104 Added a 0.100 -> 0.100.1.1 change
135 11 feb 1997 0.105 Allow auto_probe during module load, disable
136 with module option "auto_probe=0". Moved some debugging
137 statements to lower priority. Implemented select_speed()
138 function.
140 13 feb 1997 1.0 Final version for 2.0 kernel line.
142 All following changes will be for the 2.1 kernel line.
144 15 feb 1997 1.1 Keep up with kernel 2.1.26, merge in changes from
145 cdrom.c 0.100.1.1--1.0. Add some more MODULE_PARMS.
147 14 sep 1997 1.2 Upgrade to Linux 2.1.55. Added blksize_size[], patch
148 sent by James Bottomley <James.Bottomley@columbiasc.ncr.com>.
150 21 dec 1997 1.4 Upgrade to Linux 2.1.72.
152 24 jan 1998 Removed the cm206_disc_status() function, as it was now dead
153 code. The Uniform CDROM driver now provides this functionality.
155 9 Nov. 1999 Make kernel-parameter implementation work with 2.3.x
156 Removed init_module & cleanup_module in favor of
157 module_init & module_exit.
158 Torben Mathiasen <tmm@image.dk>
160 * Parts of the code are based upon lmscd.c written by Kai Petzke,
161 * sbpcd.c written by Eberhard Moenkeberg, and mcd.c by Martin
162 * Harriss, but any off-the-shelf dynamic programming algorithm won't
163 * be able to find them.
165 * The cm206 drive interface and the cm260 adapter card seem to be
166 * sufficiently different from their cm205/cm250 counterparts
167 * in order to write a complete new driver.
169 * I call all routines connected to the Linux kernel something
170 * with `cm206' in it, as this stuff is too series-dependent.
172 * Currently, my limited knowledge is based on:
173 * - The Linux Kernel Hacker's guide, v. 0.5, by Michael K. Johnson
174 * - Linux Kernel Programmierung, by Michael Beck and others
175 * - Philips/LMS cm206 and cm226 product specification
176 * - Philips/LMS cm260 product specification
178 * David van Leeuwen, david@tm.tno.nl. */
179 #define REVISION "$Revision: 1.5 $"
181 #include <linux/module.h>
183 #include <linux/errno.h> /* These include what we really need */
184 #include <linux/delay.h>
185 #include <linux/string.h>
186 #include <linux/sched.h>
187 #include <linux/interrupt.h>
188 #include <linux/timer.h>
189 #include <linux/cdrom.h>
190 #include <linux/ioport.h>
191 #include <linux/mm.h>
192 #include <linux/slab.h>
193 #include <linux/init.h>
195 /* #include <linux/ucdrom.h> */
197 #include <asm/io.h>
199 #define MAJOR_NR CM206_CDROM_MAJOR
201 #include <linux/blkdev.h>
203 #undef DEBUG
204 #define STATISTICS /* record times and frequencies of events */
205 #define AUTO_PROBE_MODULE
206 #define USE_INSW
208 #include "cm206.h"
210 /* This variable defines whether or not to probe for adapter base port
211 address and interrupt request. It can be overridden by the boot
212 parameter `auto'.
214 static int auto_probe = 1; /* Yes, why not? */
216 static int cm206_base = CM206_BASE;
217 static int cm206_irq = CM206_IRQ;
218 #ifdef MODULE
219 static int cm206[2] = { 0, 0 }; /* for compatible `insmod' parameter passing */
220 module_param_array(cm206, int, NULL, 0); /* base,irq or irq,base */
221 #endif
223 module_param(cm206_base, int, 0); /* base */
224 module_param(cm206_irq, int, 0); /* irq */
225 module_param(auto_probe, bool, 0); /* auto probe base and irq */
226 MODULE_LICENSE("GPL");
228 #define POLLOOP 100 /* milliseconds */
229 #define READ_AHEAD 1 /* defines private buffer, waste! */
230 #define BACK_AHEAD 1 /* defines adapter-read ahead */
231 #define DATA_TIMEOUT (3*HZ) /* measured in jiffies (10 ms) */
232 #define UART_TIMEOUT (5*HZ/100)
233 #define DSB_TIMEOUT (7*HZ) /* time for the slowest command to finish */
234 #define UR_SIZE 4 /* uart receive buffer fifo size */
236 #define LINUX_BLOCK_SIZE 512 /* WHERE is this defined? */
237 #define RAW_SECTOR_SIZE 2352 /* ok, is also defined in cdrom.h */
238 #define ISO_SECTOR_SIZE 2048
239 #define BLOCKS_ISO (ISO_SECTOR_SIZE/LINUX_BLOCK_SIZE) /* 4 */
240 #define CD_SYNC_HEAD 16 /* CD_SYNC + CD_HEAD */
242 #ifdef STATISTICS /* keep track of errors in counters */
243 #define stats(i) { ++cd->stats[st_ ## i]; \
244 cd->last_stat[st_ ## i] = cd->stat_counter++; \
246 #else
247 #define stats(i) (void) 0;
248 #endif
250 #define Debug(a) {printk (KERN_DEBUG); printk a;}
251 #ifdef DEBUG
252 #define debug(a) Debug(a)
253 #else
254 #define debug(a) (void) 0;
255 #endif
257 typedef unsigned char uch; /* 8-bits */
258 typedef unsigned short ush; /* 16-bits */
260 struct toc_struct { /* private copy of Table of Contents */
261 uch track, fsm[3], q0;
264 struct cm206_struct {
265 volatile ush intr_ds; /* data status read on last interrupt */
266 volatile ush intr_ls; /* uart line status read on last interrupt */
267 volatile uch ur[UR_SIZE]; /* uart receive buffer fifo */
268 volatile uch ur_w, ur_r; /* write/read buffer index */
269 volatile uch dsb, cc; /* drive status byte and condition (error) code */
270 int command; /* command to be written to the uart */
271 int openfiles;
272 ush sector[READ_AHEAD * RAW_SECTOR_SIZE / 2]; /* buffered cd-sector */
273 int sector_first, sector_last; /* range of these sectors */
274 wait_queue_head_t uart; /* wait queues for interrupt */
275 wait_queue_head_t data;
276 struct timer_list timer; /* time-out */
277 char timed_out;
278 signed char max_sectors; /* number of sectors that fit in adapter mem */
279 char wait_back; /* we're waiting for a background-read */
280 char background; /* is a read going on in the background? */
281 int adapter_first; /* if so, that's the starting sector */
282 int adapter_last;
283 char fifo_overflowed;
284 uch disc_status[7]; /* result of get_disc_status command */
285 #ifdef STATISTICS
286 int stats[NR_STATS];
287 int last_stat[NR_STATS]; /* `time' at which stat was stat */
288 int stat_counter;
289 #endif
