polyhedron_minimize.c: handle all enumeration values in switch
[isl.git] / isl_tab_pip.c
blobf284d25f669165b2c1ec120e3a4800f9e34b7786
1 #include "isl_map_private.h"
2 #include "isl_seq.h"
3 #include "isl_tab.h"
5 /*
6 * The implementation of parametric integer linear programming in this file
7 * was inspired by the paper "Parametric Integer Programming" and the
8 * report "Solving systems of affine (in)equalities" by Paul Feautrier
9 * (and others).
11 * The strategy used for obtaining a feasible solution is different
12 * from the one used in isl_tab.c. In particular, in isl_tab.c,
13 * upon finding a constraint that is not yet satisfied, we pivot
14 * in a row that increases the constant term of row holding the
15 * constraint, making sure the sample solution remains feasible
16 * for all the constraints it already satisfied.
17 * Here, we always pivot in the row holding the constraint,
18 * choosing a column that induces the lexicographically smallest
19 * increment to the sample solution.
21 * By starting out from a sample value that is lexicographically
22 * smaller than any integer point in the problem space, the first
23 * feasible integer sample point we find will also be the lexicographically
24 * smallest. If all variables can be assumed to be non-negative,
25 * then the initial sample value may be chosen equal to zero.
26 * However, we will not make this assumption. Instead, we apply
27 * the "big parameter" trick. Any variable x is then not directly
28 * used in the tableau, but instead it its represented by another
29 * variable x' = M + x, where M is an arbitrarily large (positive)
30 * value. x' is therefore always non-negative, whatever the value of x.
31 * Taking as initial smaple value x' = 0 corresponds to x = -M,
32 * which is always smaller than any possible value of x.
34 * We use the big parameter trick both in the main tableau and
35 * the context tableau, each of course having its own big parameter.
36 * Before doing any real work, we check if all the parameters
37 * happen to be non-negative. If so, we drop the column corresponding
38 * to M from the initial context tableau.
41 /* isl_sol is an interface for constructing a solution to
42 * a parametric integer linear programming problem.
43 * Every time the algorithm reaches a state where a solution
44 * can be read off from the tableau (including cases where the tableau
45 * is empty), the function "add" is called on the isl_sol passed
46 * to find_solutions_main.
48 * The context tableau is owned by isl_sol and is updated incrementally.
50 * There is currently only one implementation of this interface,
51 * isl_sol_map, which simply collects the solutions in an isl_map
52 * and (optionally) the parts of the context where there is no solution
53 * in an isl_set.
55 struct isl_sol {
56 struct isl_tab *context_tab;
57 struct isl_sol *(*add)(struct isl_sol *sol, struct isl_tab *tab);
58 void (*free)(struct isl_sol *sol);
61 static void sol_free(struct isl_sol *sol)
63 if (!sol)
64 return;
65 sol->free(sol);
68 struct isl_sol_map {
69 struct isl_sol sol;
70 struct isl_map *map;
71 struct isl_set *empty;
72 int max;
75 static void sol_map_free(struct isl_sol_map *sol_map)
77 isl_tab_free(sol_map->sol.context_tab);
78 isl_map_free(sol_map->map);
79 isl_set_free(sol_map->empty);
80 free(sol_map);
83 static void sol_map_free_wrap(struct isl_sol *sol)
85 sol_map_free((struct isl_sol_map *)sol);
88 static struct isl_sol_map *add_empty(struct isl_sol_map *sol)
90 struct isl_basic_set *bset;
92 if (!sol->empty)
93 return sol;
94 sol->empty = isl_set_grow(sol->empty, 1);
95 bset = isl_basic_set_copy(sol->sol.context_tab->bset);
96 bset = isl_basic_set_simplify(bset);
97 bset = isl_basic_set_finalize(bset);
98 sol->empty = isl_set_add(sol->empty, bset);
99 if (!sol->empty)
100 goto error;
101 return sol;
102 error:
103 sol_map_free(sol);
104 return NULL;
107 /* Add the solution identified by the tableau and the context tableau.
109 * The layout of the variables is as follows.
110 * tab->n_var is equal to the total number of variables in the input
111 * map (including divs that were copied from the context)
112 * + the number of extra divs constructed
113 * Of these, the first tab->n_param and the last tab->n_div variables
114 * correspond to the variables in the context, i.e.,
115 tab->n_param + tab->n_div = context_tab->n_var
116 * tab->n_param is equal to the number of parameters and input
117 * dimensions in the input map
118 * tab->n_div is equal to the number of divs in the context
120 * If there is no solution, then the basic set corresponding to the
121 * context tableau is added to the set "empty".
123 * Otherwise, a basic map is constructed with the same parameters
124 * and divs as the context, the dimensions of the context as input
125 * dimensions and a number of output dimensions that is equal to
126 * the number of output dimensions in the input map.
127 * The divs in the input map (if any) that do not correspond to any
128 * div in the context do not appear in the solution.
129 * The algorithm will make sure that they have an integer value,
130 * but these values themselves are of no interest.
132 * The constraints and divs of the context are simply copied
133 * fron context_tab->bset.
134 * To extract the value of the output variables, it should be noted
135 * that we always use a big parameter M and so the variable stored
136 * in the tableau is not an output variable x itself, but
137 * x' = M + x (in case of minimization)
138 * or
139 * x' = M - x (in case of maximization)
140 * If x' appears in a column, then its optimal value is zero,
141 * which means that the optimal value of x is an unbounded number
142 * (-M for minimization and M for maximization).
143 * We currently assume that the output dimensions in the original map
144 * are bounded, so this cannot occur.
145 * Similarly, when x' appears in a row, then the coefficient of M in that
146 * row is necessarily 1.
147 * If the row represents
148 * d x' = c + d M + e(y)
149 * then, in case of minimization, an equality
150 * c + e(y) - d x' = 0
151 * is added, and in case of maximization,
152 * c + e(y) + d x' = 0
154 static struct isl_sol_map *sol_map_add(struct isl_sol_map *sol,
155 struct isl_tab *tab)
157 int i;
158 struct isl_basic_map *bmap = NULL;
159 struct isl_tab *context_tab;
160 unsigned n_eq;
161 unsigned n_ineq;
162 unsigned nparam;
163 unsigned total;
164 unsigned n_div;
165 unsigned n_out;
166 unsigned off;
168 if (!sol || !tab)
169 goto error;
171 if (tab->empty)
172 return add_empty(sol);
174 context_tab = sol->sol.context_tab;
175 off = 2 + tab->M;
176 n_out = isl_map_dim(sol->map, isl_dim_out);
177 n_eq = context_tab->bset->n_eq + n_out;
178 n_ineq = context_tab->bset->n_ineq;
179 nparam = tab->n_param;
180 total = isl_map_dim(sol->map, isl_dim_all);
181 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
182 tab->n_div, n_eq, 2 * tab->n_div + n_ineq);
183 if (!bmap)
184 goto error;
185 n_div = tab->n_div;
186 if (tab->rational)
187 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
188 for (i = 0; i < context_tab->bset->n_div; ++i) {
189 int k = isl_basic_map_alloc_div(bmap);
190 if (k < 0)
191 goto error;
192 isl_seq_cpy(bmap->div[k],
193 context_tab->bset->div[i], 1 + 1 + nparam);
194 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
195 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
196 context_tab->bset->div[i] + 1 + 1 + nparam, i);
198 for (i = 0; i < context_tab->bset->n_eq; ++i) {
199 int k = isl_basic_map_alloc_equality(bmap);
200 if (k < 0)
201 goto error;
202 isl_seq_cpy(bmap->eq[k], context_tab->bset->eq[i], 1 + nparam);
203 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
204 isl_seq_cpy(bmap->eq[k] + 1 + total,
205 context_tab->bset->eq[i] + 1 + nparam, n_div);
207 for (i = 0; i < context_tab->bset->n_ineq; ++i) {
208 int k = isl_basic_map_alloc_inequality(bmap);
209 if (k < 0)
210 goto error;
211 isl_seq_cpy(bmap->ineq[k],
212 context_tab->bset->ineq[i], 1 + nparam);
213 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
214 isl_seq_cpy(bmap->ineq[k] + 1 + total,
215 context_tab->bset->ineq[i] + 1 + nparam, n_div);
217 for (i = tab->n_param; i < total; ++i) {
218 int k = isl_basic_map_alloc_equality(bmap);
219 if (k < 0)
220 goto error;
221 isl_seq_clr(bmap->eq[k] + 1, isl_basic_map_total_dim(bmap));
222 if (!tab->var[i].is_row) {
223 /* no unbounded */
224 isl_assert(bmap->ctx, !tab->M, goto error);
225 isl_int_set_si(bmap->eq[k][0], 0);
