pitch_detector: Use continuous recording, even if the algorithm is too slow for that...
[kugel-rb.git] / apps / plugins / pitch_detector.c
blob9de8d991e3180f376dc808605a77e49a3b9f4489
1 /**************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2008 Lechner Michael / smoking gnu
12 * All files in this archive are subject to the GNU General Public License.
13 * See the file COPYING in the source tree root for full license agreement.
15 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
16 * KIND, either express or implied.
18 * ----------------------------------------------------------------------------
20 * INTRODUCTION:
21 * OK, this is an attempt to write an instrument tuner for rockbox.
22 * It uses a Schmitt trigger algorithm, which I copied from
23 * tuneit [ (c) 2004 Mario Lang <mlang@delysid.org> ], for detecting the
24 * fundamental freqency of a sound. A FFT algorithm would be more accurate
25 * but also much slower.
27 * TODO:
28 * - Adapt the Yin FFT algorithm, which would reduce complexity from O(n^2)
29 * to O(nlogn), theoretically reducing latency by a factor of ~10. -David
31 * MAJOR CHANGES:
32 * 08.03.2008 Started coding
33 * 21.03.2008 Pitch detection works more or less
34 * Button definitions for most targets added
35 * 02.04.2008 Proper GUI added
36 * Todo, Major Changes and Current Limitations added
37 * 08.19.2009 Brought the code up to date with current plugin standards
38 * Made it work more nicely with color, BW and grayscale
39 * Changed pitch detection to use the Yin algorithm (better
40 * detection, but slower -- would be ~4x faster with
41 * fixed point math, I think). Code was poached from the
42 * Aubio sound processing library (aubio.org). -David
43 * 08.31.2009 Lots of changes:
44 * Added a menu to tweak settings
45 * Converted everything to fixed point (greatly improving
46 * latency)
47 * Improved the display
48 * Improved efficiency with judicious use of cpu_boost, the
49 * backlight, and volume detection to limit unneeded
50 * calculation
51 * Fixed a problem that caused an octave-off error
52 * -David
53 * 05.14.2010 Multibuffer continuous recording with two buffers
56 * CURRENT LIMITATIONS:
57 * - No gapless recording. Strictly speaking true gappless isn't possible,
58 * since the algorithm takes longer to calculate than the length of the
59 * sample, but latency could be improved a bit with proper use of the DMA
60 * recording functions.
61 * - Due to how the Yin algorithm works, latency is higher for lower
62 * frequencies.
65 #include "plugin.h"
66 #include "lib/pluginlib_actions.h"
67 #include "lib/picture.h"
68 #include "lib/helper.h"
69 #include "pluginbitmaps/pitch_notes.h"
71 PLUGIN_HEADER
73 /* Some fixed point calculation stuff */
74 typedef int32_t fixed_data;
75 struct _fixed
77 fixed_data a;
79 typedef struct _fixed fixed;
80 #define FIXED_PRECISION 18
81 #define FP_MAX ((fixed) {0x7fffffff})
82 #define FP_MIN ((fixed) {-0x80000000})
83 #define int2fixed(x) ((fixed){(x) << FIXED_PRECISION})
84 #define int2mantissa(x) ((fixed){x})
85 #define fixed2int(x) ((int)((x).a >> FIXED_PRECISION))
86 #define fixed2float(x) (((float)(x).a) / ((float)(1 << FIXED_PRECISION)))
87 #define float2fixed(x) \
88 ((fixed){(fixed_data)(x * (float)(1 << FIXED_PRECISION))})
89 /* I adapted these ones from the Rockbox fixed point library */
90 #define fp_mul(x, y) \
91 ((fixed){(((int64_t)((x).a)) * ((int64_t)((y).a))) >> (FIXED_PRECISION)})
92 #define fp_div(x, y) \
93 ((fixed){(((int64_t)((x).a)) << (FIXED_PRECISION)) / ((int64_t)((y).a))})
94 /* Operators for fixed point */
95 #define fp_add(x, y) ((fixed){(x).a + (y).a})
96 #define fp_sub(x, y) ((fixed){(x).a - (y).a})
97 #define fp_shl(x, y) ((fixed){(x).a << y})
98 #define fp_shr(x, y) ((fixed){(x).a >> y})
99 #define fp_neg(x) ((fixed){-(x).a})
100 #define fp_gt(x, y) ((x).a > (y).a)
101 #define fp_gte(x, y) ((x).a >= (y).a)
102 #define fp_lt(x, y) ((x).a < (y).a)
103 #define fp_lte(x, y) ((x).a <= (y).a)