290 struct toc_struct toc[101]; /* The whole table of contents + lead-out */
291 uch q[10]; /* Last read q-channel info */
292 uch audio_status[5]; /* last read position on pause */
293 uch media_changed; /* record if media changed */
296 #define DISC_STATUS cd->disc_status[0]
297 #define FIRST_TRACK cd->disc_status[1]
298 #define LAST_TRACK cd->disc_status[2]
299 #define PAUSED cd->audio_status[0] /* misuse this memory byte! */
300 #define PLAY_TO cd->toc[0] /* toc[0] records end-time in play */
302 static struct cm206_struct *cd; /* the main memory structure */
303 static struct request_queue *cm206_queue;
304 static DEFINE_SPINLOCK(cm206_lock);
306 /* First, we define some polling functions. These are actually
307 only being used in the initialization. */
309 static void send_command_polled(int command)
311 int loop = POLLOOP;
312 while (!(inw(r_line_status) & ls_transmitter_buffer_empty)
313 && loop > 0) {
314 mdelay(1); /* one millisec delay */
315 --loop;
317 outw(command, r_uart_transmit);
320 static uch receive_echo_polled(void)
322 int loop = POLLOOP;
323 while (!(inw(r_line_status) & ls_receive_buffer_full) && loop > 0) {
324 mdelay(1);
325 --loop;
327 return ((uch) inw(r_uart_receive));
330 static uch send_receive_polled(int command)
332 send_command_polled(command);
333 return receive_echo_polled();
336 static inline void clear_ur(void)
338 if (cd->ur_r != cd->ur_w) {
339 debug(("Deleting bytes from fifo:"));
340 for (; cd->ur_r != cd->ur_w;
341 cd->ur_r++, cd->ur_r %= UR_SIZE)
342 debug((" 0x%x", cd->ur[cd->ur_r]));
343 debug(("\n"));
347 static struct tasklet_struct cm206_tasklet;
349 /* The interrupt handler. When the cm260 generates an interrupt, very
350 much care has to be taken in reading out the registers in the right
351 order; in case of a receive_buffer_full interrupt, first the
352 uart_receive must be read, and then the line status again to
353 de-assert the interrupt line. It took me a couple of hours to find
354 this out:-(
356 The function reset_cm206 appears to cause an interrupt, because
357 pulling up the INIT line clears both the uart-write-buffer /and/
358 the uart-write-buffer-empty mask. We call this a `lost interrupt,'
359 as there seems so reason for this to happen.
362 static irqreturn_t cm206_interrupt(int sig, void *dev_id)
364 volatile ush fool;
365 cd->intr_ds = inw(r_data_status); /* resets data_ready, data_error,
366 crc_error, sync_error, toc_ready
367 interrupts */
368 cd->intr_ls = inw(r_line_status); /* resets overrun bit */
369 debug(("Intr, 0x%x 0x%x, %d\n", cd->intr_ds, cd->intr_ls,
370 cd->background));
371 if (cd->intr_ls & ls_attention)
372 stats(attention);
373 /* receive buffer full? */
374 if (cd->intr_ls & ls_receive_buffer_full) {
375 cd->ur[cd->ur_w] = inb(r_uart_receive); /* get order right! */
376 cd->intr_ls = inw(r_line_status); /* resets rbf interrupt */
377 debug(("receiving #%d: 0x%x\n", cd->ur_w,
378 cd->ur[cd->ur_w]));
379 cd->ur_w++;
380 cd->ur_w %= UR_SIZE;
381 if (cd->ur_w == cd->ur_r)
382 debug(("cd->ur overflow!\n"));
383 if (waitqueue_active(&cd->uart) && cd->background < 2) {
384 del_timer(&cd->timer);
385 wake_up_interruptible(&cd->uart);
388 /* data ready in fifo? */
389 else if (cd->intr_ds & ds_data_ready) {
390 if (cd->background)
391 ++cd->adapter_last;
392 if (waitqueue_active(&cd->data)
393 && (cd->wait_back || !cd->background)) {
394 del_timer(&cd->timer);
395 wake_up_interruptible(&cd->data);
397 stats(data_ready);
399 /* ready to issue a write command? */
400 else if (cd->command && cd->intr_ls & ls_transmitter_buffer_empty) {
401 outw(dc_normal | (inw(r_data_status) & 0x7f),
402 r_data_control);
403 outw(cd->command, r_uart_transmit);
404 cd->command = 0;
405 if (!cd->background)
406 wake_up_interruptible(&cd->uart);
408 /* now treat errors (at least, identify them for debugging) */
409 else if (cd->intr_ds & ds_fifo_overflow) {
410 debug(("Fifo overflow at sectors 0x%x\n",
411 cd->sector_first));
412 fool = inw(r_fifo_output_buffer); /* de-assert the interrupt */
413 cd->fifo_overflowed = 1; /* signal one word less should be read */
414 stats(fifo_overflow);
415 } else if (cd->intr_ds & ds_data_error) {
416 debug(("Data error at sector 0x%x\n", cd->sector_first));
417 stats(data_error);
418 } else if (cd->intr_ds & ds_crc_error) {
419 debug(("CRC error at sector 0x%x\n", cd->sector_first));
420 stats(crc_error);
421 } else if (cd->intr_ds & ds_sync_error) {
422 debug(("Sync at sector 0x%x\n", cd->sector_first));
423 stats(sync_error);
424 } else if (cd->intr_ds & ds_toc_ready) {
425 /* do something appropriate */
427 /* couldn't see why this interrupt, maybe due to init */
428 else {
429 outw(dc_normal | READ_AHEAD, r_data_control);
430 stats(lost_intr);
432 if (cd->background
433 && (cd->adapter_last - cd->adapter_first == cd->max_sectors
434 || cd->fifo_overflowed))
435 tasklet_schedule(&cm206_tasklet); /* issue a stop read command */
436 stats(interrupt);
437 return IRQ_HANDLED;
440 /* we have put the address of the wait queue in who */
441 static void cm206_timeout(unsigned long who)
443 cd->timed_out = 1;
444 debug(("Timing out\n"));
445 wake_up_interruptible((wait_queue_head_t *) who);
448 /* This function returns 1 if a timeout occurred, 0 if an interrupt
449 happened */
450 static int sleep_or_timeout(wait_queue_head_t * wait, int timeout)
452 cd->timed_out = 0;
453 init_timer(&cd->timer);
454 cd->timer.data = (unsigned long) wait;
455 cd->timer.expires = jiffies + timeout;
456 add_timer(&cd->timer);
457 debug(("going to sleep\n"));
458 interruptible_sleep_on(wait);
459 del_timer(&cd->timer);
460 if (cd->timed_out) {
461 cd->timed_out = 0;
462 return 1;
463 } else
464 return 0;
467 static void send_command(int command)
469 debug(("Sending 0x%x\n", command));
470 if (!(inw(r_line_status) & ls_transmitter_buffer_empty)) {