226 if (sol->max)
227 isl_int_set_si(bmap->eq[k][1 + i], 1);
228 else
229 isl_int_set_si(bmap->eq[k][1 + i], -1);
230 } else {
231 int row, j;
232 row = tab->var[i].index;
233 /* no unbounded */
234 if (tab->M)
235 isl_assert(bmap->ctx,
236 isl_int_eq(tab->mat->row[row][2],
237 tab->mat->row[row][0]),
238 goto error);
239 isl_int_set(bmap->eq[k][0], tab->mat->row[row][1]);
240 for (j = 0; j < tab->n_param; ++j) {
241 int col;
242 if (tab->var[j].is_row)
243 continue;
244 col = tab->var[j].index;
245 isl_int_set(bmap->eq[k][1 + j],
246 tab->mat->row[row][off + col]);
248 for (j = 0; j < tab->n_div; ++j) {
249 int col;
250 if (tab->var[tab->n_var - tab->n_div+j].is_row)
251 continue;
252 col = tab->var[tab->n_var - tab->n_div+j].index;
253 isl_int_set(bmap->eq[k][1 + total + j],
254 tab->mat->row[row][off + col]);
256 if (sol->max)
257 isl_int_set(bmap->eq[k][1 + i],
258 tab->mat->row[row][0]);
259 else
260 isl_int_neg(bmap->eq[k][1 + i],
261 tab->mat->row[row][0]);
264 bmap = isl_basic_map_gauss(bmap, NULL);
265 bmap = isl_basic_map_normalize_constraints(bmap);
266 bmap = isl_basic_map_finalize(bmap);
267 sol->map = isl_map_grow(sol->map, 1);
268 sol->map = isl_map_add(sol->map, bmap);
269 if (!sol->map)
270 goto error;
271 return sol;
272 error:
273 isl_basic_map_free(bmap);
274 sol_free(&sol->sol);
275 return NULL;
278 static struct isl_sol *sol_map_add_wrap(struct isl_sol *sol,
279 struct isl_tab *tab)
281 return (struct isl_sol *)sol_map_add((struct isl_sol_map *)sol, tab);
285 static struct isl_basic_set *isl_basic_set_add_ineq(struct isl_basic_set *bset,
286 isl_int *ineq)
288 int k;
290 bset = isl_basic_set_extend_constraints(bset, 0, 1);
291 if (!bset)
292 return NULL;
293 k = isl_basic_set_alloc_inequality(bset);
294 if (k < 0)
295 goto error;
296 isl_seq_cpy(bset->ineq[k], ineq, 1 + isl_basic_set_total_dim(bset));
297 return bset;
298 error:
299 isl_basic_set_free(bset);
300 return NULL;
303 static struct isl_basic_set *isl_basic_set_add_eq(struct isl_basic_set *bset,
304 isl_int *eq)
306 int k;
308 bset = isl_basic_set_extend_constraints(bset, 1, 0);
309 if (!bset)
310 return NULL;
311 k = isl_basic_set_alloc_equality(bset);
312 if (k < 0)
313 goto error;
314 isl_seq_cpy(bset->eq[k], eq, 1 + isl_basic_set_total_dim(bset));
315 return bset;
316 error:
317 isl_basic_set_free(bset);
318 return NULL;
322 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
323 * i.e., the constant term and the coefficients of all variables that
324 * appear in the context tableau.
325 * Note that the coefficient of the big parameter M is NOT copied.
326 * The context tableau may not have a big parameter and even when it
327 * does, it is a different big parameter.
329 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
331 int i;
332 unsigned off = 2 + tab->M;
334 isl_int_set(line[0], tab->mat->row[row][1]);
335 for (i = 0; i < tab->n_param; ++i) {
336 if (tab->var[i].is_row)
337 isl_int_set_si(line[1 + i], 0);
338 else {
339 int col = tab->var[i].index;
340 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
343 for (i = 0; i < tab->n_div; ++i) {
344 if (tab->var[tab->n_var - tab->n_div + i].is_row)
345 isl_int_set_si(line[1 + tab->n_param + i], 0);
346 else {
347 int col = tab->var[tab->n_var - tab->n_div + i].index;
348 isl_int_set(line[1 + tab->n_param + i],
349 tab->mat->row[row][off + col]);
354 /* Check if rows "row1" and "row2" have identical "parametric constants",
355 * as explained above.
356 * In this case, we also insist that the coefficients of the big parameter
357 * be the same as the values of the constants will only be the same
358 * if these coefficients are also the same.
360 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
362 int i;
363 unsigned off = 2 + tab->M;
365 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
366 return 0;
368 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
369 tab->mat->row[row2][2]))
370 return 0;
372 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
373 int pos = i < tab->n_param ? i :
374 tab->n_var - tab->n_div + i - tab->n_param;
375 int col;
377 if (tab->var[pos].is_row)
378 continue;
379 col = tab->var[pos].index;
380 if (isl_int_ne(tab->mat->row[row1][off + col],
381 tab->mat->row[row2][off + col]))
382 return 0;
384 return 1;
387 /* Return an inequality that expresses that the "parametric constant"
388 * should be non-negative.
389 * This function is only called when the coefficient of the big parameter
390 * is equal to zero.
392 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
394 struct isl_vec *ineq;
396 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
397 if (!ineq)
398 return NULL;
400 get_row_parameter_line(tab, row, ineq->el);
401 if (ineq)
402 ineq = isl_vec_normalize(ineq);
404 return ineq;
407 /* Return a integer division for use in a parametric cut based on the given row.
408 * In particular, let the parametric constant of the row be
410 * \sum_i a_i y_i
412 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
413 * The div returned is equal to
415 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
417 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
419 struct isl_vec *div;
421 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
422 if (!div)
423 return NULL;
425 isl_int_set(div->el[0], tab->mat->row[row][0]);
426 get_row_parameter_line(tab, row, div->el + 1);
427 div = isl_vec_normalize(div);
428 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
429 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
431 return div;
434 /* Return a integer division for use in transferring an integrality constraint
435 * to the context.
436 * In particular, let the parametric constant of the row be
438 * \sum_i a_i y_i
440 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
441 * The the returned div is equal to
443 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
445 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
447 struct isl_vec *div;
449 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
450 if (!div)
451 return NULL;
453 isl_int_set(div->el[0], tab->mat->row[row][0]);
454 get_row_parameter_line(tab, row, div->el + 1);
455 div = isl_vec_normalize(div);
456 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
458 return div;
461 /* Construct and return an inequality that expresses an upper bound
462 * on the given div.
463 * In particular, if the div is given by
465 * d = floor(e/m)
467 * then the inequality expresses
469 * m d <= e
471 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
473 unsigned total;
474 unsigned div_pos;
475 struct isl_vec *ineq;
477 total = isl_basic_set_total_dim(bset);
478 div_pos = 1 + total - bset->n_div + div;
480 ineq = isl_vec_alloc(bset->ctx, 1 + total);
481 if (!ineq)
482 return NULL;
484 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
485 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
486 return ineq;
489 /* Given a row in the tableau and a div that was created
490 * using get_row_split_div and that been constrained to equality, i.e.,
492 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
494 * replace the expression "\sum_i {a_i} y_i" in the row by d,
495 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
496 * The coefficients of the non-parameters in the tableau have been
497 * verified to be integral. We can therefore simply replace coefficient b
498 * by floor(b). For the coefficients of the parameters we have
499 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
500 * floor(b) = b.
502 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
504 int i;
505 int col;
506 unsigned off = 2 + tab->M;
508 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
509 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
511 isl_int_set_si(tab->mat->row[row][0], 1);
513 isl_assert(tab->mat->ctx,
514 !tab->var[tab->n_var - tab->n_div + div].is_row, goto error);
516 col = tab->var[tab->n_var - tab->n_div + div].index;
517 isl_int_set_si(tab->mat->row[row][off + col], 1);
519 return tab;
520 error:
521 isl_tab_free(tab);
522 return NULL;
525 /* Check if the (parametric) constant of the given row is obviously
526 * negative, meaning that we don't need to consult the context tableau.
527 * If there is a big parameter and its coefficient is non-zero,
528 * then this coefficient determines the outcome.
529 * Otherwise, we check whether the constant is negative and
530 * all non-zero coefficients of parameters are negative and
531 * belong to non-negative parameters.
