Wrote apps/codecs/wmapro.c and modified libwmapro to make the codec work in the sim...
[kugel-rb.git] / apps / codecs / libwmapro / fft.c
blobb0e6e11cd37026e5d6df13222c71dcc75288b6ff
1 /*
2 * FFT/IFFT transforms
3 * Copyright (c) 2008 Loren Merritt
4 * Copyright (c) 2002 Fabrice Bellard
5 * Partly based on libdjbfft by D. J. Bernstein
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file libavcodec/fft.c
26 * FFT/IFFT transforms.
29 #include <stdlib.h>
30 #include <string.h>
31 #include "libavutil/mathematics.h"
32 #include "fft.h"
34 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
35 #if !CONFIG_HARDCODED_TABLES
36 COSTABLE(16);
37 COSTABLE(32);
38 COSTABLE(64);
39 COSTABLE(128);
40 COSTABLE(256);
41 COSTABLE(512);
42 COSTABLE(1024);
43 COSTABLE(2048);
44 COSTABLE(4096);
45 COSTABLE(8192);
46 COSTABLE(16384);
47 COSTABLE(32768);
48 COSTABLE(65536);
49 #endif
50 COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
51 NULL, NULL, NULL, NULL,
52 ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
53 ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
56 static int split_radix_permutation(int i, int n, int inverse)
58 int m;
59 if(n <= 2) return i&1;
60 m = n >> 1;
61 if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
62 m >>= 1;
63 if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
64 else return split_radix_permutation(i, m, inverse)*4 - 1;
67 av_cold void ff_init_ff_cos_tabs(int index)
69 #if !CONFIG_HARDCODED_TABLES
70 int i;
71 int m = 1<<index;
72 double freq = 2*M_PI/m;
73 FFTSample *tab = ff_cos_tabs[index];
74 for(i=0; i<=m/4; i++)
75 tab[i] = cos(i*freq);
76 for(i=1; i<m/4; i++)
77 tab[m/2-i] = tab[i];
78 #endif
81 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
83 int i, j, m, n;
84 float alpha, c1, s1, s2;
85 int av_unused has_vectors;
87 if (nbits < 2 || nbits > 16)
88 goto fail;
89 s->nbits = nbits;
90 n = 1 << nbits;
92 s->tmp_buf = NULL;
93 s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
94 if (!s->exptab)
95 goto fail;
96 s->revtab = av_malloc(n * sizeof(uint16_t));
97 if (!s->revtab)
98 goto fail;
99 s->inverse = inverse;
101 s2 = inverse ? 1.0 : -1.0;
103 s->fft_permute = ff_fft_permute_c;
104 s->fft_calc = ff_fft_calc_c;
105 //#if CONFIG_MDCT
106 s->imdct_calc = ff_imdct_calc_c;
107 s->imdct_half = ff_imdct_half_c;
108 s->mdct_calc = ff_mdct_calc_c;
109 //#endif
110 s->exptab1 = NULL;
111 s->split_radix = 1;
112 #if 0
113 if (ARCH_ARM) ff_fft_init_arm(s);
114 if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
115 if (HAVE_MMX) ff_fft_init_mmx(s);
116 #endif
117 if (s->split_radix) {
118 for(j=4; j<=nbits; j++) {
119 ff_init_ff_cos_tabs(j);
121 for(i=0; i<n; i++)
122 s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
123 s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
124 } else {
125 int np, nblocks, np2, l;
126 FFTComplex *q;
128 for(i=0; i<(n/2); i++) {
129 alpha = 2 * M_PI * (float)i / (float)n;
130 c1 = cos(alpha);
131 s1 = sin(alpha) * s2;
132 s->exptab[i].re = c1;
133 s->exptab[i].im = s1;
136 np = 1 << nbits;
137 nblocks = np >> 3;
138 np2 = np >> 1;
139 s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
140 if (!s->exptab1)
141 goto fail;
142 q = s->exptab1;
143 do {
144 for(l = 0; l < np2; l += 2 * nblocks) {
145 *q++ = s->exptab[l];
146 *q++ = s->exptab[l + nblocks];
148 q->re = -s->exptab[l].im;
149 q->im = s->exptab[l].re;
150 q++;
151 q->re = -s->exptab[l + nblocks].im;
152 q->im = s->exptab[l + nblocks].re;
153 q++;
155 nblocks = nblocks >> 1;
156 } while (nblocks != 0);
157 av_freep(&s->exptab);
159 /* compute bit reverse table */
160 for(i=0;i<n;i++) {
161 m=0;
162 for(j=0;j<nbits;j++) {
163 m |= ((i >> j) & 1) << (nbits-j-1);
165 s->revtab[i]=m;
169 return 0;
170 fail:
171 av_freep(&s->revtab);
172 av_freep(&s->exptab);
173 av_freep(&s->exptab1);
174 av_freep(&s->tmp_buf);
175 return -1;
178 void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
180 int j, k, np;
181 FFTComplex tmp;
182 const uint16_t *revtab = s->revtab;
183 np = 1 << s->nbits;
185 if (s->tmp_buf) {
186 /* TODO: handle split-radix permute in a more optimal way, probably in-place */
187 for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
188 memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
189 return;
192 /* reverse */
193 for(j=0;j<np;j++) {
194 k = revtab[j];
195 if (k < j) {
196 tmp = z[k];
197 z[k] = z[j];
198 z[j] = tmp;
203 av_cold void ff_fft_end(FFTContext *s)
205 av_freep(&s->revtab);
206 av_freep(&s->exptab);
207 av_freep(&s->exptab1);
208 av_freep(&s->tmp_buf);
211 #define sqrthalf (float)M_SQRT1_2
213 #define BF(x,y,a,b) {\
214 x = a - b;\
215 y = a + b;\
218 #define BUTTERFLIES(a0,a1,a2,a3) {\
219 BF(t3, t5, t5, t1);\
220 BF(a2.re, a0.re, a0.re, t5);\
221 BF(a3.im, a1.im, a1.im, t3);\
222 BF(t4, t6, t2, t6);\
223 BF(a3.re, a1.re, a1.re, t4);\
224 BF(a2.im, a0.im, a0.im, t6);\
227 // force loading all the inputs before storing any.
