MOXA linux-2.6.x / linux-2.6.19-uc1 from UC-7110-LX-BOOTLOADER-1.9_VERSION-4.2.tgz
[linux-2.6.19-moxart.git] / drivers / ata / libata-core.c
blob915a55a6cc14ea8dc230cefb31f15f8b9c48dc04
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device *dev,
68 u16 heads, u16 sectors);
69 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_device *dev);
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
75 struct workqueue_struct *ata_aux_wq;
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81 int atapi_dmadir = 0;
82 module_param(atapi_dmadir, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85 int libata_fua = 0;
86 module_param_named(fua, libata_fua, int, 0444);
87 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
90 module_param(ata_probe_timeout, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION);
99 /**
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
108 * LOCKING:
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 fis[0] = 0x27; /* Register - Host to Device FIS */
115 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis[2] = tf->command;
118 fis[3] = tf->feature;
120 fis[4] = tf->lbal;
121 fis[5] = tf->lbam;
122 fis[6] = tf->lbah;
123 fis[7] = tf->device;
125 fis[8] = tf->hob_lbal;
126 fis[9] = tf->hob_lbam;
127 fis[10] = tf->hob_lbah;
128 fis[11] = tf->hob_feature;
130 fis[12] = tf->nsect;
131 fis[13] = tf->hob_nsect;
132 fis[14] = 0;
133 fis[15] = tf->ctl;
135 fis[16] = 0;
136 fis[17] = 0;
137 fis[18] = 0;
138 fis[19] = 0;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 * LOCKING:
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 tf->command = fis[2]; /* status */
155 tf->feature = fis[3]; /* error */
157 tf->lbal = fis[4];
158 tf->lbam = fis[5];
159 tf->lbah = fis[6];
160 tf->device = fis[7];
162 tf->hob_lbal = fis[8];
163 tf->hob_lbam = fis[9];
164 tf->hob_lbah = fis[10];
166 tf->nsect = fis[12];
167 tf->hob_nsect = fis[13];
170 static const u8 ata_rw_cmds[] = {
171 /* pio multi */
172 ATA_CMD_READ_MULTI,
173 ATA_CMD_WRITE_MULTI,
174 ATA_CMD_READ_MULTI_EXT,
175 ATA_CMD_WRITE_MULTI_EXT,
179 ATA_CMD_WRITE_MULTI_FUA_EXT,
180 /* pio */
181 ATA_CMD_PIO_READ,
182 ATA_CMD_PIO_WRITE,
183 ATA_CMD_PIO_READ_EXT,
184 ATA_CMD_PIO_WRITE_EXT,
189 /* dma */
190 ATA_CMD_READ,
191 ATA_CMD_WRITE,
192 ATA_CMD_READ_EXT,
193 ATA_CMD_WRITE_EXT,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @qc: command to examine and configure
204 * Examine the device configuration and tf->flags to calculate
205 * the proper read/write commands and protocol to use.
207 * LOCKING:
208 * caller.
210 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 struct ata_taskfile *tf = &qc->tf;
213 struct ata_device *dev = qc->dev;
214 u8 cmd;
216 int index, fua, lba48, write;
218 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
219 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
220 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222 if (dev->flags & ATA_DFLAG_PIO) {
223 tf->protocol = ATA_PROT_PIO;
224 index = dev->multi_count ? 0 : 8;
225 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
226 /* Unable to use DMA due to host limitation */
227 tf->protocol = ATA_PROT_PIO;
228 index = dev->multi_count ? 0 : 8;
229 } else {
230 tf->protocol = ATA_PROT_DMA;
231 index = 16;
234 cmd = ata_rw_cmds[index + fua + lba48 + write];
235 if (cmd) {
236 tf->command = cmd;
237 return 0;
239 return -1;
243 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
244 * @pio_mask: pio_mask
245 * @mwdma_mask: mwdma_mask
246 * @udma_mask: udma_mask
248 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
249 * unsigned int xfer_mask.
251 * LOCKING:
252 * None.
254 * RETURNS:
255 * Packed xfer_mask.
257 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
258 unsigned int mwdma_mask,
259 unsigned int udma_mask)
261 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
262 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
263 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
267 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
268 * @xfer_mask: xfer_mask to unpack
269 * @pio_mask: resulting pio_mask
270 * @mwdma_mask: resulting mwdma_mask
271 * @udma_mask: resulting udma_mask
273 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
274 * Any NULL distination masks will be ignored.
276 static void ata_unpack_xfermask(unsigned int xfer_mask,
277 unsigned int *pio_mask,
278 unsigned int *mwdma_mask,
279 unsigned int *udma_mask)
281 if (pio_mask)
282 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
283 if (mwdma_mask)
284 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
285 if (udma_mask)
286 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
289 static const struct ata_xfer_ent {
290 int shift, bits;
291 u8 base;
292 } ata_xfer_tbl[] = {
293 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
294 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
295 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
296 { -1, },
300 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
301 * @xfer_mask: xfer_mask of interest
303 * Return matching XFER_* value for @xfer_mask. Only the highest
304 * bit of @xfer_mask is considered.
306 * LOCKING:
307 * None.
309 * RETURNS:
310 * Matching XFER_* value, 0 if no match found.
312 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 int highbit = fls(xfer_mask) - 1;
315 const struct ata_xfer_ent *ent;
317 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
318 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
319 return ent->base + highbit - ent->shift;
320 return 0;
324 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
325 * @xfer_mode: XFER_* of interest
327 * Return matching xfer_mask for @xfer_mode.
329 * LOCKING:
330 * None.
332 * RETURNS:
333 * Matching xfer_mask, 0 if no match found.
335 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 const struct ata_xfer_ent *ent;
339 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
340 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
341 return 1 << (ent->shift + xfer_mode - ent->base);
342 return 0;
346 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
347 * @xfer_mode: XFER_* of interest
349 * Return matching xfer_shift for @xfer_mode.
351 * LOCKING:
352 * None.
354 * RETURNS:
355 * Matching xfer_shift, -1 if no match found.
357 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 const struct ata_xfer_ent *ent;
361 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
362 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
363 return ent->shift;
364 return -1;
368 * ata_mode_string - convert xfer_mask to string
369 * @xfer_mask: mask of bits supported; only highest bit counts.
371 * Determine string which represents the highest speed
372 * (highest bit in @modemask).
374 * LOCKING:
375 * None.
377 * RETURNS:
378 * Constant C string representing highest speed listed in
379 * @mode_mask, or the constant C string "<n/a>".
381 static const char *ata_mode_string(unsigned int xfer_mask)
383 static const char * const xfer_mode_str[] = {
384 "PIO0",
385 "PIO1",
386 "PIO2",
387 "PIO3",
388 "PIO4",
389 "PIO5",
390 "PIO6",
391 "MWDMA0",
392 "MWDMA1",
393 "MWDMA2",
394 "MWDMA3",
395 "MWDMA4",
396 "UDMA/16",
397 "UDMA/25",
398 "UDMA/33",
399 "UDMA/44",
400 "UDMA/66",
401 "UDMA/100",
402 "UDMA/133",
403 "UDMA7",
405 int highbit;
407 highbit = fls(xfer_mask) - 1;
408 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
409 return xfer_mode_str[highbit];
410 return "<n/a>";
413 static const char *sata_spd_string(unsigned int spd)
415 static const char * const spd_str[] = {
416 "1.5 Gbps",
417 "3.0 Gbps",
420 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
421 return "<unknown>";
422 return spd_str[spd - 1];
425 void ata_dev_disable(struct ata_device *dev)
427 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
428 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
429 dev->class++;
434 * ata_pio_devchk - PATA device presence detection
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
438 * This technique was originally described in
439 * Hale Landis's ATADRVR (www.ata-atapi.com), and
440 * later found its way into the ATA/ATAPI spec.
442 * Write a pattern to the ATA shadow registers,
443 * and if a device is present, it will respond by
444 * correctly storing and echoing back the
445 * ATA shadow register contents.
447 * LOCKING:
448 * caller.
451 static unsigned int ata_pio_devchk(struct ata_port *ap,
452 unsigned int device)
454 struct ata_ioports *ioaddr = &ap->ioaddr;
455 u8 nsect, lbal;
457 ap->ops->dev_select(ap, device);
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
462 outb(0xaa, ioaddr->nsect_addr);
463 outb(0x55, ioaddr->lbal_addr);
465 outb(0x55, ioaddr->nsect_addr);
466 outb(0xaa, ioaddr->lbal_addr);
468 nsect = inb(ioaddr->nsect_addr);
469 lbal = inb(ioaddr->lbal_addr);
471 if ((nsect == 0x55) && (lbal == 0xaa))
472 return 1; /* we found a device */
474 return 0; /* nothing found */
478 * ata_mmio_devchk - PATA device presence detection
479 * @ap: ATA channel to examine
480 * @device: Device to examine (starting at zero)
482 * This technique was originally described in
483 * Hale Landis's ATADRVR (www.ata-atapi.com), and
484 * later found its way into the ATA/ATAPI spec.
486 * Write a pattern to the ATA shadow registers,
487 * and if a device is present, it will respond by
488 * correctly storing and echoing back the
489 * ATA shadow register contents.
491 * LOCKING:
492 * caller.
495 static unsigned int ata_mmio_devchk(struct ata_port *ap,
496 unsigned int device)
498 struct ata_ioports *ioaddr = &ap->ioaddr;
499 u8 nsect, lbal;
501 ap->ops->dev_select(ap, device);
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
506 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
509 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
510 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
512 nsect = readb((void __iomem *) ioaddr->nsect_addr);
513 lbal = readb((void __iomem *) ioaddr->lbal_addr);
515 if ((nsect == 0x55) && (lbal == 0xaa))
516 return 1; /* we found a device */
518 return 0; /* nothing found */
522 * ata_devchk - PATA device presence detection
523 * @ap: ATA channel to examine
524 * @device: Device to examine (starting at zero)
526 * Dispatch ATA device presence detection, depending
527 * on whether we are using PIO or MMIO to talk to the
528 * ATA shadow registers.
530 * LOCKING:
531 * caller.
534 static unsigned int ata_devchk(struct ata_port *ap,
535 unsigned int device)
537 if (ap->flags & ATA_FLAG_MMIO)
538 return ata_mmio_devchk(ap, device);
539 return ata_pio_devchk(ap, device);
543 * ata_dev_classify - determine device type based on ATA-spec signature
544 * @tf: ATA taskfile register set for device to be identified
546 * Determine from taskfile register contents whether a device is
547 * ATA or ATAPI, as per "Signature and persistence" section
548 * of ATA/PI spec (volume 1, sect 5.14).
550 * LOCKING:
551 * None.
553 * RETURNS:
554 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
555 * the event of failure.
558 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
560 /* Apple's open source Darwin code hints that some devices only
561 * put a proper signature into the LBA mid/high registers,
562 * So, we only check those. It's sufficient for uniqueness.
565 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
566 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
567 DPRINTK("found ATA device by sig\n");
568 return ATA_DEV_ATA;
571 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
572 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
573 DPRINTK("found ATAPI device by sig\n");
574 return ATA_DEV_ATAPI;
577 DPRINTK("unknown device\n");
578 return ATA_DEV_UNKNOWN;
582 * ata_dev_try_classify - Parse returned ATA device signature
583 * @ap: ATA channel to examine
584 * @device: Device to examine (starting at zero)
585 * @r_err: Value of error register on completion
587 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
588 * an ATA/ATAPI-defined set of values is placed in the ATA
589 * shadow registers, indicating the results of device detection
590 * and diagnostics.
592 * Select the ATA device, and read the values from the ATA shadow
593 * registers. Then parse according to the Error register value,
594 * and the spec-defined values examined by ata_dev_classify().
596 * LOCKING:
597 * caller.
599 * RETURNS:
600 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
603 static unsigned int
604 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
606 struct ata_taskfile tf;
607 unsigned int class;
608 u8 err;
610 ap->ops->dev_select(ap, device);
612 memset(&tf, 0, sizeof(tf));
614 ap->ops->tf_read(ap, &tf);
615 err = tf.feature;
616 if (r_err)
617 *r_err = err;
619 /* see if device passed diags: if master then continue and warn later */
620 if (err == 0 && device == 0)
621 /* diagnostic fail : do nothing _YET_ */
622 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
623 else if (err == 1)
624 /* do nothing */ ;
625 else if ((device == 0) && (err == 0x81))
626 /* do nothing */ ;
627 else
628 return ATA_DEV_NONE;
630 /* determine if device is ATA or ATAPI */
631 class = ata_dev_classify(&tf);
633 if (class == ATA_DEV_UNKNOWN)
634 return ATA_DEV_NONE;
635 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
636 return ATA_DEV_NONE;
637 return class;
641 * ata_id_string - Convert IDENTIFY DEVICE page into string
642 * @id: IDENTIFY DEVICE results we will examine
643 * @s: string into which data is output
644 * @ofs: offset into identify device page
645 * @len: length of string to return. must be an even number.
647 * The strings in the IDENTIFY DEVICE page are broken up into
648 * 16-bit chunks. Run through the string, and output each
649 * 8-bit chunk linearly, regardless of platform.
651 * LOCKING:
652 * caller.
655 void ata_id_string(const u16 *id, unsigned char *s,
656 unsigned int ofs, unsigned int len)
658 unsigned int c;
660 while (len > 0) {
661 c = id[ofs] >> 8;
662 *s = c;
663 s++;
665 c = id[ofs] & 0xff;
666 *s = c;
667 s++;
669 ofs++;
670 len -= 2;
675 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
676 * @id: IDENTIFY DEVICE results we will examine
677 * @s: string into which data is output
678 * @ofs: offset into identify device page
679 * @len: length of string to return. must be an odd number.
681 * This function is identical to ata_id_string except that it
682 * trims trailing spaces and terminates the resulting string with
683 * null. @len must be actual maximum length (even number) + 1.
685 * LOCKING:
686 * caller.
688 void ata_id_c_string(const u16 *id, unsigned char *s,
689 unsigned int ofs, unsigned int len)
691 unsigned char *p;
693 WARN_ON(!(len & 1));
695 ata_id_string(id, s, ofs, len - 1);
697 p = s + strnlen(s, len - 1);
698 while (p > s && p[-1] == ' ')
699 p--;
700 *p = '\0';
703 static u64 ata_id_n_sectors(const u16 *id)
705 if (ata_id_has_lba(id)) {
706 if (ata_id_has_lba48(id))
707 return ata_id_u64(id, 100);
708 else
709 return ata_id_u32(id, 60);
710 } else {
711 if (ata_id_current_chs_valid(id))
712 return ata_id_u32(id, 57);
713 else
714 return id[1] * id[3] * id[6];
719 * ata_noop_dev_select - Select device 0/1 on ATA bus
720 * @ap: ATA channel to manipulate
721 * @device: ATA device (numbered from zero) to select
723 * This function performs no actual function.
725 * May be used as the dev_select() entry in ata_port_operations.
727 * LOCKING:
728 * caller.
730 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
736 * ata_std_dev_select - Select device 0/1 on ATA bus
737 * @ap: ATA channel to manipulate
738 * @device: ATA device (numbered from zero) to select
740 * Use the method defined in the ATA specification to
741 * make either device 0, or device 1, active on the
742 * ATA channel. Works with both PIO and MMIO.
744 * May be used as the dev_select() entry in ata_port_operations.
746 * LOCKING:
747 * caller.
750 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
752 u8 tmp;
754 if (device == 0)
755 tmp = ATA_DEVICE_OBS;
756 else
757 tmp = ATA_DEVICE_OBS | ATA_DEV1;
759 if (ap->flags & ATA_FLAG_MMIO) {
760 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
761 } else {
762 outb(tmp, ap->ioaddr.device_addr);
764 ata_pause(ap); /* needed; also flushes, for mmio */
768 * ata_dev_select - Select device 0/1 on ATA bus
769 * @ap: ATA channel to manipulate
770 * @device: ATA device (numbered from zero) to select
771 * @wait: non-zero to wait for Status register BSY bit to clear
772 * @can_sleep: non-zero if context allows sleeping
774 * Use the method defined in the ATA specification to
775 * make either device 0, or device 1, active on the
776 * ATA channel.
778 * This is a high-level version of ata_std_dev_select(),
779 * which additionally provides the services of inserting
780 * the proper pauses and status polling, where needed.
782 * LOCKING:
783 * caller.
786 void ata_dev_select(struct ata_port *ap, unsigned int device,
787 unsigned int wait, unsigned int can_sleep)
789 if (ata_msg_probe(ap))
790 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
791 "device %u, wait %u\n", ap->id, device, wait);
793 if (wait)
794 ata_wait_idle(ap);
796 ap->ops->dev_select(ap, device);
798 if (wait) {
799 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
800 msleep(150);
801 ata_wait_idle(ap);
806 * ata_dump_id - IDENTIFY DEVICE info debugging output
807 * @id: IDENTIFY DEVICE page to dump
809 * Dump selected 16-bit words from the given IDENTIFY DEVICE
810 * page.
812 * LOCKING:
813 * caller.
816 static inline void ata_dump_id(const u16 *id)
818 DPRINTK("49==0x%04x "
819 "53==0x%04x "
820 "63==0x%04x "
821 "64==0x%04x "
822 "75==0x%04x \n",
823 id[49],
824 id[53],
825 id[63],
826 id[64],
827 id[75]);
828 DPRINTK("80==0x%04x "
829 "81==0x%04x "
830 "82==0x%04x "
831 "83==0x%04x "
832 "84==0x%04x \n",
833 id[80],
834 id[81],
835 id[82],
836 id[83],
837 id[84]);
838 DPRINTK("88==0x%04x "
839 "93==0x%04x\n",
840 id[88],
841 id[93]);
845 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
846 * @id: IDENTIFY data to compute xfer mask from
848 * Compute the xfermask for this device. This is not as trivial
849 * as it seems if we must consider early devices correctly.
851 * FIXME: pre IDE drive timing (do we care ?).
853 * LOCKING:
854 * None.
856 * RETURNS:
857 * Computed xfermask
859 static unsigned int ata_id_xfermask(const u16 *id)
861 unsigned int pio_mask, mwdma_mask, udma_mask;
863 /* Usual case. Word 53 indicates word 64 is valid */
864 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
865 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
866 pio_mask <<= 3;
867 pio_mask |= 0x7;
868 } else {
869 /* If word 64 isn't valid then Word 51 high byte holds
870 * the PIO timing number for the maximum. Turn it into
871 * a mask.
873 u8 mode = id[ATA_ID_OLD_PIO_MODES] & 0xFF;
874 if (mode < 5) /* Valid PIO range */
875 pio_mask = (2 << mode) - 1;
876 else
877 pio_mask = 1;
879 /* But wait.. there's more. Design your standards by
880 * committee and you too can get a free iordy field to
881 * process. However its the speeds not the modes that
882 * are supported... Note drivers using the timing API
883 * will get this right anyway
887 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
889 if (ata_id_is_cfa(id)) {
891 * Process compact flash extended modes
893 int pio = id[163] & 0x7;
894 int dma = (id[163] >> 3) & 7;
896 if (pio)
897 pio_mask |= (1 << 5);
898 if (pio > 1)
899 pio_mask |= (1 << 6);
900 if (dma)
901 mwdma_mask |= (1 << 3);
902 if (dma > 1)
903 mwdma_mask |= (1 << 4);
906 udma_mask = 0;
907 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
908 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
910 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
914 * ata_port_queue_task - Queue port_task
915 * @ap: The ata_port to queue port_task for
916 * @fn: workqueue function to be scheduled
917 * @data: data value to pass to workqueue function
918 * @delay: delay time for workqueue function
920 * Schedule @fn(@data) for execution after @delay jiffies using
921 * port_task. There is one port_task per port and it's the
922 * user(low level driver)'s responsibility to make sure that only
923 * one task is active at any given time.