471 cd->command = command;
472 cli(); /* don't interrupt before sleep */
473 outw(dc_mask_sync_error | dc_no_stop_on_error |
474 (inw(r_data_status) & 0x7f), r_data_control);
475 /* interrupt routine sends command */
476 if (sleep_or_timeout(&cd->uart, UART_TIMEOUT)) {
477 debug(("Time out on write-buffer\n"));
478 stats(write_timeout);
479 outw(command, r_uart_transmit);
481 debug(("Write commmand delayed\n"));
482 } else
483 outw(command, r_uart_transmit);
486 static uch receive_byte(int timeout)
488 uch ret;
489 cli();
490 debug(("cli\n"));
491 ret = cd->ur[cd->ur_r];
492 if (cd->ur_r != cd->ur_w) {
493 sti();
494 debug(("returning #%d: 0x%x\n", cd->ur_r,
495 cd->ur[cd->ur_r]));
496 cd->ur_r++;
497 cd->ur_r %= UR_SIZE;
498 return ret;
499 } else if (sleep_or_timeout(&cd->uart, timeout)) { /* does sti() */
500 debug(("Time out on receive-buffer\n"));
501 #ifdef STATISTICS
502 if (timeout == UART_TIMEOUT)
503 stats(receive_timeout) /* no `;'! */
504 else
505 stats(dsb_timeout);
506 #endif
507 return 0xda;
509 ret = cd->ur[cd->ur_r];
510 debug(("slept; returning #%d: 0x%x\n", cd->ur_r,
511 cd->ur[cd->ur_r]));
512 cd->ur_r++;
513 cd->ur_r %= UR_SIZE;
514 return ret;
517 static inline uch receive_echo(void)
519 return receive_byte(UART_TIMEOUT);
522 static inline uch send_receive(int command)
524 send_command(command);
525 return receive_echo();
528 static inline uch wait_dsb(void)
530 return receive_byte(DSB_TIMEOUT);
533 static int type_0_command(int command, int expect_dsb)
535 int e;
536 clear_ur();
537 if (command != (e = send_receive(command))) {
538 debug(("command 0x%x echoed as 0x%x\n", command, e));
539 stats(echo);
540 return -1;
542 if (expect_dsb) {
543 cd->dsb = wait_dsb(); /* wait for command to finish */
545 return 0;
548 static int type_1_command(int command, int bytes, uch * status)
549 { /* returns info */
550 int i;
551 if (type_0_command(command, 0))
552 return -1;
553 for (i = 0; i < bytes; i++)
554 status[i] = send_receive(c_gimme);
555 return 0;
558 /* This function resets the adapter card. We'd better not do this too
559 * often, because it tends to generate `lost interrupts.' */
560 static void reset_cm260(void)
562 outw(dc_normal | dc_initialize | READ_AHEAD, r_data_control);
563 udelay(10); /* 3.3 mu sec minimum */
564 outw(dc_normal | READ_AHEAD, r_data_control);
567 /* fsm: frame-sec-min from linear address; one of many */
568 static void fsm(int lba, uch * fsm)
570 fsm[0] = lba % 75;
571 lba /= 75;
572 lba += 2;
573 fsm[1] = lba % 60;
574 fsm[2] = lba / 60;
577 static inline int fsm2lba(uch * fsm)
579 return fsm[0] + 75 * (fsm[1] - 2 + 60 * fsm[2]);
582 static inline int f_s_m2lba(uch f, uch s, uch m)
584 return f + 75 * (s - 2 + 60 * m);
587 static int start_read(int start)
589 uch read_sector[4] = { c_read_data, };
590 int i, e;
592 fsm(start, &read_sector[1]);
593 clear_ur();
594 for (i = 0; i < 4; i++)
595 if (read_sector[i] != (e = send_receive(read_sector[i]))) {
596 debug(("read_sector: %x echoes %x\n",
597 read_sector[i], e));
598 stats(echo);
599 if (e == 0xff) { /* this seems to happen often */
600 e = receive_echo();
601 debug(("Second try %x\n", e));
602 if (e != read_sector[i])
603 return -1;
606 return 0;
609 static int stop_read(void)
611 int e;
612 type_0_command(c_stop, 0);
613 if ((e = receive_echo()) != 0xff) {
614 debug(("c_stop didn't send 0xff, but 0x%x\n", e));
615 stats(stop_0xff);
616 return -1;
618 return 0;
621 /* This function starts to read sectors in adapter memory, the
622 interrupt routine should stop the read. In fact, the bottom_half
623 routine takes care of this. Set a flag `background' in the cd
624 struct to indicate the process. */
626 static int read_background(int start, int reading)
628 if (cd->background)
629 return -1; /* can't do twice */
630 outw(dc_normal | BACK_AHEAD, r_data_control);
631 if (!reading && start_read(start))
632 return -2;
633 cd->adapter_first = cd->adapter_last = start;
634 cd->background = 1; /* flag a read is going on */
635 return 0;
638 #ifdef USE_INSW
639 #define transport_data insw
640 #else
641 /* this routine implements insw(,,). There was a time i had the
642 impression that there would be any difference in error-behaviour. */
643 void transport_data(int port, ush * dest, int count)
645 int i;
646 ush *d;
647 for (i = 0, d = dest; i < count; i++, d++)
648 *d = inw(port);
650 #endif
653 #define MAX_TRIES 100
654 static int read_sector(int start)
656 int tries = 0;
657 if (cd->background) {
658 cd->background = 0;
659 cd->adapter_last = -1; /* invalidate adapter memory */
660 stop_read();
662 cd->fifo_overflowed = 0;
663 reset_cm260(); /* empty fifo etc. */
664 if (start_read(start))
665 return -1;
666 do {
667 if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) {
668 debug(("Read timed out sector 0x%x\n", start));
669 stats(read_timeout);
670 stop_read();
671 return -3;
673 tries++;
674 } while (cd->intr_ds & ds_fifo_empty && tries < MAX_TRIES);
675 if (tries > 1)
676 debug(("Took me some tries\n"))
677 else
678 if (tries == MAX_TRIES)
679 debug(("MAX_TRIES tries for read sector\n"));
680 transport_data(r_fifo_output_buffer, cd->sector,
681 READ_AHEAD * RAW_SECTOR_SIZE / 2);
682 if (read_background(start + READ_AHEAD, 1))
683 stats(read_background);
684 cd->sector_first = start;
685 cd->sector_last = start + READ_AHEAD;
686 stats(read_restarted);
687 return 0;
690 /* The function of bottom-half is to send a stop command to the drive
691 This isn't easy because the routine is not `owned' by any process;
692 we can't go to sleep! The variable cd->background gives the status:
693 0 no read pending
694 1 a read is pending
695 2 c_stop waits for write_buffer_empty
696 3 c_stop waits for receive_buffer_full: echo
697 4 c_stop waits for receive_buffer_full: 0xff