104 #define fp_sqr(x) fp_mul((x), (x))
105 #define fp_equal(x, y) ((x).a == (y).a)
106 #define fp_round(x) (fixed2int(fp_add((x), float2fixed(0.5))))
107 #define fp_data(x) ((x).a)
108 #define fp_frac(x) (fp_sub((x), int2fixed(fixed2int(x))))
109 #define FP_ZERO ((fixed){0})
110 #define FP_LOW ((fixed){2})
112 /* Some defines for converting between period and frequency */
114 /* I introduce some divisors in this because the fixed point */
115 /* variables aren't big enough to hold higher than a certain */
116 /* value. This loses a bit of precision but it means we */
117 /* don't have to use 32.32 variables (yikes). */
118 /* With an 18-bit decimal precision, the max value in the */
119 /* integer part is 8192. Divide 44100 by 7 and it'll fit in */
120 /* that variable. */
121 #define fp_period2freq(x) fp_div(int2fixed(sample_rate / 7), \
122 fp_div((x),int2fixed(7)))
123 #define fp_freq2period(x) fp_period2freq(x)
124 #define period2freq(x) (sample_rate / (x))
125 #define freq2period(x) period2freq(x)
127 #define sqr(x) ((x)*(x))
129 /* Some constants for tuning */
130 #define A_FREQ float2fixed(440.0f)
131 #define D_NOTE float2fixed(1.059463094359f)
132 #define LOG_D_NOTE float2fixed(1.0f/12.0f)
133 #define D_NOTE_SQRT float2fixed(1.029302236643f)
134 #define LOG_2 float2fixed(1.0f)
136 /* The recording buffer size */
137 /* This is how much is sampled at a time. */
138 /* It also determines latency -- if BUFFER_SIZE == sample_rate then */
139 /* there'll be one sample per second, or a latency of one second. */
140 /* Furthermore, the lowest detectable frequency will be about twice */
141 /* the number of reads per second */
142 /* If we ever switch to Yin FFT algorithm then this needs to be
143 a power of 2 */
144 #define BUFFER_SIZE 4096
145 #define SAMPLE_SIZE 4096
146 #define SAMPLE_SIZE_MIN 1024
147 #define YIN_BUFFER_SIZE (BUFFER_SIZE / 4)
149 #define LCD_FACTOR (fp_div(int2fixed(LCD_WIDTH), int2fixed(100)))
150 /* The threshold for the YIN algorithm */
151 #define DEFAULT_YIN_THRESHOLD 5 /* 0.10 */
152 const fixed yin_threshold_table[] =
154 float2fixed(0.01),
155 float2fixed(0.02),
156 float2fixed(0.03),
157 float2fixed(0.04),
158 float2fixed(0.05),
159 float2fixed(0.10),
160 float2fixed(0.15),
161 float2fixed(0.20),
162 float2fixed(0.25),
163 float2fixed(0.30),
164 float2fixed(0.35),
165 float2fixed(0.40),
166 float2fixed(0.45),
167 float2fixed(0.50),
170 /* Structure for the reference frequency (frequency of A)
171 * It's used for scaling the frequency before finding out
172 * the note. The frequency is scaled in a way that the main
173 * algorithm can assume the frequency of A to be 440 Hz.
175 struct freq_A_entry
177 const int frequency; /* Frequency in Hz */
178 const fixed ratio; /* 440/frequency */
179 const fixed logratio; /* log2(factor) */
182 const struct freq_A_entry freq_A[] =
184 {435, float2fixed(1.011363636), float2fixed( 0.016301812)},
185 {436, float2fixed(1.009090909), float2fixed( 0.013056153)},
186 {437, float2fixed(1.006818182), float2fixed( 0.009803175)},
187 {438, float2fixed(1.004545455), float2fixed( 0.006542846)},
188 {439, float2fixed(1.002272727), float2fixed( 0.003275132)},
189 {440, float2fixed(1.000000000), float2fixed( 0.000000000)},
190 {441, float2fixed(0.997727273), float2fixed(-0.003282584)},
191 {442, float2fixed(0.995454545), float2fixed(-0.006572654)},
192 {443, float2fixed(0.993181818), float2fixed(-0.009870244)},
193 {444, float2fixed(0.990909091), float2fixed(-0.013175389)},
194 {445, float2fixed(0.988636364), float2fixed(-0.016488123)},
197 /* Index of the entry for 440 Hz in the table (default frequency for A) */
198 #define DEFAULT_FREQ_A 5
199 #define NUM_FREQ_A (sizeof(freq_A)/sizeof(freq_A[0]))
201 /* How loud the audio has to be to start displaying pitch */
202 /* Must be between 0 and 100 */
203 #define VOLUME_THRESHOLD (50)
205 /* Change to AUDIO_SRC_LINEIN if you want to record from line-in */
