Consolidate all fixed point math routines in one library (FS#10400) by Jeffrey Goode
[kugel-rb.git] / apps / dsp.c
blob66469304b0514c834118235c1df972d3bfe2a792
1 /***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2005 Miika Pekkarinen
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
21 #include "config.h"
22 #include <stdbool.h>
23 #include <inttypes.h>
24 #include <string.h>
25 #include <sound.h>
26 #include "dsp.h"
27 #include "eq.h"
28 #include "kernel.h"
29 #include "playback.h"
30 #include "system.h"
31 #include "settings.h"
32 #include "replaygain.h"
33 #include "misc.h"
34 #include "tdspeed.h"
35 #include "buffer.h"
36 #include "fixedpoint.h"
38 /* 16-bit samples are scaled based on these constants. The shift should be
39 * no more than 15.
41 #define WORD_SHIFT 12
42 #define WORD_FRACBITS 27
44 #define NATIVE_DEPTH 16
45 /* If the small buffer size changes, check the assembly code! */
46 #define SMALL_SAMPLE_BUF_COUNT 256
47 #define DEFAULT_GAIN 0x01000000
49 /* enums to index conversion properly with stereo mode and other settings */
50 enum
52 SAMPLE_INPUT_LE_NATIVE_I_STEREO = STEREO_INTERLEAVED,
53 SAMPLE_INPUT_LE_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED,
54 SAMPLE_INPUT_LE_NATIVE_MONO = STEREO_MONO,
55 SAMPLE_INPUT_GT_NATIVE_I_STEREO = STEREO_INTERLEAVED + STEREO_NUM_MODES,
56 SAMPLE_INPUT_GT_NATIVE_NI_STEREO = STEREO_NONINTERLEAVED + STEREO_NUM_MODES,
57 SAMPLE_INPUT_GT_NATIVE_MONO = STEREO_MONO + STEREO_NUM_MODES,
58 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX = STEREO_NUM_MODES
61 enum
63 SAMPLE_OUTPUT_MONO = 0,
64 SAMPLE_OUTPUT_STEREO,
65 SAMPLE_OUTPUT_DITHERED_MONO,
66 SAMPLE_OUTPUT_DITHERED_STEREO
69 /****************************************************************************
70 * NOTE: Any assembly routines that use these structures must be updated
71 * if current data members are moved or changed.
73 struct resample_data
75 uint32_t delta; /* 00h */
76 uint32_t phase; /* 04h */
77 int32_t last_sample[2]; /* 08h */
78 /* 10h */
81 /* This is for passing needed data to assembly dsp routines. If another
82 * dsp parameter needs to be passed, add to the end of the structure
83 * and remove from dsp_config.
84 * If another function type becomes assembly optimized and requires dsp
85 * config info, add a pointer paramter of type "struct dsp_data *".
86 * If removing something from other than the end, reserve the spot or
87 * else update every implementation for every target.
88 * Be sure to add the offset of the new member for easy viewing as well. :)
89 * It is the first member of dsp_config and all members can be accessesed
90 * through the main aggregate but this is intended to make a safe haven
91 * for these items whereas the c part can be rearranged at will. dsp_data
92 * could even moved within dsp_config without disurbing the order.
94 struct dsp_data
96 int output_scale; /* 00h */
97 int num_channels; /* 04h */
98 struct resample_data resample_data; /* 08h */
99 int32_t clip_min; /* 18h */
100 int32_t clip_max; /* 1ch */
101 int32_t gain; /* 20h - Note that this is in S8.23 format. */
102 /* 24h */
105 /* No asm...yet */
106 struct dither_data
108 long error[3]; /* 00h */
109 long random; /* 0ch */
110 /* 10h */
113 struct crossfeed_data
115 int32_t gain; /* 00h - Direct path gain */
116 int32_t coefs[3]; /* 04h - Coefficients for the shelving filter */
117 int32_t history[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
118 int32_t delay[13][2]; /* 20h */
119 int32_t *index; /* 88h - Current pointer into the delay line */
120 /* 8ch */
123 /* Current setup is one lowshelf filters three peaking filters and one
124 * highshelf filter. Varying the number of shelving filters make no sense,
125 * but adding peaking filters is possible.
127 struct eq_state
129 char enabled[5]; /* 00h - Flags for active filters */
130 struct eqfilter filters[5]; /* 08h - packing is 4? */
131 /* 10ch */
134 /* Include header with defines which functions are implemented in assembly
135 code for the target */
136 #include <dsp_asm.h>
138 /* Typedefs keep things much neater in this case */
139 typedef void (*sample_input_fn_type)(int count, const char *src[],
140 int32_t *dst[]);
141 typedef int (*resample_fn_type)(int count, struct dsp_data *data,
142 const int32_t *src[], int32_t *dst[]);
143 typedef void (*sample_output_fn_type)(int count, struct dsp_data *data,
144 const int32_t *src[], int16_t *dst);
146 /* Single-DSP channel processing in place */
147 typedef void (*channels_process_fn_type)(int count, int32_t *buf[]);
148 /* DSP local channel processing in place */
149 typedef void (*channels_process_dsp_fn_type)(int count, struct dsp_data *data,
150 int32_t *buf[]);
154 ***************************************************************************/
156 struct dsp_config
158 struct dsp_data data; /* Config members for use in asm routines */
159 long codec_frequency; /* Sample rate of data coming from the codec */
160 long frequency; /* Effective sample rate after pitch shift (if any) */
161 int sample_depth;
162 int sample_bytes;
163 int stereo_mode;
164 int tdspeed_percent; /* Speed % */
165 bool tdspeed_active; /* Timestretch is in use */