700 static void cm206_tasklet_func(unsigned long ignore)
702 debug(("bh: %d\n", cd->background));
703 switch (cd->background) {
704 case 1:
705 stats(bh);
706 if (!(cd->intr_ls & ls_transmitter_buffer_empty)) {
707 cd->command = c_stop;
708 outw(dc_mask_sync_error | dc_no_stop_on_error |
709 (inw(r_data_status) & 0x7f), r_data_control);
710 cd->background = 2;
711 break; /* we'd better not time-out here! */
712 } else
713 outw(c_stop, r_uart_transmit);
714 /* fall into case 2: */
715 case 2:
716 /* the write has been satisfied by interrupt routine */
717 cd->background = 3;
718 break;
719 case 3:
720 if (cd->ur_r != cd->ur_w) {
721 if (cd->ur[cd->ur_r] != c_stop) {
722 debug(("cm206_bh: c_stop echoed 0x%x\n",
723 cd->ur[cd->ur_r]));
724 stats(echo);
726 cd->ur_r++;
727 cd->ur_r %= UR_SIZE;
729 cd->background++;
730 break;
731 case 4:
732 if (cd->ur_r != cd->ur_w) {
733 if (cd->ur[cd->ur_r] != 0xff) {
734 debug(("cm206_bh: c_stop reacted with 0x%x\n", cd->ur[cd->ur_r]));
735 stats(stop_0xff);
737 cd->ur_r++;
738 cd->ur_r %= UR_SIZE;
740 cd->background = 0;
744 static DECLARE_TASKLET(cm206_tasklet, cm206_tasklet_func, 0);
746 /* This command clears the dsb_possible_media_change flag, so we must
747 * retain it.
749 static void get_drive_status(void)
751 uch status[2];
752 type_1_command(c_drive_status, 2, status); /* this might be done faster */
753 cd->dsb = status[0];
754 cd->cc = status[1];
755 cd->media_changed |=
756 !!(cd->dsb & (dsb_possible_media_change |
757 dsb_drive_not_ready | dsb_tray_not_closed));
760 static void get_disc_status(void)
762 if (type_1_command(c_disc_status, 7, cd->disc_status)) {
763 debug(("get_disc_status: error\n"));
767 /* The new open. The real opening strategy is defined in cdrom.c. */
769 static int cm206_open(struct cdrom_device_info *cdi, int purpose)
771 if (!cd->openfiles) { /* reset only first time */
772 cd->background = 0;
773 reset_cm260();
774 cd->adapter_last = -1; /* invalidate adapter memory */
775 cd->sector_last = -1;
777 ++cd->openfiles;
778 stats(open);
779 return 0;
782 static void cm206_release(struct cdrom_device_info *cdi)
784 if (cd->openfiles == 1) {
785 if (cd->background) {
786 cd->background = 0;
787 stop_read();
789 cd->sector_last = -1; /* Make our internal buffer invalid */
790 FIRST_TRACK = 0; /* No valid disc status */
792 --cd->openfiles;
795 /* Empty buffer empties $sectors$ sectors of the adapter card buffer,
796 * and then reads a sector in kernel memory. */
797 static void empty_buffer(int sectors)
799 while (sectors >= 0) {
800 transport_data(r_fifo_output_buffer,
801 cd->sector + cd->fifo_overflowed,
802 RAW_SECTOR_SIZE / 2 - cd->fifo_overflowed);
803 --sectors;
804 ++cd->adapter_first; /* update the current adapter sector */
805 cd->fifo_overflowed = 0; /* reset overflow bit */
806 stats(sector_transferred);
808 cd->sector_first = cd->adapter_first - 1;
809 cd->sector_last = cd->adapter_first; /* update the buffer sector */
812 /* try_adapter. This function determines if the requested sector is
813 in adapter memory, or will appear there soon. Returns 0 upon
814 success */
815 static int try_adapter(int sector)
817 if (cd->adapter_first <= sector && sector < cd->adapter_last) {
818 /* sector is in adapter memory */
819 empty_buffer(sector - cd->adapter_first);
820 return 0;
821 } else if (cd->background == 1 && cd->adapter_first <= sector
822 && sector < cd->adapter_first + cd->max_sectors) {
823 /* a read is going on, we can wait for it */
824 cd->wait_back = 1;
825 while (sector >= cd->adapter_last) {
826 if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) {
827 debug(("Timed out during background wait: %d %d %d %d\n", sector, cd->adapter_last, cd->adapter_first, cd->background));
828 stats(back_read_timeout);
829 cd->wait_back = 0;
830 return -1;
833 cd->wait_back = 0;
834 empty_buffer(sector - cd->adapter_first);
835 return 0;
836 } else
837 return -2;
840 /* This is not a very smart implementation. We could optimize for
841 consecutive block numbers. I'm not convinced this would really
842 bring down the processor load. */
843 static void do_cm206_request(request_queue_t * q)
845 long int i, cd_sec_no;
846 int quarter, error;
847 uch *source, *dest;
848 struct request *req;
850 while (1) { /* repeat until all requests have been satisfied */
851 req = elv_next_request(q);
852 if (!req)
853 return;
855 if (req->cmd != READ) {
856 debug(("Non-read command %d on cdrom\n", req->cmd));
857 end_request(req, 0);
858 continue;
860 spin_unlock_irq(q->queue_lock);
861 error = 0;
862 for (i = 0; i < req->nr_sectors; i++) {
863 int e1, e2;
864 cd_sec_no = (req->sector + i) / BLOCKS_ISO; /* 4 times 512 bytes */
865 quarter = (req->sector + i) % BLOCKS_ISO;
866 dest = req->buffer + i * LINUX_BLOCK_SIZE;
867 /* is already in buffer memory? */
868 if (cd->sector_first <= cd_sec_no
869 && cd_sec_no < cd->sector_last) {
870 source =
871 ((uch *) cd->sector) + 16 +
872 quarter * LINUX_BLOCK_SIZE +
873 (cd_sec_no -
874 cd->sector_first) * RAW_SECTOR_SIZE;
875 memcpy(dest, source, LINUX_BLOCK_SIZE);
876 } else if (!(e1 = try_adapter(cd_sec_no)) ||
877 !(e2 = read_sector(cd_sec_no))) {
878 source =
879 ((uch *) cd->sector) + 16 +
880 quarter * LINUX_BLOCK_SIZE;
881 memcpy(dest, source, LINUX_BLOCK_SIZE);
882 } else {
883 error = 1;
884 debug(("cm206_request: %d %d\n", e1, e2));
887 spin_lock_irq(q->queue_lock);
888 end_request(req, !error);
892 /* Audio support. I've tried very hard, but the cm206 drive doesn't
893 seem to have a get_toc (table-of-contents) function, while i'm
894 pretty sure it must read the toc upon disc insertion. Therefore
895 this function has been implemented through a binary search
896 strategy. All track starts that happen to be found are stored in
897 cd->toc[], for future use.