533 static int is_obviously_neg(struct isl_tab *tab, int row)
535 int i;
536 int col;
537 unsigned off = 2 + tab->M;
539 if (tab->M) {
540 if (isl_int_is_pos(tab->mat->row[row][2]))
541 return 0;
542 if (isl_int_is_neg(tab->mat->row[row][2]))
543 return 1;
546 if (isl_int_is_nonneg(tab->mat->row[row][1]))
547 return 0;
548 for (i = 0; i < tab->n_param; ++i) {
549 /* Eliminated parameter */
550 if (tab->var[i].is_row)
551 continue;
552 col = tab->var[i].index;
553 if (isl_int_is_zero(tab->mat->row[row][off + col]))
554 continue;
555 if (!tab->var[i].is_nonneg)
556 return 0;
557 if (isl_int_is_pos(tab->mat->row[row][off + col]))
558 return 0;
560 for (i = 0; i < tab->n_div; ++i) {
561 if (tab->var[tab->n_var - tab->n_div + i].is_row)
562 continue;
563 col = tab->var[tab->n_var - tab->n_div + i].index;
564 if (isl_int_is_zero(tab->mat->row[row][off + col]))
565 continue;
566 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
567 return 0;
568 if (isl_int_is_pos(tab->mat->row[row][off + col]))
569 return 0;
571 return 1;
574 /* Check if the (parametric) constant of the given row is obviously
575 * non-negative, meaning that we don't need to consult the context tableau.
576 * If there is a big parameter and its coefficient is non-zero,
577 * then this coefficient determines the outcome.
578 * Otherwise, we check whether the constant is non-negative and
579 * all non-zero coefficients of parameters are positive and
580 * belong to non-negative parameters.
582 static int is_obviously_nonneg(struct isl_tab *tab, int row)
584 int i;
585 int col;
586 unsigned off = 2 + tab->M;
588 if (tab->M) {
589 if (isl_int_is_pos(tab->mat->row[row][2]))
590 return 1;
591 if (isl_int_is_neg(tab->mat->row[row][2]))
592 return 0;
595 if (isl_int_is_neg(tab->mat->row[row][1]))
596 return 0;
597 for (i = 0; i < tab->n_param; ++i) {
598 /* Eliminated parameter */
599 if (tab->var[i].is_row)
600 continue;
601 col = tab->var[i].index;
602 if (isl_int_is_zero(tab->mat->row[row][off + col]))
603 continue;
604 if (!tab->var[i].is_nonneg)
605 return 0;
606 if (isl_int_is_neg(tab->mat->row[row][off + col]))
607 return 0;
609 for (i = 0; i < tab->n_div; ++i) {
610 if (tab->var[tab->n_var - tab->n_div + i].is_row)
611 continue;
612 col = tab->var[tab->n_var - tab->n_div + i].index;
613 if (isl_int_is_zero(tab->mat->row[row][off + col]))
614 continue;
615 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
616 return 0;
617 if (isl_int_is_neg(tab->mat->row[row][off + col]))
618 return 0;
620 return 1;
623 /* Given a row r and two columns, return the column that would
624 * lead to the lexicographically smallest increment in the sample
625 * solution when leaving the basis in favor of the row.
626 * Pivoting with column c will increment the sample value by a non-negative
627 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
628 * corresponding to the non-parametric variables.
629 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
630 * with all other entries in this virtual row equal to zero.
631 * If variable v appears in a row, then a_{v,c} is the element in column c
632 * of that row.
634 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
635 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
636 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
637 * increment. Otherwise, it's c2.
639 static int lexmin_col_pair(struct isl_tab *tab,
640 int row, int col1, int col2, isl_int tmp)
642 int i;
643 isl_int *tr;
645 tr = tab->mat->row[row] + 2 + tab->M;
647 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
648 int s1, s2;
649 isl_int *r;
651 if (!tab->var[i].is_row) {
652 if (tab->var[i].index == col1)
653 return col2;
654 if (tab->var[i].index == col2)
655 return col1;
656 continue;
659 if (tab->var[i].index == row)
660 continue;
662 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
663 s1 = isl_int_sgn(r[col1]);
664 s2 = isl_int_sgn(r[col2]);
665 if (s1 == 0 && s2 == 0)
666 continue;
667 if (s1 < s2)
668 return col1;
669 if (s2 < s1)
670 return col2;
672 isl_int_mul(tmp, r[col2], tr[col1]);
673 isl_int_submul(tmp, r[col1], tr[col2]);
674 if (isl_int_is_pos(tmp))
675 return col1;
676 if (isl_int_is_neg(tmp))
677 return col2;
679 return -1;
682 /* Given a row in the tableau, find and return the column that would
683 * result in the lexicographically smallest, but positive, increment
684 * in the sample point.
685 * If there is no such column, then return tab->n_col.
686 * If anything goes wrong, return -1.
688 static int lexmin_pivot_col(struct isl_tab *tab, int row)
690 int j;
691 int col = tab->n_col;
692 isl_int *tr;
693 isl_int tmp;
695 tr = tab->mat->row[row] + 2 + tab->M;
697 isl_int_init(tmp);
699 for (j = tab->n_dead; j < tab->n_col; ++j) {
700 if (tab->col_var[j] >= 0 &&
701 (tab->col_var[j] < tab->n_param ||
702 tab->col_var[j] >= tab->n_var - tab->n_div))
703 continue;
705 if (!isl_int_is_pos(tr[j]))
706 continue;
708 if (col == tab->n_col)
709 col = j;
710 else
711 col = lexmin_col_pair(tab, row, col, j, tmp);
712 isl_assert(tab->mat->ctx, col >= 0, goto error);
715 isl_int_clear(tmp);
716 return col;
717 error:
718 isl_int_clear(tmp);
719 return -1;
722 /* Return the first known violated constraint, i.e., a non-negative
723 * contraint that currently has an either obviously negative value
724 * or a previously determined to be negative value.
726 * If any constraint has a negative coefficient for the big parameter,
727 * if any, then we return one of these first.
729 static int first_neg(struct isl_tab *tab)
731 int row;
733 if (tab->M)
734 for (row = tab->n_redundant; row < tab->n_row; ++row) {
735 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
736 continue;
737 if (isl_int_is_neg(tab->mat->row[row][2]))
738 return row;
740 for (row = tab->n_redundant; row < tab->n_row; ++row) {
741 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
742 continue;
743 if (tab->row_sign) {
744 if (tab->row_sign[row] == 0 &&
745 is_obviously_neg(tab, row))
746 tab->row_sign[row] = isl_tab_row_neg;
747 if (tab->row_sign[row] != isl_tab_row_neg)
748 continue;
749 } else if (!is_obviously_neg(tab, row))
750 continue;
751 return row;
753 return -1;
756 /* Resolve all known or obviously violated constraints through pivoting.
757 * In particular, as long as we can find any violated constraint, we
758 * look for a pivoting column that would result in the lexicographicallly
759 * smallest increment in the sample point. If there is no such column
760 * then the tableau is infeasible.
762 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
764 int row, col;
766 if (!tab)
767 return NULL;
768 if (tab->empty)
769 return tab;
770 while ((row = first_neg(tab)) != -1) {
771 col = lexmin_pivot_col(tab, row);
772 if (col >= tab->n_col)
773 return isl_tab_mark_empty(tab);
774 if (col < 0)
775 goto error;
776 isl_tab_pivot(tab, row, col);
778 return tab;
779 error:
780 isl_tab_free(tab);
781 return NULL;
784 /* Given a row that represents an equality, look for an appropriate
785 * pivoting column.
786 * In particular, if there are any non-zero coefficients among
787 * the non-parameter variables, then we take the last of these
788 * variables. Eliminating this variable in terms of the other
789 * variables and/or parameters does not influence the property
790 * that all column in the initial tableau are lexicographically
791 * positive. The row corresponding to the eliminated variable
792 * will only have non-zero entries below the diagonal of the
793 * initial tableau. That is, we transform
795 * I I
796 * 1 into a
797 * I I
799 * If there is no such non-parameter variable, then we are dealing with
800 * pure parameter equality and we pick any parameter with coefficient 1 or -1
801 * for elimination. This will ensure that the eliminated parameter
802 * always has an integer value whenever all the other parameters are integral.
803 * If there is no such parameter then we return -1.
805 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
807 unsigned off = 2 + tab->M;
808 int i;
810 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
811 int col;
812 if (tab->var[i].is_row)
813 continue;
814 col = tab->var[i].index;
815 if (col <= tab->n_dead)
816 continue;
817 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
818 return col;
820 for (i = tab->n_dead; i < tab->n_col; ++i) {
821 if (isl_int_is_one(tab->mat->row[row][off + i]))
822 return i;
823 if (isl_int_is_negone(tab->mat->row[row][off + i]))
824 return i;
826 return -1;
829 /* Add an equality that is known to be valid to the tableau.
830 * We first check if we can eliminate a variable or a parameter.
831 * If not, we add the equality as two inequalities.
832 * In this case, the equality was a pure parameter equality and there
833 * is no need to resolve any constraint violations.