166 int frac_bits;
167 #ifdef HAVE_SW_TONE_CONTROLS
168 /* Filter struct for software bass/treble controls */
169 struct eqfilter tone_filter;
170 #endif
171 /* Functions that change depending upon settings - NULL if stage is
172 disabled */
173 sample_input_fn_type input_samples;
174 resample_fn_type resample;
175 sample_output_fn_type output_samples;
176 /* These will be NULL for the voice codec and is more economical that
177 way */
178 channels_process_dsp_fn_type apply_gain;
179 channels_process_fn_type apply_crossfeed;
180 channels_process_fn_type eq_process;
181 channels_process_fn_type channels_process;
184 /* General DSP config */
185 static struct dsp_config dsp_conf[2] IBSS_ATTR; /* 0=A, 1=V */
186 /* Dithering */
187 static struct dither_data dither_data[2] IBSS_ATTR; /* 0=left, 1=right */
188 static long dither_mask IBSS_ATTR;
189 static long dither_bias IBSS_ATTR;
190 /* Crossfeed */
191 struct crossfeed_data crossfeed_data IDATA_ATTR = /* A */
193 .index = (int32_t *)crossfeed_data.delay
196 /* Equalizer */
197 static struct eq_state eq_data; /* A */
199 /* Software tone controls */
200 #ifdef HAVE_SW_TONE_CONTROLS
201 static int prescale; /* A/V */
202 static int bass; /* A/V */
203 static int treble; /* A/V */
204 #endif
206 /* Settings applicable to audio codec only */
207 static int pitch_ratio = 1000;
208 static int channels_mode;
209 long dsp_sw_gain;
210 long dsp_sw_cross;
211 static bool dither_enabled;
212 static long eq_precut;
213 static long track_gain;
214 static bool new_gain;
215 static long album_gain;
216 static long track_peak;
217 static long album_peak;
218 static long replaygain;
219 static bool crossfeed_enabled;
221 #define AUDIO_DSP (dsp_conf[CODEC_IDX_AUDIO])
222 #define VOICE_DSP (dsp_conf[CODEC_IDX_VOICE])
224 /* The internal format is 32-bit samples, non-interleaved, stereo. This
225 * format is similar to the raw output from several codecs, so the amount
226 * of copying needed is minimized for that case.
229 #define RESAMPLE_RATIO 4 /* Enough for 11,025 Hz -> 44,100 Hz */
231 static int32_t small_sample_buf[SMALL_SAMPLE_BUF_COUNT] IBSS_ATTR;
232 static int32_t small_resample_buf[SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO] IBSS_ATTR;
234 static int32_t *big_sample_buf = NULL;
235 static int32_t *big_resample_buf = NULL;
236 static int big_sample_buf_count = -1; /* -1=unknown, 0=not available */
238 static int sample_buf_count;
239 static int32_t *sample_buf;
240 static int32_t *resample_buf;
242 #define SAMPLE_BUF_LEFT_CHANNEL 0
243 #define SAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2)
244 #define RESAMPLE_BUF_LEFT_CHANNEL 0
245 #define RESAMPLE_BUF_RIGHT_CHANNEL (sample_buf_count/2 * RESAMPLE_RATIO)
248 /* Clip sample to signed 16 bit range */
249 static inline int32_t clip_sample_16(int32_t sample)
251 if ((int16_t)sample != sample)
252 sample = 0x7fff ^ (sample >> 31);
253 return sample;
256 int sound_get_pitch(void)
258 return pitch_ratio;
261 void sound_set_pitch(int permille)
263 pitch_ratio = permille;
264 dsp_configure(&AUDIO_DSP, DSP_SWITCH_FREQUENCY,
265 AUDIO_DSP.codec_frequency);
268 static void tdspeed_setup(struct dsp_config *dspc)
270 /* Assume timestretch will not be used */
271 dspc->tdspeed_active = false;
272 sample_buf = small_sample_buf;
273 resample_buf = small_resample_buf;
274 sample_buf_count = SMALL_SAMPLE_BUF_COUNT;
276 if(!dsp_timestretch_available())
277 return; /* Timestretch not enabled or buffer not allocated */
278 if (dspc->tdspeed_percent == 0)
279 dspc->tdspeed_percent = 100;
280 if (!tdspeed_config(
281 dspc->codec_frequency == 0 ? NATIVE_FREQUENCY : dspc->codec_frequency,
282 dspc->stereo_mode != STEREO_MONO,
283 dspc->tdspeed_percent))
284 return; /* Timestretch not possible or needed with these parameters */
286 /* Timestretch is to be used */
287 dspc->tdspeed_active = true;
288 sample_buf = big_sample_buf;
289 sample_buf_count = big_sample_buf_count;
290 resample_buf = big_resample_buf;
293 void dsp_timestretch_enable(bool enabled)
295 /* Hook to set up timestretch buffer on first call to settings_apply() */
296 if (big_sample_buf_count < 0) /* Only do something on first call */
298 if (enabled)
300 /* Set up timestretch buffers */
301 big_sample_buf_count = SMALL_SAMPLE_BUF_COUNT * RESAMPLE_RATIO;
302 big_sample_buf = small_resample_buf;
303 big_resample_buf = (int32_t *) buffer_alloc(big_sample_buf_count * RESAMPLE_RATIO * sizeof(int32_t));
305 else
307 /* Not enabled at startup, "big" buffers will never be available */
308 big_sample_buf_count = 0;
310 tdspeed_setup(&AUDIO_DSP);
314 void dsp_set_timestretch(int percent)
316 AUDIO_DSP.tdspeed_percent = percent;
317 tdspeed_setup(&AUDIO_DSP);
320 int dsp_get_timestretch()
322 return AUDIO_DSP.tdspeed_percent;
325 bool dsp_timestretch_available()
327 return (global_settings.timestretch_enabled && big_sample_buf_count > 0);
330 /* Convert count samples to the internal format, if needed. Updates src
331 * to point past the samples "consumed" and dst is set to point to the
332 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
333 * is no point in processing the same data twice.