899 I've spent a whole day on a bug that only shows under Workman---
900 I don't get it. Tried everything, nothing works. If workman asks
901 for track# 0xaa, it'll get the wrong time back. Any other program
902 receives the correct value. I'm stymied.
905 /* seek seeks to address lba. It does wait to arrive there. */
906 static void seek(int lba)
908 int i;
909 uch seek_command[4] = { c_seek, };
911 fsm(lba, &seek_command[1]);
912 for (i = 0; i < 4; i++)
913 type_0_command(seek_command[i], 0);
914 cd->dsb = wait_dsb();
917 static uch bcdbin(unsigned char bcd)
918 { /* stolen from mcd.c! */
919 return (bcd >> 4) * 10 + (bcd & 0xf);
922 static inline uch normalize_track(uch track)
924 if (track < 1)
925 return 1;
926 if (track > LAST_TRACK)
927 return LAST_TRACK + 1;
928 return track;
931 /* This function does a binary search for track start. It records all
932 * tracks seen in the process. Input $track$ must be between 1 and
933 * #-of-tracks+1. Note that the start of the disc must be in toc[1].fsm.
935 static int get_toc_lba(uch track)
937 int max = 74 * 60 * 75 - 150, min = fsm2lba(cd->toc[1].fsm);
938 int i, lba, l, old_lba = 0;
939 uch *q = cd->q;
940 uch ct; /* current track */
941 int binary = 0;
942 const int skip = 3 * 60 * 75; /* 3 minutes */
944 for (i = track; i > 0; i--)
945 if (cd->toc[i].track) {
946 min = fsm2lba(cd->toc[i].fsm);
947 break;
949 lba = min + skip;
950 do {
951 seek(lba);
952 type_1_command(c_read_current_q, 10, q);
953 ct = normalize_track(q[1]);
954 if (!cd->toc[ct].track) {
955 l = q[9] - bcdbin(q[5]) + 75 * (q[8] -
956 bcdbin(q[4]) - 2 +
957 60 * (q[7] -
958 bcdbin(q
959 [3])));
960 cd->toc[ct].track = q[1]; /* lead out still 0xaa */
961 fsm(l, cd->toc[ct].fsm);
962 cd->toc[ct].q0 = q[0]; /* contains adr and ctrl info */
963 if (ct == track)
964 return l;
966 old_lba = lba;
967 if (binary) {
968 if (ct < track)
969 min = lba;
970 else
971 max = lba;
972 lba = (min + max) / 2;
973 } else {
974 if (ct < track)
975 lba += skip;
976 else {
977 binary = 1;
978 max = lba;
979 min = lba - skip;
980 lba = (min + max) / 2;
983 } while (lba != old_lba);
984 return lba;
987 static void update_toc_entry(uch track)
989 track = normalize_track(track);
990 if (!cd->toc[track].track)
991 get_toc_lba(track);
994 /* return 0 upon success */
995 static int read_toc_header(struct cdrom_tochdr *hp)
997 if (!FIRST_TRACK)
998 get_disc_status();
999 if (hp) {
1000 int i;
1001 hp->cdth_trk0 = FIRST_TRACK;
1002 hp->cdth_trk1 = LAST_TRACK;
1003 /* fill in first track position */
1004 for (i = 0; i < 3; i++)
1005 cd->toc[1].fsm[i] = cd->disc_status[3 + i];
1006 update_toc_entry(LAST_TRACK + 1); /* find most entries */
1007 return 0;
1009 return -1;
1012 static void play_from_to_msf(struct cdrom_msf *msfp)
1014 uch play_command[] = { c_play,
1015 msfp->cdmsf_frame0, msfp->cdmsf_sec0, msfp->cdmsf_min0,
1016 msfp->cdmsf_frame1, msfp->cdmsf_sec1, msfp->cdmsf_min1, 2,
1019 int i;
1020 for (i = 0; i < 9; i++)
1021 type_0_command(play_command[i], 0);
1022 for (i = 0; i < 3; i++)
1023 PLAY_TO.fsm[i] = play_command[i + 4];
1024 PLAY_TO.track = 0; /* say no track end */
1025 cd->dsb = wait_dsb();
1028 static void play_from_to_track(int from, int to)
1030 uch play_command[8] = { c_play, };
1031 int i;
1033 if (from == 0) { /* continue paused play */
1034 for (i = 0; i < 3; i++) {
1035 play_command[i + 1] = cd->audio_status[i + 2];
1036 play_command[i + 4] = PLAY_TO.fsm[i];
1038 } else {
1039 update_toc_entry(from);
1040 update_toc_entry(to + 1);
1041 for (i = 0; i < 3; i++) {
1042 play_command[i + 1] = cd->toc[from].fsm[i];
1043 PLAY_TO.fsm[i] = play_command[i + 4] =
1044 cd->toc[to + 1].fsm[i];
1046 PLAY_TO.track = to;
1048 for (i = 0; i < 7; i++)
1049 type_0_command(play_command[i], 0);
1050 for (i = 0; i < 2; i++)
1051 type_0_command(0x2, 0); /* volume */
1052 cd->dsb = wait_dsb();
1055 static int get_current_q(struct cdrom_subchnl *qp)
1057 int i;
1058 uch *q = cd->q;
1059 if (type_1_command(c_read_current_q, 10, q))
1060 return 0;
1061 /* q[0] = bcdbin(q[0]); Don't think so! */
1062 for (i = 2; i < 6; i++)
1063 q[i] = bcdbin(q[i]);
1064 qp->cdsc_adr = q[0] & 0xf;
1065 qp->cdsc_ctrl = q[0] >> 4; /* from mcd.c */
1066 qp->cdsc_trk = q[1];
1067 qp->cdsc_ind = q[2];