925 * libata core layer takes care of synchronization between
926 * port_task and EH. ata_port_queue_task() may be ignored for EH
927 * synchronization.
929 * LOCKING:
930 * Inherited from caller.
932 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
933 unsigned long delay)
935 int rc;
937 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
938 return;
940 PREPARE_WORK(&ap->port_task, fn, data);
942 if (!delay)
943 rc = queue_work(ata_wq, &ap->port_task);
944 else
945 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
947 /* rc == 0 means that another user is using port task */
948 WARN_ON(rc == 0);
952 * ata_port_flush_task - Flush port_task
953 * @ap: The ata_port to flush port_task for
955 * After this function completes, port_task is guranteed not to
956 * be running or scheduled.
958 * LOCKING:
959 * Kernel thread context (may sleep)
961 void ata_port_flush_task(struct ata_port *ap)
963 unsigned long flags;
965 DPRINTK("ENTER\n");
967 spin_lock_irqsave(ap->lock, flags);
968 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
969 spin_unlock_irqrestore(ap->lock, flags);
971 DPRINTK("flush #1\n");
972 flush_workqueue(ata_wq);
975 * At this point, if a task is running, it's guaranteed to see
976 * the FLUSH flag; thus, it will never queue pio tasks again.
977 * Cancel and flush.
979 if (!cancel_delayed_work(&ap->port_task)) {
980 if (ata_msg_ctl(ap))
981 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
982 __FUNCTION__);
983 flush_workqueue(ata_wq);
986 spin_lock_irqsave(ap->lock, flags);
987 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
988 spin_unlock_irqrestore(ap->lock, flags);
990 if (ata_msg_ctl(ap))
991 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
994 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
996 struct completion *waiting = qc->private_data;
998 complete(waiting);
1002 * ata_exec_internal - execute libata internal command
1003 * @dev: Device to which the command is sent
1004 * @tf: Taskfile registers for the command and the result
1005 * @cdb: CDB for packet command
1006 * @dma_dir: Data tranfer direction of the command
1007 * @buf: Data buffer of the command
1008 * @buflen: Length of data buffer
1010 * Executes libata internal command with timeout. @tf contains
1011 * command on entry and result on return. Timeout and error
1012 * conditions are reported via return value. No recovery action
1013 * is taken after a command times out. It's caller's duty to
1014 * clean up after timeout.
1016 * LOCKING:
1017 * None. Should be called with kernel context, might sleep.
1019 * RETURNS:
1020 * Zero on success, AC_ERR_* mask on failure
1022 unsigned ata_exec_internal(struct ata_device *dev,
1023 struct ata_taskfile *tf, const u8 *cdb,
1024 int dma_dir, void *buf, unsigned int buflen)
1026 struct ata_port *ap = dev->ap;
1027 u8 command = tf->command;
1028 struct ata_queued_cmd *qc;
1029 unsigned int tag, preempted_tag;
1030 u32 preempted_sactive, preempted_qc_active;
1031 DECLARE_COMPLETION_ONSTACK(wait);
1032 unsigned long flags;
1033 unsigned int err_mask;
1034 int rc;
1036 spin_lock_irqsave(ap->lock, flags);
1038 /* no internal command while frozen */
1039 if (ap->pflags & ATA_PFLAG_FROZEN) {
1040 spin_unlock_irqrestore(ap->lock, flags);
1041 return AC_ERR_SYSTEM;
1044 /* initialize internal qc */
1046 /* XXX: Tag 0 is used for drivers with legacy EH as some
1047 * drivers choke if any other tag is given. This breaks
1048 * ata_tag_internal() test for those drivers. Don't use new
1049 * EH stuff without converting to it.
1051 if (ap->ops->error_handler)
1052 tag = ATA_TAG_INTERNAL;
1053 else
1054 tag = 0;
1056 if (test_and_set_bit(tag, &ap->qc_allocated))
1057 BUG();
1058 qc = __ata_qc_from_tag(ap, tag);
1060 qc->tag = tag;
1061 qc->scsicmd = NULL;
1062 qc->ap = ap;
1063 qc->dev = dev;
1064 ata_qc_reinit(qc);
1066 preempted_tag = ap->active_tag;
1067 preempted_sactive = ap->sactive;
1068 preempted_qc_active = ap->qc_active;
1069 ap->active_tag = ATA_TAG_POISON;
1070 ap->sactive = 0;
1071 ap->qc_active = 0;
1073 /* prepare & issue qc */
1074 qc->tf = *tf;
1075 if (cdb)
1076 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1077 qc->flags |= ATA_QCFLAG_RESULT_TF;
1078 qc->dma_dir = dma_dir;
1079 if (dma_dir != DMA_NONE) {
1080 ata_sg_init_one(qc, buf, buflen);
1081 qc->nsect = buflen / ATA_SECT_SIZE;
1084 qc->private_data = &wait;
1085 qc->complete_fn = ata_qc_complete_internal;
1087 ata_qc_issue(qc);
1089 spin_unlock_irqrestore(ap->lock, flags);
1091 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1093 ata_port_flush_task(ap);
1095 if (!rc) {
1096 spin_lock_irqsave(ap->lock, flags);
1098 /* We're racing with irq here. If we lose, the
1099 * following test prevents us from completing the qc
1100 * twice. If we win, the port is frozen and will be
1101 * cleaned up by ->post_internal_cmd().
1103 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1104 qc->err_mask |= AC_ERR_TIMEOUT;
1106 if (ap->ops->error_handler)
1107 ata_port_freeze(ap);
1108 else
1109 ata_qc_complete(qc);
1111 if (ata_msg_warn(ap))
1112 ata_dev_printk(dev, KERN_WARNING,
1113 "qc timeout (cmd 0x%x)\n", command);
1116 spin_unlock_irqrestore(ap->lock, flags);
1119 /* do post_internal_cmd */
1120 if (ap->ops->post_internal_cmd)
1121 ap->ops->post_internal_cmd(qc);
1123 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1124 if (ata_msg_warn(ap))
1125 ata_dev_printk(dev, KERN_WARNING,
1126 "zero err_mask for failed "
1127 "internal command, assuming AC_ERR_OTHER\n");
1128 qc->err_mask |= AC_ERR_OTHER;
1131 /* finish up */
1132 spin_lock_irqsave(ap->lock, flags);
1134 *tf = qc->result_tf;
1135 err_mask = qc->err_mask;
1137 ata_qc_free(qc);
1138 ap->active_tag = preempted_tag;
1139 ap->sactive = preempted_sactive;
1140 ap->qc_active = preempted_qc_active;
1142 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1143 * Until those drivers are fixed, we detect the condition
1144 * here, fail the command with AC_ERR_SYSTEM and reenable the
1145 * port.
1147 * Note that this doesn't change any behavior as internal
1148 * command failure results in disabling the device in the
1149 * higher layer for LLDDs without new reset/EH callbacks.
1151 * Kill the following code as soon as those drivers are fixed.
1153 if (ap->flags & ATA_FLAG_DISABLED) {
1154 err_mask |= AC_ERR_SYSTEM;
1155 ata_port_probe(ap);
1158 spin_unlock_irqrestore(ap->lock, flags);
1160 return err_mask;
1164 * ata_do_simple_cmd - execute simple internal command
1165 * @dev: Device to which the command is sent
1166 * @cmd: Opcode to execute
1168 * Execute a 'simple' command, that only consists of the opcode
1169 * 'cmd' itself, without filling any other registers
1171 * LOCKING:
1172 * Kernel thread context (may sleep).
1174 * RETURNS:
1175 * Zero on success, AC_ERR_* mask on failure
1177 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1179 struct ata_taskfile tf;
1181 ata_tf_init(dev, &tf);
1183 tf.command = cmd;
1184 tf.flags |= ATA_TFLAG_DEVICE;
1185 tf.protocol = ATA_PROT_NODATA;
1187 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1191 * ata_pio_need_iordy - check if iordy needed
1192 * @adev: ATA device
1194 * Check if the current speed of the device requires IORDY. Used
1195 * by various controllers for chip configuration.
1198 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1200 int pio;
1201 int speed = adev->pio_mode - XFER_PIO_0;
1203 if (speed < 2)
1204 return 0;
1205 if (speed > 2)
1206 return 1;
1208 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1210 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1211 pio = adev->id[ATA_ID_EIDE_PIO];
1212 /* Is the speed faster than the drive allows non IORDY ? */
1213 if (pio) {
1214 /* This is cycle times not frequency - watch the logic! */
1215 if (pio > 240) /* PIO2 is 240nS per cycle */
1216 return 1;
1217 return 0;
1220 return 0;
1224 * ata_dev_read_id - Read ID data from the specified device
1225 * @dev: target device
1226 * @p_class: pointer to class of the target device (may be changed)
1227 * @post_reset: is this read ID post-reset?
1228 * @id: buffer to read IDENTIFY data into
1230 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1231 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1232 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1233 * for pre-ATA4 drives.
1235 * LOCKING:
1236 * Kernel thread context (may sleep)
1238 * RETURNS:
1239 * 0 on success, -errno otherwise.
1241 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1242 int post_reset, u16 *id)
1244 struct ata_port *ap = dev->ap;
1245 unsigned int class = *p_class;
1246 struct ata_taskfile tf;
1247 unsigned int err_mask = 0;
1248 const char *reason;
1249 int rc;
1251 if (ata_msg_ctl(ap))
1252 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1253 __FUNCTION__, ap->id, dev->devno);
1255 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1257 retry:
1258 ata_tf_init(dev, &tf);
1260 switch (class) {
1261 case ATA_DEV_ATA:
1262 tf.command = ATA_CMD_ID_ATA;
1263 break;
1264 case ATA_DEV_ATAPI:
1265 tf.command = ATA_CMD_ID_ATAPI;
1266 break;
1267 default:
1268 rc = -ENODEV;
1269 reason = "unsupported class";
1270 goto err_out;
1273 tf.protocol = ATA_PROT_PIO;
1275 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1276 id, sizeof(id[0]) * ATA_ID_WORDS);
1277 if (err_mask) {
1278 rc = -EIO;
1279 reason = "I/O error";
1280 goto err_out;
1283 swap_buf_le16(id, ATA_ID_WORDS);
1285 /* sanity check */
1286 rc = -EINVAL;
1287 reason = "device reports illegal type";
1289 if (class == ATA_DEV_ATA) {
1290 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1291 goto err_out;
1292 } else {
1293 if (ata_id_is_ata(id))
1294 goto err_out;
1297 if (post_reset && class == ATA_DEV_ATA) {
1299 * The exact sequence expected by certain pre-ATA4 drives is:
1300 * SRST RESET
1301 * IDENTIFY
1302 * INITIALIZE DEVICE PARAMETERS
1303 * anything else..
1304 * Some drives were very specific about that exact sequence.
1306 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1307 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1308 if (err_mask) {
1309 rc = -EIO;
1310 reason = "INIT_DEV_PARAMS failed";
1311 goto err_out;
1314 /* current CHS translation info (id[53-58]) might be
1315 * changed. reread the identify device info.
1317 post_reset = 0;
1318 goto retry;
1322 *p_class = class;
1324 return 0;
1326 err_out:
1327 if (ata_msg_warn(ap))
1328 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1329 "(%s, err_mask=0x%x)\n", reason, err_mask);
1330 return rc;
1333 static inline u8 ata_dev_knobble(struct ata_device *dev)
1335 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1338 static void ata_dev_config_ncq(struct ata_device *dev,
1339 char *desc, size_t desc_sz)
1341 struct ata_port *ap = dev->ap;
1342 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1344 if (!ata_id_has_ncq(dev->id)) {
1345 desc[0] = '\0';
1346 return;
1349 if (ap->flags & ATA_FLAG_NCQ) {
1350 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1351 dev->flags |= ATA_DFLAG_NCQ;
1354 if (hdepth >= ddepth)
1355 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1356 else
1357 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1360 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1362 int i;
1364 if (ap->scsi_host) {
1365 unsigned int len = 0;
1367 for (i = 0; i < ATA_MAX_DEVICES; i++)
1368 len = max(len, ap->device[i].cdb_len);
1370 ap->scsi_host->max_cmd_len = len;
1375 * ata_dev_configure - Configure the specified ATA/ATAPI device
1376 * @dev: Target device to configure
1377 * @print_info: Enable device info printout
1379 * Configure @dev according to @dev->id. Generic and low-level
1380 * driver specific fixups are also applied.
1382 * LOCKING:
1383 * Kernel thread context (may sleep)
1385 * RETURNS:
1386 * 0 on success, -errno otherwise
1388 int ata_dev_configure(struct ata_device *dev, int print_info)
1390 struct ata_port *ap = dev->ap;
1391 const u16 *id = dev->id;
1392 unsigned int xfer_mask;
1393 char revbuf[7]; /* XYZ-99\0 */
1394 int rc;
1396 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1397 ata_dev_printk(dev, KERN_INFO,
1398 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1399 __FUNCTION__, ap->id, dev->devno);
1400 return 0;
1403 if (ata_msg_probe(ap))
1404 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1405 __FUNCTION__, ap->id, dev->devno);
1407 /* print device capabilities */
1408 if (ata_msg_probe(ap))
1409 ata_dev_printk(dev, KERN_DEBUG,
1410 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1411 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1412 __FUNCTION__,
1413 id[49], id[82], id[83], id[84],
1414 id[85], id[86], id[87], id[88]);
1416 /* initialize to-be-configured parameters */
1417 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1418 dev->max_sectors = 0;
1419 dev->cdb_len = 0;
1420 dev->n_sectors = 0;
1421 dev->cylinders = 0;
1422 dev->heads = 0;
1423 dev->sectors = 0;
1426 * common ATA, ATAPI feature tests
1429 /* find max transfer mode; for printk only */
1430 xfer_mask = ata_id_xfermask(id);
1432 if (ata_msg_probe(ap))
1433 ata_dump_id(id);
1435 /* ATA-specific feature tests */
1436 if (dev->class == ATA_DEV_ATA) {
1437 if (ata_id_is_cfa(id)) {
1438 if (id[162] & 1) /* CPRM may make this media unusable */
1439 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1440 ap->id, dev->devno);
1441 snprintf(revbuf, 7, "CFA");
1443 else
1444 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1446 dev->n_sectors = ata_id_n_sectors(id);
1448 if (ata_id_has_lba(id)) {
1449 const char *lba_desc;
1450 char ncq_desc[20];
1452 lba_desc = "LBA";
1453 dev->flags |= ATA_DFLAG_LBA;
1454 if (ata_id_has_lba48(id)) {
1455 dev->flags |= ATA_DFLAG_LBA48;
1456 lba_desc = "LBA48";
1459 /* config NCQ */
1460 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1462 /* print device info to dmesg */
1463 if (ata_msg_drv(ap) && print_info)
1464 ata_dev_printk(dev, KERN_INFO, "%s, "
1465 "max %s, %Lu sectors: %s %s\n",
1466 revbuf,
1467 ata_mode_string(xfer_mask),
1468 (unsigned long long)dev->n_sectors,
1469 lba_desc, ncq_desc);
1470 } else {
1471 /* CHS */
1473 /* Default translation */
1474 dev->cylinders = id[1];
1475 dev->heads = id[3];
1476 dev->sectors = id[6];
1478 if (ata_id_current_chs_valid(id)) {
1479 /* Current CHS translation is valid. */
1480 dev->cylinders = id[54];
1481 dev->heads = id[55];
1482 dev->sectors = id[56];
1485 /* print device info to dmesg */
1486 if (ata_msg_drv(ap) && print_info)
1487 ata_dev_printk(dev, KERN_INFO, "%s, "
1488 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1489 revbuf,
1490 ata_mode_string(xfer_mask),
1491 (unsigned long long)dev->n_sectors,
1492 dev->cylinders, dev->heads,
1493 dev->sectors);
1496 if (dev->id[59] & 0x100) {
1497 dev->multi_count = dev->id[59] & 0xff;
1498 if (ata_msg_drv(ap) && print_info)
1499 ata_dev_printk(dev, KERN_INFO,
1500 "ata%u: dev %u multi count %u\n",
1501 ap->id, dev->devno, dev->multi_count);
1504 dev->cdb_len = 16;
1507 /* ATAPI-specific feature tests */
1508 else if (dev->class == ATA_DEV_ATAPI) {
1509 char *cdb_intr_string = "";
1511 rc = atapi_cdb_len(id);
1512 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1513 if (ata_msg_warn(ap))
1514 ata_dev_printk(dev, KERN_WARNING,
1515 "unsupported CDB len\n");
1516 rc = -EINVAL;
1517 goto err_out_nosup;
1519 dev->cdb_len = (unsigned int) rc;
1521 if (ata_id_cdb_intr(dev->id)) {
1522 dev->flags |= ATA_DFLAG_CDB_INTR;
1523 cdb_intr_string = ", CDB intr";
1526 /* print device info to dmesg */
1527 if (ata_msg_drv(ap) && print_info)
1528 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1529 ata_mode_string(xfer_mask),
1530 cdb_intr_string);
1533 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1534 /* Let the user know. We don't want to disallow opens for
1535 rescue purposes, or in case the vendor is just a blithering
1536 idiot */
1537 if (print_info) {
1538 ata_dev_printk(dev, KERN_WARNING,
1539 "Drive reports diagnostics failure. This may indicate a drive\n");
1540 ata_dev_printk(dev, KERN_WARNING,
1541 "fault or invalid emulation. Contact drive vendor for information.\n");
1545 ata_set_port_max_cmd_len(ap);
1547 /* limit bridge transfers to udma5, 200 sectors */
1548 if (ata_dev_knobble(dev)) {
1549 if (ata_msg_drv(ap) && print_info)
1550 ata_dev_printk(dev, KERN_INFO,
1551 "applying bridge limits\n");
1552 dev->udma_mask &= ATA_UDMA5;
1553 dev->max_sectors = ATA_MAX_SECTORS;
1556 if (ap->ops->dev_config)
1557 ap->ops->dev_config(ap, dev);
1559 if (ata_msg_probe(ap))
1560 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1561 __FUNCTION__, ata_chk_status(ap));
1562 return 0;
1564 err_out_nosup:
1565 if (ata_msg_probe(ap))
1566 ata_dev_printk(dev, KERN_DEBUG,
1567 "%s: EXIT, err\n", __FUNCTION__);
1568 return rc;
1572 * ata_bus_probe - Reset and probe ATA bus
1573 * @ap: Bus to probe
1575 * Master ATA bus probing function. Initiates a hardware-dependent
1576 * bus reset, then attempts to identify any devices found on
1577 * the bus.
1579 * LOCKING:
1580 * PCI/etc. bus probe sem.
1582 * RETURNS:
1583 * Zero on success, negative errno otherwise.