206 #ifdef HAVE_MIC_IN
207 #define INPUT_TYPE AUDIO_SRC_MIC
208 #else
209 #define INPUT_TYPE AUDIO_SRC_LINEIN
210 #endif
212 /* How many decimal places to display for the Hz value */
213 #define DISPLAY_HZ_PRECISION 100
215 /* Where to put the various GUI elements */
216 int note_y;
217 int bar_grad_y;
218 #define LCD_RES_MIN (LCD_HEIGHT < LCD_WIDTH ? LCD_HEIGHT : LCD_WIDTH)
219 #define BAR_PADDING (LCD_RES_MIN / 32)
220 #define BAR_Y (LCD_HEIGHT * 3 / 4)
221 #define BAR_HEIGHT (LCD_RES_MIN / 4 - BAR_PADDING)
222 #define BAR_HLINE_Y (BAR_Y - BAR_PADDING)
223 #define BAR_HLINE_Y2 (BAR_Y + BAR_HEIGHT + BAR_PADDING - 1)
224 #define HZ_Y 0
225 #define GRADUATION 10 /* Subdivisions of the whole 100-cent scale */
227 /* Bitmaps for drawing the note names. These need to have height
228 <= (bar_grad_y - note_y), or 15/32 * LCD_HEIGHT
230 #define NUM_NOTE_IMAGES 9
231 #define NOTE_INDEX_A 0
232 #define NOTE_INDEX_B 1
233 #define NOTE_INDEX_C 2
234 #define NOTE_INDEX_D 3
235 #define NOTE_INDEX_E 4
236 #define NOTE_INDEX_F 5
237 #define NOTE_INDEX_G 6
238 #define NOTE_INDEX_SHARP 7
239 #define NOTE_INDEX_FLAT 8
240 const struct picture note_bitmaps =
242 pitch_notes,
243 BMPWIDTH_pitch_notes,
244 BMPHEIGHT_pitch_notes,
245 BMPHEIGHT_pitch_notes/NUM_NOTE_IMAGES
249 static unsigned int sample_rate;
250 static int audio_head = 0; /* which of the two buffers to use? */
251 static volatile int audio_tail = 0; /* which of the two buffers to record? */
252 /* It's stereo, so make the buffer twice as big */
253 static int16_t audio_data[2][BUFFER_SIZE];
254 static fixed yin_buffer[YIN_BUFFER_SIZE];
256 /* Description of a note of scale */
257 struct note_entry
259 const char *name; /* Name of the note, e.g. "A#" */
260 const fixed freq; /* Note frequency, Hz */
261 const fixed logfreq; /* log2(frequency) */
264 /* Notes within one (reference) scale */
265 static const struct note_entry notes[] =
267 {"A" , float2fixed(440.0000000f), float2fixed(8.781359714f)},
268 {"A#", float2fixed(466.1637615f), float2fixed(8.864693047f)},
269 {"B" , float2fixed(493.8833013f), float2fixed(8.948026380f)},
270 {"C" , float2fixed(523.2511306f), float2fixed(9.031359714f)},
271 {"C#", float2fixed(554.3652620f), float2fixed(9.114693047f)},
272 {"D" , float2fixed(587.3295358f), float2fixed(9.198026380f)},
273 {"D#", float2fixed(622.2539674f), float2fixed(9.281359714f)},
274 {"E" , float2fixed(659.2551138f), float2fixed(9.364693047f)},
275 {"F" , float2fixed(698.4564629f), float2fixed(9.448026380f)},
276 {"F#", float2fixed(739.9888454f), float2fixed(9.531359714f)},
277 {"G" , float2fixed(783.9908720f), float2fixed(9.614693047f)},
278 {"G#", float2fixed(830.6093952f), float2fixed(9.698026380f)},
281 /* GUI */
282 #if LCD_DEPTH > 1
283 static unsigned front_color;
284 #endif
285 static int font_w,font_h;
286 static int bar_x_0;
287 static int lbl_x_minus_50, lbl_x_minus_20, lbl_x_0, lbl_x_20, lbl_x_50;
289 /* Settings for the plugin */
290 struct tuner_settings
292 unsigned volume_threshold;
293 unsigned record_gain;
294 unsigned sample_size;
295 unsigned lowest_freq;
296 unsigned yin_threshold;
297 int freq_A; /* Index of the frequency of A */
298 bool use_sharps;
299 bool display_hz;
300 } tuner_settings;
302 /*=================================================================*/
303 /* Settings loading and saving(adapted from the clock plugin) */
304 /*=================================================================*/
306 #define SETTINGS_FILENAME PLUGIN_APPS_DIR "/.pitch_settings"
308 enum message
310 MESSAGE_LOADING,
311 MESSAGE_LOADED,
312 MESSAGE_ERRLOAD,
313 MESSAGE_SAVING,
314 MESSAGE_SAVED,
315 MESSAGE_ERRSAVE
318 enum settings_file_status
320 LOADED, ERRLOAD,
321 SAVED, ERRSAVE
324 /* The settings as they exist on the hard disk, so that
325 * we can know at saving time if changes have been made */
326 struct tuner_settings hdd_tuner_settings;
328 /*---------------------------------------------------------------------*/