1068 if (qp->cdsc_format == CDROM_MSF) {
1069 qp->cdsc_reladdr.msf.minute = q[3];
1070 qp->cdsc_reladdr.msf.second = q[4];
1071 qp->cdsc_reladdr.msf.frame = q[5];
1072 qp->cdsc_absaddr.msf.minute = q[7];
1073 qp->cdsc_absaddr.msf.second = q[8];
1074 qp->cdsc_absaddr.msf.frame = q[9];
1075 } else {
1076 qp->cdsc_reladdr.lba = f_s_m2lba(q[5], q[4], q[3]);
1077 qp->cdsc_absaddr.lba = f_s_m2lba(q[9], q[8], q[7]);
1079 get_drive_status();
1080 if (cd->dsb & dsb_play_in_progress)
1081 qp->cdsc_audiostatus = CDROM_AUDIO_PLAY;
1082 else if (PAUSED)
1083 qp->cdsc_audiostatus = CDROM_AUDIO_PAUSED;
1084 else
1085 qp->cdsc_audiostatus = CDROM_AUDIO_NO_STATUS;
1086 return 0;
1089 static void invalidate_toc(void)
1091 memset(cd->toc, 0, sizeof(cd->toc));
1092 memset(cd->disc_status, 0, sizeof(cd->disc_status));
1095 /* cdrom.c guarantees that cdte_format == CDROM_MSF */
1096 static void get_toc_entry(struct cdrom_tocentry *ep)
1098 uch track = normalize_track(ep->cdte_track);
1099 update_toc_entry(track);
1100 ep->cdte_addr.msf.frame = cd->toc[track].fsm[0];
1101 ep->cdte_addr.msf.second = cd->toc[track].fsm[1];
1102 ep->cdte_addr.msf.minute = cd->toc[track].fsm[2];
1103 ep->cdte_adr = cd->toc[track].q0 & 0xf;
1104 ep->cdte_ctrl = cd->toc[track].q0 >> 4;
1105 ep->cdte_datamode = 0;
1108 /* Audio ioctl. Ioctl commands connected to audio are in such an
1109 * idiosyncratic i/o format, that we leave these untouched. Return 0
1110 * upon success. Memory checking has been done by cdrom_ioctl(), the
1111 * calling function, as well as LBA/MSF sanitization.
1113 static int cm206_audio_ioctl(struct cdrom_device_info *cdi, unsigned int cmd,
1114 void *arg)
1116 switch (cmd) {
1117 case CDROMREADTOCHDR:
1118 return read_toc_header((struct cdrom_tochdr *) arg);
1119 case CDROMREADTOCENTRY:
1120 get_toc_entry((struct cdrom_tocentry *) arg);
1121 return 0;
1122 case CDROMPLAYMSF:
1123 play_from_to_msf((struct cdrom_msf *) arg);
1124 return 0;
1125 case CDROMPLAYTRKIND: /* admittedly, not particularly beautiful */
1126 play_from_to_track(((struct cdrom_ti *) arg)->cdti_trk0,
1127 ((struct cdrom_ti *) arg)->cdti_trk1);
1128 return 0;
1129 case CDROMSTOP:
1130 PAUSED = 0;
1131 if (cd->dsb & dsb_play_in_progress)
1132 return type_0_command(c_stop, 1);
1133 else
1134 return 0;
1135 case CDROMPAUSE:
1136 get_drive_status();
1137 if (cd->dsb & dsb_play_in_progress) {
1138 type_0_command(c_stop, 1);
1139 type_1_command(c_audio_status, 5,
1140 cd->audio_status);
1141 PAUSED = 1; /* say we're paused */
1143 return 0;
1144 case CDROMRESUME:
1145 if (PAUSED)
1146 play_from_to_track(0, 0);
1147 PAUSED = 0;
1148 return 0;
1149 case CDROMSTART:
1150 case CDROMVOLCTRL:
1151 return 0;
1152 case CDROMSUBCHNL:
1153 return get_current_q((struct cdrom_subchnl *) arg);
1154 default:
1155 return -EINVAL;
1159 static int cm206_media_changed(struct cdrom_device_info *cdi, int disc_nr)
1161 if (cd != NULL) {
1162 int r;
1163 get_drive_status(); /* ensure cd->media_changed OK */
1164 r = cd->media_changed;
1165 cd->media_changed = 0; /* clear bit */
1166 return r;
1167 } else
1168 return -EIO;
1171 /* The new generic cdrom support. Routines should be concise, most of
1172 the logic should be in cdrom.c */
1175 /* controls tray movement */
1176 static int cm206_tray_move(struct cdrom_device_info *cdi, int position)
1178 if (position) { /* 1: eject */
1179 type_0_command(c_open_tray, 1);
1180 invalidate_toc();
1181 } else
1182 type_0_command(c_close_tray, 1); /* 0: close */
1183 return 0;
1186 /* gives current state of the drive */
1187 static int cm206_drive_status(struct cdrom_device_info *cdi, int slot_nr)
1189 get_drive_status();
1190 if (cd->dsb & dsb_tray_not_closed)
1191 return CDS_TRAY_OPEN;
1192 if (!(cd->dsb & dsb_disc_present))
1193 return CDS_NO_DISC;
1194 if (cd->dsb & dsb_drive_not_ready)
1195 return CDS_DRIVE_NOT_READY;
1196 return CDS_DISC_OK;
1199 /* locks or unlocks door lock==1: lock; return 0 upon success */
1200 static int cm206_lock_door(struct cdrom_device_info *cdi, int lock)
1202 uch command = (lock) ? c_lock_tray : c_unlock_tray;
1203 type_0_command(command, 1); /* wait and get dsb */
1204 /* the logic calculates the success, 0 means successful */
1205 return lock ^ ((cd->dsb & dsb_tray_locked) != 0);