1586 int ata_bus_probe(struct ata_port *ap)
1588 unsigned int classes[ATA_MAX_DEVICES];
1589 int tries[ATA_MAX_DEVICES];
1590 int i, rc, down_xfermask;
1591 struct ata_device *dev;
1593 ata_port_probe(ap);
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 tries[i] = ATA_PROBE_MAX_TRIES;
1598 retry:
1599 down_xfermask = 0;
1601 /* reset and determine device classes */
1602 ap->ops->phy_reset(ap);
1604 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1605 dev = &ap->device[i];
1607 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1608 dev->class != ATA_DEV_UNKNOWN)
1609 classes[dev->devno] = dev->class;
1610 else
1611 classes[dev->devno] = ATA_DEV_NONE;
1613 dev->class = ATA_DEV_UNKNOWN;
1616 ata_port_probe(ap);
1618 /* after the reset the device state is PIO 0 and the controller
1619 state is undefined. Record the mode */
1621 for (i = 0; i < ATA_MAX_DEVICES; i++)
1622 ap->device[i].pio_mode = XFER_PIO_0;
1624 /* read IDENTIFY page and configure devices */
1625 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1626 dev = &ap->device[i];
1628 if (tries[i])
1629 dev->class = classes[i];
1631 if (!ata_dev_enabled(dev))
1632 continue;
1634 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1635 if (rc)
1636 goto fail;
1638 rc = ata_dev_configure(dev, 1);
1639 if (rc)
1640 goto fail;
1643 /* configure transfer mode */
1644 rc = ata_set_mode(ap, &dev);
1645 if (rc) {
1646 down_xfermask = 1;
1647 goto fail;
1650 for (i = 0; i < ATA_MAX_DEVICES; i++)
1651 if (ata_dev_enabled(&ap->device[i]))
1652 return 0;
1654 /* no device present, disable port */
1655 ata_port_disable(ap);
1656 ap->ops->port_disable(ap);
1657 return -ENODEV;
1659 fail:
1660 switch (rc) {
1661 case -EINVAL:
1662 case -ENODEV:
1663 tries[dev->devno] = 0;
1664 break;
1665 case -EIO:
1666 sata_down_spd_limit(ap);
1667 /* fall through */
1668 default:
1669 tries[dev->devno]--;
1670 if (down_xfermask &&
1671 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1672 tries[dev->devno] = 0;
1675 if (!tries[dev->devno]) {
1676 ata_down_xfermask_limit(dev, 1);
1677 ata_dev_disable(dev);
1680 goto retry;
1684 * ata_port_probe - Mark port as enabled
1685 * @ap: Port for which we indicate enablement
1687 * Modify @ap data structure such that the system
1688 * thinks that the entire port is enabled.
1690 * LOCKING: host lock, or some other form of
1691 * serialization.
1694 void ata_port_probe(struct ata_port *ap)
1696 ap->flags &= ~ATA_FLAG_DISABLED;
1700 * sata_print_link_status - Print SATA link status
1701 * @ap: SATA port to printk link status about
1703 * This function prints link speed and status of a SATA link.
1705 * LOCKING:
1706 * None.
1708 static void sata_print_link_status(struct ata_port *ap)
1710 u32 sstatus, scontrol, tmp;
1712 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1713 return;
1714 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1716 if (ata_port_online(ap)) {
1717 tmp = (sstatus >> 4) & 0xf;
1718 ata_port_printk(ap, KERN_INFO,
1719 "SATA link up %s (SStatus %X SControl %X)\n",
1720 sata_spd_string(tmp), sstatus, scontrol);
1721 } else {
1722 ata_port_printk(ap, KERN_INFO,
1723 "SATA link down (SStatus %X SControl %X)\n",
1724 sstatus, scontrol);
1729 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1730 * @ap: SATA port associated with target SATA PHY.
1732 * This function issues commands to standard SATA Sxxx
1733 * PHY registers, to wake up the phy (and device), and
1734 * clear any reset condition.
1736 * LOCKING:
1737 * PCI/etc. bus probe sem.
1740 void __sata_phy_reset(struct ata_port *ap)
1742 u32 sstatus;
1743 unsigned long timeout = jiffies + (HZ * 5);
1745 if (ap->flags & ATA_FLAG_SATA_RESET) {
1746 /* issue phy wake/reset */
1747 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1748 /* Couldn't find anything in SATA I/II specs, but
1749 * AHCI-1.1 10.4.2 says at least 1 ms. */
1750 mdelay(1);
1752 /* phy wake/clear reset */
1753 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1755 /* wait for phy to become ready, if necessary */
1756 do {
1757 msleep(200);
1758 sata_scr_read(ap, SCR_STATUS, &sstatus);
1759 if ((sstatus & 0xf) != 1)
1760 break;
1761 } while (time_before(jiffies, timeout));
1763 /* print link status */
1764 sata_print_link_status(ap);
1766 /* TODO: phy layer with polling, timeouts, etc. */
1767 if (!ata_port_offline(ap))
1768 ata_port_probe(ap);
1769 else
1770 ata_port_disable(ap);
1772 if (ap->flags & ATA_FLAG_DISABLED)
1773 return;
1775 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1776 ata_port_disable(ap);
1777 return;
1780 ap->cbl = ATA_CBL_SATA;
1784 * sata_phy_reset - Reset SATA bus.
1785 * @ap: SATA port associated with target SATA PHY.
1787 * This function resets the SATA bus, and then probes
1788 * the bus for devices.
1790 * LOCKING:
1791 * PCI/etc. bus probe sem.
1794 void sata_phy_reset(struct ata_port *ap)
1796 __sata_phy_reset(ap);
1797 if (ap->flags & ATA_FLAG_DISABLED)
1798 return;
1799 ata_bus_reset(ap);
1803 * ata_dev_pair - return other device on cable
1804 * @adev: device
1806 * Obtain the other device on the same cable, or if none is
1807 * present NULL is returned
1810 struct ata_device *ata_dev_pair(struct ata_device *adev)
1812 struct ata_port *ap = adev->ap;
1813 struct ata_device *pair = &ap->device[1 - adev->devno];
1814 if (!ata_dev_enabled(pair))
1815 return NULL;
1816 return pair;
1820 * ata_port_disable - Disable port.
1821 * @ap: Port to be disabled.
1823 * Modify @ap data structure such that the system
1824 * thinks that the entire port is disabled, and should
1825 * never attempt to probe or communicate with devices
1826 * on this port.
1828 * LOCKING: host lock, or some other form of
1829 * serialization.
1832 void ata_port_disable(struct ata_port *ap)
1834 ap->device[0].class = ATA_DEV_NONE;
1835 ap->device[1].class = ATA_DEV_NONE;
1836 ap->flags |= ATA_FLAG_DISABLED;
1840 * sata_down_spd_limit - adjust SATA spd limit downward
1841 * @ap: Port to adjust SATA spd limit for
1843 * Adjust SATA spd limit of @ap downward. Note that this
1844 * function only adjusts the limit. The change must be applied
1845 * using sata_set_spd().
1847 * LOCKING:
1848 * Inherited from caller.
1850 * RETURNS:
1851 * 0 on success, negative errno on failure
1853 int sata_down_spd_limit(struct ata_port *ap)
1855 u32 sstatus, spd, mask;
1856 int rc, highbit;
1858 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1859 if (rc)
1860 return rc;
1862 mask = ap->sata_spd_limit;
1863 if (mask <= 1)
1864 return -EINVAL;
1865 highbit = fls(mask) - 1;
1866 mask &= ~(1 << highbit);
1868 spd = (sstatus >> 4) & 0xf;
1869 if (spd <= 1)
1870 return -EINVAL;
1871 spd--;
1872 mask &= (1 << spd) - 1;
1873 if (!mask)
1874 return -EINVAL;
1876 ap->sata_spd_limit = mask;
1878 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1879 sata_spd_string(fls(mask)));
1881 return 0;
1884 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1886 u32 spd, limit;
1888 if (ap->sata_spd_limit == UINT_MAX)
1889 limit = 0;
1890 else
1891 limit = fls(ap->sata_spd_limit);
1893 spd = (*scontrol >> 4) & 0xf;
1894 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1896 return spd != limit;
1900 * sata_set_spd_needed - is SATA spd configuration needed
1901 * @ap: Port in question
1903 * Test whether the spd limit in SControl matches
1904 * @ap->sata_spd_limit. This function is used to determine
1905 * whether hardreset is necessary to apply SATA spd
1906 * configuration.
1908 * LOCKING:
1909 * Inherited from caller.
1911 * RETURNS:
1912 * 1 if SATA spd configuration is needed, 0 otherwise.
1914 int sata_set_spd_needed(struct ata_port *ap)
1916 u32 scontrol;
1918 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1919 return 0;
1921 return __sata_set_spd_needed(ap, &scontrol);
1925 * sata_set_spd - set SATA spd according to spd limit
1926 * @ap: Port to set SATA spd for
1928 * Set SATA spd of @ap according to sata_spd_limit.
1930 * LOCKING:
1931 * Inherited from caller.
1933 * RETURNS:
1934 * 0 if spd doesn't need to be changed, 1 if spd has been
1935 * changed. Negative errno if SCR registers are inaccessible.
1937 int sata_set_spd(struct ata_port *ap)
1939 u32 scontrol;
1940 int rc;
1942 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1943 return rc;
1945 if (!__sata_set_spd_needed(ap, &scontrol))
1946 return 0;
1948 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1949 return rc;
1951 return 1;
1955 * This mode timing computation functionality is ported over from
1956 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1959 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1960 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1961 * for UDMA6, which is currently supported only by Maxtor drives.
1963 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
1966 static const struct ata_timing ata_timing[] = {
1968 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1969 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1970 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1971 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1973 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
1974 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
1975 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1976 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1977 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1979 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1981 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1982 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1983 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1985 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1986 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1987 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1989 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
1990 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
1991 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1992 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1994 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1995 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1996 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1998 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2000 { 0xFF }
2003 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2004 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2006 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2008 q->setup = EZ(t->setup * 1000, T);
2009 q->act8b = EZ(t->act8b * 1000, T);
2010 q->rec8b = EZ(t->rec8b * 1000, T);
2011 q->cyc8b = EZ(t->cyc8b * 1000, T);
2012 q->active = EZ(t->active * 1000, T);
2013 q->recover = EZ(t->recover * 1000, T);
2014 q->cycle = EZ(t->cycle * 1000, T);
2015 q->udma = EZ(t->udma * 1000, UT);
2018 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2019 struct ata_timing *m, unsigned int what)
2021 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2022 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2023 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2024 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2025 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2026 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2027 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2028 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2031 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2033 const struct ata_timing *t;
2035 for (t = ata_timing; t->mode != speed; t++)
2036 if (t->mode == 0xFF)
2037 return NULL;
2038 return t;
2041 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2042 struct ata_timing *t, int T, int UT)
2044 const struct ata_timing *s;
2045 struct ata_timing p;
2048 * Find the mode.
2051 if (!(s = ata_timing_find_mode(speed)))
2052 return -EINVAL;
2054 memcpy(t, s, sizeof(*s));
2057 * If the drive is an EIDE drive, it can tell us it needs extended
2058 * PIO/MW_DMA cycle timing.
2061 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2062 memset(&p, 0, sizeof(p));
2063 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2064 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2065 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2066 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2067 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2069 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2073 * Convert the timing to bus clock counts.
2076 ata_timing_quantize(t, t, T, UT);
2079 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2080 * S.M.A.R.T * and some other commands. We have to ensure that the
2081 * DMA cycle timing is slower/equal than the fastest PIO timing.
2084 if (speed > XFER_PIO_4) {
2085 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2086 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2090 * Lengthen active & recovery time so that cycle time is correct.
2093 if (t->act8b + t->rec8b < t->cyc8b) {
2094 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2095 t->rec8b = t->cyc8b - t->act8b;
2098 if (t->active + t->recover < t->cycle) {
2099 t->active += (t->cycle - (t->active + t->recover)) / 2;
2100 t->recover = t->cycle - t->active;
2103 return 0;
2107 * ata_down_xfermask_limit - adjust dev xfer masks downward
2108 * @dev: Device to adjust xfer masks
2109 * @force_pio0: Force PIO0
2111 * Adjust xfer masks of @dev downward. Note that this function
2112 * does not apply the change. Invoking ata_set_mode() afterwards
2113 * will apply the limit.
2115 * LOCKING:
2116 * Inherited from caller.
2118 * RETURNS:
2119 * 0 on success, negative errno on failure
2121 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2123 unsigned long xfer_mask;
2124 int highbit;
2126 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2127 dev->udma_mask);
2129 if (!xfer_mask)
2130 goto fail;
2131 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2132 if (xfer_mask & ATA_MASK_UDMA)
2133 xfer_mask &= ~ATA_MASK_MWDMA;
2135 highbit = fls(xfer_mask) - 1;
2136 xfer_mask &= ~(1 << highbit);
2137 if (force_pio0)
2138 xfer_mask &= 1 << ATA_SHIFT_PIO;
2139 if (!xfer_mask)
2140 goto fail;
2142 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2143 &dev->udma_mask);
2145 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2146 ata_mode_string(xfer_mask));
2148 return 0;
2150 fail:
2151 return -EINVAL;
2154 static int ata_dev_set_mode(struct ata_device *dev)
2156 unsigned int err_mask;
2157 int rc;
2159 dev->flags &= ~ATA_DFLAG_PIO;
2160 if (dev->xfer_shift == ATA_SHIFT_PIO)
2161 dev->flags |= ATA_DFLAG_PIO;
2163 err_mask = ata_dev_set_xfermode(dev);
2164 if (err_mask) {
2165 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2166 "(err_mask=0x%x)\n", err_mask);
2167 return -EIO;
2170 rc = ata_dev_revalidate(dev, 0);
2171 if (rc)
2172 return rc;
2174 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2175 dev->xfer_shift, (int)dev->xfer_mode);
2177 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2178 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2179 return 0;
2183 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2184 * @ap: port on which timings will be programmed
2185 * @r_failed_dev: out paramter for failed device
2187 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2188 * ata_set_mode() fails, pointer to the failing device is
2189 * returned in @r_failed_dev.
2191 * LOCKING:
2192 * PCI/etc. bus probe sem.
2194 * RETURNS:
2195 * 0 on success, negative errno otherwise
2197 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2199 struct ata_device *dev;
2200 int i, rc = 0, used_dma = 0, found = 0;
2202 /* has private set_mode? */
2203 if (ap->ops->set_mode) {
2204 /* FIXME: make ->set_mode handle no device case and
2205 * return error code and failing device on failure.
2207 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2208 if (ata_dev_ready(&ap->device[i])) {
2209 ap->ops->set_mode(ap);
2210 break;
2213 return 0;
2216 /* step 1: calculate xfer_mask */
2217 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2218 unsigned int pio_mask, dma_mask;
2220 dev = &ap->device[i];
2222 if (!ata_dev_enabled(dev))
2223 continue;
2225 ata_dev_xfermask(dev);
2227 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2228 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2229 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2230 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2232 found = 1;
2233 if (dev->dma_mode)
2234 used_dma = 1;
2236 if (!found)
2237 goto out;
2239 /* step 2: always set host PIO timings */
2240 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2241 dev = &ap->device[i];
2242 if (!ata_dev_enabled(dev))
2243 continue;
2245 if (!dev->pio_mode) {
2246 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2247 rc = -EINVAL;
2248 goto out;
2251 dev->xfer_mode = dev->pio_mode;
2252 dev->xfer_shift = ATA_SHIFT_PIO;
2253 if (ap->ops->set_piomode)
2254 ap->ops->set_piomode(ap, dev);
2257 /* step 3: set host DMA timings */
2258 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2259 dev = &ap->device[i];
2261 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2262 continue;
2264 dev->xfer_mode = dev->dma_mode;
2265 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2266 if (ap->ops->set_dmamode)
2267 ap->ops->set_dmamode(ap, dev);
2270 /* step 4: update devices' xfer mode */
2271 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2272 dev = &ap->device[i];
2274 /* don't udpate suspended devices' xfer mode */
2275 if (!ata_dev_ready(dev))
2276 continue;
2278 rc = ata_dev_set_mode(dev);
2279 if (rc)
2280 goto out;
2283 /* Record simplex status. If we selected DMA then the other
2284 * host channels are not permitted to do so.
2286 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2287 ap->host->simplex_claimed = 1;
2289 /* step5: chip specific finalisation */
2290 if (ap->ops->post_set_mode)
2291 ap->ops->post_set_mode(ap);
2293 out:
2294 if (rc)
2295 *r_failed_dev = dev;
2296 return rc;
2300 * ata_tf_to_host - issue ATA taskfile to host controller
2301 * @ap: port to which command is being issued
2302 * @tf: ATA taskfile register set
2304 * Issues ATA taskfile register set to ATA host controller,
2305 * with proper synchronization with interrupt handler and
2306 * other threads.
2308 * LOCKING:
2309 * spin_lock_irqsave(host lock)
2312 static inline void ata_tf_to_host(struct ata_port *ap,
2313 const struct ata_taskfile *tf)
2315 ap->ops->tf_load(ap, tf);
2316 ap->ops->exec_command(ap, tf);
2320 * ata_busy_sleep - sleep until BSY clears, or timeout
2321 * @ap: port containing status register to be polled
2322 * @tmout_pat: impatience timeout
2323 * @tmout: overall timeout
2325 * Sleep until ATA Status register bit BSY clears,
2326 * or a timeout occurs.
2328 * LOCKING: None.
2331 unsigned int ata_busy_sleep (struct ata_port *ap,
2332 unsigned long tmout_pat, unsigned long tmout)
2334 unsigned long timer_start, timeout;
2335 u8 status;
2337 status = ata_busy_wait(ap, ATA_BUSY, 300);
2338 timer_start = jiffies;
2339 timeout = timer_start + tmout_pat;
2340 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2341 msleep(50);
2342 status = ata_busy_wait(ap, ATA_BUSY, 3);
2345 if (status & ATA_BUSY)
2346 ata_port_printk(ap, KERN_WARNING,
2347 "port is slow to respond, please be patient "
2348 "(Status 0x%x)\n", status);
2350 timeout = timer_start + tmout;
2351 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2352 msleep(50);
2353 status = ata_chk_status(ap);
2356 if (status & ATA_BUSY) {
2357 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2358 "(%lu secs, Status 0x%x)\n",
2359 tmout / HZ, status);
2360 return 1;
2363 return 0;
2366 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2368 struct ata_ioports *ioaddr = &ap->ioaddr;
2369 unsigned int dev0 = devmask & (1 << 0);
2370 unsigned int dev1 = devmask & (1 << 1);
2371 unsigned long timeout;
2373 /* if device 0 was found in ata_devchk, wait for its
2374 * BSY bit to clear
2376 if (dev0)
2377 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2379 /* if device 1 was found in ata_devchk, wait for
2380 * register access, then wait for BSY to clear
2382 timeout = jiffies + ATA_TMOUT_BOOT;
2383 while (dev1) {
2384 u8 nsect, lbal;
2386 ap->ops->dev_select(ap, 1);
2387 if (ap->flags & ATA_FLAG_MMIO) {
2388 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2389 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2390 } else {
2391 nsect = inb(ioaddr->nsect_addr);
2392 lbal = inb(ioaddr->lbal_addr);
2394 if ((nsect == 1) && (lbal == 1))
2395 break;
2396 if (time_after(jiffies, timeout)) {
2397 dev1 = 0;
2398 break;
2400 msleep(50); /* give drive a breather */
2402 if (dev1)
2403 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2405 /* is all this really necessary? */
2406 ap->ops->dev_select(ap, 0);
2407 if (dev1)
2408 ap->ops->dev_select(ap, 1);
2409 if (dev0)
2410 ap->ops->dev_select(ap, 0);
2413 static unsigned int ata_bus_softreset(struct ata_port *ap,
2414 unsigned int devmask)
2416 struct ata_ioports *ioaddr = &ap->ioaddr;
2418 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2420 /* software reset. causes dev0 to be selected */
2421 if (ap->flags & ATA_FLAG_MMIO) {
2422 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2423 udelay(20); /* FIXME: flush */
2424 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2425 udelay(20); /* FIXME: flush */
2426 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2427 } else {
2428 outb(ap->ctl, ioaddr->ctl_addr);
2429 udelay(10);
2430 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2431 udelay(10);
2432 outb(ap->ctl, ioaddr->ctl_addr);
2435 /* spec mandates ">= 2ms" before checking status.
2436 * We wait 150ms, because that was the magic delay used for
2437 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2438 * between when the ATA command register is written, and then
2439 * status is checked. Because waiting for "a while" before
2440 * checking status is fine, post SRST, we perform this magic
2441 * delay here as well.
2443 * Old drivers/ide uses the 2mS rule and then waits for ready
2445 msleep(150);
2447 /* Before we perform post reset processing we want to see if
2448 * the bus shows 0xFF because the odd clown forgets the D7
2449 * pulldown resistor.