330 bool settings_needs_saving(struct tuner_settings* settings)
332 return(rb->memcmp(settings, &hdd_tuner_settings, sizeof(*settings)));
335 /*---------------------------------------------------------------------*/
337 void tuner_settings_reset(struct tuner_settings* settings)
339 settings->volume_threshold = VOLUME_THRESHOLD;
340 settings->record_gain = rb->global_settings->rec_mic_gain;
341 settings->sample_size = BUFFER_SIZE;
342 settings->lowest_freq = period2freq(BUFFER_SIZE / 4);
343 settings->yin_threshold = DEFAULT_YIN_THRESHOLD;
344 settings->freq_A = DEFAULT_FREQ_A;
345 settings->use_sharps = true;
346 settings->display_hz = false;
349 /*---------------------------------------------------------------------*/
351 enum settings_file_status tuner_settings_load(struct tuner_settings* settings,
352 char* filename)
354 int fd = rb->open(filename, O_RDONLY);
355 if(fd >= 0){ /* does file exist? */
356 /* basic consistency check */
357 if(rb->filesize(fd) == sizeof(*settings)){
358 rb->read(fd, settings, sizeof(*settings));
359 rb->close(fd);
360 rb->memcpy(&hdd_tuner_settings, settings, sizeof(*settings));
361 return(LOADED);
364 /* Initializes the settings with default values at least */
365 tuner_settings_reset(settings);
366 return(ERRLOAD);
369 /*---------------------------------------------------------------------*/
371 enum settings_file_status tuner_settings_save(struct tuner_settings* settings,
372 char* filename)
374 int fd = rb->creat(filename, 0666);
375 if(fd >= 0){ /* does file exist? */
376 rb->write (fd, settings, sizeof(*settings));
377 rb->close(fd);
378 return(SAVED);
380 return(ERRSAVE);
383 /*---------------------------------------------------------------------*/
385 void load_settings(void)
387 tuner_settings_load(&tuner_settings, SETTINGS_FILENAME);
389 rb->storage_sleep();
392 /*---------------------------------------------------------------------*/
394 void save_settings(void)
396 if(!settings_needs_saving(&tuner_settings))
397 return;
399 tuner_settings_save(&tuner_settings, SETTINGS_FILENAME);
402 /*=================================================================*/
403 /* MENU */
404 /*=================================================================*/
406 /* Keymaps */
407 const struct button_mapping* plugin_contexts[]={
408 generic_actions,
409 generic_increase_decrease,
410 generic_directions,
411 #if NB_SCREENS == 2
412 remote_directions
413 #endif
415 #define PLA_ARRAY_COUNT sizeof(plugin_contexts)/sizeof(plugin_contexts[0])
417 /* Option strings */
419 /* This has to match yin_threshold_table */
420 static const struct opt_items yin_threshold_text[] =
422 { "0.01", -1 },
423 { "0.02", -1 },
424 { "0.03", -1 },
425 { "0.04", -1 },
426 { "0.05", -1 },
427 { "0.10", -1 },
428 { "0.15", -1 },
429 { "0.20", -1 },
430 { "0.25", -1 },
431 { "0.30", -1 },
432 { "0.35", -1 },
433 { "0.40", -1 },
434 { "0.45", -1 },
435 { "0.50", -1 },
438 static const struct opt_items accidental_text[] =
440 { "Flat", -1 },
441 { "Sharp", -1 },
444 void set_min_freq(int new_freq)
446 tuner_settings.sample_size = freq2period(new_freq) * 4;
448 /* clamp the sample size between min and max */
449 if(tuner_settings.sample_size <= SAMPLE_SIZE_MIN)
450 tuner_settings.sample_size = SAMPLE_SIZE_MIN;
451 else if(tuner_settings.sample_size >= BUFFER_SIZE)
452 tuner_settings.sample_size = BUFFER_SIZE;
454 /* sample size must be divisible by 4 - round up */
455 tuner_settings.sample_size = (tuner_settings.sample_size + 3) & ~3;
458 bool main_menu(void)
460 int selection = 0;
461 bool done = false;
462 bool exit_tuner = false;
463 int choice;
464 int freq_val;
465 bool reset;
467 backlight_use_settings();
468 #ifdef HAVE_SCHEDULER_BOOSTCTRL
469 rb->cancel_cpu_boost();
470 #endif
472 MENUITEM_STRINGLIST(menu,"Tuner Settings",NULL,
473 "Return to Tuner",
474 "Volume Threshold",
475 "Listening Volume",
476 "Lowest Frequency",
477 "Algorithm Pickiness",
478 "Accidentals",
479 "Display Frequency (Hz)",