1208 /* Although a session start should be in LBA format, we return it in
1209 MSF format because it is slightly easier, and the new generic ioctl
1210 will take care of the necessary conversion. */
1211 static int cm206_get_last_session(struct cdrom_device_info *cdi,
1212 struct cdrom_multisession *mssp)
1214 if (!FIRST_TRACK)
1215 get_disc_status();
1216 if (mssp != NULL) {
1217 if (DISC_STATUS & cds_multi_session) { /* multi-session */
1218 mssp->addr.msf.frame = cd->disc_status[3];
1219 mssp->addr.msf.second = cd->disc_status[4];
1220 mssp->addr.msf.minute = cd->disc_status[5];
1221 mssp->addr_format = CDROM_MSF;
1222 mssp->xa_flag = 1;
1223 } else {
1224 mssp->xa_flag = 0;
1226 return 1;
1228 return 0;
1231 static int cm206_get_upc(struct cdrom_device_info *cdi, struct cdrom_mcn *mcn)
1233 uch upc[10];
1234 char *ret = mcn->medium_catalog_number;
1235 int i;
1237 if (type_1_command(c_read_upc, 10, upc))
1238 return -EIO;
1239 for (i = 0; i < 13; i++) {
1240 int w = i / 2 + 1, r = i % 2;
1241 if (r)
1242 ret[i] = 0x30 | (upc[w] & 0x0f);
1243 else
1244 ret[i] = 0x30 | ((upc[w] >> 4) & 0x0f);
1246 ret[13] = '\0';
1247 return 0;
1250 static int cm206_reset(struct cdrom_device_info *cdi)
1252 stop_read();
1253 reset_cm260();
1254 outw(dc_normal | dc_break | READ_AHEAD, r_data_control);
1255 mdelay(1); /* 750 musec minimum */
1256 outw(dc_normal | READ_AHEAD, r_data_control);
1257 cd->sector_last = -1; /* flag no data buffered */
1258 cd->adapter_last = -1;
1259 invalidate_toc();
1260 return 0;
1263 static int cm206_select_speed(struct cdrom_device_info *cdi, int speed)
1265 int r;
1266 switch (speed) {
1267 case 0:
1268 r = type_0_command(c_auto_mode, 1);
1269 break;
1270 case 1:
1271 r = type_0_command(c_force_1x, 1);
1272 break;
1273 case 2:
1274 r = type_0_command(c_force_2x, 1);
1275 break;
1276 default:
1277 return -1;
1279 if (r < 0)
1280 return r;
1281 else
1282 return 1;
1285 static struct cdrom_device_ops cm206_dops = {
1286 .open = cm206_open,
1287 .release = cm206_release,
1288 .drive_status = cm206_drive_status,
1289 .media_changed = cm206_media_changed,
1290 .tray_move = cm206_tray_move,
1291 .lock_door = cm206_lock_door,
1292 .select_speed = cm206_select_speed,
1293 .get_last_session = cm206_get_last_session,
1294 .get_mcn = cm206_get_upc,
1295 .reset = cm206_reset,
1296 .audio_ioctl = cm206_audio_ioctl,
1297 .capability = CDC_CLOSE_TRAY | CDC_OPEN_TRAY | CDC_LOCK |
1298 CDC_MULTI_SESSION | CDC_MEDIA_CHANGED |
1299 CDC_MCN | CDC_PLAY_AUDIO | CDC_SELECT_SPEED |
1300 CDC_DRIVE_STATUS,
1301 .n_minors = 1,
1305 static struct cdrom_device_info cm206_info = {
1306 .ops = &cm206_dops,
1307 .speed = 2,
1308 .capacity = 1,
1309 .name = "cm206",
1312 static int cm206_block_open(struct inode *inode, struct file *file)
1314 return cdrom_open(&cm206_info, inode, file);
1317 static int cm206_block_release(struct inode *inode, struct file *file)
1319 return cdrom_release(&cm206_info, file);
1322 static int cm206_block_ioctl(struct inode *inode, struct file *file,
1323 unsigned cmd, unsigned long arg)
1325 switch (cmd) {
1326 #ifdef STATISTICS
1327 case CM206CTL_GET_STAT:
1328 if (arg >= NR_STATS)
1329 return -EINVAL;
1330 return cd->stats[arg];
1331 case CM206CTL_GET_LAST_STAT:
1332 if (arg >= NR_STATS)
1333 return -EINVAL;
1334 return cd->last_stat[arg];
1335 #endif
1336 default:
1337 break;
1340 return cdrom_ioctl(file, &cm206_info, inode, cmd, arg);
1343 static int cm206_block_media_changed(struct gendisk *disk)
1345 return cdrom_media_changed(&cm206_info);
1348 static struct block_device_operations cm206_bdops =
1350 .owner = THIS_MODULE,
1351 .open = cm206_block_open,
1352 .release = cm206_block_release,
1353 .ioctl = cm206_block_ioctl,
1354 .media_changed = cm206_block_media_changed,
1357 static struct gendisk *cm206_gendisk;
1359 /* This function probes for the adapter card. It returns the base
1360 address if it has found the adapter card. One can specify a base
1361 port to probe specifically, or 0 which means span all possible
1362 bases.
1364 Linus says it is too dangerous to use writes for probing, so we
1365 stick with pure reads for a while. Hope that 8 possible ranges,
1366 request_region, 15 bits of one port and 6 of another make things
1367 likely enough to accept the region on the first hit...