336 /* convert count 16-bit mono to 32-bit mono */
337 static void sample_input_lte_native_mono(
338 int count, const char *src[], int32_t *dst[])
340 const int16_t *s = (int16_t *) src[0];
341 const int16_t * const send = s + count;
342 int32_t *d = dst[0] = dst[1] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
343 int scale = WORD_SHIFT;
347 *d++ = *s++ << scale;
349 while (s < send);
351 src[0] = (char *)s;
354 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
355 static void sample_input_lte_native_i_stereo(
356 int count, const char *src[], int32_t *dst[])
358 const int32_t *s = (int32_t *) src[0];
359 const int32_t * const send = s + count;
360 int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
361 int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
362 int scale = WORD_SHIFT;
366 int32_t slr = *s++;
367 #ifdef ROCKBOX_LITTLE_ENDIAN
368 *dl++ = (slr >> 16) << scale;
369 *dr++ = (int32_t)(int16_t)slr << scale;
370 #else /* ROCKBOX_BIG_ENDIAN */
371 *dl++ = (int32_t)(int16_t)slr << scale;
372 *dr++ = (slr >> 16) << scale;
373 #endif
375 while (s < send);
377 src[0] = (char *)s;
380 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
381 static void sample_input_lte_native_ni_stereo(
382 int count, const char *src[], int32_t *dst[])
384 const int16_t *sl = (int16_t *) src[0];
385 const int16_t *sr = (int16_t *) src[1];
386 const int16_t * const slend = sl + count;
387 int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
388 int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
389 int scale = WORD_SHIFT;
393 *dl++ = *sl++ << scale;
394 *dr++ = *sr++ << scale;
396 while (sl < slend);
398 src[0] = (char *)sl;
399 src[1] = (char *)sr;
402 /* convert count 32-bit mono to 32-bit mono */
403 static void sample_input_gt_native_mono(
404 int count, const char *src[], int32_t *dst[])
406 dst[0] = dst[1] = (int32_t *)src[0];
407 src[0] = (char *)(dst[0] + count);
410 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
411 static void sample_input_gt_native_i_stereo(
412 int count, const char *src[], int32_t *dst[])
414 const int32_t *s = (int32_t *)src[0];
415 const int32_t * const send = s + 2*count;
416 int32_t *dl = dst[0] = &sample_buf[SAMPLE_BUF_LEFT_CHANNEL];
417 int32_t *dr = dst[1] = &sample_buf[SAMPLE_BUF_RIGHT_CHANNEL];
421 *dl++ = *s++;
422 *dr++ = *s++;
424 while (s < send);
426 src[0] = (char *)send;
429 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
430 static void sample_input_gt_native_ni_stereo(
431 int count, const char *src[], int32_t *dst[])
433 dst[0] = (int32_t *)src[0];
434 dst[1] = (int32_t *)src[1];
435 src[0] = (char *)(dst[0] + count);
436 src[1] = (char *)(dst[1] + count);
440 * sample_input_new_format()
442 * set the to-native sample conversion function based on dsp sample parameters
444 * !DSPPARAMSYNC
445 * needs syncing with changes to the following dsp parameters:
446 * * dsp->stereo_mode (A/V)
447 * * dsp->sample_depth (A/V)
449 static void sample_input_new_format(struct dsp_config *dsp)
451 static const sample_input_fn_type sample_input_functions[] =
453 [SAMPLE_INPUT_LE_NATIVE_MONO] = sample_input_lte_native_mono,
454 [SAMPLE_INPUT_LE_NATIVE_I_STEREO] = sample_input_lte_native_i_stereo,
455 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO] = sample_input_lte_native_ni_stereo,
456 [SAMPLE_INPUT_GT_NATIVE_MONO] = sample_input_gt_native_mono,
457 [SAMPLE_INPUT_GT_NATIVE_I_STEREO] = sample_input_gt_native_i_stereo,
458 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO] = sample_input_gt_native_ni_stereo,
461 int convert = dsp->stereo_mode;
463 if (dsp->sample_depth > NATIVE_DEPTH)
464 convert += SAMPLE_INPUT_GT_NATIVE_1ST_INDEX;
466 dsp->input_samples = sample_input_functions[convert];
470 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
471 /* write mono internal format to output format */
472 static void sample_output_mono(int count, struct dsp_data *data,
473 const int32_t *src[], int16_t *dst)
475 const int32_t *s0 = src[0];
476 const int scale = data->output_scale;
477 const int dc_bias = 1 << (scale - 1);
481 int32_t lr = clip_sample_16((*s0++ + dc_bias) >> scale);
482 *dst++ = lr;
483 *dst++ = lr;
485 while (--count > 0);
487 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
489 /* write stereo internal format to output format */
490 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
491 static void sample_output_stereo(int count, struct dsp_data *data,
492 const int32_t *src[], int16_t *dst)
494 const int32_t *s0 = src[0];
495 const int32_t *s1 = src[1];
496 const int scale = data->output_scale;
497 const int dc_bias = 1 << (scale - 1);
501 *dst++ = clip_sample_16((*s0++ + dc_bias) >> scale);
502 *dst++ = clip_sample_16((*s1++ + dc_bias) >> scale);
504 while (--count > 0);
506 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
509 * The "dither" code to convert the 24-bit samples produced by libmad was
510 * taken from the coolplayer project - coolplayer.sourceforge.net
512 * This function handles mono and stereo outputs.