835 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
837 int i;
838 int r;
840 if (!tab)
841 return NULL;
842 r = isl_tab_add_row(tab, eq);
843 if (r < 0)
844 goto error;
846 r = tab->con[r].index;
847 i = last_var_col_or_int_par_col(tab, r);
848 if (i < 0) {
849 tab->con[r].is_nonneg = 1;
850 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
851 isl_seq_neg(eq, eq, 1 + tab->n_var);
852 r = isl_tab_add_row(tab, eq);
853 if (r < 0)
854 goto error;
855 tab->con[r].is_nonneg = 1;
856 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
857 } else {
858 isl_tab_pivot(tab, r, i);
859 isl_tab_kill_col(tab, i);
860 tab->n_eq++;
862 tab = restore_lexmin(tab);
865 return tab;
866 error:
867 isl_tab_free(tab);
868 return NULL;
871 /* Check if the given row is a pure constant.
873 static int is_constant(struct isl_tab *tab, int row)
875 unsigned off = 2 + tab->M;
877 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
878 tab->n_col - tab->n_dead) == -1;
881 /* Add an equality that may or may not be valid to the tableau.
882 * If the resulting row is a pure constant, then it must be zero.
883 * Otherwise, the resulting tableau is empty.
885 * If the row is not a pure constant, then we add two inequalities,
886 * each time checking that they can be satisfied.
887 * In the end we try to use one of the two constraints to eliminate
888 * a column.
890 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
892 int r1, r2;
893 int sgn;
894 int row;
896 if (!tab)
897 return NULL;
898 if (tab->bset) {
899 tab->bset = isl_basic_set_add_eq(tab->bset, eq);
900 isl_tab_push(tab, isl_tab_undo_bset_eq);
901 if (!tab->bset)
902 goto error;
904 r1 = isl_tab_add_row(tab, eq);
905 if (r1 < 0)
906 goto error;
907 tab->con[r1].is_nonneg = 1;
908 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]);
910 row = tab->con[r1].index;
911 if (is_constant(tab, row)) {
912 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
913 (tab->M && !isl_int_is_zero(tab->mat->row[row][2])))
914 return isl_tab_mark_empty(tab);
915 return tab;
918 tab = restore_lexmin(tab);
919 if (!tab || tab->empty)
920 return tab;
922 isl_seq_neg(eq, eq, 1 + tab->n_var);
924 r2 = isl_tab_add_row(tab, eq);
925 if (r2 < 0)
926 goto error;
927 tab->con[r2].is_nonneg = 1;
928 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]);
930 tab = restore_lexmin(tab);
931 if (!tab || tab->empty)
932 return tab;
934 if (!tab->con[r1].is_row)
935 isl_tab_kill_col(tab, tab->con[r1].index);
936 else if (!tab->con[r2].is_row)
937 isl_tab_kill_col(tab, tab->con[r2].index);
938 else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
939 unsigned off = 2 + tab->M;
940 int i;
941 int row = tab->con[r1].index;
942 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
943 tab->n_col - tab->n_dead);
944 if (i != -1) {
945 isl_tab_pivot(tab, row, tab->n_dead + i);
946 isl_tab_kill_col(tab, tab->n_dead + i);
950 return tab;
951 error:
952 isl_tab_free(tab);
953 return NULL;
956 /* Add an inequality to the tableau, resolving violations using
957 * restore_lexmin.
959 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
961 int r;
962 int sgn;
964 if (!tab)
965 return NULL;
966 if (tab->bset) {
967 tab->bset = isl_basic_set_add_ineq(tab->bset, ineq);
968 isl_tab_push(tab, isl_tab_undo_bset_ineq);
969 if (!tab->bset)
970 goto error;
972 r = isl_tab_add_row(tab, ineq);
973 if (r < 0)
974 goto error;
975 tab->con[r].is_nonneg = 1;
976 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
977 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
978 isl_tab_mark_redundant(tab, tab->con[r].index);
979 return tab;
982 tab = restore_lexmin(tab);
983 if (tab && !tab->empty && tab->con[r].is_row &&
984 isl_tab_row_is_redundant(tab, tab->con[r].index))
985 isl_tab_mark_redundant(tab, tab->con[r].index);
986 return tab;
987 error:
988 isl_tab_free(tab);
989 return NULL;
992 /* Check if the coefficients of the parameters are all integral.
994 static int integer_parameter(struct isl_tab *tab, int row)
996 int i;
997 int col;
998 unsigned off = 2 + tab->M;
1000 for (i = 0; i < tab->n_param; ++i) {
1001 /* Eliminated parameter */
1002 if (tab->var[i].is_row)
1003 continue;
1004 col = tab->var[i].index;
1005 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1006 tab->mat->row[row][0]))
1007 return 0;
1009 for (i = 0; i < tab->n_div; ++i) {
1010 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1011 continue;
1012 col = tab->var[tab->n_var - tab->n_div + i].index;
1013 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1014 tab->mat->row[row][0]))
1015 return 0;
1017 return 1;
1020 /* Check if the coefficients of the non-parameter variables are all integral.
1022 static int integer_variable(struct isl_tab *tab, int row)
1024 int i;
1025 unsigned off = 2 + tab->M;
1027 for (i = 0; i < tab->n_col; ++i) {
1028 if (tab->col_var[i] >= 0 &&
1029 (tab->col_var[i] < tab->n_param ||
1030 tab->col_var[i] >= tab->n_var - tab->n_div))
1031 continue;
1032 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1033 tab->mat->row[row][0]))
1034 return 0;
1036 return 1;
1039 /* Check if the constant term is integral.
1041 static int integer_constant(struct isl_tab *tab, int row)
1043 return isl_int_is_divisible_by(tab->mat->row[row][1],
1044 tab->mat->row[row][0]);
1047 #define I_CST 1 << 0
1048 #define I_PAR 1 << 1
1049 #define I_VAR 1 << 2
1051 /* Check for first (non-parameter) variable that is non-integer and
1052 * therefore requires a cut.
1053 * For parametric tableaus, there are three parts in a row,
1054 * the constant, the coefficients of the parameters and the rest.
1055 * For each part, we check whether the coefficients in that part
1056 * are all integral and if so, set the corresponding flag in *f.
1057 * If the constant and the parameter part are integral, then the
1058 * current sample value is integral and no cut is required
1059 * (irrespective of whether the variable part is integral).
1061 static int first_non_integer(struct isl_tab *tab, int *f)
1063 int i;
1065 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1066 int flags = 0;
1067 int row;
1068 if (!tab->var[i].is_row)
1069 continue;
1070 row = tab->var[i].index;
1071 if (integer_constant(tab, row))
1072 ISL_FL_SET(flags, I_CST);
1073 if (integer_parameter(tab, row))
1074 ISL_FL_SET(flags, I_PAR);
1075 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1076 continue;
1077 if (integer_variable(tab, row))
1078 ISL_FL_SET(flags, I_VAR);
1079 *f = flags;
1080 return row;
1082 return -1;
1085 /* Add a (non-parametric) cut to cut away the non-integral sample
1086 * value of the given row.
1088 * If the row is given by
1090 * m r = f + \sum_i a_i y_i
1092 * then the cut is
1094 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1096 * The big parameter, if any, is ignored, since it is assumed to be big
1097 * enough to be divisible by any integer.
1098 * If the tableau is actually a parametric tableau, then this function
1099 * is only called when all coefficients of the parameters are integral.
1100 * The cut therefore has zero coefficients for the parameters.
1102 * The current value is known to be negative, so row_sign, if it
1103 * exists, is set accordingly.
1105 * Return the row of the cut or -1.
1107 static int add_cut(struct isl_tab *tab, int row)
1109 int i;
1110 int r;
1111 isl_int *r_row;
1112 unsigned off = 2 + tab->M;
1114 if (isl_tab_extend_cons(tab, 1) < 0)
1115 return -1;
1116 r = isl_tab_allocate_con(tab);
1117 if (r < 0)
1118 return -1;
1120 r_row = tab->mat->row[tab->con[r].index];
1121 isl_int_set(r_row[0], tab->mat->row[row][0]);
1122 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1123 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1124 isl_int_neg(r_row[1], r_row[1]);
1125 if (tab->M)
1126 isl_int_set_si(r_row[2], 0);
1127 for (i = 0; i < tab->n_col; ++i)
1128 isl_int_fdiv_r(r_row[off + i],
1129 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1131 tab->con[r].is_nonneg = 1;
1132 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1133 if (tab->row_sign)
1134 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1136 return tab->con[r].index;
1139 /* Given a non-parametric tableau, add cuts until an integer
1140 * sample point is obtained or until the tableau is determined
1141 * to be integer infeasible.
1142 * As long as there is any non-integer value in the sample point,
1143 * we add an appropriate cut, if possible and resolve the violated
1144 * cut constraint using restore_lexmin.
1145 * If one of the corresponding rows is equal to an integral
1146 * combination of variables/constraints plus a non-integral constant,
1147 * then there is no way to obtain an integer point an we return
1148 * a tableau that is marked empty.