2451 if (ata_check_status(ap) == 0xFF) {
2452 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2453 return AC_ERR_OTHER;
2456 ata_bus_post_reset(ap, devmask);
2458 return 0;
2462 * ata_bus_reset - reset host port and associated ATA channel
2463 * @ap: port to reset
2465 * This is typically the first time we actually start issuing
2466 * commands to the ATA channel. We wait for BSY to clear, then
2467 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2468 * result. Determine what devices, if any, are on the channel
2469 * by looking at the device 0/1 error register. Look at the signature
2470 * stored in each device's taskfile registers, to determine if
2471 * the device is ATA or ATAPI.
2473 * LOCKING:
2474 * PCI/etc. bus probe sem.
2475 * Obtains host lock.
2477 * SIDE EFFECTS:
2478 * Sets ATA_FLAG_DISABLED if bus reset fails.
2481 void ata_bus_reset(struct ata_port *ap)
2483 struct ata_ioports *ioaddr = &ap->ioaddr;
2484 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2485 u8 err;
2486 unsigned int dev0, dev1 = 0, devmask = 0;
2488 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2490 /* determine if device 0/1 are present */
2491 if (ap->flags & ATA_FLAG_SATA_RESET)
2492 dev0 = 1;
2493 else {
2494 dev0 = ata_devchk(ap, 0);
2495 if (slave_possible)
2496 dev1 = ata_devchk(ap, 1);
2499 if (dev0)
2500 devmask |= (1 << 0);
2501 if (dev1)
2502 devmask |= (1 << 1);
2504 /* select device 0 again */
2505 ap->ops->dev_select(ap, 0);
2507 /* issue bus reset */
2508 if (ap->flags & ATA_FLAG_SRST)
2509 if (ata_bus_softreset(ap, devmask))
2510 goto err_out;
2513 * determine by signature whether we have ATA or ATAPI devices
2515 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2516 if ((slave_possible) && (err != 0x81))
2517 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2519 /* re-enable interrupts */
2520 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2521 ata_irq_on(ap);
2523 /* is double-select really necessary? */
2524 if (ap->device[1].class != ATA_DEV_NONE)
2525 ap->ops->dev_select(ap, 1);
2526 if (ap->device[0].class != ATA_DEV_NONE)
2527 ap->ops->dev_select(ap, 0);
2529 /* if no devices were detected, disable this port */
2530 if ((ap->device[0].class == ATA_DEV_NONE) &&
2531 (ap->device[1].class == ATA_DEV_NONE))
2532 goto err_out;
2534 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2535 /* set up device control for ATA_FLAG_SATA_RESET */
2536 if (ap->flags & ATA_FLAG_MMIO)
2537 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2538 else
2539 outb(ap->ctl, ioaddr->ctl_addr);
2542 DPRINTK("EXIT\n");
2543 return;
2545 err_out:
2546 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2547 ap->ops->port_disable(ap);
2549 DPRINTK("EXIT\n");
2553 * sata_phy_debounce - debounce SATA phy status
2554 * @ap: ATA port to debounce SATA phy status for
2555 * @params: timing parameters { interval, duratinon, timeout } in msec
2557 * Make sure SStatus of @ap reaches stable state, determined by
2558 * holding the same value where DET is not 1 for @duration polled
2559 * every @interval, before @timeout. Timeout constraints the
2560 * beginning of the stable state. Because, after hot unplugging,
2561 * DET gets stuck at 1 on some controllers, this functions waits
2562 * until timeout then returns 0 if DET is stable at 1.
2564 * LOCKING:
2565 * Kernel thread context (may sleep)
2567 * RETURNS:
2568 * 0 on success, -errno on failure.
2570 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2572 unsigned long interval_msec = params[0];
2573 unsigned long duration = params[1] * HZ / 1000;
2574 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2575 unsigned long last_jiffies;
2576 u32 last, cur;
2577 int rc;
2579 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2580 return rc;
2581 cur &= 0xf;
2583 last = cur;
2584 last_jiffies = jiffies;
2586 while (1) {
2587 msleep(interval_msec);
2588 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2589 return rc;
2590 cur &= 0xf;
2592 /* DET stable? */
2593 if (cur == last) {
2594 if (cur == 1 && time_before(jiffies, timeout))
2595 continue;
2596 if (time_after(jiffies, last_jiffies + duration))
2597 return 0;
2598 continue;
2601 /* unstable, start over */
2602 last = cur;
2603 last_jiffies = jiffies;
2605 /* check timeout */
2606 if (time_after(jiffies, timeout))
2607 return -EBUSY;
2612 * sata_phy_resume - resume SATA phy
2613 * @ap: ATA port to resume SATA phy for
2614 * @params: timing parameters { interval, duratinon, timeout } in msec
2616 * Resume SATA phy of @ap and debounce it.
2618 * LOCKING:
2619 * Kernel thread context (may sleep)
2621 * RETURNS:
2622 * 0 on success, -errno on failure.
2624 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2626 u32 scontrol;
2627 int rc;
2629 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2630 return rc;
2632 scontrol = (scontrol & 0x0f0) | 0x300;
2634 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2635 return rc;
2637 /* Some PHYs react badly if SStatus is pounded immediately
2638 * after resuming. Delay 200ms before debouncing.
2640 msleep(200);
2642 return sata_phy_debounce(ap, params);
2645 static void ata_wait_spinup(struct ata_port *ap)
2647 struct ata_eh_context *ehc = &ap->eh_context;
2648 unsigned long end, secs;
2649 int rc;
2651 /* first, debounce phy if SATA */
2652 if (ap->cbl == ATA_CBL_SATA) {
2653 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2655 /* if debounced successfully and offline, no need to wait */
2656 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2657 return;
2660 /* okay, let's give the drive time to spin up */
2661 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2662 secs = ((end - jiffies) + HZ - 1) / HZ;
2664 if (time_after(jiffies, end))
2665 return;
2667 if (secs > 5)
2668 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2669 "(%lu secs)\n", secs);
2671 schedule_timeout_uninterruptible(end - jiffies);
2675 * ata_std_prereset - prepare for reset
2676 * @ap: ATA port to be reset
2678 * @ap is about to be reset. Initialize it.
2680 * LOCKING:
2681 * Kernel thread context (may sleep)
2683 * RETURNS:
2684 * 0 on success, -errno otherwise.
2686 int ata_std_prereset(struct ata_port *ap)
2688 struct ata_eh_context *ehc = &ap->eh_context;
2689 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2690 int rc;
2692 /* handle link resume & hotplug spinup */
2693 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2694 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2695 ehc->i.action |= ATA_EH_HARDRESET;
2697 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2698 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2699 ata_wait_spinup(ap);
2701 /* if we're about to do hardreset, nothing more to do */
2702 if (ehc->i.action & ATA_EH_HARDRESET)
2703 return 0;
2705 /* if SATA, resume phy */
2706 if (ap->cbl == ATA_CBL_SATA) {
2707 rc = sata_phy_resume(ap, timing);
2708 if (rc && rc != -EOPNOTSUPP) {
2709 /* phy resume failed */
2710 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2711 "link for reset (errno=%d)\n", rc);
2712 return rc;
2716 /* Wait for !BSY if the controller can wait for the first D2H
2717 * Reg FIS and we don't know that no device is attached.
2719 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2720 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2722 return 0;
2726 * ata_std_softreset - reset host port via ATA SRST
2727 * @ap: port to reset
2728 * @classes: resulting classes of attached devices
2730 * Reset host port using ATA SRST.
2732 * LOCKING:
2733 * Kernel thread context (may sleep)
2735 * RETURNS:
2736 * 0 on success, -errno otherwise.
2738 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2740 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2741 unsigned int devmask = 0, err_mask;
2742 u8 err;
2744 DPRINTK("ENTER\n");
2746 if (ata_port_offline(ap)) {
2747 classes[0] = ATA_DEV_NONE;
2748 goto out;
2751 /* determine if device 0/1 are present */
2752 if (ata_devchk(ap, 0))
2753 devmask |= (1 << 0);
2754 if (slave_possible && ata_devchk(ap, 1))
2755 devmask |= (1 << 1);
2757 /* select device 0 again */
2758 ap->ops->dev_select(ap, 0);
2760 /* issue bus reset */
2761 DPRINTK("about to softreset, devmask=%x\n", devmask);
2762 err_mask = ata_bus_softreset(ap, devmask);
2763 if (err_mask) {
2764 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2765 err_mask);
2766 return -EIO;
2769 /* determine by signature whether we have ATA or ATAPI devices */
2770 classes[0] = ata_dev_try_classify(ap, 0, &err);
2771 if (slave_possible && err != 0x81)
2772 classes[1] = ata_dev_try_classify(ap, 1, &err);
2774 out:
2775 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2776 return 0;
2780 * sata_std_hardreset - reset host port via SATA phy reset
2781 * @ap: port to reset
2782 * @class: resulting class of attached device
2784 * SATA phy-reset host port using DET bits of SControl register.
2786 * LOCKING:
2787 * Kernel thread context (may sleep)
2789 * RETURNS:
2790 * 0 on success, -errno otherwise.
2792 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2794 struct ata_eh_context *ehc = &ap->eh_context;
2795 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2796 u32 scontrol;
2797 int rc;
2799 DPRINTK("ENTER\n");
2801 if (sata_set_spd_needed(ap)) {
2802 /* SATA spec says nothing about how to reconfigure
2803 * spd. To be on the safe side, turn off phy during
2804 * reconfiguration. This works for at least ICH7 AHCI
2805 * and Sil3124.
2807 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2808 return rc;
2810 scontrol = (scontrol & 0x0f0) | 0x304;
2812 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2813 return rc;
2815 sata_set_spd(ap);
2818 /* issue phy wake/reset */
2819 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2820 return rc;
2822 scontrol = (scontrol & 0x0f0) | 0x301;
2824 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2825 return rc;
2827 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2828 * 10.4.2 says at least 1 ms.
2830 msleep(1);
2832 /* bring phy back */
2833 sata_phy_resume(ap, timing);
2835 /* TODO: phy layer with polling, timeouts, etc. */
2836 if (ata_port_offline(ap)) {
2837 *class = ATA_DEV_NONE;
2838 DPRINTK("EXIT, link offline\n");
2839 return 0;
2842 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2843 ata_port_printk(ap, KERN_ERR,
2844 "COMRESET failed (device not ready)\n");
2845 return -EIO;
2848 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2850 *class = ata_dev_try_classify(ap, 0, NULL);
2852 DPRINTK("EXIT, class=%u\n", *class);
2853 return 0;
2857 * ata_std_postreset - standard postreset callback
2858 * @ap: the target ata_port
2859 * @classes: classes of attached devices
2861 * This function is invoked after a successful reset. Note that
2862 * the device might have been reset more than once using
2863 * different reset methods before postreset is invoked.
2865 * LOCKING:
2866 * Kernel thread context (may sleep)
2868 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2870 u32 serror;
2872 DPRINTK("ENTER\n");
2874 /* print link status */
2875 sata_print_link_status(ap);
2877 /* clear SError */
2878 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2879 sata_scr_write(ap, SCR_ERROR, serror);
2881 /* re-enable interrupts */
2882 if (!ap->ops->error_handler) {
2883 /* FIXME: hack. create a hook instead */
2884 if (ap->ioaddr.ctl_addr)
2885 ata_irq_on(ap);
2888 /* is double-select really necessary? */
2889 if (classes[0] != ATA_DEV_NONE)
2890 ap->ops->dev_select(ap, 1);
2891 if (classes[1] != ATA_DEV_NONE)
2892 ap->ops->dev_select(ap, 0);
2894 /* bail out if no device is present */
2895 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2896 DPRINTK("EXIT, no device\n");
2897 return;
2900 /* set up device control */
2901 if (ap->ioaddr.ctl_addr) {
2902 if (ap->flags & ATA_FLAG_MMIO)
2903 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2904 else
2905 outb(ap->ctl, ap->ioaddr.ctl_addr);
2908 DPRINTK("EXIT\n");
2912 * ata_dev_same_device - Determine whether new ID matches configured device
2913 * @dev: device to compare against
2914 * @new_class: class of the new device
2915 * @new_id: IDENTIFY page of the new device
2917 * Compare @new_class and @new_id against @dev and determine
2918 * whether @dev is the device indicated by @new_class and
2919 * @new_id.
2921 * LOCKING:
2922 * None.
2924 * RETURNS:
2925 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2927 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2928 const u16 *new_id)
2930 const u16 *old_id = dev->id;
2931 unsigned char model[2][41], serial[2][21];
2932 u64 new_n_sectors;
2934 if (dev->class != new_class) {
2935 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2936 dev->class, new_class);
2937 return 0;
2940 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2941 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2942 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2943 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2944 new_n_sectors = ata_id_n_sectors(new_id);
2946 if (strcmp(model[0], model[1])) {
2947 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2948 "'%s' != '%s'\n", model[0], model[1]);
2949 return 0;
2952 if (strcmp(serial[0], serial[1])) {
2953 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2954 "'%s' != '%s'\n", serial[0], serial[1]);
2955 return 0;
2958 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2959 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2960 "%llu != %llu\n",
2961 (unsigned long long)dev->n_sectors,
2962 (unsigned long long)new_n_sectors);
2963 return 0;
2966 return 1;
2970 * ata_dev_revalidate - Revalidate ATA device
2971 * @dev: device to revalidate
2972 * @post_reset: is this revalidation after reset?
2974 * Re-read IDENTIFY page and make sure @dev is still attached to
2975 * the port.
2977 * LOCKING:
2978 * Kernel thread context (may sleep)
2980 * RETURNS:
2981 * 0 on success, negative errno otherwise
2983 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2985 unsigned int class = dev->class;
2986 u16 *id = (void *)dev->ap->sector_buf;
2987 int rc;
2989 if (!ata_dev_enabled(dev)) {
2990 rc = -ENODEV;
2991 goto fail;
2994 /* read ID data */
2995 rc = ata_dev_read_id(dev, &class, post_reset, id);
2996 if (rc)
2997 goto fail;
2999 /* is the device still there? */
3000 if (!ata_dev_same_device(dev, class, id)) {
3001 rc = -ENODEV;
3002 goto fail;
3005 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3007 /* configure device according to the new ID */
3008 rc = ata_dev_configure(dev, 0);
3009 if (rc == 0)
3010 return 0;
3012 fail:
3013 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3014 return rc;
3017 static const char * const ata_dma_blacklist [] = {
3018 "WDC AC11000H", NULL,
3019 "WDC AC22100H", NULL,
3020 "WDC AC32500H", NULL,
3021 "WDC AC33100H", NULL,
3022 "WDC AC31600H", NULL,
3023 "WDC AC32100H", "24.09P07",
3024 "WDC AC23200L", "21.10N21",
3025 "Compaq CRD-8241B", NULL,
3026 "CRD-8400B", NULL,
3027 "CRD-8480B", NULL,
3028 "CRD-8482B", NULL,
3029 "CRD-84", NULL,
3030 "SanDisk SDP3B", NULL,
3031 "SanDisk SDP3B-64", NULL,
3032 "SANYO CD-ROM CRD", NULL,
3033 "HITACHI CDR-8", NULL,
3034 "HITACHI CDR-8335", NULL,
3035 "HITACHI CDR-8435", NULL,
3036 "Toshiba CD-ROM XM-6202B", NULL,
3037 "TOSHIBA CD-ROM XM-1702BC", NULL,
3038 "CD-532E-A", NULL,
3039 "E-IDE CD-ROM CR-840", NULL,
3040 "CD-ROM Drive/F5A", NULL,
3041 "WPI CDD-820", NULL,
3042 "SAMSUNG CD-ROM SC-148C", NULL,
3043 "SAMSUNG CD-ROM SC", NULL,
3044 "SanDisk SDP3B-64", NULL,
3045 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
3046 "_NEC DV5800A", NULL,
3047 "SAMSUNG CD-ROM SN-124", "N001"
3050 static int ata_strim(char *s, size_t len)
3052 len = strnlen(s, len);
3054 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3055 while ((len > 0) && (s[len - 1] == ' ')) {
3056 len--;
3057 s[len] = 0;
3059 return len;
3062 static int ata_dma_blacklisted(const struct ata_device *dev)
3064 unsigned char model_num[40];
3065 unsigned char model_rev[16];
3066 unsigned int nlen, rlen;
3067 int i;
3069 /* We don't support polling DMA.
3070 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3071 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3073 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3074 (dev->flags & ATA_DFLAG_CDB_INTR))
3075 return 1;
3077 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3078 sizeof(model_num));
3079 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3080 sizeof(model_rev));
3081 nlen = ata_strim(model_num, sizeof(model_num));
3082 rlen = ata_strim(model_rev, sizeof(model_rev));
3084 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3085 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3086 if (ata_dma_blacklist[i+1] == NULL)
3087 return 1;
3088 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3089 return 1;
3092 return 0;
3096 * ata_dev_xfermask - Compute supported xfermask of the given device
3097 * @dev: Device to compute xfermask for
3099 * Compute supported xfermask of @dev and store it in
3100 * dev->*_mask. This function is responsible for applying all
3101 * known limits including host controller limits, device
3102 * blacklist, etc...
3104 * LOCKING:
3105 * None.
3107 static void ata_dev_xfermask(struct ata_device *dev)
3109 struct ata_port *ap = dev->ap;
3110 struct ata_host *host = ap->host;
3111 unsigned long xfer_mask;
3113 /* controller modes available */
3114 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3115 ap->mwdma_mask, ap->udma_mask);
3117 /* Apply cable rule here. Don't apply it early because when
3118 * we handle hot plug the cable type can itself change.
3120 if (ap->cbl == ATA_CBL_PATA40)
3121 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3123 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3124 dev->mwdma_mask, dev->udma_mask);
3125 xfer_mask &= ata_id_xfermask(dev->id);
3128 * CFA Advanced TrueIDE timings are not allowed on a shared
3129 * cable
3131 if (ata_dev_pair(dev)) {
3132 /* No PIO5 or PIO6 */
3133 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3134 /* No MWDMA3 or MWDMA 4 */
3135 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3138 if (ata_dma_blacklisted(dev)) {
3139 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3140 ata_dev_printk(dev, KERN_WARNING,
3141 "device is on DMA blacklist, disabling DMA\n");
3144 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3145 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3146 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3147 "other device, disabling DMA\n");
3150 if (ap->ops->mode_filter)
3151 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3153 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3154 &dev->mwdma_mask, &dev->udma_mask);
3158 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3159 * @dev: Device to which command will be sent
3161 * Issue SET FEATURES - XFER MODE command to device @dev
3162 * on port @ap.
3164 * LOCKING:
3165 * PCI/etc. bus probe sem.
3167 * RETURNS:
3168 * 0 on success, AC_ERR_* mask otherwise.
3171 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3173 struct ata_taskfile tf;
3174 unsigned int err_mask;
3176 /* set up set-features taskfile */
3177 DPRINTK("set features - xfer mode\n");
3179 ata_tf_init(dev, &tf);
3180 tf.command = ATA_CMD_SET_FEATURES;
3181 tf.feature = SETFEATURES_XFER;
3182 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3183 tf.protocol = ATA_PROT_NODATA;
3184 tf.nsect = dev->xfer_mode;
3186 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3188 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3189 return err_mask;
3193 * ata_dev_init_params - Issue INIT DEV PARAMS command
3194 * @dev: Device to which command will be sent
3195 * @heads: Number of heads (taskfile parameter)
3196 * @sectors: Number of sectors (taskfile parameter)
3198 * LOCKING:
3199 * Kernel thread context (may sleep)
3201 * RETURNS:
3202 * 0 on success, AC_ERR_* mask otherwise.