1369 static int __init probe_base_port(int base)
1371 int b = 0x300, e = 0x370; /* this is the range of start addresses */
1372 volatile int fool, i;
1374 if (base)
1375 b = e = base;
1376 for (base = b; base <= e; base += 0x10) {
1377 if (!request_region(base, 0x10,"cm206"))
1378 continue;
1379 for (i = 0; i < 3; i++)
1380 fool = inw(base + 2); /* empty possibly uart_receive_buffer */
1381 if ((inw(base + 6) & 0xffef) != 0x0001 || /* line_status */
1382 (inw(base) & 0xad00) != 0) { /* data status */
1383 release_region(base,0x10);
1384 continue;
1386 return (base);
1388 return 0;
1391 #if !defined(MODULE) || defined(AUTO_PROBE_MODULE)
1392 /* Probe for irq# nr. If nr==0, probe for all possible irq's. */
1393 static int __init probe_irq(int nr)
1395 int irqs, irq;
1396 outw(dc_normal | READ_AHEAD, r_data_control); /* disable irq-generation */
1397 sti();
1398 irqs = probe_irq_on();
1399 reset_cm260(); /* causes interrupt */
1400 udelay(100); /* wait for it */
1401 irq = probe_irq_off(irqs);
1402 outw(dc_normal | READ_AHEAD, r_data_control); /* services interrupt */
1403 if (nr && irq != nr && irq > 0)
1404 return 0; /* wrong interrupt happened */
1405 else
1406 return irq;
1408 #endif
1410 int __init cm206_init(void)
1412 uch e = 0;
1413 long int size = sizeof(struct cm206_struct);
1414 struct gendisk *disk;
1416 printk(KERN_INFO "cm206 cdrom driver " REVISION);
1417 cm206_base = probe_base_port(auto_probe ? 0 : cm206_base);
1418 if (!cm206_base) {
1419 printk(" can't find adapter!\n");
1420 return -EIO;
1422 printk(" adapter at 0x%x", cm206_base);
1423 cd = (struct cm206_struct *) kmalloc(size, GFP_KERNEL);
1424 if (!cd)
1425 goto out_base;
1426 /* Now we have found the adaptor card, try to reset it. As we have
1427 * found out earlier, this process generates an interrupt as well,
1428 * so we might just exploit that fact for irq probing! */
1429 #if !defined(MODULE) || defined(AUTO_PROBE_MODULE)
1430 cm206_irq = probe_irq(auto_probe ? 0 : cm206_irq);
1431 if (cm206_irq <= 0) {
1432 printk("can't find IRQ!\n");
1433 goto out_probe;
1434 } else
1435 printk(" IRQ %d found\n", cm206_irq);
1436 #else
1437 cli();
1438 reset_cm260();
1439 /* Now, the problem here is that reset_cm260 can generate an
1440 interrupt. It seems that this can cause a kernel oops some time
1441 later. So we wait a while and `service' this interrupt. */
1442 mdelay(1);
1443 outw(dc_normal | READ_AHEAD, r_data_control);
1444 sti();
1445 printk(" using IRQ %d\n", cm206_irq);
1446 #endif
1447 if (send_receive_polled(c_drive_configuration) !=
1448 c_drive_configuration) {
1449 printk(KERN_INFO " drive not there\n");
1450 goto out_probe;
1452 e = send_receive_polled(c_gimme);
1453 printk(KERN_INFO "Firmware revision %d", e & dcf_revision_code);
1454 if (e & dcf_transfer_rate)
1455 printk(" double");
1456 else
1457 printk(" single");
1458 printk(" speed drive");
1459 if (e & dcf_motorized_tray)
1460 printk(", motorized tray");
1461 if (request_irq(cm206_irq, cm206_interrupt, 0, "cm206", NULL)) {
1462 printk("\nUnable to reserve IRQ---aborted\n");
1463 goto out_probe;
1465 printk(".\n");
1467 if (register_blkdev(MAJOR_NR, "cm206"))
1468 goto out_blkdev;
1470 disk = alloc_disk(1);
1471 if (!disk)
1472 goto out_disk;
1473 disk->major = MAJOR_NR;
1474 disk->first_minor = 0;
1475 sprintf(disk->disk_name, "cm206cd");
1476 disk->fops = &cm206_bdops;
1477 disk->flags = GENHD_FL_CD;
1478 cm206_gendisk = disk;
1479 if (register_cdrom(&cm206_info) != 0) {
1480 printk(KERN_INFO "Cannot register for cdrom %d!\n", MAJOR_NR);
1481 goto out_cdrom;
1483 cm206_queue = blk_init_queue(do_cm206_request, &cm206_lock);
1484 if (!cm206_queue)
1485 goto out_queue;
1487 blk_queue_hardsect_size(cm206_queue, 2048);
1488 disk->queue = cm206_queue;
1489 add_disk(disk);
1491 memset(cd, 0, sizeof(*cd)); /* give'm some reasonable value */
1492 cd->sector_last = -1; /* flag no data buffered */
1493 cd->adapter_last = -1;
1494 init_timer(&cd->timer);
1495 cd->timer.function = cm206_timeout;
1496 cd->max_sectors = (inw(r_data_status) & ds_ram_size) ? 24 : 97;
1497 printk(KERN_INFO "%d kB adapter memory available, "
1498 " %ld bytes kernel memory used.\n", cd->max_sectors * 2,
1499 size);
1500 return 0;
1502 out_queue:
1503 unregister_cdrom(&cm206_info);
1504 out_cdrom:
1505 put_disk(disk);
1506 out_disk:
1507 unregister_blkdev(MAJOR_NR, "cm206");
1508 out_blkdev:
1509 free_irq(cm206_irq, NULL);
1510 out_probe:
1511 kfree(cd);
1512 out_base:
1513 release_region(cm206_base, 16);
1514 return -EIO;
1517 #ifdef MODULE
1520 static void __init parse_options(void)
1522 int i;
1523 for (i = 0; i < 2; i++) {
1524 if (0x300 <= cm206[i] && i <= 0x370
1525 && cm206[i] % 0x10 == 0) {
1526 cm206_base = cm206[i];
1527 auto_probe = 0;
1528 } else if (3 <= cm206[i] && cm206[i] <= 15) {
1529 cm206_irq = cm206[i];
1530 auto_probe = 0;
1535 static int __init __cm206_init(void)
1537 parse_options();
1538 #if !defined(AUTO_PROBE_MODULE)
1539 auto_probe = 0;
1540 #endif
1541 return cm206_init();
1544 static void __exit cm206_exit(void)
1546 del_gendisk(cm206_gendisk);
1547 put_disk(cm206_gendisk);
1548 if (unregister_cdrom(&cm206_info)) {
1549 printk("Can't unregister cdrom cm206\n");
1550 return;
1552 if (unregister_blkdev(MAJOR_NR, "cm206")) {
1553 printk("Can't unregister major cm206\n");
1554 return;
1556 blk_cleanup_queue(cm206_queue);
1557 free_irq(cm206_irq, NULL);
1558 kfree(cd);
1559 release_region(cm206_base, 16);
1560 printk(KERN_INFO "cm206 removed\n");
1563 module_init(__cm206_init);
1564 module_exit(cm206_exit);
1566 #else /* !MODULE */
1568 /* This setup function accepts either `auto' or numbers in the range
1569 * 3--11 (for irq) or 0x300--0x370 (for base port) or both. */
1571 static int __init cm206_setup(char *s)
1573 int i, p[4];
1575 (void) get_options(s, ARRAY_SIZE(p), p);
1577 if (!strcmp(s, "auto"))
1578 auto_probe = 1;
1579 for (i = 1; i <= p[0]; i++) {
1580 if (0x300 <= p[i] && i <= 0x370 && p[i] % 0x10 == 0) {
1581 cm206_base = p[i];
1582 auto_probe = 0;
1583 } else if (3 <= p[i] && p[i] <= 15) {
1584 cm206_irq = p[i];
1585 auto_probe = 0;
1588 return 1;
1591 __setup("cm206=", cm206_setup);
1593 #endif /* !MODULE */
1594 MODULE_ALIAS_BLOCKDEV_MAJOR(CM206_CDROM_MAJOR);