514 static void sample_output_dithered(int count, struct dsp_data *data,
515 const int32_t *src[], int16_t *dst)
517 const int32_t mask = dither_mask;
518 const int32_t bias = dither_bias;
519 const int scale = data->output_scale;
520 const int32_t min = data->clip_min;
521 const int32_t max = data->clip_max;
522 const int32_t range = max - min;
523 int ch;
524 int16_t *d;
526 for (ch = 0; ch < data->num_channels; ch++)
528 struct dither_data * const dither = &dither_data[ch];
529 const int32_t *s = src[ch];
530 int i;
532 for (i = 0, d = &dst[ch]; i < count; i++, s++, d += 2)
534 int32_t output, sample;
535 int32_t random;
537 /* Noise shape and bias (for correct rounding later) */
538 sample = *s;
539 sample += dither->error[0] - dither->error[1] + dither->error[2];
540 dither->error[2] = dither->error[1];
541 dither->error[1] = dither->error[0]/2;
543 output = sample + bias;
545 /* Dither, highpass triangle PDF */
546 random = dither->random*0x0019660dL + 0x3c6ef35fL;
547 output += (random & mask) - (dither->random & mask);
548 dither->random = random;
550 /* Round sample to output range */
551 output &= ~mask;
553 /* Error feedback */
554 dither->error[0] = sample - output;
556 /* Clip */
557 if ((uint32_t)(output - min) > (uint32_t)range)
559 int32_t c = min;
560 if (output > min)
561 c += range;
562 output = c;
565 /* Quantize and store */
566 *d = output >> scale;
570 if (data->num_channels == 2)
571 return;
573 /* Have to duplicate left samples into the right channel since
574 pcm buffer and hardware is interleaved stereo */
575 d = &dst[0];
579 int16_t s = *d++;
580 *d++ = s;
582 while (--count > 0);
586 * sample_output_new_format()
588 * set the from-native to ouput sample conversion routine
590 * !DSPPARAMSYNC
591 * needs syncing with changes to the following dsp parameters:
592 * * dsp->stereo_mode (A/V)
593 * * dither_enabled (A)
595 static void sample_output_new_format(struct dsp_config *dsp)
597 static const sample_output_fn_type sample_output_functions[] =
599 sample_output_mono,
600 sample_output_stereo,
601 sample_output_dithered,
602 sample_output_dithered
605 int out = dsp->data.num_channels - 1;
607 if (dsp == &AUDIO_DSP && dither_enabled)
608 out += 2;
610 dsp->output_samples = sample_output_functions[out];
614 * Linear interpolation resampling that introduces a one sample delay because
615 * of our inability to look into the future at the end of a frame.
617 #ifndef DSP_HAVE_ASM_RESAMPLING
618 static int dsp_downsample(int count, struct dsp_data *data,
619 const int32_t *src[], int32_t *dst[])
621 int ch = data->num_channels - 1;
622 uint32_t delta = data->resample_data.delta;
623 uint32_t phase, pos;
624 int32_t *d;
626 /* Rolled channel loop actually showed slightly faster. */
629 /* Just initialize things and not worry too much about the relatively
630 * uncommon case of not being able to spit out a sample for the frame.
632 const int32_t *s = src[ch];
633 int32_t last = data->resample_data.last_sample[ch];
635 data->resample_data.last_sample[ch] = s[count - 1];
636 d = dst[ch];
637 phase = data->resample_data.phase;
638 pos = phase >> 16;
640 /* Do we need last sample of previous frame for interpolation? */
641 if (pos > 0)
642 last = s[pos - 1];
644 while (pos < (uint32_t)count)
646 *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
647 phase += delta;
648 pos = phase >> 16;
649 last = s[pos - 1];
652 while (--ch >= 0);
654 /* Wrap phase accumulator back to start of next frame. */
655 data->resample_data.phase = phase - (count << 16);
656 return d - dst[0];
659 static int dsp_upsample(int count, struct dsp_data *data,
660 const int32_t *src[], int32_t *dst[])
662 int ch = data->num_channels - 1;
663 uint32_t delta = data->resample_data.delta;
664 uint32_t phase, pos;
665 int32_t *d;
667 /* Rolled channel loop actually showed slightly faster. */
670 /* Should always be able to output a sample for a ratio up to RESAMPLE_RATIO */
671 const int32_t *s = src[ch];
672 int32_t last = data->resample_data.last_sample[ch];
674 data->resample_data.last_sample[ch] = s[count - 1];
675 d = dst[ch];
676 phase = data->resample_data.phase;
677 pos = phase >> 16;
679 while (pos == 0)
681 *d++ = last + FRACMUL((phase & 0xffff) << 15, s[0] - last);
682 phase += delta;
683 pos = phase >> 16;
686 while (pos < (uint32_t)count)
688 last = s[pos - 1];
689 *d++ = last + FRACMUL((phase & 0xffff) << 15, s[pos] - last);
690 phase += delta;
691 pos = phase >> 16;
694 while (--ch >= 0);
696 /* Wrap phase accumulator back to start of next frame. */
697 data->resample_data.phase = phase & 0xffff;
698 return d - dst[0];
700 #endif /* DSP_HAVE_ASM_RESAMPLING */
702 static void resampler_new_delta(struct dsp_config *dsp)
704 dsp->data.resample_data.delta = (unsigned long)
705 dsp->frequency * 65536LL / NATIVE_FREQUENCY;
707 if (dsp->frequency == NATIVE_FREQUENCY)
709 /* NOTE: If fully glitch-free transistions from no resampling to
710 resampling are desired, last_sample history should be maintained
711 even when not resampling. */
712 dsp->resample = NULL;
713 dsp->data.resample_data.phase = 0;
714 dsp->data.resample_data.last_sample[0] = 0;
715 dsp->data.resample_data.last_sample[1] = 0;
717 else if (dsp->frequency < NATIVE_FREQUENCY)
718 dsp->resample = dsp_upsample;
719 else
720 dsp->resample = dsp_downsample;
723 /* Resample count stereo samples. Updates the src array, if resampling is
724 * done, to refer to the resampled data. Returns number of stereo samples
725 * for further processing.
727 static inline int resample(struct dsp_config *dsp, int count, int32_t *src[])
729 int32_t *dst[2] =
731 &resample_buf[RESAMPLE_BUF_LEFT_CHANNEL],
732 &resample_buf[RESAMPLE_BUF_RIGHT_CHANNEL],
735 count = dsp->resample(count, &dsp->data, (const int32_t **)src, dst);
737 src[0] = dst[0];
738 src[1] = dst[dsp->data.num_channels - 1];
740 return count;
743 static void dither_init(struct dsp_config *dsp)
745 memset(dither_data, 0, sizeof (dither_data));
746 dither_bias = (1L << (dsp->frac_bits - NATIVE_DEPTH));
747 dither_mask = (1L << (dsp->frac_bits + 1 - NATIVE_DEPTH)) - 1;
750 void dsp_dither_enable(bool enable)
752 struct dsp_config *dsp = &AUDIO_DSP;
753 dither_enabled = enable;
754 sample_output_new_format(dsp);
757 /* Applies crossfeed to the stereo signal in src.