3204 static unsigned int ata_dev_init_params(struct ata_device *dev,
3205 u16 heads, u16 sectors)
3207 struct ata_taskfile tf;
3208 unsigned int err_mask;
3210 /* Number of sectors per track 1-255. Number of heads 1-16 */
3211 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3212 return AC_ERR_INVALID;
3214 /* set up init dev params taskfile */
3215 DPRINTK("init dev params \n");
3217 ata_tf_init(dev, &tf);
3218 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3219 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3220 tf.protocol = ATA_PROT_NODATA;
3221 tf.nsect = sectors;
3222 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3224 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3226 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3227 return err_mask;
3231 * ata_sg_clean - Unmap DMA memory associated with command
3232 * @qc: Command containing DMA memory to be released
3234 * Unmap all mapped DMA memory associated with this command.
3236 * LOCKING:
3237 * spin_lock_irqsave(host lock)
3240 static void ata_sg_clean(struct ata_queued_cmd *qc)
3242 struct ata_port *ap = qc->ap;
3243 struct scatterlist *sg = qc->__sg;
3244 int dir = qc->dma_dir;
3245 void *pad_buf = NULL;
3247 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3248 WARN_ON(sg == NULL);
3250 if (qc->flags & ATA_QCFLAG_SINGLE)
3251 WARN_ON(qc->n_elem > 1);
3253 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3255 /* if we padded the buffer out to 32-bit bound, and data
3256 * xfer direction is from-device, we must copy from the
3257 * pad buffer back into the supplied buffer
3259 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3260 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3262 if (qc->flags & ATA_QCFLAG_SG) {
3263 if (qc->n_elem)
3264 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3265 /* restore last sg */
3266 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3267 if (pad_buf) {
3268 struct scatterlist *psg = &qc->pad_sgent;
3269 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3270 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3271 kunmap_atomic(addr, KM_IRQ0);
3273 } else {
3274 if (qc->n_elem)
3275 dma_unmap_single(ap->dev,
3276 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3277 dir);
3278 /* restore sg */
3279 sg->length += qc->pad_len;
3280 if (pad_buf)
3281 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3282 pad_buf, qc->pad_len);
3285 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3286 qc->__sg = NULL;
3290 * ata_fill_sg - Fill PCI IDE PRD table
3291 * @qc: Metadata associated with taskfile to be transferred
3293 * Fill PCI IDE PRD (scatter-gather) table with segments
3294 * associated with the current disk command.
3296 * LOCKING:
3297 * spin_lock_irqsave(host lock)
3300 static void ata_fill_sg(struct ata_queued_cmd *qc)
3302 struct ata_port *ap = qc->ap;
3303 struct scatterlist *sg;
3304 unsigned int idx;
3306 WARN_ON(qc->__sg == NULL);
3307 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3309 idx = 0;
3310 ata_for_each_sg(sg, qc) {
3311 u32 addr, offset;
3312 u32 sg_len, len;
3314 /* determine if physical DMA addr spans 64K boundary.
3315 * Note h/w doesn't support 64-bit, so we unconditionally
3316 * truncate dma_addr_t to u32.
3318 addr = (u32) sg_dma_address(sg);
3319 sg_len = sg_dma_len(sg);
3321 while (sg_len) {
3322 offset = addr & 0xffff;
3323 len = sg_len;
3324 if ((offset + sg_len) > 0x10000)
3325 len = 0x10000 - offset;
3327 ap->prd[idx].addr = cpu_to_le32(addr);
3328 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3329 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3331 idx++;
3332 sg_len -= len;
3333 addr += len;
3337 if (idx)
3338 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3341 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3342 * @qc: Metadata associated with taskfile to check
3344 * Allow low-level driver to filter ATA PACKET commands, returning
3345 * a status indicating whether or not it is OK to use DMA for the
3346 * supplied PACKET command.
3348 * LOCKING:
3349 * spin_lock_irqsave(host lock)
3351 * RETURNS: 0 when ATAPI DMA can be used
3352 * nonzero otherwise
3354 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3356 struct ata_port *ap = qc->ap;
3357 int rc = 0; /* Assume ATAPI DMA is OK by default */
3359 if (ap->ops->check_atapi_dma)
3360 rc = ap->ops->check_atapi_dma(qc);
3362 return rc;
3365 * ata_qc_prep - Prepare taskfile for submission
3366 * @qc: Metadata associated with taskfile to be prepared
3368 * Prepare ATA taskfile for submission.
3370 * LOCKING:
3371 * spin_lock_irqsave(host lock)
3373 void ata_qc_prep(struct ata_queued_cmd *qc)
3375 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3376 return;
3378 ata_fill_sg(qc);
3381 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3384 * ata_sg_init_one - Associate command with memory buffer
3385 * @qc: Command to be associated
3386 * @buf: Memory buffer
3387 * @buflen: Length of memory buffer, in bytes.
3389 * Initialize the data-related elements of queued_cmd @qc
3390 * to point to a single memory buffer, @buf of byte length @buflen.
3392 * LOCKING:
3393 * spin_lock_irqsave(host lock)
3396 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3398 struct scatterlist *sg;
3400 qc->flags |= ATA_QCFLAG_SINGLE;
3402 memset(&qc->sgent, 0, sizeof(qc->sgent));
3403 qc->__sg = &qc->sgent;
3404 qc->n_elem = 1;
3405 qc->orig_n_elem = 1;
3406 qc->buf_virt = buf;
3407 qc->nbytes = buflen;
3409 sg = qc->__sg;
3410 sg_init_one(sg, buf, buflen);
3414 * ata_sg_init - Associate command with scatter-gather table.
3415 * @qc: Command to be associated
3416 * @sg: Scatter-gather table.
3417 * @n_elem: Number of elements in s/g table.
3419 * Initialize the data-related elements of queued_cmd @qc
3420 * to point to a scatter-gather table @sg, containing @n_elem
3421 * elements.
3423 * LOCKING:
3424 * spin_lock_irqsave(host lock)
3427 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3428 unsigned int n_elem)
3430 qc->flags |= ATA_QCFLAG_SG;
3431 qc->__sg = sg;
3432 qc->n_elem = n_elem;
3433 qc->orig_n_elem = n_elem;
3437 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3438 * @qc: Command with memory buffer to be mapped.
3440 * DMA-map the memory buffer associated with queued_cmd @qc.
3442 * LOCKING:
3443 * spin_lock_irqsave(host lock)
3445 * RETURNS:
3446 * Zero on success, negative on error.
3449 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3451 struct ata_port *ap = qc->ap;
3452 int dir = qc->dma_dir;
3453 struct scatterlist *sg = qc->__sg;
3454 dma_addr_t dma_address;
3455 int trim_sg = 0;
3457 /* we must lengthen transfers to end on a 32-bit boundary */
3458 qc->pad_len = sg->length & 3;
3459 if (qc->pad_len) {
3460 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3461 struct scatterlist *psg = &qc->pad_sgent;
3463 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3465 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3467 if (qc->tf.flags & ATA_TFLAG_WRITE)
3468 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3469 qc->pad_len);
3471 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3472 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3473 /* trim sg */
3474 sg->length -= qc->pad_len;
3475 if (sg->length == 0)
3476 trim_sg = 1;
3478 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3479 sg->length, qc->pad_len);
3482 if (trim_sg) {
3483 qc->n_elem--;
3484 goto skip_map;
3487 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3488 sg->length, dir);
3489 if (dma_mapping_error(dma_address)) {
3490 /* restore sg */
3491 sg->length += qc->pad_len;
3492 return -1;
3495 sg_dma_address(sg) = dma_address;
3496 sg_dma_len(sg) = sg->length;
3498 skip_map:
3499 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3500 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3502 return 0;
3506 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3507 * @qc: Command with scatter-gather table to be mapped.
3509 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3511 * LOCKING:
3512 * spin_lock_irqsave(host lock)
3514 * RETURNS:
3515 * Zero on success, negative on error.
3519 static int ata_sg_setup(struct ata_queued_cmd *qc)
3521 struct ata_port *ap = qc->ap;
3522 struct scatterlist *sg = qc->__sg;
3523 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3524 int n_elem, pre_n_elem, dir, trim_sg = 0;
3526 VPRINTK("ENTER, ata%u\n", ap->id);
3527 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3529 /* we must lengthen transfers to end on a 32-bit boundary */
3530 qc->pad_len = lsg->length & 3;
3531 if (qc->pad_len) {
3532 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3533 struct scatterlist *psg = &qc->pad_sgent;
3534 unsigned int offset;
3536 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3538 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3541 * psg->page/offset are used to copy to-be-written
3542 * data in this function or read data in ata_sg_clean.
3544 offset = lsg->offset + lsg->length - qc->pad_len;
3545 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3546 psg->offset = offset_in_page(offset);
3548 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3549 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3550 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3551 kunmap_atomic(addr, KM_IRQ0);
3554 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3555 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3556 /* trim last sg */
3557 lsg->length -= qc->pad_len;
3558 if (lsg->length == 0)
3559 trim_sg = 1;
3561 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3562 qc->n_elem - 1, lsg->length, qc->pad_len);
3565 pre_n_elem = qc->n_elem;
3566 if (trim_sg && pre_n_elem)
3567 pre_n_elem--;
3569 if (!pre_n_elem) {
3570 n_elem = 0;
3571 goto skip_map;
3574 dir = qc->dma_dir;
3575 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3576 if (n_elem < 1) {
3577 /* restore last sg */
3578 lsg->length += qc->pad_len;
3579 return -1;
3582 DPRINTK("%d sg elements mapped\n", n_elem);
3584 skip_map:
3585 qc->n_elem = n_elem;
3587 return 0;
3591 * swap_buf_le16 - swap halves of 16-bit words in place
3592 * @buf: Buffer to swap
3593 * @buf_words: Number of 16-bit words in buffer.
3595 * Swap halves of 16-bit words if needed to convert from
3596 * little-endian byte order to native cpu byte order, or
3597 * vice-versa.
3599 * LOCKING:
3600 * Inherited from caller.
3602 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3604 #ifdef __BIG_ENDIAN
3605 unsigned int i;
3607 for (i = 0; i < buf_words; i++)
3608 buf[i] = le16_to_cpu(buf[i]);
3609 #endif /* __BIG_ENDIAN */
3613 * ata_mmio_data_xfer - Transfer data by MMIO
3614 * @adev: device for this I/O
3615 * @buf: data buffer
3616 * @buflen: buffer length
3617 * @write_data: read/write
3619 * Transfer data from/to the device data register by MMIO.
3621 * LOCKING:
3622 * Inherited from caller.
3625 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3626 unsigned int buflen, int write_data)
3628 struct ata_port *ap = adev->ap;
3629 unsigned int i;
3630 unsigned int words = buflen >> 1;
3631 u16 *buf16 = (u16 *) buf;
3632 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3634 /* Transfer multiple of 2 bytes */
3635 if (write_data) {
3636 for (i = 0; i < words; i++)
3637 writew(le16_to_cpu(buf16[i]), mmio);
3638 } else {
3639 for (i = 0; i < words; i++)
3640 buf16[i] = cpu_to_le16(readw(mmio));
3643 /* Transfer trailing 1 byte, if any. */
3644 if (unlikely(buflen & 0x01)) {
3645 u16 align_buf[1] = { 0 };
3646 unsigned char *trailing_buf = buf + buflen - 1;
3648 if (write_data) {
3649 memcpy(align_buf, trailing_buf, 1);
3650 writew(le16_to_cpu(align_buf[0]), mmio);
3651 } else {
3652 align_buf[0] = cpu_to_le16(readw(mmio));
3653 memcpy(trailing_buf, align_buf, 1);
3659 * ata_pio_data_xfer - Transfer data by PIO
3660 * @adev: device to target
3661 * @buf: data buffer
3662 * @buflen: buffer length
3663 * @write_data: read/write
3665 * Transfer data from/to the device data register by PIO.
3667 * LOCKING:
3668 * Inherited from caller.
3671 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3672 unsigned int buflen, int write_data)
3674 struct ata_port *ap = adev->ap;
3675 unsigned int words = buflen >> 1;
3677 /* Transfer multiple of 2 bytes */
3678 if (write_data)
3679 outsw(ap->ioaddr.data_addr, buf, words);
3680 else
3681 insw(ap->ioaddr.data_addr, buf, words);
3683 /* Transfer trailing 1 byte, if any. */
3684 if (unlikely(buflen & 0x01)) {
3685 u16 align_buf[1] = { 0 };
3686 unsigned char *trailing_buf = buf + buflen - 1;
3688 if (write_data) {
3689 memcpy(align_buf, trailing_buf, 1);
3690 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3691 } else {
3692 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3693 memcpy(trailing_buf, align_buf, 1);
3699 * ata_pio_data_xfer_noirq - Transfer data by PIO
3700 * @adev: device to target
3701 * @buf: data buffer
3702 * @buflen: buffer length
3703 * @write_data: read/write
3705 * Transfer data from/to the device data register by PIO. Do the
3706 * transfer with interrupts disabled.
3708 * LOCKING:
3709 * Inherited from caller.
3712 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3713 unsigned int buflen, int write_data)
3715 unsigned long flags;
3716 local_irq_save(flags);
3717 ata_pio_data_xfer(adev, buf, buflen, write_data);
3718 local_irq_restore(flags);
3723 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3724 * @qc: Command on going
3726 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3728 * LOCKING:
3729 * Inherited from caller.
3732 static void ata_pio_sector(struct ata_queued_cmd *qc)
3734 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3735 struct scatterlist *sg = qc->__sg;
3736 struct ata_port *ap = qc->ap;
3737 struct page *page;
3738 unsigned int offset;
3739 unsigned char *buf;
3741 if (qc->cursect == (qc->nsect - 1))
3742 ap->hsm_task_state = HSM_ST_LAST;
3744 page = sg[qc->cursg].page;
3745 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3747 /* get the current page and offset */
3748 page = nth_page(page, (offset >> PAGE_SHIFT));
3749 offset %= PAGE_SIZE;
3751 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3753 if (PageHighMem(page)) {
3754 unsigned long flags;
3756 /* FIXME: use a bounce buffer */
3757 local_irq_save(flags);
3758 buf = kmap_atomic(page, KM_IRQ0);
3760 /* do the actual data transfer */
3761 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3763 kunmap_atomic(buf, KM_IRQ0);
3764 local_irq_restore(flags);
3765 } else {
3766 buf = page_address(page);
3767 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3770 qc->cursect++;
3771 qc->cursg_ofs++;
3773 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3774 qc->cursg++;
3775 qc->cursg_ofs = 0;
3780 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3781 * @qc: Command on going
3783 * Transfer one or many ATA_SECT_SIZE of data from/to the
3784 * ATA device for the DRQ request.
3786 * LOCKING:
3787 * Inherited from caller.
3790 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3792 if (is_multi_taskfile(&qc->tf)) {
3793 /* READ/WRITE MULTIPLE */
3794 unsigned int nsect;
3796 WARN_ON(qc->dev->multi_count == 0);
3798 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3799 while (nsect--)
3800 ata_pio_sector(qc);
3801 } else
3802 ata_pio_sector(qc);
3806 * atapi_send_cdb - Write CDB bytes to hardware
3807 * @ap: Port to which ATAPI device is attached.
3808 * @qc: Taskfile currently active
3810 * When device has indicated its readiness to accept
3811 * a CDB, this function is called. Send the CDB.
3813 * LOCKING:
3814 * caller.
3817 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3819 /* send SCSI cdb */
3820 DPRINTK("send cdb\n");
3821 WARN_ON(qc->dev->cdb_len < 12);
3823 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3824 ata_altstatus(ap); /* flush */
3826 switch (qc->tf.protocol) {
3827 case ATA_PROT_ATAPI:
3828 ap->hsm_task_state = HSM_ST;
3829 break;
3830 case ATA_PROT_ATAPI_NODATA:
3831 ap->hsm_task_state = HSM_ST_LAST;
3832 break;
3833 case ATA_PROT_ATAPI_DMA:
3834 ap->hsm_task_state = HSM_ST_LAST;
3835 /* initiate bmdma */
3836 ap->ops->bmdma_start(qc);
3837 break;
3842 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3843 * @qc: Command on going
3844 * @bytes: number of bytes
3846 * Transfer Transfer data from/to the ATAPI device.
3848 * LOCKING:
3849 * Inherited from caller.
3853 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3855 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3856 struct scatterlist *sg = qc->__sg;
3857 struct ata_port *ap = qc->ap;
3858 struct page *page;
3859 unsigned char *buf;
3860 unsigned int offset, count;
3862 if (qc->curbytes + bytes >= qc->nbytes)
3863 ap->hsm_task_state = HSM_ST_LAST;
3865 next_sg:
3866 if (unlikely(qc->cursg >= qc->n_elem)) {
3868 * The end of qc->sg is reached and the device expects
3869 * more data to transfer. In order not to overrun qc->sg
3870 * and fulfill length specified in the byte count register,
3871 * - for read case, discard trailing data from the device
3872 * - for write case, padding zero data to the device
3874 u16 pad_buf[1] = { 0 };
3875 unsigned int words = bytes >> 1;
3876 unsigned int i;
3878 if (words) /* warning if bytes > 1 */
3879 ata_dev_printk(qc->dev, KERN_WARNING,
3880 "%u bytes trailing data\n", bytes);
3882 for (i = 0; i < words; i++)
3883 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3885 ap->hsm_task_state = HSM_ST_LAST;
3886 return;
3889 sg = &qc->__sg[qc->cursg];
3891 page = sg->page;
3892 offset = sg->offset + qc->cursg_ofs;
3894 /* get the current page and offset */
3895 page = nth_page(page, (offset >> PAGE_SHIFT));
3896 offset %= PAGE_SIZE;
3898 /* don't overrun current sg */
3899 count = min(sg->length - qc->cursg_ofs, bytes);
3901 /* don't cross page boundaries */
3902 count = min(count, (unsigned int)PAGE_SIZE - offset);
3904 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3906 if (PageHighMem(page)) {
3907 unsigned long flags;
3909 /* FIXME: use bounce buffer */
3910 local_irq_save(flags);
3911 buf = kmap_atomic(page, KM_IRQ0);
3913 /* do the actual data transfer */
3914 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3916 kunmap_atomic(buf, KM_IRQ0);
3917 local_irq_restore(flags);
3918 } else {
3919 buf = page_address(page);
3920 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3923 bytes -= count;
3924 qc->curbytes += count;
3925 qc->cursg_ofs += count;
3927 if (qc->cursg_ofs == sg->length) {
3928 qc->cursg++;
3929 qc->cursg_ofs = 0;
3932 if (bytes)
3933 goto next_sg;
3937 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3938 * @qc: Command on going
3940 * Transfer Transfer data from/to the ATAPI device.
3942 * LOCKING:
3943 * Inherited from caller.
3946 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3948 struct ata_port *ap = qc->ap;
3949 struct ata_device *dev = qc->dev;
3950 unsigned int ireason, bc_lo, bc_hi, bytes;
3951 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3953 /* Abuse qc->result_tf for temp storage of intermediate TF
3954 * here to save some kernel stack usage.
3955 * For normal completion, qc->result_tf is not relevant. For
3956 * error, qc->result_tf is later overwritten by ata_qc_complete().
3957 * So, the correctness of qc->result_tf is not affected.
3959 ap->ops->tf_read(ap, &qc->result_tf);
3960 ireason = qc->result_tf.nsect;
3961 bc_lo = qc->result_tf.lbam;
3962 bc_hi = qc->result_tf.lbah;
3963 bytes = (bc_hi << 8) | bc_lo;
3965 /* shall be cleared to zero, indicating xfer of data */
3966 if (ireason & (1 << 0))
3967 goto err_out;
3969 /* make sure transfer direction matches expected */
3970 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3971 if (do_write != i_write)
3972 goto err_out;
3974 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3976 __atapi_pio_bytes(qc, bytes);
3978 return;
3980 err_out:
3981 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3982 qc->err_mask |= AC_ERR_HSM;
3983 ap->hsm_task_state = HSM_ST_ERR;
3987 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3988 * @ap: the target ata_port
3989 * @qc: qc on going
3991 * RETURNS:
3992 * 1 if ok in workqueue, 0 otherwise.