228 // this is slightly slower for small data, but avoids store->load aliasing
229 // for addresses separated by large powers of 2.
230 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
231 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
232 BF(t3, t5, t5, t1);\
233 BF(a2.re, a0.re, r0, t5);\
234 BF(a3.im, a1.im, i1, t3);\
235 BF(t4, t6, t2, t6);\
236 BF(a3.re, a1.re, r1, t4);\
237 BF(a2.im, a0.im, i0, t6);\
240 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
241 t1 = a2.re * wre + a2.im * wim;\
242 t2 = a2.im * wre - a2.re * wim;\
243 t5 = a3.re * wre - a3.im * wim;\
244 t6 = a3.im * wre + a3.re * wim;\
245 BUTTERFLIES(a0,a1,a2,a3)\
248 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
249 t1 = a2.re;\
250 t2 = a2.im;\
251 t5 = a3.re;\
252 t6 = a3.im;\
253 BUTTERFLIES(a0,a1,a2,a3)\
256 /* z[0...8n-1], w[1...2n-1] */
257 #define PASS(name)\
258 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
260 FFTSample t1, t2, t3, t4, t5, t6;\
261 int o1 = 2*n;\
262 int o2 = 4*n;\
263 int o3 = 6*n;\
264 const FFTSample *wim = wre+o1;\
265 n--;\
267 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
268 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
269 do {\
270 z += 2;\
271 wre += 2;\
272 wim -= 2;\
273 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
274 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
275 } while(--n);\
278 PASS(pass)
279 #undef BUTTERFLIES
280 #define BUTTERFLIES BUTTERFLIES_BIG
281 PASS(pass_big)
283 #define DECL_FFT(n,n2,n4)\
284 static void fft##n(FFTComplex *z)\
286 fft##n2(z);\
287 fft##n4(z+n4*2);\
288 fft##n4(z+n4*3);\
289 pass(z,ff_cos_##n,n4/2);\
292 static void fft4(FFTComplex *z)
294 FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
296 BF(t3, t1, z[0].re, z[1].re);
297 BF(t8, t6, z[3].re, z[2].re);
298 BF(z[2].re, z[0].re, t1, t6);
299 BF(t4, t2, z[0].im, z[1].im);
300 BF(t7, t5, z[2].im, z[3].im);
301 BF(z[3].im, z[1].im, t4, t8);
302 BF(z[3].re, z[1].re, t3, t7);
303 BF(z[2].im, z[0].im, t2, t5);
306 static void fft8(FFTComplex *z)
308 FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
310 fft4(z);
312 BF(t1, z[5].re, z[4].re, -z[5].re);
313 BF(t2, z[5].im, z[4].im, -z[5].im);
314 BF(t3, z[7].re, z[6].re, -z[7].re);
315 BF(t4, z[7].im, z[6].im, -z[7].im);
316 BF(t8, t1, t3, t1);
317 BF(t7, t2, t2, t4);
318 BF(z[4].re, z[0].re, z[0].re, t1);
319 BF(z[4].im, z[0].im, z[0].im, t2);
320 BF(z[6].re, z[2].re, z[2].re, t7);
321 BF(z[6].im, z[2].im, z[2].im, t8);
323 TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
326 #if !CONFIG_SMALL
327 static void fft16(FFTComplex *z)
329 FFTSample t1, t2, t3, t4, t5, t6;
331 fft8(z);
332 fft4(z+8);
333 fft4(z+12);
335 TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
336 TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
337 TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
338 TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
340 #else
341 DECL_FFT(16,8,4)
342 #endif
343 DECL_FFT(32,16,8)
344 DECL_FFT(64,32,16)
345 DECL_FFT(128,64,32)
346 DECL_FFT(256,128,64)
347 DECL_FFT(512,256,128)
348 #if !CONFIG_SMALL
349 #define pass pass_big
350 #endif
351 DECL_FFT(1024,512,256)
352 DECL_FFT(2048,1024,512)
353 DECL_FFT(4096,2048,1024)
354 DECL_FFT(8192,4096,2048)
355 DECL_FFT(16384,8192,4096)
356 DECL_FFT(32768,16384,8192)
357 DECL_FFT(65536,32768,16384)
359 static void (* const fft_dispatch[])(FFTComplex*) = {
360 fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
361 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
364 void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
366 fft_dispatch[s->nbits-2](z);