758 * Crossfeed is a process where listening over speakers is simulated. This
759 * is good for old hard panned stereo records, which might be quite fatiguing
760 * to listen to on headphones with no crossfeed.
762 #ifndef DSP_HAVE_ASM_CROSSFEED
763 static void apply_crossfeed(int count, int32_t *buf[])
765 int32_t *hist_l = &crossfeed_data.history[0];
766 int32_t *hist_r = &crossfeed_data.history[2];
767 int32_t *delay = &crossfeed_data.delay[0][0];
768 int32_t *coefs = &crossfeed_data.coefs[0];
769 int32_t gain = crossfeed_data.gain;
770 int32_t *di = crossfeed_data.index;
772 int32_t acc;
773 int32_t left, right;
774 int i;
776 for (i = 0; i < count; i++)
778 left = buf[0][i];
779 right = buf[1][i];
781 /* Filter delayed sample from left speaker */
782 acc = FRACMUL(*di, coefs[0]);
783 acc += FRACMUL(hist_l[0], coefs[1]);
784 acc += FRACMUL(hist_l[1], coefs[2]);
785 /* Save filter history for left speaker */
786 hist_l[1] = acc;
787 hist_l[0] = *di;
788 *di++ = left;
789 /* Filter delayed sample from right speaker */
790 acc = FRACMUL(*di, coefs[0]);
791 acc += FRACMUL(hist_r[0], coefs[1]);
792 acc += FRACMUL(hist_r[1], coefs[2]);
793 /* Save filter history for right speaker */
794 hist_r[1] = acc;
795 hist_r[0] = *di;
796 *di++ = right;
797 /* Now add the attenuated direct sound and write to outputs */
798 buf[0][i] = FRACMUL(left, gain) + hist_r[1];
799 buf[1][i] = FRACMUL(right, gain) + hist_l[1];
801 /* Wrap delay line index if bigger than delay line size */
802 if (di >= delay + 13*2)
803 di = delay;
805 /* Write back local copies of data we've modified */
806 crossfeed_data.index = di;
808 #endif /* DSP_HAVE_ASM_CROSSFEED */
811 * dsp_set_crossfeed(bool enable)
813 * !DSPPARAMSYNC
814 * needs syncing with changes to the following dsp parameters:
815 * * dsp->stereo_mode (A)
817 void dsp_set_crossfeed(bool enable)
819 crossfeed_enabled = enable;
820 AUDIO_DSP.apply_crossfeed = (enable && AUDIO_DSP.data.num_channels > 1)
821 ? apply_crossfeed : NULL;
824 void dsp_set_crossfeed_direct_gain(int gain)
826 crossfeed_data.gain = get_replaygain_int(gain * 10) << 7;
827 /* If gain is negative, the calculation overflowed and we need to clamp */
828 if (crossfeed_data.gain < 0)
829 crossfeed_data.gain = 0x7fffffff;
832 /* Both gains should be below 0 dB */
833 void dsp_set_crossfeed_cross_params(long lf_gain, long hf_gain, long cutoff)
835 int32_t *c = crossfeed_data.coefs;
836 long scaler = get_replaygain_int(lf_gain * 10) << 7;
838 cutoff = 0xffffffff/NATIVE_FREQUENCY*cutoff;
839 hf_gain -= lf_gain;
840 /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
841 * point instead of shelf midpoint. This is for compatibility with the old
842 * crossfeed shelf filter and should be removed if crossfeed settings are
843 * ever made incompatible for any other good reason.
845 cutoff = DIV64(cutoff, get_replaygain_int(hf_gain*5), 24);
846 filter_shelf_coefs(cutoff, hf_gain, false, c);
847 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
848 * over 1 and can do this safely
850 c[0] = FRACMUL_SHL(c[0], scaler, 4);
851 c[1] = FRACMUL_SHL(c[1], scaler, 4);
852 c[2] <<= 4;
855 /* Apply a constant gain to the samples (e.g., for ReplayGain).
856 * Note that this must be called before the resampler.
858 #ifndef DSP_HAVE_ASM_APPLY_GAIN
859 static void dsp_apply_gain(int count, struct dsp_data *data, int32_t *buf[])
861 const int32_t gain = data->gain;
862 int ch;
864 for (ch = 0; ch < data->num_channels; ch++)
866 int32_t *d = buf[ch];
867 int i;
869 for (i = 0; i < count; i++)
870 d[i] = FRACMUL_SHL(d[i], gain, 8);
873 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
875 /* Combine all gains to a global gain. */
876 static void set_gain(struct dsp_config *dsp)
878 dsp->data.gain = DEFAULT_GAIN;
880 /* Replay gain not relevant to voice */
881 if (dsp == &AUDIO_DSP && replaygain)
883 dsp->data.gain = replaygain;
886 if (dsp->eq_process && eq_precut)
888 dsp->data.gain =
889 (long) (((int64_t) dsp->data.gain * eq_precut) >> 24);
892 if (dsp->data.gain == DEFAULT_GAIN)
894 dsp->data.gain = 0;
896 else
898 dsp->data.gain >>= 1;
901 dsp->apply_gain = dsp->data.gain != 0 ? dsp_apply_gain : NULL;
905 * Update the amount to cut the audio before applying the equalizer.
907 * @param precut to apply in decibels (multiplied by 10)
909 void dsp_set_eq_precut(int precut)
911 eq_precut = get_replaygain_int(precut * -10);
912 set_gain(&AUDIO_DSP);
916 * Synchronize the equalizer filter coefficients with the global settings.