480 "Frequency of A (Hz)",
481 "Reset Settings",
482 "Quit");
484 while(!done)
486 choice = rb->do_menu(&menu, &selection, NULL, false);
487 switch(choice)
489 case 1:
490 rb->set_int("Volume Threshold", "%", UNIT_INT,
491 &tuner_settings.volume_threshold,
492 NULL, 5, 5, 95, NULL);
493 break;
494 case 2:
495 rb->set_int("Listening Volume", "%", UNIT_INT,
496 &tuner_settings.record_gain,
497 NULL, 1, rb->sound_min(SOUND_MIC_GAIN),
498 rb->sound_max(SOUND_MIC_GAIN), NULL);
499 break;
500 case 3:
501 rb->set_int("Lowest Frequency", "Hz", UNIT_INT,
502 &tuner_settings.lowest_freq, set_min_freq, 1,
503 /* Range depends on the size of the buffer */
504 sample_rate / (BUFFER_SIZE / 4),
505 sample_rate / (SAMPLE_SIZE_MIN / 4), NULL);
506 break;
507 case 4:
508 rb->set_option(
509 "Algorithm Pickiness (Lower -> more discriminating)",
510 &tuner_settings.yin_threshold,
511 INT, yin_threshold_text,
512 sizeof(yin_threshold_text) / sizeof(yin_threshold_text[0]),
513 NULL);
514 break;
515 case 5:
516 rb->set_option("Display Accidentals As",
517 &tuner_settings.use_sharps,
518 BOOL, accidental_text, 2, NULL);
519 break;
520 case 6:
521 rb->set_bool("Display Frequency (Hz)",
522 &tuner_settings.display_hz);
523 break;
524 case 7:
525 freq_val = freq_A[tuner_settings.freq_A].frequency;
526 rb->set_int("Frequency of A (Hz)",
527 "Hz", UNIT_INT, &freq_val, NULL,
528 1, freq_A[0].frequency, freq_A[NUM_FREQ_A-1].frequency,
529 NULL);
530 tuner_settings.freq_A = freq_val - freq_A[0].frequency;
531 break;
532 case 8:
533 reset = false;
534 rb->set_bool("Reset Tuner Settings?", &reset);
535 if (reset)
536 tuner_settings_reset(&tuner_settings);
537 break;
538 case 9:
539 exit_tuner = true;
540 done = true;
541 break;
542 case 0:
543 default:
544 /* Return to the tuner */
545 done = true;
546 break;
550 backlight_force_on();
551 return exit_tuner;
554 /*=================================================================*/
555 /* Binary Log */
556 /*=================================================================*/
558 /* Fixed-point log base 2*/
559 /* Adapted from python code at
560 http://en.wikipedia.org/wiki/Binary_logarithm#Algorithm
562 fixed log(fixed inp)
564 fixed x = inp;
565 fixed fp = int2fixed(1);
566 fixed res = int2fixed(0);
568 if(fp_lte(x, FP_ZERO))
570 return FP_MIN;
573 /* Integer part*/
574 /* while x<1 */
575 while(fp_lt(x, int2fixed(1)))
577 res = fp_sub(res, int2fixed(1));
578 x = fp_shl(x, 1);
580 /* while x>=2 */
581 while(fp_gte(x, int2fixed(2)))
583 res = fp_add(res, int2fixed(1));
584 x = fp_shr(x, 1);
587 /* Fractional part */
588 /* while fp > 0 */
589 while(fp_gt(fp, FP_ZERO))
591 fp = fp_shr(fp, 1);
592 x = fp_mul(x, x);
593 /* if x >= 2 */
594 if(fp_gte(x, int2fixed(2)))
596 x = fp_shr(x, 1);
597 res = fp_add(res, fp);
601 return res;
604 /*=================================================================*/
605 /* GUI Stuff */
606 /*=================================================================*/
608 /* The function name is pretty self-explaining ;) */
609 void print_int_xy(int x, int y, int v)
611 char temp[20];
612 #if LCD_DEPTH > 1
613 rb->lcd_set_foreground(front_color);
614 #endif
615 rb->snprintf(temp,20,"%d",v);
616 rb->lcd_putsxy(x,y,temp);
619 /* Print out the frequency etc */
620 void print_str(char* s)
622 #if LCD_DEPTH > 1
623 rb->lcd_set_foreground(front_color);
624 #endif
625 rb->lcd_putsxy(0, HZ_Y, s);
628 /* What can I say? Read the function name... */
629 void print_char_xy(int x, int y, char c)
631 char temp[2];
633 temp[0]=c;
634 temp[1]=0;
635 #if LCD_DEPTH > 1
636 rb->lcd_set_foreground(front_color);
637 #endif
639 rb->lcd_putsxy(x, y, temp);
642 /* Draw the note bitmap */
643 void draw_note(const char *note)
645 int i;
646 int note_x = (LCD_WIDTH - BMPWIDTH_pitch_notes) / 2;
647 int accidental_index = NOTE_INDEX_SHARP;
649 i = note[0]-'A';
651 if(note[1] == '#')
653 if(!(tuner_settings.use_sharps))
655 i = (i + 1) % 7;
656 accidental_index = NOTE_INDEX_FLAT;