1150 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1152 int row;
1153 int flags;
1155 if (!tab)
1156 return NULL;
1157 if (tab->empty)
1158 return tab;
1160 while ((row = first_non_integer(tab, &flags)) != -1) {
1161 if (ISL_FL_ISSET(flags, I_VAR))
1162 return isl_tab_mark_empty(tab);
1163 row = add_cut(tab, row);
1164 if (row < 0)
1165 goto error;
1166 tab = restore_lexmin(tab);
1167 if (!tab || tab->empty)
1168 break;
1170 return tab;
1171 error:
1172 isl_tab_free(tab);
1173 return NULL;
1176 static struct isl_tab *drop_sample(struct isl_tab *tab, int s)
1178 if (s != tab->n_outside)
1179 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
1180 tab->n_outside++;
1181 isl_tab_push(tab, isl_tab_undo_drop_sample);
1183 return tab;
1186 /* Check whether all the currently active samples also satisfy the inequality
1187 * "ineq" (treated as an equality if eq is set).
1188 * Remove those samples that do not.
1190 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1192 int i;
1193 isl_int v;
1195 if (!tab)
1196 return NULL;
1198 isl_assert(tab->mat->ctx, tab->bset, goto error);
1199 isl_assert(tab->mat->ctx, tab->samples, goto error);
1200 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1202 isl_int_init(v);
1203 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1204 int sgn;
1205 isl_seq_inner_product(ineq, tab->samples->row[i],
1206 1 + tab->n_var, &v);
1207 sgn = isl_int_sgn(v);
1208 if (eq ? (sgn == 0) : (sgn >= 0))
1209 continue;
1210 tab = drop_sample(tab, i);
1211 if (!tab)
1212 break;
1214 isl_int_clear(v);
1216 return tab;
1219 /* Check whether the sample value of the tableau is finite,
1220 * i.e., either the tableau does not use a big parameter, or
1221 * all values of the variables are equal to the big parameter plus
1222 * some constant. This constant is the actual sample value.
1224 int sample_is_finite(struct isl_tab *tab)
1226 int i;
1228 if (!tab->M)
1229 return 1;
1231 for (i = 0; i < tab->n_var; ++i) {
1232 int row;
1233 if (!tab->var[i].is_row)
1234 return 0;
1235 row = tab->var[i].index;
1236 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1237 return 0;
1239 return 1;
1242 /* Check if the context tableau of sol has any integer points.
1243 * Returns -1 if an error occurred.
1244 * If an integer point can be found and if moreover it is finite,
1245 * then it is added to the list of sample values.
1247 * This function is only called when none of the currently active sample
1248 * values satisfies the most recently added constraint.
1250 static int context_is_feasible(struct isl_sol *sol)
1252 struct isl_tab_undo *snap;
1253 struct isl_tab *tab;
1254 int feasible;
1256 if (!sol || !sol->context_tab)
1257 return -1;
1259 snap = isl_tab_snap(sol->context_tab);
1260 isl_tab_push_basis(sol->context_tab);
1262 sol->context_tab = cut_to_integer_lexmin(sol->context_tab);
1263 if (!sol->context_tab)
1264 goto error;
1266 tab = sol->context_tab;
1267 if (!tab->empty && sample_is_finite(tab)) {
1268 struct isl_vec *sample;
1270 tab->samples = isl_mat_extend(tab->samples,
1271 tab->n_sample + 1, tab->samples->n_col);
1272 if (!tab->samples)
1273 goto error;
1275 sample = isl_tab_get_sample_value(tab);
1276 if (!sample)
1277 goto error;
1278 isl_seq_cpy(tab->samples->row[tab->n_sample],
1279 sample->el, sample->size);
1280 isl_vec_free(sample);
1281 tab->n_sample++;
1284 feasible = !sol->context_tab->empty;
1285 if (isl_tab_rollback(sol->context_tab, snap) < 0)
1286 goto error;
1288 return feasible;
1289 error:
1290 isl_tab_free(sol->context_tab);
1291 sol->context_tab = NULL;
1292 return -1;
1295 /* First check if any of the currently active sample values satisfies
1296 * the inequality "ineq" (an equality if eq is set).
1297 * If not, continue with check_integer_feasible.
1299 static int context_valid_sample_or_feasible(struct isl_sol *sol,
1300 isl_int *ineq, int eq)
1302 int i;
1303 isl_int v;
1304 struct isl_tab *tab;
1306 if (!sol || !sol->context_tab)
1307 return -1;
1309 tab = sol->context_tab;
1310 isl_assert(tab->mat->ctx, tab->bset, goto error);
1311 isl_assert(tab->mat->ctx, tab->samples, goto error);
1312 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1314 isl_int_init(v);
1315 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1316 int sgn;
1317 isl_seq_inner_product(ineq, tab->samples->row[i],
1318 1 + tab->n_var, &v);
1319 sgn = isl_int_sgn(v);
1320 if (eq ? (sgn == 0) : (sgn >= 0))
1321 break;
1323 isl_int_clear(v);
1325 if (i < tab->n_sample)
1326 return 1;
1328 return context_is_feasible(sol);
1331 /* For a div d = floor(f/m), add the constraints
1333 * f - m d >= 0
1334 * -(f-(m-1)) + m d >= 0
1336 * Note that the second constraint is the negation of
1338 * f - m d >= m
1340 static struct isl_tab *add_div_constraints(struct isl_tab *tab, unsigned div)
1342 int i, j;
1343 unsigned total;
1344 unsigned div_pos;
1345 struct isl_vec *ineq;
1347 if (!tab)
1348 return NULL;
1350 total = isl_basic_set_total_dim(tab->bset);
1351 div_pos = 1 + total - tab->bset->n_div + div;
1353 ineq = ineq_for_div(tab->bset, div);
1354 if (!ineq)
1355 goto error;
1357 tab = add_lexmin_ineq(tab, ineq->el);
1359 isl_seq_neg(ineq->el, tab->bset->div[div] + 1, 1 + total);
1360 isl_int_set(ineq->el[div_pos], tab->bset->div[div][0]);
1361 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
1362 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1363 tab = add_lexmin_ineq(tab, ineq->el);
1365 isl_vec_free(ineq);
1367 return tab;
1368 error:
1369 isl_tab_free(tab);
1370 return NULL;
1373 /* Add a div specified by "div" to both the main tableau and
1374 * the context tableau. In case of the main tableau, we only
1375 * need to add an extra div. In the context tableau, we also
1376 * need to express the meaning of the div.
1377 * Return the index of the div or -1 if anything went wrong.
1379 static int add_div(struct isl_tab *tab, struct isl_tab **context_tab,
1380 struct isl_vec *div)
1382 int i;
1383 int r;
1384 int k;
1385 struct isl_mat *samples;
1387 if (isl_tab_extend_vars(*context_tab, 1) < 0)
1388 goto error;
1389 r = isl_tab_allocate_var(*context_tab);
1390 if (r < 0)
1391 goto error;
1392 (*context_tab)->var[r].is_nonneg = 1;
1393 (*context_tab)->var[r].frozen = 1;
1395 samples = isl_mat_extend((*context_tab)->samples,
1396 (*context_tab)->n_sample, 1 + (*context_tab)->n_var);
1397 (*context_tab)->samples = samples;
1398 if (!samples)
1399 goto error;
1400 for (i = (*context_tab)->n_outside; i < samples->n_row; ++i) {
1401 isl_seq_inner_product(div->el + 1, samples->row[i],
1402 div->size - 1, &samples->row[i][samples->n_col - 1]);
1403 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1404 samples->row[i][samples->n_col - 1], div->el[0]);
1407 (*context_tab)->bset = isl_basic_set_extend_dim((*context_tab)->bset,
1408 isl_basic_set_get_dim((*context_tab)->bset), 1, 0, 2);
1409 k = isl_basic_set_alloc_div((*context_tab)->bset);
1410 if (k < 0)
1411 goto error;
1412 isl_seq_cpy((*context_tab)->bset->div[k], div->el, div->size);
1413 isl_tab_push((*context_tab), isl_tab_undo_bset_div);
1414 *context_tab = add_div_constraints(*context_tab, k);
1415 if (!*context_tab)
1416 goto error;
1418 if (isl_tab_extend_vars(tab, 1) < 0)
1419 goto error;
1420 r = isl_tab_allocate_var(tab);
1421 if (r < 0)
1422 goto error;
1423 if (!(*context_tab)->M)
1424 tab->var[r].is_nonneg = 1;
1425 tab->var[r].frozen = 1;
1426 tab->n_div++;
1428 return tab->n_div - 1;
1429 error:
1430 isl_tab_free(*context_tab);
1431 *context_tab = NULL;
1432 return -1;
1435 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1437 int i;
1438 unsigned total = isl_basic_set_total_dim(tab->bset);
1440 for (i = 0; i < tab->bset->n_div; ++i) {
1441 if (isl_int_ne(tab->bset->div[i][0], denom))
1442 continue;
1443 if (!isl_seq_eq(tab->bset->div[i] + 1, div, total))
1444 continue;
1445 return i;
1447 return -1;
1450 /* Return the index of a div that corresponds to "div".