918 * @param band the equalizer band to synchronize
920 void dsp_set_eq_coefs(int band)
922 const int *setting;
923 long gain;
924 unsigned long cutoff, q;
926 /* Adjust setting pointer to the band we actually want to change */
927 setting = &global_settings.eq_band0_cutoff + (band * 3);
929 /* Convert user settings to format required by coef generator functions */
930 cutoff = 0xffffffff / NATIVE_FREQUENCY * (*setting++);
931 q = *setting++;
932 gain = *setting++;
934 if (q == 0)
935 q = 1;
937 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
938 which it should be, since we're executed from the main thread. */
940 /* Assume a band is disabled if the gain is zero */
941 if (gain == 0)
943 eq_data.enabled[band] = 0;
945 else
947 if (band == 0)
948 eq_ls_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
949 else if (band == 4)
950 eq_hs_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
951 else
952 eq_pk_coefs(cutoff, q, gain, eq_data.filters[band].coefs);
954 eq_data.enabled[band] = 1;
958 /* Apply EQ filters to those bands that have got it switched on. */
959 static void eq_process(int count, int32_t *buf[])
961 static const int shifts[] =
963 EQ_SHELF_SHIFT, /* low shelf */
964 EQ_PEAK_SHIFT, /* peaking */
965 EQ_PEAK_SHIFT, /* peaking */
966 EQ_PEAK_SHIFT, /* peaking */
967 EQ_SHELF_SHIFT, /* high shelf */
969 unsigned int channels = AUDIO_DSP.data.num_channels;
970 int i;
972 /* filter configuration currently is 1 low shelf filter, 3 band peaking
973 filters and 1 high shelf filter, in that order. we need to know this
974 so we can choose the correct shift factor.
976 for (i = 0; i < 5; i++)
978 if (!eq_data.enabled[i])
979 continue;
980 eq_filter(buf, &eq_data.filters[i], count, channels, shifts[i]);
985 * Use to enable the equalizer.
987 * @param enable true to enable the equalizer
989 void dsp_set_eq(bool enable)
991 AUDIO_DSP.eq_process = enable ? eq_process : NULL;
992 set_gain(&AUDIO_DSP);
995 static void dsp_set_stereo_width(int value)
997 long width, straight, cross;
999 width = value * 0x7fffff / 100;
1001 if (value <= 100)
1003 straight = (0x7fffff + width) / 2;
1004 cross = straight - width;
1006 else
1008 /* straight = (1 + width) / (2 * width) */
1009 straight = ((int64_t)(0x7fffff + width) << 22) / width;
1010 cross = straight - 0x7fffff;
1013 dsp_sw_gain = straight << 8;
1014 dsp_sw_cross = cross << 8;
1018 * Implements the different channel configurations and stereo width.
1021 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
1022 * completeness. */
1023 #if 0
1024 static void channels_process_sound_chan_stereo(int count, int32_t *buf[])
1026 /* The channels are each just themselves */
1027 (void)count; (void)buf;
1029 #endif
1031 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
1032 static void channels_process_sound_chan_mono(int count, int32_t *buf[])
1034 int32_t *sl = buf[0], *sr = buf[1];
1038 int32_t lr = *sl/2 + *sr/2;
1039 *sl++ = lr;
1040 *sr++ = lr;
1042 while (--count > 0);
1044 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
1046 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
1047 static void channels_process_sound_chan_custom(int count, int32_t *buf[])
1049 const int32_t gain = dsp_sw_gain;
1050 const int32_t cross = dsp_sw_cross;
1051 int32_t *sl = buf[0], *sr = buf[1];
1055 int32_t l = *sl;
1056 int32_t r = *sr;
1057 *sl++ = FRACMUL(l, gain) + FRACMUL(r, cross);
1058 *sr++ = FRACMUL(r, gain) + FRACMUL(l, cross);
1060 while (--count > 0);
1062 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
1064 static void channels_process_sound_chan_mono_left(int count, int32_t *buf[])
1066 /* Just copy over the other channel */
1067 memcpy(buf[1], buf[0], count * sizeof (*buf));
1070 static void channels_process_sound_chan_mono_right(int count, int32_t *buf[])
1072 /* Just copy over the other channel */
1073 memcpy(buf[0], buf[1], count * sizeof (*buf));
1076 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1077 static void channels_process_sound_chan_karaoke(int count, int32_t *buf[])
1079 int32_t *sl = buf[0], *sr = buf[1];
1083 int32_t ch = *sl/2 - *sr/2;
1084 *sl++ = ch;
1085 *sr++ = -ch;
1087 while (--count > 0);
1089 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1091 static void dsp_set_channel_config(int value)
1093 static const channels_process_fn_type channels_process_functions[] =
1095 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1096 [SOUND_CHAN_STEREO] = NULL,
1097 [SOUND_CHAN_MONO] = channels_process_sound_chan_mono,
1098 [SOUND_CHAN_CUSTOM] = channels_process_sound_chan_custom,
1099 [SOUND_CHAN_MONO_LEFT] = channels_process_sound_chan_mono_left,
1100 [SOUND_CHAN_MONO_RIGHT] = channels_process_sound_chan_mono_right,
1101 [SOUND_CHAN_KARAOKE] = channels_process_sound_chan_karaoke,
1104 if ((unsigned)value >= ARRAYLEN(channels_process_functions) ||
1105 AUDIO_DSP.stereo_mode == STEREO_MONO)
1107 value = SOUND_CHAN_STEREO;
1110 /* This doesn't apply to voice */
1111 channels_mode = value;
1112 AUDIO_DSP.channels_process = channels_process_functions[value];
1115 #if CONFIG_CODEC == SWCODEC
1117 #ifdef HAVE_SW_TONE_CONTROLS
1118 static void set_tone_controls(void)
1120 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY*200,
1121 0xffffffff/NATIVE_FREQUENCY*3500,
1122 bass, treble, -prescale,
1123 AUDIO_DSP.tone_filter.coefs);
1124 /* Sync the voice dsp coefficients */
1125 memcpy(&VOICE_DSP.tone_filter.coefs, AUDIO_DSP.tone_filter.coefs,
1126 sizeof (VOICE_DSP.tone_filter.coefs));
1128 #endif
1130 /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
1131 * code directly.