3995 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3997 if (qc->tf.flags & ATA_TFLAG_POLLING)
3998 return 1;
4000 if (ap->hsm_task_state == HSM_ST_FIRST) {
4001 if (qc->tf.protocol == ATA_PROT_PIO &&
4002 (qc->tf.flags & ATA_TFLAG_WRITE))
4003 return 1;
4005 if (is_atapi_taskfile(&qc->tf) &&
4006 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4007 return 1;
4010 return 0;
4014 * ata_hsm_qc_complete - finish a qc running on standard HSM
4015 * @qc: Command to complete
4016 * @in_wq: 1 if called from workqueue, 0 otherwise
4018 * Finish @qc which is running on standard HSM.
4020 * LOCKING:
4021 * If @in_wq is zero, spin_lock_irqsave(host lock).
4022 * Otherwise, none on entry and grabs host lock.
4024 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4026 struct ata_port *ap = qc->ap;
4027 unsigned long flags;
4029 if (ap->ops->error_handler) {
4030 if (in_wq) {
4031 spin_lock_irqsave(ap->lock, flags);
4033 /* EH might have kicked in while host lock is
4034 * released.
4036 qc = ata_qc_from_tag(ap, qc->tag);
4037 if (qc) {
4038 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4039 ata_irq_on(ap);
4040 ata_qc_complete(qc);
4041 } else
4042 ata_port_freeze(ap);
4045 spin_unlock_irqrestore(ap->lock, flags);
4046 } else {
4047 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4048 ata_qc_complete(qc);
4049 else
4050 ata_port_freeze(ap);
4052 } else {
4053 if (in_wq) {
4054 spin_lock_irqsave(ap->lock, flags);
4055 ata_irq_on(ap);
4056 ata_qc_complete(qc);
4057 spin_unlock_irqrestore(ap->lock, flags);
4058 } else
4059 ata_qc_complete(qc);
4062 ata_altstatus(ap); /* flush */
4066 * ata_hsm_move - move the HSM to the next state.
4067 * @ap: the target ata_port
4068 * @qc: qc on going
4069 * @status: current device status
4070 * @in_wq: 1 if called from workqueue, 0 otherwise
4072 * RETURNS:
4073 * 1 when poll next status needed, 0 otherwise.
4075 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4076 u8 status, int in_wq)
4078 unsigned long flags = 0;
4079 int poll_next;
4081 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4083 /* Make sure ata_qc_issue_prot() does not throw things
4084 * like DMA polling into the workqueue. Notice that
4085 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4087 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4089 fsm_start:
4090 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4091 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4093 switch (ap->hsm_task_state) {
4094 case HSM_ST_FIRST:
4095 /* Send first data block or PACKET CDB */
4097 /* If polling, we will stay in the work queue after
4098 * sending the data. Otherwise, interrupt handler
4099 * takes over after sending the data.
4101 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4103 /* check device status */
4104 if (unlikely((status & ATA_DRQ) == 0)) {
4105 /* handle BSY=0, DRQ=0 as error */
4106 if (likely(status & (ATA_ERR | ATA_DF)))
4107 /* device stops HSM for abort/error */
4108 qc->err_mask |= AC_ERR_DEV;
4109 else
4110 /* HSM violation. Let EH handle this */
4111 qc->err_mask |= AC_ERR_HSM;
4113 ap->hsm_task_state = HSM_ST_ERR;
4114 goto fsm_start;
4117 /* Device should not ask for data transfer (DRQ=1)
4118 * when it finds something wrong.
4119 * We ignore DRQ here and stop the HSM by
4120 * changing hsm_task_state to HSM_ST_ERR and
4121 * let the EH abort the command or reset the device.
4123 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4124 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4125 ap->id, status);
4126 qc->err_mask |= AC_ERR_HSM;
4127 ap->hsm_task_state = HSM_ST_ERR;
4128 goto fsm_start;
4131 /* Send the CDB (atapi) or the first data block (ata pio out).
4132 * During the state transition, interrupt handler shouldn't
4133 * be invoked before the data transfer is complete and
4134 * hsm_task_state is changed. Hence, the following locking.
4136 if (in_wq)
4137 spin_lock_irqsave(ap->lock, flags);
4139 if (qc->tf.protocol == ATA_PROT_PIO) {
4140 /* PIO data out protocol.
4141 * send first data block.
4144 /* ata_pio_sectors() might change the state
4145 * to HSM_ST_LAST. so, the state is changed here
4146 * before ata_pio_sectors().
4148 ap->hsm_task_state = HSM_ST;
4149 ata_pio_sectors(qc);
4150 ata_altstatus(ap); /* flush */
4151 } else
4152 /* send CDB */
4153 atapi_send_cdb(ap, qc);
4155 if (in_wq)
4156 spin_unlock_irqrestore(ap->lock, flags);
4158 /* if polling, ata_pio_task() handles the rest.
4159 * otherwise, interrupt handler takes over from here.
4161 break;
4163 case HSM_ST:
4164 /* complete command or read/write the data register */
4165 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4166 /* ATAPI PIO protocol */
4167 if ((status & ATA_DRQ) == 0) {
4168 /* No more data to transfer or device error.
4169 * Device error will be tagged in HSM_ST_LAST.
4171 ap->hsm_task_state = HSM_ST_LAST;
4172 goto fsm_start;
4175 /* Device should not ask for data transfer (DRQ=1)
4176 * when it finds something wrong.
4177 * We ignore DRQ here and stop the HSM by
4178 * changing hsm_task_state to HSM_ST_ERR and
4179 * let the EH abort the command or reset the device.
4181 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4182 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4183 ap->id, status);
4184 qc->err_mask |= AC_ERR_HSM;
4185 ap->hsm_task_state = HSM_ST_ERR;
4186 goto fsm_start;
4189 atapi_pio_bytes(qc);
4191 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4192 /* bad ireason reported by device */
4193 goto fsm_start;
4195 } else {
4196 /* ATA PIO protocol */
4197 if (unlikely((status & ATA_DRQ) == 0)) {
4198 /* handle BSY=0, DRQ=0 as error */
4199 if (likely(status & (ATA_ERR | ATA_DF)))
4200 /* device stops HSM for abort/error */
4201 qc->err_mask |= AC_ERR_DEV;
4202 else
4203 /* HSM violation. Let EH handle this */
4204 qc->err_mask |= AC_ERR_HSM;
4206 ap->hsm_task_state = HSM_ST_ERR;
4207 goto fsm_start;
4210 /* For PIO reads, some devices may ask for
4211 * data transfer (DRQ=1) alone with ERR=1.
4212 * We respect DRQ here and transfer one
4213 * block of junk data before changing the
4214 * hsm_task_state to HSM_ST_ERR.
4216 * For PIO writes, ERR=1 DRQ=1 doesn't make
4217 * sense since the data block has been
4218 * transferred to the device.
4220 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4221 /* data might be corrputed */
4222 qc->err_mask |= AC_ERR_DEV;
4224 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4225 ata_pio_sectors(qc);
4226 ata_altstatus(ap);
4227 status = ata_wait_idle(ap);
4230 if (status & (ATA_BUSY | ATA_DRQ))
4231 qc->err_mask |= AC_ERR_HSM;
4233 /* ata_pio_sectors() might change the
4234 * state to HSM_ST_LAST. so, the state
4235 * is changed after ata_pio_sectors().
4237 ap->hsm_task_state = HSM_ST_ERR;
4238 goto fsm_start;
4241 ata_pio_sectors(qc);
4243 if (ap->hsm_task_state == HSM_ST_LAST &&
4244 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4245 /* all data read */
4246 ata_altstatus(ap);
4247 status = ata_wait_idle(ap);
4248 goto fsm_start;
4252 ata_altstatus(ap); /* flush */
4253 poll_next = 1;
4254 break;
4256 case HSM_ST_LAST:
4257 if (unlikely(!ata_ok(status))) {
4258 qc->err_mask |= __ac_err_mask(status);
4259 ap->hsm_task_state = HSM_ST_ERR;
4260 goto fsm_start;
4263 /* no more data to transfer */
4264 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4265 ap->id, qc->dev->devno, status);
4267 WARN_ON(qc->err_mask);
4269 ap->hsm_task_state = HSM_ST_IDLE;
4271 /* complete taskfile transaction */
4272 ata_hsm_qc_complete(qc, in_wq);
4274 poll_next = 0;
4275 break;
4277 case HSM_ST_ERR:
4278 /* make sure qc->err_mask is available to
4279 * know what's wrong and recover
4281 WARN_ON(qc->err_mask == 0);
4283 ap->hsm_task_state = HSM_ST_IDLE;
4285 /* complete taskfile transaction */
4286 ata_hsm_qc_complete(qc, in_wq);
4288 poll_next = 0;
4289 break;
4290 default:
4291 poll_next = 0;
4292 BUG();
4295 return poll_next;
4298 static void ata_pio_task(void *_data)
4300 struct ata_queued_cmd *qc = _data;
4301 struct ata_port *ap = qc->ap;
4302 u8 status;
4303 int poll_next;
4305 fsm_start:
4306 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4309 * This is purely heuristic. This is a fast path.
4310 * Sometimes when we enter, BSY will be cleared in
4311 * a chk-status or two. If not, the drive is probably seeking
4312 * or something. Snooze for a couple msecs, then
4313 * chk-status again. If still busy, queue delayed work.
4315 status = ata_busy_wait(ap, ATA_BUSY, 5);
4316 if (status & ATA_BUSY) {
4317 msleep(2);
4318 status = ata_busy_wait(ap, ATA_BUSY, 10);
4319 if (status & ATA_BUSY) {
4320 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4321 return;
4325 /* move the HSM */
4326 poll_next = ata_hsm_move(ap, qc, status, 1);
4328 /* another command or interrupt handler
4329 * may be running at this point.
4331 if (poll_next)
4332 goto fsm_start;
4336 * ata_qc_new - Request an available ATA command, for queueing
4337 * @ap: Port associated with device @dev
4338 * @dev: Device from whom we request an available command structure
4340 * LOCKING:
4341 * None.
4344 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4346 struct ata_queued_cmd *qc = NULL;
4347 unsigned int i;
4349 /* no command while frozen */
4350 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4351 return NULL;
4353 /* the last tag is reserved for internal command. */
4354 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4355 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4356 qc = __ata_qc_from_tag(ap, i);
4357 break;
4360 if (qc)
4361 qc->tag = i;
4363 return qc;
4367 * ata_qc_new_init - Request an available ATA command, and initialize it
4368 * @dev: Device from whom we request an available command structure
4370 * LOCKING:
4371 * None.
4374 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4376 struct ata_port *ap = dev->ap;
4377 struct ata_queued_cmd *qc;
4379 qc = ata_qc_new(ap);
4380 if (qc) {
4381 qc->scsicmd = NULL;
4382 qc->ap = ap;
4383 qc->dev = dev;
4385 ata_qc_reinit(qc);
4388 return qc;
4392 * ata_qc_free - free unused ata_queued_cmd
4393 * @qc: Command to complete
4395 * Designed to free unused ata_queued_cmd object
4396 * in case something prevents using it.
4398 * LOCKING:
4399 * spin_lock_irqsave(host lock)
4401 void ata_qc_free(struct ata_queued_cmd *qc)
4403 struct ata_port *ap = qc->ap;
4404 unsigned int tag;
4406 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4408 qc->flags = 0;
4409 tag = qc->tag;
4410 if (likely(ata_tag_valid(tag))) {
4411 qc->tag = ATA_TAG_POISON;
4412 clear_bit(tag, &ap->qc_allocated);
4416 void __ata_qc_complete(struct ata_queued_cmd *qc)
4418 struct ata_port *ap = qc->ap;
4420 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4421 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4423 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4424 ata_sg_clean(qc);
4426 /* command should be marked inactive atomically with qc completion */
4427 if (qc->tf.protocol == ATA_PROT_NCQ)
4428 ap->sactive &= ~(1 << qc->tag);
4429 else
4430 ap->active_tag = ATA_TAG_POISON;
4432 /* atapi: mark qc as inactive to prevent the interrupt handler
4433 * from completing the command twice later, before the error handler
4434 * is called. (when rc != 0 and atapi request sense is needed)
4436 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4437 ap->qc_active &= ~(1 << qc->tag);
4439 /* call completion callback */
4440 qc->complete_fn(qc);
4444 * ata_qc_complete - Complete an active ATA command
4445 * @qc: Command to complete
4446 * @err_mask: ATA Status register contents
4448 * Indicate to the mid and upper layers that an ATA
4449 * command has completed, with either an ok or not-ok status.
4451 * LOCKING:
4452 * spin_lock_irqsave(host lock)
4454 void ata_qc_complete(struct ata_queued_cmd *qc)
4456 struct ata_port *ap = qc->ap;
4458 /* XXX: New EH and old EH use different mechanisms to
4459 * synchronize EH with regular execution path.
4461 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4462 * Normal execution path is responsible for not accessing a
4463 * failed qc. libata core enforces the rule by returning NULL
4464 * from ata_qc_from_tag() for failed qcs.
4466 * Old EH depends on ata_qc_complete() nullifying completion
4467 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4468 * not synchronize with interrupt handler. Only PIO task is
4469 * taken care of.
4471 if (ap->ops->error_handler) {
4472 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4474 if (unlikely(qc->err_mask))
4475 qc->flags |= ATA_QCFLAG_FAILED;
4477 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4478 if (!ata_tag_internal(qc->tag)) {
4479 /* always fill result TF for failed qc */
4480 ap->ops->tf_read(ap, &qc->result_tf);
4481 ata_qc_schedule_eh(qc);
4482 return;
4486 /* read result TF if requested */
4487 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4488 ap->ops->tf_read(ap, &qc->result_tf);
4490 __ata_qc_complete(qc);
4491 } else {
4492 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4493 return;
4495 /* read result TF if failed or requested */
4496 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4497 ap->ops->tf_read(ap, &qc->result_tf);
4499 __ata_qc_complete(qc);
4504 * ata_qc_complete_multiple - Complete multiple qcs successfully
4505 * @ap: port in question
4506 * @qc_active: new qc_active mask
4507 * @finish_qc: LLDD callback invoked before completing a qc
4509 * Complete in-flight commands. This functions is meant to be
4510 * called from low-level driver's interrupt routine to complete
4511 * requests normally. ap->qc_active and @qc_active is compared
4512 * and commands are completed accordingly.
4514 * LOCKING:
4515 * spin_lock_irqsave(host lock)
4517 * RETURNS:
4518 * Number of completed commands on success, -errno otherwise.
4520 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4521 void (*finish_qc)(struct ata_queued_cmd *))
4523 int nr_done = 0;
4524 u32 done_mask;
4525 int i;
4527 done_mask = ap->qc_active ^ qc_active;
4529 if (unlikely(done_mask & qc_active)) {
4530 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4531 "(%08x->%08x)\n", ap->qc_active, qc_active);
4532 return -EINVAL;
4535 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4536 struct ata_queued_cmd *qc;
4538 if (!(done_mask & (1 << i)))
4539 continue;
4541 if ((qc = ata_qc_from_tag(ap, i))) {
4542 if (finish_qc)
4543 finish_qc(qc);
4544 ata_qc_complete(qc);
4545 nr_done++;
4549 return nr_done;
4552 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4554 struct ata_port *ap = qc->ap;
4556 switch (qc->tf.protocol) {
4557 case ATA_PROT_NCQ:
4558 case ATA_PROT_DMA:
4559 case ATA_PROT_ATAPI_DMA:
4560 return 1;
4562 case ATA_PROT_ATAPI:
4563 case ATA_PROT_PIO:
4564 if (ap->flags & ATA_FLAG_PIO_DMA)
4565 return 1;
4567 /* fall through */
4569 default:
4570 return 0;
4573 /* never reached */
4577 * ata_qc_issue - issue taskfile to device
4578 * @qc: command to issue to device
4580 * Prepare an ATA command to submission to device.
4581 * This includes mapping the data into a DMA-able
4582 * area, filling in the S/G table, and finally
4583 * writing the taskfile to hardware, starting the command.
4585 * LOCKING:
4586 * spin_lock_irqsave(host lock)
4588 void ata_qc_issue(struct ata_queued_cmd *qc)
4590 struct ata_port *ap = qc->ap;
4592 /* Make sure only one non-NCQ command is outstanding. The
4593 * check is skipped for old EH because it reuses active qc to
4594 * request ATAPI sense.
4596 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4598 if (qc->tf.protocol == ATA_PROT_NCQ) {
4599 WARN_ON(ap->sactive & (1 << qc->tag));
4600 ap->sactive |= 1 << qc->tag;
4601 } else {
4602 WARN_ON(ap->sactive);
4603 ap->active_tag = qc->tag;
4606 qc->flags |= ATA_QCFLAG_ACTIVE;
4607 ap->qc_active |= 1 << qc->tag;
4609 if (ata_should_dma_map(qc)) {
4610 if (qc->flags & ATA_QCFLAG_SG) {
4611 if (ata_sg_setup(qc))
4612 goto sg_err;
4613 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4614 if (ata_sg_setup_one(qc))
4615 goto sg_err;
4617 } else {
4618 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4621 ap->ops->qc_prep(qc);
4623 qc->err_mask |= ap->ops->qc_issue(qc);
4624 if (unlikely(qc->err_mask))
4625 goto err;
4626 return;
4628 sg_err:
4629 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4630 qc->err_mask |= AC_ERR_SYSTEM;
4631 err:
4632 ata_qc_complete(qc);
4636 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4637 * @qc: command to issue to device
4639 * Using various libata functions and hooks, this function
4640 * starts an ATA command. ATA commands are grouped into
4641 * classes called "protocols", and issuing each type of protocol
4642 * is slightly different.
4644 * May be used as the qc_issue() entry in ata_port_operations.
4646 * LOCKING:
4647 * spin_lock_irqsave(host lock)
4649 * RETURNS:
4650 * Zero on success, AC_ERR_* mask on failure
4653 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4655 struct ata_port *ap = qc->ap;
4657 /* Use polling pio if the LLD doesn't handle
4658 * interrupt driven pio and atapi CDB interrupt.
4660 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4661 switch (qc->tf.protocol) {
4662 case ATA_PROT_PIO:
4663 case ATA_PROT_ATAPI:
4664 case ATA_PROT_ATAPI_NODATA:
4665 qc->tf.flags |= ATA_TFLAG_POLLING;
4666 break;
4667 case ATA_PROT_ATAPI_DMA:
4668 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4669 /* see ata_dma_blacklisted() */
4670 BUG();
4671 break;
4672 default:
4673 break;
4677 /* select the device */
4678 ata_dev_select(ap, qc->dev->devno, 1, 0);
4680 /* start the command */
4681 switch (qc->tf.protocol) {
4682 case ATA_PROT_NODATA:
4683 if (qc->tf.flags & ATA_TFLAG_POLLING)
4684 ata_qc_set_polling(qc);
4686 ata_tf_to_host(ap, &qc->tf);
4687 ap->hsm_task_state = HSM_ST_LAST;
4689 if (qc->tf.flags & ATA_TFLAG_POLLING)
4690 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4692 break;
4694 case ATA_PROT_DMA:
4695 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4697 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4698 ap->ops->bmdma_setup(qc); /* set up bmdma */
4699 ap->ops->bmdma_start(qc); /* initiate bmdma */
4700 ap->hsm_task_state = HSM_ST_LAST;
4701 break;
4703 case ATA_PROT_PIO:
4704 if (qc->tf.flags & ATA_TFLAG_POLLING)
4705 ata_qc_set_polling(qc);
4707 ata_tf_to_host(ap, &qc->tf);
4709 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4710 /* PIO data out protocol */
4711 ap->hsm_task_state = HSM_ST_FIRST;
4712 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4714 /* always send first data block using
4715 * the ata_pio_task() codepath.