1451 * We first check if we already have such a div and if not, we create one.
1453 static int get_div(struct isl_tab *tab, struct isl_tab **context_tab,
1454 struct isl_vec *div)
1456 int d;
1458 d = find_div(*context_tab, div->el + 1, div->el[0]);
1459 if (d != -1)
1460 return d;
1462 return add_div(tab, context_tab, div);
1465 /* Add a parametric cut to cut away the non-integral sample value
1466 * of the give row.
1467 * Let a_i be the coefficients of the constant term and the parameters
1468 * and let b_i be the coefficients of the variables or constraints
1469 * in basis of the tableau.
1470 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1472 * The cut is expressed as
1474 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1476 * If q did not already exist in the context tableau, then it is added first.
1477 * If q is in a column of the main tableau then the "+ q" can be accomplished
1478 * by setting the corresponding entry to the denominator of the constraint.
1479 * If q happens to be in a row of the main tableau, then the corresponding
1480 * row needs to be added instead (taking care of the denominators).
1481 * Note that this is very unlikely, but perhaps not entirely impossible.
1483 * The current value of the cut is known to be negative (or at least
1484 * non-positive), so row_sign is set accordingly.
1486 * Return the row of the cut or -1.
1488 static int add_parametric_cut(struct isl_tab *tab, int row,
1489 struct isl_tab **context_tab)
1491 struct isl_vec *div;
1492 int d;
1493 int i;
1494 int r;
1495 isl_int *r_row;
1496 int col;
1497 unsigned off = 2 + tab->M;
1499 if (!*context_tab)
1500 goto error;
1502 if (isl_tab_extend_cons(*context_tab, 3) < 0)
1503 goto error;
1505 div = get_row_parameter_div(tab, row);
1506 if (!div)
1507 return -1;
1509 d = get_div(tab, context_tab, div);
1510 if (d < 0)
1511 goto error;
1513 if (isl_tab_extend_cons(tab, 1) < 0)
1514 return -1;
1515 r = isl_tab_allocate_con(tab);
1516 if (r < 0)
1517 return -1;
1519 r_row = tab->mat->row[tab->con[r].index];
1520 isl_int_set(r_row[0], tab->mat->row[row][0]);
1521 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1522 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1523 isl_int_neg(r_row[1], r_row[1]);
1524 if (tab->M)
1525 isl_int_set_si(r_row[2], 0);
1526 for (i = 0; i < tab->n_param; ++i) {
1527 if (tab->var[i].is_row)
1528 continue;
1529 col = tab->var[i].index;
1530 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1531 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1532 tab->mat->row[row][0]);
1533 isl_int_neg(r_row[off + col], r_row[off + col]);
1535 for (i = 0; i < tab->n_div; ++i) {
1536 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1537 continue;
1538 col = tab->var[tab->n_var - tab->n_div + i].index;
1539 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1540 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1541 tab->mat->row[row][0]);
1542 isl_int_neg(r_row[off + col], r_row[off + col]);
1544 for (i = 0; i < tab->n_col; ++i) {
1545 if (tab->col_var[i] >= 0 &&
1546 (tab->col_var[i] < tab->n_param ||
1547 tab->col_var[i] >= tab->n_var - tab->n_div))
1548 continue;
1549 isl_int_fdiv_r(r_row[off + i],
1550 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1552 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1553 isl_int gcd;
1554 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1555 isl_int_init(gcd);
1556 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1557 isl_int_divexact(r_row[0], r_row[0], gcd);
1558 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1559 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1560 r_row[0], tab->mat->row[d_row] + 1,
1561 off - 1 + tab->n_col);
1562 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1563 isl_int_clear(gcd);
1564 } else {
1565 col = tab->var[tab->n_var - tab->n_div + d].index;
1566 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1569 tab->con[r].is_nonneg = 1;
1570 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1571 if (tab->row_sign)
1572 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1574 isl_vec_free(div);
1576 return tab->con[r].index;
1577 error:
1578 isl_tab_free(*context_tab);
1579 *context_tab = NULL;
1580 return -1;
1583 /* Construct a tableau for bmap that can be used for computing
1584 * the lexicographic minimum (or maximum) of bmap.
1585 * If not NULL, then dom is the domain where the minimum
1586 * should be computed. In this case, we set up a parametric
1587 * tableau with row signs (initialized to "unknown").
1588 * If M is set, then the tableau will use a big parameter.
1589 * If max is set, then a maximum should be computed instead of a minimum.
1590 * This means that for each variable x, the tableau will contain the variable
1591 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1592 * of the variables in all constraints are negated prior to adding them
1593 * to the tableau.
1595 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1596 struct isl_basic_set *dom, unsigned M, int max)
1598 int i;
1599 struct isl_tab *tab;
1601 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1602 isl_basic_map_total_dim(bmap), M);
1603 if (!tab)
1604 return NULL;
1606 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1607 if (dom) {
1608 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1609 tab->n_div = dom->n_div;
1610 tab->row_sign = isl_calloc_array(bmap->ctx,
1611 enum isl_tab_row_sign, tab->mat->n_row);
1612 if (!tab->row_sign)
1613 goto error;
1615 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1616 return isl_tab_mark_empty(tab);
1618 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1619 tab->var[i].is_nonneg = 1;
1620 tab->var[i].frozen = 1;
1622 for (i = 0; i < bmap->n_eq; ++i) {
1623 if (max)
1624 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1625 bmap->eq[i] + 1 + tab->n_param,
1626 tab->n_var - tab->n_param - tab->n_div);
1627 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
1628 if (max)
1629 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1630 bmap->eq[i] + 1 + tab->n_param,
1631 tab->n_var - tab->n_param - tab->n_div);
1632 if (!tab || tab->empty)
1633 return tab;
1635 for (i = 0; i < bmap->n_ineq; ++i) {
1636 if (max)
1637 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1638 bmap->ineq[i] + 1 + tab->n_param,
1639 tab->n_var - tab->n_param - tab->n_div);
1640 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
1641 if (max)
1642 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1643 bmap->ineq[i] + 1 + tab->n_param,
1644 tab->n_var - tab->n_param - tab->n_div);
1645 if (!tab || tab->empty)
1646 return tab;
1648 return tab;
1649 error:
1650 isl_tab_free(tab);
1651 return NULL;
1654 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
1656 struct isl_tab *tab;
1658 bset = isl_basic_set_cow(bset);
1659 if (!bset)
1660 return NULL;
1661 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
1662 if (!tab)
1663 goto error;
1664 tab->bset = bset;
1665 tab->n_sample = 0;
1666 tab->n_outside = 0;
1667 tab->samples = isl_mat_alloc(bset->ctx, 1, 1 + tab->n_var);
1668 if (!tab->samples)
1669 goto error;
1670 return tab;
1671 error:
1672 isl_basic_set_free(bset);
1673 return NULL;
1676 /* Construct an isl_sol_map structure for accumulating the solution.
1677 * If track_empty is set, then we also keep track of the parts
1678 * of the context where there is no solution.
1679 * If max is set, then we are solving a maximization, rather than
1680 * a minimization problem, which means that the variables in the
1681 * tableau have value "M - x" rather than "M + x".
1683 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
1684 struct isl_basic_set *dom, int track_empty, int max)
1686 struct isl_sol_map *sol_map;
1687 struct isl_tab *context_tab;
1688 int f;
1690 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
1691 if (!sol_map)
1692 goto error;
1694 sol_map->max = max;
1695 sol_map->sol.add = &sol_map_add_wrap;
1696 sol_map->sol.free = &sol_map_free_wrap;
1697 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
1698 ISL_MAP_DISJOINT);
1699 if (!sol_map->map)
1700 goto error;
1702 context_tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
1703 context_tab = restore_lexmin(context_tab);
1704 sol_map->sol.context_tab = context_tab;
1705 f = context_is_feasible(&sol_map->sol);
1706 if (f < 0)
1707 goto error;
1709 if (track_empty) {
1710 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
1711 1, ISL_SET_DISJOINT);
1712 if (!sol_map->empty)
1713 goto error;
1716 isl_basic_set_free(dom);
1717 return sol_map;
1718 error:
1719 isl_basic_set_free(dom);
1720 sol_map_free(sol_map);
1721 return NULL;
1724 /* For each variable in the context tableau, check if the variable can
1725 * only attain non-negative values. If so, mark the parameter as non-negative
1726 * in the main tableau. This allows for a more direct identification of some
1727 * cases of violated constraints.