1133 int dsp_callback(int msg, intptr_t param)
1135 switch (msg)
1137 #ifdef HAVE_SW_TONE_CONTROLS
1138 case DSP_CALLBACK_SET_PRESCALE:
1139 prescale = param;
1140 set_tone_controls();
1141 break;
1142 /* prescaler is always set after calling any of these, so we wait with
1143 * calculating coefs until the above case is hit.
1145 case DSP_CALLBACK_SET_BASS:
1146 bass = param;
1147 break;
1148 case DSP_CALLBACK_SET_TREBLE:
1149 treble = param;
1150 break;
1151 #endif
1152 case DSP_CALLBACK_SET_CHANNEL_CONFIG:
1153 dsp_set_channel_config(param);
1154 break;
1155 case DSP_CALLBACK_SET_STEREO_WIDTH:
1156 dsp_set_stereo_width(param);
1157 break;
1158 default:
1159 break;
1161 return 0;
1163 #endif
1165 /* Process and convert src audio to dst based on the DSP configuration,
1166 * reading count number of audio samples. dst is assumed to be large
1167 * enough; use dsp_output_count() to get the required number. src is an
1168 * array of pointers; for mono and interleaved stereo, it contains one
1169 * pointer to the start of the audio data and the other is ignored; for
1170 * non-interleaved stereo, it contains two pointers, one for each audio
1171 * channel. Returns number of bytes written to dst.
1173 int dsp_process(struct dsp_config *dsp, char *dst, const char *src[], int count)
1175 int32_t *tmp[2];
1176 static long last_yield;
1177 long tick;
1178 int written = 0;
1180 #if defined(CPU_COLDFIRE)
1181 /* set emac unit for dsp processing, and save old macsr, we're running in
1182 codec thread context at this point, so can't clobber it */
1183 unsigned long old_macsr = coldfire_get_macsr();
1184 coldfire_set_macsr(EMAC_FRACTIONAL | EMAC_SATURATE);
1185 #endif
1187 if (new_gain)
1188 dsp_set_replaygain(); /* Gain has changed */
1190 /* Perform at least one yield before starting */
1191 last_yield = current_tick;
1192 yield();
1194 /* Testing function pointers for NULL is preferred since the pointer
1195 will be preloaded to be used for the call if not. */
1196 while (count > 0)
1198 int samples = MIN(sample_buf_count/2, count);
1199 count -= samples;
1201 dsp->input_samples(samples, src, tmp);
1203 if (dsp->tdspeed_active)
1204 samples = tdspeed_doit(tmp, samples);
1206 int chunk_offset = 0;
1207 while (samples > 0)
1209 int32_t *t2[2];
1210 t2[0] = tmp[0]+chunk_offset;
1211 t2[1] = tmp[1]+chunk_offset;
1213 int chunk = MIN(sample_buf_count/2, samples);
1214 chunk_offset += chunk;
1215 samples -= chunk;
1217 if (dsp->apply_gain)
1218 dsp->apply_gain(chunk, &dsp->data, t2);
1220 if (dsp->resample && (chunk = resample(dsp, chunk, t2)) <= 0)
1221 break; /* I'm pretty sure we're downsampling here */
1223 if (dsp->apply_crossfeed)
1224 dsp->apply_crossfeed(chunk, t2);
1226 if (dsp->eq_process)
1227 dsp->eq_process(chunk, t2);
1229 #ifdef HAVE_SW_TONE_CONTROLS
1230 if ((bass | treble) != 0)
1231 eq_filter(t2, &dsp->tone_filter, chunk,
1232 dsp->data.num_channels, FILTER_BISHELF_SHIFT);
1233 #endif
1235 if (dsp->channels_process)
1236 dsp->channels_process(chunk, t2);
1238 dsp->output_samples(chunk, &dsp->data, (const int32_t **)t2, (int16_t *)dst);
1240 written += chunk;
1241 dst += chunk * sizeof (int16_t) * 2;
1243 /* yield at least once each tick */
1244 tick = current_tick;
1245 if (TIME_AFTER(tick, last_yield))
1247 last_yield = tick;
1248 yield();
1253 #if defined(CPU_COLDFIRE)
1254 /* set old macsr again */
1255 coldfire_set_macsr(old_macsr);
1256 #endif
1257 return written;
1260 /* Given count number of input samples, calculate the maximum number of
1261 * samples of output data that would be generated (the calculation is not
1262 * entirely exact and rounds upwards to be on the safe side; during
1263 * resampling, the number of samples generated depends on the current state
1264 * of the resampler).
1266 /* dsp_input_size MUST be called afterwards */
1267 int dsp_output_count(struct dsp_config *dsp, int count)
1269 if (dsp->tdspeed_active)
1270 count = tdspeed_est_output_size();
1271 if (dsp->resample)
1273 count = (int)(((unsigned long)count * NATIVE_FREQUENCY
1274 + (dsp->frequency - 1)) / dsp->frequency);
1277 /* Now we have the resampled sample count which must not exceed
1278 * RESAMPLE_BUF_RIGHT_CHANNEL to avoid resample buffer overflow. One
1279 * must call dsp_input_count() to get the correct input sample
1280 * count.
1282 if (count > RESAMPLE_BUF_RIGHT_CHANNEL)
1283 count = RESAMPLE_BUF_RIGHT_CHANNEL;
1285 return count;
1288 /* Given count output samples, calculate number of input samples
1289 * that would be consumed in order to fill the output buffer.