4717 } else {
4718 /* PIO data in protocol */
4719 ap->hsm_task_state = HSM_ST;
4721 if (qc->tf.flags & ATA_TFLAG_POLLING)
4722 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4724 /* if polling, ata_pio_task() handles the rest.
4725 * otherwise, interrupt handler takes over from here.
4729 break;
4731 case ATA_PROT_ATAPI:
4732 case ATA_PROT_ATAPI_NODATA:
4733 if (qc->tf.flags & ATA_TFLAG_POLLING)
4734 ata_qc_set_polling(qc);
4736 ata_tf_to_host(ap, &qc->tf);
4738 ap->hsm_task_state = HSM_ST_FIRST;
4740 /* send cdb by polling if no cdb interrupt */
4741 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4742 (qc->tf.flags & ATA_TFLAG_POLLING))
4743 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4744 break;
4746 case ATA_PROT_ATAPI_DMA:
4747 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4749 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4750 ap->ops->bmdma_setup(qc); /* set up bmdma */
4751 ap->hsm_task_state = HSM_ST_FIRST;
4753 /* send cdb by polling if no cdb interrupt */
4754 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4755 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4756 break;
4758 default:
4759 WARN_ON(1);
4760 return AC_ERR_SYSTEM;
4763 return 0;
4767 * ata_host_intr - Handle host interrupt for given (port, task)
4768 * @ap: Port on which interrupt arrived (possibly...)
4769 * @qc: Taskfile currently active in engine
4771 * Handle host interrupt for given queued command. Currently,
4772 * only DMA interrupts are handled. All other commands are
4773 * handled via polling with interrupts disabled (nIEN bit).
4775 * LOCKING:
4776 * spin_lock_irqsave(host lock)
4778 * RETURNS:
4779 * One if interrupt was handled, zero if not (shared irq).
4782 inline unsigned int ata_host_intr (struct ata_port *ap,
4783 struct ata_queued_cmd *qc)
4785 u8 status, host_stat = 0;
4787 VPRINTK("ata%u: protocol %d task_state %d\n",
4788 ap->id, qc->tf.protocol, ap->hsm_task_state);
4790 /* Check whether we are expecting interrupt in this state */
4791 switch (ap->hsm_task_state) {
4792 case HSM_ST_FIRST:
4793 /* Some pre-ATAPI-4 devices assert INTRQ
4794 * at this state when ready to receive CDB.
4797 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4798 * The flag was turned on only for atapi devices.
4799 * No need to check is_atapi_taskfile(&qc->tf) again.
4801 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4802 goto idle_irq;
4803 break;
4804 case HSM_ST_LAST:
4805 if (qc->tf.protocol == ATA_PROT_DMA ||
4806 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4807 /* check status of DMA engine */
4808 host_stat = ap->ops->bmdma_status(ap);
4809 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4811 /* if it's not our irq... */
4812 if (!(host_stat & ATA_DMA_INTR))
4813 goto idle_irq;
4815 /* before we do anything else, clear DMA-Start bit */
4816 ap->ops->bmdma_stop(qc);
4818 if (unlikely(host_stat & ATA_DMA_ERR)) {
4819 /* error when transfering data to/from memory */
4820 qc->err_mask |= AC_ERR_HOST_BUS;
4821 ap->hsm_task_state = HSM_ST_ERR;
4824 break;
4825 case HSM_ST:
4826 break;
4827 default:
4828 goto idle_irq;
4831 /* check altstatus */
4832 status = ata_altstatus(ap);
4833 if (status & ATA_BUSY)
4834 goto idle_irq;
4836 /* check main status, clearing INTRQ */
4837 status = ata_chk_status(ap);
4838 if (unlikely(status & ATA_BUSY))
4839 goto idle_irq;
4841 /* ack bmdma irq events */
4842 ap->ops->irq_clear(ap);
4844 ata_hsm_move(ap, qc, status, 0);
4845 return 1; /* irq handled */
4847 idle_irq:
4848 ap->stats.idle_irq++;
4850 #ifdef ATA_IRQ_TRAP
4851 if ((ap->stats.idle_irq % 1000) == 0) {
4852 ata_irq_ack(ap, 0); /* debug trap */
4853 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4854 return 1;
4856 #endif
4857 return 0; /* irq not handled */
4861 * ata_interrupt - Default ATA host interrupt handler
4862 * @irq: irq line (unused)
4863 * @dev_instance: pointer to our ata_host information structure
4865 * Default interrupt handler for PCI IDE devices. Calls
4866 * ata_host_intr() for each port that is not disabled.
4868 * LOCKING:
4869 * Obtains host lock during operation.
4871 * RETURNS:
4872 * IRQ_NONE or IRQ_HANDLED.
4875 irqreturn_t ata_interrupt (int irq, void *dev_instance)
4877 struct ata_host *host = dev_instance;
4878 unsigned int i;
4879 unsigned int handled = 0;
4880 unsigned long flags;
4882 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4883 spin_lock_irqsave(&host->lock, flags);
4885 for (i = 0; i < host->n_ports; i++) {
4886 struct ata_port *ap;
4888 ap = host->ports[i];
4889 if (ap &&
4890 !(ap->flags & ATA_FLAG_DISABLED)) {
4891 struct ata_queued_cmd *qc;
4893 qc = ata_qc_from_tag(ap, ap->active_tag);
4894 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4895 (qc->flags & ATA_QCFLAG_ACTIVE))
4896 handled |= ata_host_intr(ap, qc);
4900 spin_unlock_irqrestore(&host->lock, flags);
4902 return IRQ_RETVAL(handled);
4906 * sata_scr_valid - test whether SCRs are accessible
4907 * @ap: ATA port to test SCR accessibility for
4909 * Test whether SCRs are accessible for @ap.
4911 * LOCKING:
4912 * None.
4914 * RETURNS:
4915 * 1 if SCRs are accessible, 0 otherwise.
4917 int sata_scr_valid(struct ata_port *ap)
4919 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4923 * sata_scr_read - read SCR register of the specified port
4924 * @ap: ATA port to read SCR for
4925 * @reg: SCR to read
4926 * @val: Place to store read value
4928 * Read SCR register @reg of @ap into *@val. This function is
4929 * guaranteed to succeed if the cable type of the port is SATA
4930 * and the port implements ->scr_read.
4932 * LOCKING:
4933 * None.
4935 * RETURNS:
4936 * 0 on success, negative errno on failure.
4938 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4940 if (sata_scr_valid(ap)) {
4941 *val = ap->ops->scr_read(ap, reg);
4942 return 0;
4944 return -EOPNOTSUPP;
4948 * sata_scr_write - write SCR register of the specified port
4949 * @ap: ATA port to write SCR for
4950 * @reg: SCR to write
4951 * @val: value to write
4953 * Write @val to SCR register @reg of @ap. This function is
4954 * guaranteed to succeed if the cable type of the port is SATA
4955 * and the port implements ->scr_read.
4957 * LOCKING:
4958 * None.
4960 * RETURNS:
4961 * 0 on success, negative errno on failure.
4963 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4965 if (sata_scr_valid(ap)) {
4966 ap->ops->scr_write(ap, reg, val);
4967 return 0;
4969 return -EOPNOTSUPP;
4973 * sata_scr_write_flush - write SCR register of the specified port and flush
4974 * @ap: ATA port to write SCR for
4975 * @reg: SCR to write
4976 * @val: value to write
4978 * This function is identical to sata_scr_write() except that this
4979 * function performs flush after writing to the register.
4981 * LOCKING:
4982 * None.
4984 * RETURNS:
4985 * 0 on success, negative errno on failure.
4987 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4989 if (sata_scr_valid(ap)) {
4990 ap->ops->scr_write(ap, reg, val);
4991 ap->ops->scr_read(ap, reg);
4992 return 0;
4994 return -EOPNOTSUPP;
4998 * ata_port_online - test whether the given port is online
4999 * @ap: ATA port to test
5001 * Test whether @ap is online. Note that this function returns 0
5002 * if online status of @ap cannot be obtained, so
5003 * ata_port_online(ap) != !ata_port_offline(ap).
5005 * LOCKING:
5006 * None.
5008 * RETURNS:
5009 * 1 if the port online status is available and online.
5011 int ata_port_online(struct ata_port *ap)
5013 u32 sstatus;
5015 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5016 return 1;
5017 return 0;
5021 * ata_port_offline - test whether the given port is offline
5022 * @ap: ATA port to test
5024 * Test whether @ap is offline. Note that this function returns
5025 * 0 if offline status of @ap cannot be obtained, so
5026 * ata_port_online(ap) != !ata_port_offline(ap).
5028 * LOCKING:
5029 * None.
5031 * RETURNS:
5032 * 1 if the port offline status is available and offline.
5034 int ata_port_offline(struct ata_port *ap)
5036 u32 sstatus;
5038 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5039 return 1;
5040 return 0;
5043 int ata_flush_cache(struct ata_device *dev)
5045 unsigned int err_mask;
5046 u8 cmd;
5048 if (!ata_try_flush_cache(dev))
5049 return 0;
5051 if (ata_id_has_flush_ext(dev->id))
5052 cmd = ATA_CMD_FLUSH_EXT;
5053 else
5054 cmd = ATA_CMD_FLUSH;
5056 err_mask = ata_do_simple_cmd(dev, cmd);
5057 if (err_mask) {
5058 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5059 return -EIO;
5062 return 0;
5065 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5066 unsigned int action, unsigned int ehi_flags,
5067 int wait)
5069 unsigned long flags;
5070 int i, rc;
5072 for (i = 0; i < host->n_ports; i++) {
5073 struct ata_port *ap = host->ports[i];
5075 /* Previous resume operation might still be in
5076 * progress. Wait for PM_PENDING to clear.
5078 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5079 ata_port_wait_eh(ap);
5080 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5083 /* request PM ops to EH */
5084 spin_lock_irqsave(ap->lock, flags);
5086 ap->pm_mesg = mesg;
5087 if (wait) {
5088 rc = 0;
5089 ap->pm_result = &rc;
5092 ap->pflags |= ATA_PFLAG_PM_PENDING;
5093 ap->eh_info.action |= action;
5094 ap->eh_info.flags |= ehi_flags;
5096 ata_port_schedule_eh(ap);
5098 spin_unlock_irqrestore(ap->lock, flags);
5100 /* wait and check result */
5101 if (wait) {
5102 ata_port_wait_eh(ap);
5103 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5104 if (rc)
5105 return rc;
5109 return 0;
5113 * ata_host_suspend - suspend host
5114 * @host: host to suspend
5115 * @mesg: PM message
5117 * Suspend @host. Actual operation is performed by EH. This
5118 * function requests EH to perform PM operations and waits for EH
5119 * to finish.
5121 * LOCKING:
5122 * Kernel thread context (may sleep).
5124 * RETURNS:
5125 * 0 on success, -errno on failure.
5127 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5129 int i, j, rc;
5131 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5132 if (rc)
5133 goto fail;
5135 /* EH is quiescent now. Fail if we have any ready device.
5136 * This happens if hotplug occurs between completion of device
5137 * suspension and here.
5139 for (i = 0; i < host->n_ports; i++) {
5140 struct ata_port *ap = host->ports[i];
5142 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5143 struct ata_device *dev = &ap->device[j];
5145 if (ata_dev_ready(dev)) {
5146 ata_port_printk(ap, KERN_WARNING,
5147 "suspend failed, device %d "
5148 "still active\n", dev->devno);
5149 rc = -EBUSY;
5150 goto fail;
5155 host->dev->power.power_state = mesg;
5156 return 0;
5158 fail:
5159 ata_host_resume(host);
5160 return rc;
5164 * ata_host_resume - resume host
5165 * @host: host to resume
5167 * Resume @host. Actual operation is performed by EH. This
5168 * function requests EH to perform PM operations and returns.
5169 * Note that all resume operations are performed parallely.
5171 * LOCKING:
5172 * Kernel thread context (may sleep).
5174 void ata_host_resume(struct ata_host *host)
5176 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5177 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5178 host->dev->power.power_state = PMSG_ON;
5182 * ata_port_start - Set port up for dma.
5183 * @ap: Port to initialize
5185 * Called just after data structures for each port are
5186 * initialized. Allocates space for PRD table.
5188 * May be used as the port_start() entry in ata_port_operations.
5190 * LOCKING:
5191 * Inherited from caller.
5194 int ata_port_start (struct ata_port *ap)
5196 struct device *dev = ap->dev;
5197 int rc;
5199 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5200 if (!ap->prd)
5201 return -ENOMEM;
5203 rc = ata_pad_alloc(ap, dev);
5204 if (rc) {
5205 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5206 return rc;
5209 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5211 return 0;
5216 * ata_port_stop - Undo ata_port_start()
5217 * @ap: Port to shut down
5219 * Frees the PRD table.
5221 * May be used as the port_stop() entry in ata_port_operations.
5223 * LOCKING:
5224 * Inherited from caller.
5227 void ata_port_stop (struct ata_port *ap)
5229 struct device *dev = ap->dev;
5231 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5232 ata_pad_free(ap, dev);
5235 void ata_host_stop (struct ata_host *host)
5237 if (host->mmio_base)
5238 iounmap(host->mmio_base);
5242 * ata_dev_init - Initialize an ata_device structure
5243 * @dev: Device structure to initialize
5245 * Initialize @dev in preparation for probing.
5247 * LOCKING:
5248 * Inherited from caller.
5250 void ata_dev_init(struct ata_device *dev)
5252 struct ata_port *ap = dev->ap;
5253 unsigned long flags;
5255 /* SATA spd limit is bound to the first device */
5256 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5258 /* High bits of dev->flags are used to record warm plug
5259 * requests which occur asynchronously. Synchronize using
5260 * host lock.
5262 spin_lock_irqsave(ap->lock, flags);
5263 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5264 spin_unlock_irqrestore(ap->lock, flags);
5266 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5267 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5268 dev->pio_mask = UINT_MAX;
5269 dev->mwdma_mask = UINT_MAX;
5270 dev->udma_mask = UINT_MAX;
5274 * ata_port_init - Initialize an ata_port structure
5275 * @ap: Structure to initialize
5276 * @host: Collection of hosts to which @ap belongs
5277 * @ent: Probe information provided by low-level driver
5278 * @port_no: Port number associated with this ata_port
5280 * Initialize a new ata_port structure.
5282 * LOCKING:
5283 * Inherited from caller.
5285 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5286 const struct ata_probe_ent *ent, unsigned int port_no)
5288 unsigned int i;
5290 ap->lock = &host->lock;
5291 ap->flags = ATA_FLAG_DISABLED;
5292 ap->id = ata_unique_id++;
5293 ap->ctl = ATA_DEVCTL_OBS;
5294 ap->host = host;
5295 ap->dev = ent->dev;
5296 ap->port_no = port_no;
5297 if (port_no == 1 && ent->pinfo2) {
5298 ap->pio_mask = ent->pinfo2->pio_mask;
5299 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5300 ap->udma_mask = ent->pinfo2->udma_mask;
5301 ap->flags |= ent->pinfo2->flags;
5302 ap->ops = ent->pinfo2->port_ops;
5303 } else {
5304 ap->pio_mask = ent->pio_mask;
5305 ap->mwdma_mask = ent->mwdma_mask;
5306 ap->udma_mask = ent->udma_mask;
5307 ap->flags |= ent->port_flags;
5308 ap->ops = ent->port_ops;
5310 ap->hw_sata_spd_limit = UINT_MAX;
5311 ap->active_tag = ATA_TAG_POISON;
5312 ap->last_ctl = 0xFF;
5314 #if defined(ATA_VERBOSE_DEBUG)
5315 /* turn on all debugging levels */
5316 ap->msg_enable = 0x00FF;
5317 #elif defined(ATA_DEBUG)
5318 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5319 #else
5320 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5321 #endif
5323 INIT_WORK(&ap->port_task, NULL, NULL);
5324 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5325 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5326 INIT_LIST_HEAD(&ap->eh_done_q);
5327 init_waitqueue_head(&ap->eh_wait_q);
5329 /* set cable type */
5330 ap->cbl = ATA_CBL_NONE;
5331 if (ap->flags & ATA_FLAG_SATA)
5332 ap->cbl = ATA_CBL_SATA;
5334 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5335 struct ata_device *dev = &ap->device[i];
5336 dev->ap = ap;
5337 dev->devno = i;
5338 ata_dev_init(dev);
5341 #ifdef ATA_IRQ_TRAP
5342 ap->stats.unhandled_irq = 1;
5343 ap->stats.idle_irq = 1;
5344 #endif
5346 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5350 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5351 * @ap: ATA port to initialize SCSI host for
5352 * @shost: SCSI host associated with @ap
5354 * Initialize SCSI host @shost associated with ATA port @ap.
5356 * LOCKING:
5357 * Inherited from caller.
5359 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5361 ap->scsi_host = shost;
5363 shost->unique_id = ap->id;
5364 shost->max_id = 16;
5365 shost->max_lun = 1;
5366 shost->max_channel = 1;
5367 shost->max_cmd_len = 12;
5371 * ata_port_add - Attach low-level ATA driver to system
5372 * @ent: Information provided by low-level driver
5373 * @host: Collections of ports to which we add
5374 * @port_no: Port number associated with this host
5376 * Attach low-level ATA driver to system.
5378 * LOCKING:
5379 * PCI/etc. bus probe sem.
5381 * RETURNS:
5382 * New ata_port on success, for NULL on error.
5384 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5385 struct ata_host *host,
5386 unsigned int port_no)
5388 struct Scsi_Host *shost;
5389 struct ata_port *ap;
5391 DPRINTK("ENTER\n");
5393 if (!ent->port_ops->error_handler &&
5394 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5395 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5396 port_no);
5397 return NULL;
5400 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5401 if (!shost)
5402 return NULL;
5404 shost->transportt = &ata_scsi_transport_template;
5406 ap = ata_shost_to_port(shost);
5408 ata_port_init(ap, host, ent, port_no);
5409 ata_port_init_shost(ap, shost);
5411 return ap;
5415 * ata_sas_host_init - Initialize a host struct
5416 * @host: host to initialize
5417 * @dev: device host is attached to
5418 * @flags: host flags
5419 * @ops: port_ops
5421 * LOCKING:
5422 * PCI/etc. bus probe sem.
5426 void ata_host_init(struct ata_host *host, struct device *dev,
5427 unsigned long flags, const struct ata_port_operations *ops)
5429 spin_lock_init(&host->lock);
5430 host->dev = dev;
5431 host->flags = flags;
5432 host->ops = ops;
5436 * ata_device_add - Register hardware device with ATA and SCSI layers
5437 * @ent: Probe information describing hardware device to be registered
5439 * This function processes the information provided in the probe
5440 * information struct @ent, allocates the necessary ATA and SCSI
5441 * host information structures, initializes them, and registers
5442 * everything with requisite kernel subsystems.
5444 * This function requests irqs, probes the ATA bus, and probes
5445 * the SCSI bus.
5447 * LOCKING:
5448 * PCI/etc. bus probe sem.
5450 * RETURNS:
5451 * Number of ports registered. Zero on error (no ports registered).