1729 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
1730 struct isl_tab *context_tab)
1732 int i;
1733 struct isl_tab_undo *snap, *snap2;
1734 struct isl_vec *ineq = NULL;
1735 struct isl_tab_var *var;
1736 int n;
1738 if (context_tab->n_var == 0)
1739 return tab;
1741 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
1742 if (!ineq)
1743 goto error;
1745 if (isl_tab_extend_cons(context_tab, 1) < 0)
1746 goto error;
1748 snap = isl_tab_snap(context_tab);
1749 isl_tab_push_basis(context_tab);
1751 snap2 = isl_tab_snap(context_tab);
1753 n = 0;
1754 isl_seq_clr(ineq->el, ineq->size);
1755 for (i = 0; i < context_tab->n_var; ++i) {
1756 isl_int_set_si(ineq->el[1 + i], 1);
1757 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
1758 var = &context_tab->con[context_tab->n_con - 1];
1759 if (!context_tab->empty &&
1760 !isl_tab_min_at_most_neg_one(context_tab, var)) {
1761 int j = i;
1762 if (i >= tab->n_param)
1763 j = i - tab->n_param + tab->n_var - tab->n_div;
1764 tab->var[j].is_nonneg = 1;
1765 n++;
1767 isl_int_set_si(ineq->el[1 + i], 0);
1768 if (isl_tab_rollback(context_tab, snap2) < 0)
1769 goto error;
1772 if (isl_tab_rollback(context_tab, snap) < 0)
1773 goto error;
1775 if (n == context_tab->n_var) {
1776 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
1777 context_tab->M = 0;
1780 isl_vec_free(ineq);
1781 return tab;
1782 error:
1783 isl_vec_free(ineq);
1784 isl_tab_free(tab);
1785 return NULL;
1788 /* Check whether all coefficients of (non-parameter) variables
1789 * are non-positive, meaning that no pivots can be performed on the row.
1791 static int is_critical(struct isl_tab *tab, int row)
1793 int j;
1794 unsigned off = 2 + tab->M;
1796 for (j = tab->n_dead; j < tab->n_col; ++j) {
1797 if (tab->col_var[j] >= 0 &&
1798 (tab->col_var[j] < tab->n_param ||
1799 tab->col_var[j] >= tab->n_var - tab->n_div))
1800 continue;
1802 if (isl_int_is_pos(tab->mat->row[row][off + j]))
1803 return 0;
1806 return 1;
1809 /* Check whether the inequality represented by vec is strict over the integers,
1810 * i.e., there are no integer values satisfying the constraint with
1811 * equality. This happens if the gcd of the coefficients is not a divisor
1812 * of the constant term. If so, scale the constraint down by the gcd
1813 * of the coefficients.
1815 static int is_strict(struct isl_vec *vec)
1817 isl_int gcd;
1818 int strict = 0;
1820 isl_int_init(gcd);
1821 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
1822 if (!isl_int_is_one(gcd)) {
1823 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
1824 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
1825 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
1827 isl_int_clear(gcd);
1829 return strict;
1832 /* Determine the sign of the given row of the main tableau.
1833 * The result is one of
1834 * isl_tab_row_pos: always non-negative; no pivot needed
1835 * isl_tab_row_neg: always non-positive; pivot
1836 * isl_tab_row_any: can be both positive and negative; split
1838 * We first handle some simple cases
1839 * - the row sign may be known already
1840 * - the row may be obviously non-negative
1841 * - the parametric constant may be equal to that of another row
1842 * for which we know the sign. This sign will be either "pos" or
1843 * "any". If it had been "neg" then we would have pivoted before.
1845 * If none of these cases hold, we check the value of the row for each
1846 * of the currently active samples. Based on the signs of these values
1847 * we make an initial determination of the sign of the row.
1849 * all zero -> unk(nown)
1850 * all non-negative -> pos
1851 * all non-positive -> neg
1852 * both negative and positive -> all
1854 * If we end up with "all", we are done.
1855 * Otherwise, we perform a check for positive and/or negative
1856 * values as follows.
1858 * samples neg unk pos
1859 * <0 ? Y N Y N
1860 * pos any pos
1861 * >0 ? Y N Y N
1862 * any neg any neg
1864 * There is no special sign for "zero", because we can usually treat zero
1865 * as either non-negative or non-positive, whatever works out best.
1866 * However, if the row is "critical", meaning that pivoting is impossible
1867 * then we don't want to limp zero with the non-positive case, because
1868 * then we we would lose the solution for those values of the parameters
1869 * where the value of the row is zero. Instead, we treat 0 as non-negative
1870 * ensuring a split if the row can attain both zero and negative values.
1871 * The same happens when the original constraint was one that could not
1872 * be satisfied with equality by any integer values of the parameters.
1873 * In this case, we normalize the constraint, but then a value of zero
1874 * for the normalized constraint is actually a positive value for the
1875 * original constraint, so again we need to treat zero as non-negative.
1876 * In both these cases, we have the following decision tree instead:
1878 * all non-negative -> pos
1879 * all negative -> neg
1880 * both negative and non-negative -> all
1882 * samples neg pos
1883 * <0 ? Y N
1884 * any pos
1885 * >=0 ? Y N
1886 * any neg
1888 static int row_sign(struct isl_tab *tab, struct isl_sol *sol, int row)
1890 int i;
1891 struct isl_tab_undo *snap = NULL;
1892 struct isl_vec *ineq = NULL;
1893 int res = isl_tab_row_unknown;
1894 int r;
1895 int context_row;
1896 int critical;
1897 int strict;
1898 int sgn;
1899 int row2;
1900 isl_int tmp;
1901 struct isl_tab *context_tab = sol->context_tab;
1903 if (tab->row_sign[row] != isl_tab_row_unknown)
1904 return tab->row_sign[row];
1905 if (is_obviously_nonneg(tab, row))
1906 return isl_tab_row_pos;
1907 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
1908 if (tab->row_sign[row2] == isl_tab_row_unknown)
1909 continue;
1910 if (identical_parameter_line(tab, row, row2))
1911 return tab->row_sign[row2];
1914 critical = is_critical(tab, row);
1916 isl_assert(tab->mat->ctx, context_tab->samples, goto error);
1917 isl_assert(tab->mat->ctx, context_tab->samples->n_col == 1 + context_tab->n_var, goto error);
1919 ineq = get_row_parameter_ineq(tab, row);
1920 if (!ineq)
1921 goto error;
1923 strict = is_strict(ineq);
1925 isl_int_init(tmp);
1926 for (i = context_tab->n_outside; i < context_tab->n_sample; ++i) {
1927 isl_seq_inner_product(context_tab->samples->row[i], ineq->el,
1928 ineq->size, &tmp);
1929 sgn = isl_int_sgn(tmp);
1930 if (sgn > 0 || (sgn == 0 && (critical || strict))) {
1931 if (res == isl_tab_row_unknown)
1932 res = isl_tab_row_pos;
1933 if (res == isl_tab_row_neg)
1934 res = isl_tab_row_any;
1936 if (sgn < 0) {
1937 if (res == isl_tab_row_unknown)
1938 res = isl_tab_row_neg;
1939 if (res == isl_tab_row_pos)
1940 res = isl_tab_row_any;
1942 if (res == isl_tab_row_any)
1943 break;
1945 isl_int_clear(tmp);
1947 if (res != isl_tab_row_any) {
1948 if (isl_tab_extend_cons(context_tab, 1) < 0)
1949 goto error;
1951 snap = isl_tab_snap(context_tab);
1952 isl_tab_push_basis(context_tab);
1955 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
1956 /* test for negative values */
1957 int feasible;
1958 isl_seq_neg(ineq->el, ineq->el, ineq->size);
1959 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1961 isl_tab_push_basis(context_tab);
1962 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
1963 feasible = context_is_feasible(sol);
1964 if (feasible < 0)
1965 goto error;
1966 context_tab = sol->context_tab;
1967 if (!feasible)
1968 res = isl_tab_row_pos;
1969 else
1970 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
1971 : isl_tab_row_any;
1972 if (isl_tab_rollback(context_tab, snap) < 0)
1973 goto error;
1975 if (res == isl_tab_row_neg) {
1976 isl_seq_neg(ineq->el, ineq->el, ineq->size);
1977 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1981 if (res == isl_tab_row_neg) {
1982 /* test for positive values */
1983 int feasible;
1984 if (!critical && !strict)
1985 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1987 isl_tab_push_basis(context_tab);
1988 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
1989 feasible = context_is_feasible(sol);
1990 if (feasible < 0)
1991 goto error;
1992 context_tab = sol->context_tab;
1993 if (feasible)
1994 res = isl_tab_row_any;
1995 if (isl_tab_rollback(context_tab, snap) < 0)
1996 goto error;
1999 isl_vec_free(ineq);
2000 return res;
2001 error:
2002 isl_vec_free(ineq);
2003 return 0;
2006 static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab);
2008 /* Find solutions for values of the parameters that satisfy the given
2009 * inequality.
2011 * We currently take a snapshot of the context tableau that is reset
2012 * when we return from this function, while we make a copy of the main
2013 * tableau, leaving the original main tableau untouched.