1291 int dsp_input_count(struct dsp_config *dsp, int count)
1293 /* count is now the number of resampled input samples. Convert to
1294 original input samples. */
1295 if (dsp->resample)
1297 /* Use the real resampling delta =
1298 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1299 * round towards zero to avoid buffer overflows. */
1300 count = (int)(((unsigned long)count *
1301 dsp->data.resample_data.delta) >> 16);
1304 if (dsp->tdspeed_active)
1305 count = tdspeed_est_input_size(count);
1307 return count;
1310 static void dsp_set_gain_var(long *var, long value)
1312 *var = value;
1313 new_gain = true;
1316 static void dsp_update_functions(struct dsp_config *dsp)
1318 sample_input_new_format(dsp);
1319 sample_output_new_format(dsp);
1320 if (dsp == &AUDIO_DSP)
1321 dsp_set_crossfeed(crossfeed_enabled);
1324 intptr_t dsp_configure(struct dsp_config *dsp, int setting, intptr_t value)
1326 switch (setting)
1328 case DSP_MYDSP:
1329 switch (value)
1331 case CODEC_IDX_AUDIO:
1332 return (intptr_t)&AUDIO_DSP;
1333 case CODEC_IDX_VOICE:
1334 return (intptr_t)&VOICE_DSP;
1335 default:
1336 return (intptr_t)NULL;
1339 case DSP_SET_FREQUENCY:
1340 memset(&dsp->data.resample_data, 0, sizeof (dsp->data.resample_data));
1341 /* Fall through!!! */
1342 case DSP_SWITCH_FREQUENCY:
1343 dsp->codec_frequency = (value == 0) ? NATIVE_FREQUENCY : value;
1344 /* Account for playback speed adjustment when setting dsp->frequency
1345 if we're called from the main audio thread. Voice UI thread should
1346 not need this feature.
1348 if (dsp == &AUDIO_DSP)
1349 dsp->frequency = pitch_ratio * dsp->codec_frequency / 1000;
1350 else
1351 dsp->frequency = dsp->codec_frequency;
1353 resampler_new_delta(dsp);
1354 tdspeed_setup(dsp);
1355 break;
1357 case DSP_SET_SAMPLE_DEPTH:
1358 dsp->sample_depth = value;
1360 if (dsp->sample_depth <= NATIVE_DEPTH)
1362 dsp->frac_bits = WORD_FRACBITS;
1363 dsp->sample_bytes = sizeof (int16_t); /* samples are 16 bits */
1364 dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
1365 dsp->data.clip_min = -((1 << WORD_FRACBITS));
1367 else
1369 dsp->frac_bits = value;
1370 dsp->sample_bytes = sizeof (int32_t); /* samples are 32 bits */
1371 dsp->data.clip_max = (1 << value) - 1;
1372 dsp->data.clip_min = -(1 << value);
1375 dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
1376 sample_input_new_format(dsp);
1377 dither_init(dsp);
1378 break;
1380 case DSP_SET_STEREO_MODE:
1381 dsp->stereo_mode = value;
1382 dsp->data.num_channels = value == STEREO_MONO ? 1 : 2;
1383 dsp_update_functions(dsp);
1384 tdspeed_setup(dsp);
1385 break;
1387 case DSP_RESET:
1388 dsp->stereo_mode = STEREO_NONINTERLEAVED;
1389 dsp->data.num_channels = 2;
1390 dsp->sample_depth = NATIVE_DEPTH;
1391 dsp->frac_bits = WORD_FRACBITS;
1392 dsp->sample_bytes = sizeof (int16_t);
1393 dsp->data.output_scale = dsp->frac_bits + 1 - NATIVE_DEPTH;
1394 dsp->data.clip_max = ((1 << WORD_FRACBITS) - 1);
1395 dsp->data.clip_min = -((1 << WORD_FRACBITS));
1396 dsp->codec_frequency = dsp->frequency = NATIVE_FREQUENCY;
1398 if (dsp == &AUDIO_DSP)
1400 track_gain = 0;
1401 album_gain = 0;
1402 track_peak = 0;
1403 album_peak = 0;
1404 new_gain = true;
1407 dsp_update_functions(dsp);
1408 resampler_new_delta(dsp);
1409 tdspeed_setup(dsp);
1410 break;
1412 case DSP_FLUSH:
1413 memset(&dsp->data.resample_data, 0,
1414 sizeof (dsp->data.resample_data));
1415 resampler_new_delta(dsp);
1416 dither_init(dsp);
1417 tdspeed_setup(dsp);
1418 break;
1420 case DSP_SET_TRACK_GAIN:
1421 if (dsp == &AUDIO_DSP)
1422 dsp_set_gain_var(&track_gain, value);
1423 break;
1425 case DSP_SET_ALBUM_GAIN:
1426 if (dsp == &AUDIO_DSP)
1427 dsp_set_gain_var(&album_gain, value);
1428 break;
1430 case DSP_SET_TRACK_PEAK:
1431 if (dsp == &AUDIO_DSP)
1432 dsp_set_gain_var(&track_peak, value);
1433 break;
1435 case DSP_SET_ALBUM_PEAK:
1436 if (dsp == &AUDIO_DSP)
1437 dsp_set_gain_var(&album_peak, value);
1438 break;
1440 default:
1441 return 0;
1444 return 1;
1447 void dsp_set_replaygain(void)
1449 long gain = 0;
1451 new_gain = false;
1453 if ((global_settings.replaygain_type != REPLAYGAIN_OFF) ||
1454 global_settings.replaygain_noclip)
1456 bool track_mode = get_replaygain_mode(track_gain != 0,
1457 album_gain != 0) == REPLAYGAIN_TRACK;
1458 long peak = (track_mode || !album_peak) ? track_peak : album_peak;
1460 if (global_settings.replaygain_type != REPLAYGAIN_OFF)
1462 gain = (track_mode || !album_gain) ? track_gain : album_gain;
1464 if (global_settings.replaygain_preamp)
1466 long preamp = get_replaygain_int(
1467 global_settings.replaygain_preamp * 10);
1469 gain = (long) (((int64_t) gain * preamp) >> 24);
1473 if (gain == 0)
1475 /* So that noclip can work even with no gain information. */
1476 gain = DEFAULT_GAIN;
1479 if (global_settings.replaygain_noclip && (peak != 0)
1480 && ((((int64_t) gain * peak) >> 24) >= DEFAULT_GAIN))
1482 gain = (((int64_t) DEFAULT_GAIN << 24) / peak);
1485 if (gain == DEFAULT_GAIN)
1487 /* Nothing to do, disable processing. */
1488 gain = 0;
1492 /* Store in S8.23 format to simplify calculations. */
1493 replaygain = gain;
1494 set_gain(&AUDIO_DSP);