659 vertical_picture_draw_sprite(rb->screens[0],
660 &note_bitmaps,
661 accidental_index,
662 LCD_WIDTH / 2,
663 note_y);
664 note_x = LCD_WIDTH / 2 - BMPWIDTH_pitch_notes;
667 vertical_picture_draw_sprite(rb->screens[0], &note_bitmaps, i,
668 note_x,
669 note_y);
671 /* Draw the red bar and the white lines */
672 void draw_bar(fixed wrong_by_cents)
674 unsigned n;
675 int x;
677 #ifdef HAVE_LCD_COLOR
678 rb->lcd_set_foreground(LCD_RGBPACK(255,255,255)); /* Color screens */
679 #elif LCD_DEPTH > 1
680 rb->lcd_set_foreground(LCD_BLACK); /* Greyscale screens */
681 #endif
683 rb->lcd_hline(0,LCD_WIDTH-1, BAR_HLINE_Y);
684 rb->lcd_hline(0,LCD_WIDTH-1, BAR_HLINE_Y2);
686 /* Draw graduation lines on the off-by readout */
687 for(n = 0; n <= GRADUATION; n++)
689 x = (LCD_WIDTH * n + GRADUATION / 2) / GRADUATION;
690 if (x >= LCD_WIDTH)
691 x = LCD_WIDTH - 1;
692 rb->lcd_vline(x, BAR_HLINE_Y, BAR_HLINE_Y2);
695 print_int_xy(lbl_x_minus_50 ,bar_grad_y, -50);
696 print_int_xy(lbl_x_minus_20 ,bar_grad_y, -20);
697 print_int_xy(lbl_x_0 ,bar_grad_y, 0);
698 print_int_xy(lbl_x_20 ,bar_grad_y, 20);
699 print_int_xy(lbl_x_50 ,bar_grad_y, 50);
701 #ifdef HAVE_LCD_COLOR
702 rb->lcd_set_foreground(LCD_RGBPACK(255,0,0)); /* Color screens */
703 #elif LCD_DEPTH > 1
704 rb->lcd_set_foreground(LCD_DARKGRAY); /* Greyscale screens */
705 #endif
707 if (fp_gt(wrong_by_cents, FP_ZERO))
709 rb->lcd_fillrect(bar_x_0, BAR_Y,
710 fixed2int(fp_mul(wrong_by_cents, LCD_FACTOR)), BAR_HEIGHT);
712 else
714 rb->lcd_fillrect(bar_x_0 + fixed2int(fp_mul(wrong_by_cents,LCD_FACTOR)),
715 BAR_Y,
716 fixed2int(fp_mul(wrong_by_cents, LCD_FACTOR)) * -1,
717 BAR_HEIGHT);
721 /* Calculate how wrong the note is and draw the GUI */
722 void display_frequency (fixed freq)
724 fixed ldf, mldf;
725 fixed lfreq, nfreq;
726 fixed orig_freq;
727 int i, note = 0;
728 char str_buf[30];
730 if (fp_lt(freq, FP_LOW))
731 freq = FP_LOW;
733 /* We calculate the frequency and its log as if */
734 /* the reference frequency of A were 440 Hz. */
735 orig_freq = freq;
736 lfreq = fp_add(log(freq), freq_A[tuner_settings.freq_A].logratio);
737 freq = fp_mul(freq, freq_A[tuner_settings.freq_A].ratio);
739 /* This calculates a log freq offset for note A */
740 /* Get the frequency to within the range of our reference table, */
741 /* i.e. into the right octave. */
742 while (fp_lt(lfreq, fp_sub(notes[0].logfreq, fp_shr(LOG_D_NOTE, 1))))
743 lfreq = fp_add(lfreq, LOG_2);
744 while (fp_gte(lfreq, fp_sub(fp_add(notes[0].logfreq, LOG_2),
745 fp_shr(LOG_D_NOTE, 1))))
746 lfreq = fp_sub(lfreq, LOG_2);
747 mldf = LOG_D_NOTE;
748 for (i=0; i<12; i++)
750 ldf = fp_gt(fp_sub(lfreq,notes[i].logfreq), FP_ZERO) ?
751 fp_sub(lfreq,notes[i].logfreq) : fp_neg(fp_sub(lfreq,notes[i].logfreq));
752 if (fp_lt(ldf, mldf))
754 mldf = ldf;
755 note = i;
758 nfreq = notes[note].freq;
759 while (fp_gt(fp_div(nfreq, freq), D_NOTE_SQRT))
760 nfreq = fp_shr(nfreq, 1);
762 while (fp_gt(fp_div(freq, nfreq), D_NOTE_SQRT))
763 nfreq = fp_shl(nfreq, 1);
765 ldf = fp_mul(int2fixed(1200), log(fp_div(freq,nfreq)));
767 rb->lcd_clear_display();
768 draw_bar(ldf); /* The red bar */
769 if(fp_round(freq) != 0)
771 draw_note(notes[note].name);
772 if(tuner_settings.display_hz)
774 rb->snprintf(str_buf,30, "%s : %d cents (%d.%02dHz)",
775 notes[note].name, fp_round(ldf) ,fixed2int(orig_freq),
776 fp_round(fp_mul(fp_frac(orig_freq),
777 int2fixed(DISPLAY_HZ_PRECISION))));
778 print_str(str_buf);
781 rb->lcd_update();
784 /*-----------------------------------------------------------------------
785 * Functions for the Yin algorithm
787 * These were all adapted from the versions in Aubio v0.3.2
788 * Here's what the Aubio documentation has to say:
790 * This algorithm was developped by A. de Cheveigne and H. Kawahara and
791 * published in:
793 * de Cheveign?, A., Kawahara, H. (2002) "YIN, a fundamental frequency
794 * estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.