5453 int ata_device_add(const struct ata_probe_ent *ent)
5455 unsigned int i;
5456 struct device *dev = ent->dev;
5457 struct ata_host *host;
5458 int rc;
5460 DPRINTK("ENTER\n");
5462 if (ent->irq == 0) {
5463 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5464 return 0;
5466 /* alloc a container for our list of ATA ports (buses) */
5467 host = kzalloc(sizeof(struct ata_host) +
5468 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5469 if (!host)
5470 return 0;
5472 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5473 host->n_ports = ent->n_ports;
5474 host->irq = ent->irq;
5475 host->irq2 = ent->irq2;
5476 host->mmio_base = ent->mmio_base;
5477 host->private_data = ent->private_data;
5479 /* register each port bound to this device */
5480 for (i = 0; i < host->n_ports; i++) {
5481 struct ata_port *ap;
5482 unsigned long xfer_mode_mask;
5483 int irq_line = ent->irq;
5485 ap = ata_port_add(ent, host, i);
5486 host->ports[i] = ap;
5487 if (!ap)
5488 goto err_out;
5490 /* dummy? */
5491 if (ent->dummy_port_mask & (1 << i)) {
5492 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5493 ap->ops = &ata_dummy_port_ops;
5494 continue;
5497 /* start port */
5498 rc = ap->ops->port_start(ap);
5499 if (rc) {
5500 host->ports[i] = NULL;
5501 scsi_host_put(ap->scsi_host);
5502 goto err_out;
5505 /* Report the secondary IRQ for second channel legacy */
5506 if (i == 1 && ent->irq2)
5507 irq_line = ent->irq2;
5509 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5510 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5511 (ap->pio_mask << ATA_SHIFT_PIO);
5513 /* print per-port info to dmesg */
5514 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5515 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5516 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5517 ata_mode_string(xfer_mode_mask),
5518 ap->ioaddr.cmd_addr,
5519 ap->ioaddr.ctl_addr,
5520 ap->ioaddr.bmdma_addr,
5521 irq_line);
5523 ata_chk_status(ap);
5524 host->ops->irq_clear(ap);
5525 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5528 /* obtain irq, that may be shared between channels */
5529 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5530 DRV_NAME, host);
5531 if (rc) {
5532 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5533 ent->irq, rc);
5534 goto err_out;
5537 /* do we have a second IRQ for the other channel, eg legacy mode */
5538 if (ent->irq2) {
5539 /* We will get weird core code crashes later if this is true
5540 so trap it now */
5541 BUG_ON(ent->irq == ent->irq2);
5543 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5544 DRV_NAME, host);
5545 if (rc) {
5546 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5547 ent->irq2, rc);
5548 goto err_out_free_irq;
5552 /* perform each probe synchronously */
5553 DPRINTK("probe begin\n");
5554 for (i = 0; i < host->n_ports; i++) {
5555 struct ata_port *ap = host->ports[i];
5556 u32 scontrol;
5557 int rc;
5559 /* init sata_spd_limit to the current value */
5560 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5561 int spd = (scontrol >> 4) & 0xf;
5562 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5564 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5566 rc = scsi_add_host(ap->scsi_host, dev);
5567 if (rc) {
5568 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5569 /* FIXME: do something useful here */
5570 /* FIXME: handle unconditional calls to
5571 * scsi_scan_host and ata_host_remove, below,
5572 * at the very least
5576 if (ap->ops->error_handler) {
5577 struct ata_eh_info *ehi = &ap->eh_info;
5578 unsigned long flags;
5580 ata_port_probe(ap);
5582 /* kick EH for boot probing */
5583 spin_lock_irqsave(ap->lock, flags);
5585 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5586 ehi->action |= ATA_EH_SOFTRESET;
5587 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5589 ap->pflags |= ATA_PFLAG_LOADING;
5590 ata_port_schedule_eh(ap);
5592 spin_unlock_irqrestore(ap->lock, flags);
5594 /* wait for EH to finish */
5595 ata_port_wait_eh(ap);
5596 } else {
5597 DPRINTK("ata%u: bus probe begin\n", ap->id);
5598 rc = ata_bus_probe(ap);
5599 DPRINTK("ata%u: bus probe end\n", ap->id);
5601 if (rc) {
5602 /* FIXME: do something useful here?
5603 * Current libata behavior will
5604 * tear down everything when
5605 * the module is removed
5606 * or the h/w is unplugged.
5612 /* probes are done, now scan each port's disk(s) */
5613 DPRINTK("host probe begin\n");
5614 for (i = 0; i < host->n_ports; i++) {
5615 struct ata_port *ap = host->ports[i];
5617 ata_scsi_scan_host(ap);
5620 dev_set_drvdata(dev, host);
5622 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5623 return ent->n_ports; /* success */
5625 err_out_free_irq:
5626 free_irq(ent->irq, host);
5627 err_out:
5628 for (i = 0; i < host->n_ports; i++) {
5629 struct ata_port *ap = host->ports[i];
5630 if (ap) {
5631 ap->ops->port_stop(ap);
5632 scsi_host_put(ap->scsi_host);
5636 kfree(host);
5637 VPRINTK("EXIT, returning 0\n");
5638 return 0;
5642 * ata_port_detach - Detach ATA port in prepration of device removal
5643 * @ap: ATA port to be detached
5645 * Detach all ATA devices and the associated SCSI devices of @ap;
5646 * then, remove the associated SCSI host. @ap is guaranteed to
5647 * be quiescent on return from this function.
5649 * LOCKING:
5650 * Kernel thread context (may sleep).
5652 void ata_port_detach(struct ata_port *ap)
5654 unsigned long flags;
5655 int i;
5657 if (!ap->ops->error_handler)
5658 goto skip_eh;
5660 /* tell EH we're leaving & flush EH */
5661 spin_lock_irqsave(ap->lock, flags);
5662 ap->pflags |= ATA_PFLAG_UNLOADING;
5663 spin_unlock_irqrestore(ap->lock, flags);
5665 ata_port_wait_eh(ap);
5667 /* EH is now guaranteed to see UNLOADING, so no new device
5668 * will be attached. Disable all existing devices.
5670 spin_lock_irqsave(ap->lock, flags);
5672 for (i = 0; i < ATA_MAX_DEVICES; i++)
5673 ata_dev_disable(&ap->device[i]);
5675 spin_unlock_irqrestore(ap->lock, flags);
5677 /* Final freeze & EH. All in-flight commands are aborted. EH
5678 * will be skipped and retrials will be terminated with bad
5679 * target.
5681 spin_lock_irqsave(ap->lock, flags);
5682 ata_port_freeze(ap); /* won't be thawed */
5683 spin_unlock_irqrestore(ap->lock, flags);
5685 ata_port_wait_eh(ap);
5687 /* Flush hotplug task. The sequence is similar to
5688 * ata_port_flush_task().
5690 flush_workqueue(ata_aux_wq);
5691 cancel_delayed_work(&ap->hotplug_task);
5692 flush_workqueue(ata_aux_wq);
5694 skip_eh:
5695 /* remove the associated SCSI host */
5696 scsi_remove_host(ap->scsi_host);
5700 * ata_host_remove - PCI layer callback for device removal
5701 * @host: ATA host set that was removed
5703 * Unregister all objects associated with this host set. Free those
5704 * objects.
5706 * LOCKING:
5707 * Inherited from calling layer (may sleep).
5710 void ata_host_remove(struct ata_host *host)
5712 unsigned int i;
5714 for (i = 0; i < host->n_ports; i++)
5715 ata_port_detach(host->ports[i]);
5717 free_irq(host->irq, host);
5718 if (host->irq2)
5719 free_irq(host->irq2, host);
5721 for (i = 0; i < host->n_ports; i++) {
5722 struct ata_port *ap = host->ports[i];
5724 ata_scsi_release(ap->scsi_host);
5726 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5727 struct ata_ioports *ioaddr = &ap->ioaddr;
5729 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5730 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5731 release_region(ATA_PRIMARY_CMD, 8);
5732 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5733 release_region(ATA_SECONDARY_CMD, 8);
5736 scsi_host_put(ap->scsi_host);
5739 if (host->ops->host_stop)
5740 host->ops->host_stop(host);
5742 kfree(host);
5746 * ata_scsi_release - SCSI layer callback hook for host unload
5747 * @shost: libata host to be unloaded
5749 * Performs all duties necessary to shut down a libata port...
5750 * Kill port kthread, disable port, and release resources.
5752 * LOCKING:
5753 * Inherited from SCSI layer.
5755 * RETURNS:
5756 * One.
5759 int ata_scsi_release(struct Scsi_Host *shost)
5761 struct ata_port *ap = ata_shost_to_port(shost);
5763 DPRINTK("ENTER\n");
5765 ap->ops->port_disable(ap);
5766 ap->ops->port_stop(ap);
5768 DPRINTK("EXIT\n");
5769 return 1;
5772 struct ata_probe_ent *
5773 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5775 struct ata_probe_ent *probe_ent;
5777 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5778 if (!probe_ent) {
5779 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5780 kobject_name(&(dev->kobj)));
5781 return NULL;
5784 INIT_LIST_HEAD(&probe_ent->node);
5785 probe_ent->dev = dev;
5787 probe_ent->sht = port->sht;
5788 probe_ent->port_flags = port->flags;
5789 probe_ent->pio_mask = port->pio_mask;
5790 probe_ent->mwdma_mask = port->mwdma_mask;
5791 probe_ent->udma_mask = port->udma_mask;
5792 probe_ent->port_ops = port->port_ops;
5793 probe_ent->private_data = port->private_data;
5795 return probe_ent;
5799 * ata_std_ports - initialize ioaddr with standard port offsets.
5800 * @ioaddr: IO address structure to be initialized
5802 * Utility function which initializes data_addr, error_addr,
5803 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5804 * device_addr, status_addr, and command_addr to standard offsets
5805 * relative to cmd_addr.
5807 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5810 void ata_std_ports(struct ata_ioports *ioaddr)
5812 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5813 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5814 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5815 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5816 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5817 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5818 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5819 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5820 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5821 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5825 #ifdef CONFIG_PCI
5827 void ata_pci_host_stop (struct ata_host *host)
5829 struct pci_dev *pdev = to_pci_dev(host->dev);
5831 pci_iounmap(pdev, host->mmio_base);
5835 * ata_pci_remove_one - PCI layer callback for device removal
5836 * @pdev: PCI device that was removed
5838 * PCI layer indicates to libata via this hook that
5839 * hot-unplug or module unload event has occurred.
5840 * Handle this by unregistering all objects associated
5841 * with this PCI device. Free those objects. Then finally
5842 * release PCI resources and disable device.
5844 * LOCKING:
5845 * Inherited from PCI layer (may sleep).
5848 void ata_pci_remove_one (struct pci_dev *pdev)
5850 struct device *dev = pci_dev_to_dev(pdev);
5851 struct ata_host *host = dev_get_drvdata(dev);
5853 ata_host_remove(host);
5855 pci_release_regions(pdev);
5856 pci_disable_device(pdev);
5857 dev_set_drvdata(dev, NULL);
5860 /* move to PCI subsystem */
5861 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5863 unsigned long tmp = 0;
5865 switch (bits->width) {
5866 case 1: {
5867 u8 tmp8 = 0;
5868 pci_read_config_byte(pdev, bits->reg, &tmp8);
5869 tmp = tmp8;
5870 break;
5872 case 2: {
5873 u16 tmp16 = 0;
5874 pci_read_config_word(pdev, bits->reg, &tmp16);
5875 tmp = tmp16;
5876 break;
5878 case 4: {
5879 u32 tmp32 = 0;
5880 pci_read_config_dword(pdev, bits->reg, &tmp32);
5881 tmp = tmp32;
5882 break;
5885 default:
5886 return -EINVAL;
5889 tmp &= bits->mask;
5891 return (tmp == bits->val) ? 1 : 0;
5894 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5896 pci_save_state(pdev);
5898 if (mesg.event == PM_EVENT_SUSPEND) {
5899 pci_disable_device(pdev);
5900 pci_set_power_state(pdev, PCI_D3hot);
5904 void ata_pci_device_do_resume(struct pci_dev *pdev)
5906 pci_set_power_state(pdev, PCI_D0);
5907 pci_restore_state(pdev);
5908 pci_enable_device(pdev);
5909 pci_set_master(pdev);
5912 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5914 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5915 int rc = 0;
5917 rc = ata_host_suspend(host, mesg);
5918 if (rc)
5919 return rc;
5921 ata_pci_device_do_suspend(pdev, mesg);
5923 return 0;
5926 int ata_pci_device_resume(struct pci_dev *pdev)
5928 struct ata_host *host = dev_get_drvdata(&pdev->dev);
5930 ata_pci_device_do_resume(pdev);
5931 ata_host_resume(host);
5932 return 0;
5934 #endif /* CONFIG_PCI */
5937 static int __init ata_init(void)
5939 ata_probe_timeout *= HZ;
5940 ata_wq = create_workqueue("ata");
5941 if (!ata_wq)
5942 return -ENOMEM;
5944 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5945 if (!ata_aux_wq) {
5946 destroy_workqueue(ata_wq);
5947 return -ENOMEM;
5950 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5951 return 0;
5954 static void __exit ata_exit(void)
5956 destroy_workqueue(ata_wq);
5957 destroy_workqueue(ata_aux_wq);
5960 subsys_initcall(ata_init);
5961 module_exit(ata_exit);
5963 static unsigned long ratelimit_time;
5964 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5966 int ata_ratelimit(void)
5968 int rc;
5969 unsigned long flags;
5971 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5973 if (time_after(jiffies, ratelimit_time)) {
5974 rc = 1;
5975 ratelimit_time = jiffies + (HZ/5);
5976 } else
5977 rc = 0;
5979 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5981 return rc;
5985 * ata_wait_register - wait until register value changes
5986 * @reg: IO-mapped register
5987 * @mask: Mask to apply to read register value
5988 * @val: Wait condition
5989 * @interval_msec: polling interval in milliseconds
5990 * @timeout_msec: timeout in milliseconds
5992 * Waiting for some bits of register to change is a common
5993 * operation for ATA controllers. This function reads 32bit LE
5994 * IO-mapped register @reg and tests for the following condition.
5996 * (*@reg & mask) != val
5998 * If the condition is met, it returns; otherwise, the process is
5999 * repeated after @interval_msec until timeout.
6001 * LOCKING:
6002 * Kernel thread context (may sleep)
6004 * RETURNS:
6005 * The final register value.
6007 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6008 unsigned long interval_msec,
6009 unsigned long timeout_msec)
6011 unsigned long timeout;
6012 u32 tmp;
6014 tmp = ioread32(reg);
6016 /* Calculate timeout _after_ the first read to make sure
6017 * preceding writes reach the controller before starting to
6018 * eat away the timeout.
6020 timeout = jiffies + (timeout_msec * HZ) / 1000;
6022 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6023 msleep(interval_msec);
6024 tmp = ioread32(reg);
6027 return tmp;
6031 * Dummy port_ops
6033 static void ata_dummy_noret(struct ata_port *ap) { }
6034 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6035 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6037 static u8 ata_dummy_check_status(struct ata_port *ap)
6039 return ATA_DRDY;
6042 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6044 return AC_ERR_SYSTEM;
6047 const struct ata_port_operations ata_dummy_port_ops = {
6048 .port_disable = ata_port_disable,
6049 .check_status = ata_dummy_check_status,
6050 .check_altstatus = ata_dummy_check_status,
6051 .dev_select = ata_noop_dev_select,
6052 .qc_prep = ata_noop_qc_prep,
6053 .qc_issue = ata_dummy_qc_issue,
6054 .freeze = ata_dummy_noret,
6055 .thaw = ata_dummy_noret,
6056 .error_handler = ata_dummy_noret,
6057 .post_internal_cmd = ata_dummy_qc_noret,
6058 .irq_clear = ata_dummy_noret,
6059 .port_start = ata_dummy_ret0,
6060 .port_stop = ata_dummy_noret,
6064 * libata is essentially a library of internal helper functions for
6065 * low-level ATA host controller drivers. As such, the API/ABI is
6066 * likely to change as new drivers are added and updated.
6067 * Do not depend on ABI/API stability.
6070 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6071 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6072 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6073 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6074 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6075 EXPORT_SYMBOL_GPL(ata_std_ports);
6076 EXPORT_SYMBOL_GPL(ata_host_init);
6077 EXPORT_SYMBOL_GPL(ata_device_add);
6078 EXPORT_SYMBOL_GPL(ata_port_detach);
6079 EXPORT_SYMBOL_GPL(ata_host_remove);
6080 EXPORT_SYMBOL_GPL(ata_sg_init);
6081 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6082 EXPORT_SYMBOL_GPL(ata_hsm_move);
6083 EXPORT_SYMBOL_GPL(ata_qc_complete);
6084 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6085 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6086 EXPORT_SYMBOL_GPL(ata_tf_load);
6087 EXPORT_SYMBOL_GPL(ata_tf_read);
6088 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6089 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6090 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6091 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6092 EXPORT_SYMBOL_GPL(ata_check_status);
6093 EXPORT_SYMBOL_GPL(ata_altstatus);
6094 EXPORT_SYMBOL_GPL(ata_exec_command);
6095 EXPORT_SYMBOL_GPL(ata_port_start);
6096 EXPORT_SYMBOL_GPL(ata_port_stop);
6097 EXPORT_SYMBOL_GPL(ata_host_stop);
6098 EXPORT_SYMBOL_GPL(ata_interrupt);
6099 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
6100 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
6101 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
6102 EXPORT_SYMBOL_GPL(ata_qc_prep);
6103 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6104 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6105 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6106 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6107 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6108 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6109 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6110 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6111 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6112 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6113 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6114 EXPORT_SYMBOL_GPL(ata_port_probe);
6115 EXPORT_SYMBOL_GPL(sata_set_spd);
6116 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6117 EXPORT_SYMBOL_GPL(sata_phy_resume);
6118 EXPORT_SYMBOL_GPL(sata_phy_reset);
6119 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6120 EXPORT_SYMBOL_GPL(ata_bus_reset);
6121 EXPORT_SYMBOL_GPL(ata_std_prereset);
6122 EXPORT_SYMBOL_GPL(ata_std_softreset);
6123 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6124 EXPORT_SYMBOL_GPL(ata_std_postreset);
6125 EXPORT_SYMBOL_GPL(ata_dev_classify);
6126 EXPORT_SYMBOL_GPL(ata_dev_pair);
6127 EXPORT_SYMBOL_GPL(ata_port_disable);
6128 EXPORT_SYMBOL_GPL(ata_ratelimit);
6129 EXPORT_SYMBOL_GPL(ata_wait_register);
6130 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6131 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6132 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6133 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6134 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6135 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6136 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6137 EXPORT_SYMBOL_GPL(ata_scsi_release);
6138 EXPORT_SYMBOL_GPL(ata_host_intr);
6139 EXPORT_SYMBOL_GPL(sata_scr_valid);
6140 EXPORT_SYMBOL_GPL(sata_scr_read);
6141 EXPORT_SYMBOL_GPL(sata_scr_write);
6142 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6143 EXPORT_SYMBOL_GPL(ata_port_online);
6144 EXPORT_SYMBOL_GPL(ata_port_offline);
6145 EXPORT_SYMBOL_GPL(ata_host_suspend);
6146 EXPORT_SYMBOL_GPL(ata_host_resume);
6147 EXPORT_SYMBOL_GPL(ata_id_string);
6148 EXPORT_SYMBOL_GPL(ata_id_c_string);
6149 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6151 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6152 EXPORT_SYMBOL_GPL(ata_timing_compute);
6153 EXPORT_SYMBOL_GPL(ata_timing_merge);
6155 #ifdef CONFIG_PCI
6156 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6157 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6158 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6159 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6160 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6161 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6162 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6163 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6164 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6165 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6166 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6167 #endif /* CONFIG_PCI */
6169 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6170 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6172 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6173 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6174 EXPORT_SYMBOL_GPL(ata_port_abort);
6175 EXPORT_SYMBOL_GPL(ata_port_freeze);
6176 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6177 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6178 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6179 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6180 EXPORT_SYMBOL_GPL(ata_do_eh);