796 * see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
797 -------------------------------------------------------------------------*/
799 /* Find the index of the minimum element of an array of floats */
800 unsigned vec_min_elem(fixed *s, unsigned buflen)
802 unsigned j, pos=0.0f;
803 fixed tmp = s[0];
804 for (j=0; j < buflen; j++)
806 if(fp_gt(tmp, s[j]))
808 pos = j;
809 tmp = s[j];
812 return pos;
816 fixed aubio_quadfrac(fixed s0, fixed s1, fixed s2, fixed pf)
818 /* Original floating point version: */
819 /* tmp = s0 + (pf/2.0f) * (pf * ( s0 - 2.0f*s1 + s2 ) -
820 3.0f*s0 + 4.0f*s1 - s2);*/
821 /* Converted to explicit operator precedence: */
822 /* tmp = s0 + ((pf/2.0f) * ((((pf * ((s0 - (2*s1)) + s2)) -
823 (3*s0)) + (4*s1)) - s2)); */
825 /* I made it look like this so I could easily track the precedence and */
826 /* make sure it matched the original expression */
827 /* Oy, this is when I really wish I could do C++ operator overloading */
828 fixed tmp = fp_add
831 fp_mul
833 fp_shr(pf, 1),
834 fp_sub
836 fp_add
838 fp_sub
840 fp_mul
843 fp_add
845 fp_sub
848 fp_shl(s1, 1)
853 fp_mul
855 float2fixed(3.0f),
859 fp_shl(s1, 2)
865 return tmp;
868 #define QUADINT_STEP float2fixed(1.0f/200.0f)
870 fixed vec_quadint_min(fixed *x, unsigned bufsize, unsigned pos, unsigned span)
872 fixed res, frac, s0, s1, s2;
873 fixed exactpos = int2fixed(pos);
874 /* init resold to something big (in case x[pos+-span]<0)) */
875 fixed resold = FP_MAX;
877 if ((pos > span) && (pos < bufsize-span))
879 s0 = x[pos-span];
880 s1 = x[pos] ;
881 s2 = x[pos+span];
882 /* increase frac */
883 for (frac = float2fixed(0.0f);
884 fp_lt(frac, float2fixed(2.0f));
885 frac = fp_add(frac, QUADINT_STEP))
887 res = aubio_quadfrac(s0, s1, s2, frac);
888 if (fp_lt(res, resold))
890 resold = res;
892 else
894 /* exactpos += (frac-QUADINT_STEP)*span - span/2.0f; */
895 exactpos = fp_add(exactpos,
896 fp_sub(
897 fp_mul(
898 fp_sub(frac, QUADINT_STEP),
899 int2fixed(span)
901 int2fixed(span)
904 break;
908 return exactpos;
912 /* Calculate the period of the note in the
913 buffer using the YIN algorithm */
914 /* The yin pointer is just a buffer that the algorithm uses as a work
915 space. It needs to be half the length of the input buffer. */
917 fixed pitchyin(int16_t *input, fixed *yin)
919 fixed retval;
920 unsigned j,tau = 0;
921 int period;
922 unsigned yin_size = tuner_settings.sample_size / 4;
924 fixed tmp = FP_ZERO, tmp2 = FP_ZERO;
925 yin[0] = int2fixed(1);
926 for (tau = 1; tau < yin_size; tau++)
928 yin[tau] = FP_ZERO;
929 for (j = 0; j < yin_size; j++)
931 tmp = fp_sub(int2mantissa(input[2 * j]),
932 int2mantissa(input[2 * (j + tau)]));
933 yin[tau] = fp_add(yin[tau], fp_mul(tmp, tmp));
935 tmp2 = fp_add(tmp2, yin[tau]);
936 if(!fp_equal(tmp2, FP_ZERO))
938 yin[tau] = fp_mul(yin[tau], fp_div(int2fixed(tau), tmp2));
940 period = tau - 3;
941 if(tau > 4 && fp_lt(yin[period],
942 yin_threshold_table[tuner_settings.yin_threshold])
943 && fp_lt(yin[period], yin[period+1]))
945 retval = vec_quadint_min(yin, yin_size, period, 1);
946 return retval;
949 retval = vec_quadint_min(yin, yin_size,
950 vec_min_elem(yin, yin_size), 1);
951 return retval;
952 /*return FP_ZERO;*/
955 /*-----------------------------------------------------------------*/
957 uint32_t buffer_magnitude(int16_t *input)
959 unsigned n;
960 uint64_t tally = 0;
962 /* Operate on only one channel of the stereo signal */
963 for(n = 0; n < tuner_settings.sample_size; n+=2)
965 int s = input[n];
966 tally += s * s;
969 tally /= tuner_settings.sample_size / 2;
971 /* now tally holds the average of the squares of all the samples */
972 /* It must be between 0 and 0x7fff^2, so it fits in 32 bits */
973 return (uint32_t)tally;
976 /* Stop the recording when the buffer is full */
977 #ifndef SIMULATOR
978 int recording_callback(int status)
980 int tail = audio_tail ^ 1;
982 /* Do not overrun the reader. Reuse current buffer if full. */
983 if (tail != audio_head)
984 audio_tail = tail;
986 /* Always record full buffer, even if not required */
987 rb->pcm_record_more(audio_data[tail],
988 BUFFER_SIZE * sizeof (int16_t));
990 return 0;
991 (void)status;
993 #endif
995 /* Start recording */
996 static void record_data(void)
998 #ifndef SIMULATOR
999 /* Always record full buffer, even if not required */
1000 rb->pcm_record_data(recording_callback, audio_data[audio_tail],
1001 BUFFER_SIZE * sizeof (int16_t));
1002 #endif
1005 /* The main program loop */
1006 void record_and_get_pitch(void)
1008 int quit=0, button;
1009 bool redraw = true;
1010 /* For tracking the latency */
1012 long timer;
1013 char debug_string[20];
1015 #ifndef SIMULATOR
1016 fixed period;
1017 bool waiting = false;
1018 #endif
1020 backlight_force_on();
1022 record_data();
1024 while(!quit)
1026 while (audio_head == audio_tail && !quit) /* wait for the buffer to be filled */
1028 button=pluginlib_getaction(HZ/100, plugin_contexts, PLA_ARRAY_COUNT);
1030 switch(button)
1032 case PLA_QUIT:
1033 quit=true;
1034 break;
1036 case PLA_MENU:
1037 rb->pcm_stop_recording();
1038 quit = main_menu() != 0;
1039 if(!quit)
1041 redraw = true;
1042 record_data();
1044 break;
1046 break;
1050 if(!quit)
1052 #ifndef SIMULATOR
1053 /* Only do the heavy lifting if the volume is high enough */
1054 if(buffer_magnitude(audio_data[audio_head]) >
1055 sqr(tuner_settings.volume_threshold *
1056 rb->sound_max(SOUND_MIC_GAIN)))
1058 waiting = false;
1059 redraw = false;
1061 #ifdef HAVE_SCHEDULER_BOOSTCTRL
1062 rb->trigger_cpu_boost();
1063 #endif
1065 /* This returns the period of the detected pitch in samples */
1066 period = pitchyin(audio_data[audio_head], yin_buffer);
1067 /* Hz = sample rate / period */
1068 if(fp_gt(period, FP_ZERO))
1070 display_frequency(fp_period2freq(period));
1072 else
1074 display_frequency(FP_ZERO);
1077 else if(redraw || !waiting)
1079 waiting = true;
1080 redraw = false;
1081 display_frequency(FP_ZERO);
1082 #ifdef HAVE_ADJUSTABLE_CPU_FREQ
1083 rb->cancel_cpu_boost();
1084 #endif
1086 #else /* SIMULATOR */
1087 /* Display a preselected frequency */
1088 display_frequency(int2fixed(445));
1089 #endif
1090 /* Move to next buffer if not empty (but empty *shouldn't* happen
1091 * here). */
1092 if (audio_head != audio_tail)
1093 audio_head ^= 1;
1096 rb->pcm_close_recording();
1097 #ifdef HAVE_SCHEDULER_BOOSTCTRL
1098 rb->cancel_cpu_boost();
1099 #endif
1101 backlight_use_settings();
1104 /* Init recording, tuning, and GUI */
1105 void init_everything(void)
1107 load_settings();
1109 /* Stop all playback */
1110 rb->plugin_get_audio_buffer(NULL);
1112 /* --------- Init the audio recording ----------------- */
1113 rb->audio_set_output_source(AUDIO_SRC_PLAYBACK);
1114 rb->audio_set_input_source(INPUT_TYPE, SRCF_RECORDING);
1116 /* set to maximum gain */
1117 rb->audio_set_recording_gain(tuner_settings.record_gain,
1118 tuner_settings.record_gain,
1119 AUDIO_GAIN_MIC);
1121 /* Highest C on piano is approx 4.186 kHz, so we need just over
1122 * 8.372 kHz to pass it. */
1123 sample_rate = rb->round_value_to_list32(9000, rb->rec_freq_sampr,
1124 REC_NUM_FREQ, false);
1125 sample_rate = rb->rec_freq_sampr[sample_rate];
1126 rb->pcm_set_frequency(sample_rate);
1127 rb->pcm_init_recording();
1129 /* GUI */
1130 #if LCD_DEPTH > 1
1131 front_color = rb->lcd_get_foreground();
1132 #endif
1133 rb->lcd_getstringsize("X", &font_w, &font_h);
1135 bar_x_0 = LCD_WIDTH / 2;
1136 lbl_x_minus_50 = 0;
1137 lbl_x_minus_20 = (LCD_WIDTH / 2) -
1138 fixed2int(fp_mul(LCD_FACTOR, int2fixed(20))) - font_w;
1139 lbl_x_0 = (LCD_WIDTH - font_w) / 2;
1140 lbl_x_20 = (LCD_WIDTH / 2) +
1141 fixed2int(fp_mul(LCD_FACTOR, int2fixed(20))) - font_w;
1142 lbl_x_50 = LCD_WIDTH - 2 * font_w;
1144 bar_grad_y = BAR_Y - BAR_PADDING - font_h;
1145 /* Put the note right between the top and bottom text elements */
1146 note_y = ((font_h + bar_grad_y - note_bitmaps.slide_height) / 2);
1150 enum plugin_status plugin_start(const void* parameter) NO_PROF_ATTR
1152 (void)parameter;
1154 init_everything();
1155 record_and_get_pitch();
1156 save_settings();
1158 return 0;