2014 * These are fairly arbitrary choices. Making a copy also of the context
2015 * tableau would obviate the need to undo any changes made to it later,
2016 * while taking a snapshot of the main tableau could reduce memory usage.
2017 * If we were to switch to taking a snapshot of the main tableau,
2018 * we would have to keep in mind that we need to save the row signs
2019 * and that we need to do this before saving the current basis
2020 * such that the basis has been restore before we restore the row signs.
2022 static struct isl_sol *find_in_pos(struct isl_sol *sol,
2023 struct isl_tab *tab, isl_int *ineq)
2025 struct isl_tab_undo *snap;
2027 snap = isl_tab_snap(sol->context_tab);
2028 isl_tab_push_basis(sol->context_tab);
2029 if (isl_tab_extend_cons(sol->context_tab, 1) < 0)
2030 goto error;
2032 tab = isl_tab_dup(tab);
2033 if (!tab)
2034 goto error;
2036 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq);
2037 sol->context_tab = check_samples(sol->context_tab, ineq, 0);
2039 sol = find_solutions(sol, tab);
2041 isl_tab_rollback(sol->context_tab, snap);
2042 return sol;
2043 error:
2044 isl_tab_rollback(sol->context_tab, snap);
2045 sol_free(sol);
2046 return NULL;
2049 /* Record the absence of solutions for those values of the parameters
2050 * that do not satisfy the given inequality with equality.
2052 static struct isl_sol *no_sol_in_strict(struct isl_sol *sol,
2053 struct isl_tab *tab, struct isl_vec *ineq)
2055 int empty;
2056 int f;
2057 struct isl_tab_undo *snap;
2058 snap = isl_tab_snap(sol->context_tab);
2059 isl_tab_push_basis(sol->context_tab);
2060 if (isl_tab_extend_cons(sol->context_tab, 1) < 0)
2061 goto error;
2063 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2065 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
2066 f = context_valid_sample_or_feasible(sol, ineq->el, 0);
2067 if (f < 0)
2068 goto error;
2070 empty = tab->empty;
2071 tab->empty = 1;
2072 sol = sol->add(sol, tab);
2073 tab->empty = empty;
2075 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
2077 if (isl_tab_rollback(sol->context_tab, snap) < 0)
2078 goto error;
2079 return sol;
2080 error:
2081 sol_free(sol);
2082 return NULL;
2085 /* Given a main tableau where more than one row requires a split,
2086 * determine and return the "best" row to split on.
2088 * Given two rows in the main tableau, if the inequality corresponding
2089 * to the first row is redundant with respect to that of the second row
2090 * in the current tableau, then it is better to split on the second row,
2091 * since in the positive part, both row will be positive.
2092 * (In the negative part a pivot will have to be performed and just about
2093 * anything can happen to the sign of the other row.)
2095 * As a simple heuristic, we therefore select the row that makes the most
2096 * of the other rows redundant.
2098 * Perhaps it would also be useful to look at the number of constraints
2099 * that conflict with any given constraint.
2101 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2103 struct isl_tab_undo *snap, *snap2;
2104 int split;
2105 int row;
2106 int best = -1;
2107 int best_r;
2109 if (isl_tab_extend_cons(context_tab, 2) < 0)
2110 return -1;
2112 snap = isl_tab_snap(context_tab);
2113 isl_tab_push_basis(context_tab);
2114 snap2 = isl_tab_snap(context_tab);
2116 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2117 struct isl_tab_undo *snap3;
2118 struct isl_vec *ineq = NULL;
2119 int r = 0;
2121 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2122 continue;
2123 if (tab->row_sign[split] != isl_tab_row_any)
2124 continue;
2126 ineq = get_row_parameter_ineq(tab, split);
2127 if (!ineq)
2128 return -1;
2129 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
2130 isl_vec_free(ineq);
2132 snap3 = isl_tab_snap(context_tab);
2134 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2135 struct isl_tab_var *var;
2137 if (row == split)
2138 continue;
2139 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2140 continue;
2141 if (tab->row_sign[row] != isl_tab_row_any)
2142 continue;
2144 ineq = get_row_parameter_ineq(tab, row);
2145 if (!ineq)
2146 return -1;
2147 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
2148 isl_vec_free(ineq);
2149 var = &context_tab->con[context_tab->n_con - 1];
2150 if (!context_tab->empty &&
2151 !isl_tab_min_at_most_neg_one(context_tab, var))
2152 r++;
2153 if (isl_tab_rollback(context_tab, snap3) < 0)
2154 return -1;
2156 if (best == -1 || r > best_r) {
2157 best = split;
2158 best_r = r;
2160 if (isl_tab_rollback(context_tab, snap2) < 0)
2161 return -1;
2164 if (isl_tab_rollback(context_tab, snap) < 0)
2165 return -1;
2167 return best;
2170 /* Compute the lexicographic minimum of the set represented by the main
2171 * tableau "tab" within the context "sol->context_tab".
2172 * On entry the sample value of the main tableau is lexicographically
2173 * less than or equal to this lexicographic minimum.
2174 * Pivots are performed until a feasible point is found, which is then
2175 * necessarily equal to the minimum, or until the tableau is found to
2176 * be infeasible. Some pivots may need to be performed for only some
2177 * feasible values of the context tableau. If so, the context tableau
2178 * is split into a part where the pivot is needed and a part where it is not.
2180 * Whenever we enter the main loop, the main tableau is such that no
2181 * "obvious" pivots need to be performed on it, where "obvious" means
2182 * that the given row can be seen to be negative without looking at
2183 * the context tableau. In particular, for non-parametric problems,
2184 * no pivots need to be performed on the main tableau.
2185 * The caller of find_solutions is responsible for making this property
2186 * hold prior to the first iteration of the loop, while restore_lexmin
2187 * is called before every other iteration.
2189 * Inside the main loop, we first examine the signs of the rows of
2190 * the main tableau within the context of the context tableau.
2191 * If we find a row that is always non-positive for all values of
2192 * the parameters satisfying the context tableau and negative for at
2193 * least one value of the parameters, we perform the appropriate pivot
2194 * and start over. An exception is the case where no pivot can be
2195 * performed on the row. In this case, we require that the sign of
2196 * the row is negative for all values of the parameters (rather than just
2197 * non-positive). This special case is handled inside row_sign, which
2198 * will say that the row can have any sign if it determines that it can
2199 * attain both negative and zero values.
2201 * If we can't find a row that always requires a pivot, but we can find
2202 * one or more rows that require a pivot for some values of the parameters
2203 * (i.e., the row can attain both positive and negative signs), then we split
2204 * the context tableau into two parts, one where we force the sign to be
2205 * non-negative and one where we force is to be negative.
2206 * The non-negative part is handled by a recursive call (through find_in_pos).
2207 * Upon returning from this call, we continue with the negative part and
2208 * perform the required pivot.
2210 * If no such rows can be found, all rows are non-negative and we have
2211 * found a (rational) feasible point. If we only wanted a rational point
2212 * then we are done.
2213 * Otherwise, we check if all values of the sample point of the tableau
2214 * are integral for the variables. If so, we have found the minimal
2215 * integral point and we are done.
2216 * If the sample point is not integral, then we need to make a distinction
2217 * based on whether the constant term is non-integral or the coefficients
2218 * of the parameters. Furthermore, in order to decide how to handle
2219 * the non-integrality, we also need to know whether the coefficients
2220 * of the other columns in the tableau are integral. This leads
2221 * to the following table. The first two rows do not correspond
2222 * to a non-integral sample point and are only mentioned for completeness.
2224 * constant parameters other
2226 * int int int |
2227 * int int rat | -> no problem
2229 * rat int int -> fail
2231 * rat int rat -> cut
2233 * int rat rat |
2234 * rat rat rat | -> parametric cut
2236 * int rat int |
2237 * rat rat int | -> split context
2239 * If the parametric constant is completely integral, then there is nothing
2240 * to be done. If the constant term is non-integral, but all the other
2241 * coefficient are integral, then there is nothing that can be done
2242 * and the tableau has no integral solution.
2243 * If, on the other hand, one or more of the other columns have rational
2244 * coeffcients, but the parameter coefficients are all integral, then
2245 * we can perform a regular (non-parametric) cut.
2246 * Finally, if there is any parameter coefficient that is non-integral,
2247 * then we need to involve the context tableau. There are two cases here.
2248 * If at least one other column has a rational coefficient, then we
2249 * can perform a parametric cut in the main tableau by adding a new
2250 * integer division in the context tableau.
2251 * If all other columns have integral coefficients, then we need to
2252 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
2253 * is always integral. We do this by introducing an integer division
2254 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
2255 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
2256 * Since q is expressed in the tableau as
2257 * c + \sum a_i y_i - m q >= 0
2258 * -c - \sum a_i y_i + m q + m - 1 >= 0
2259 * it is sufficient to add the inequality
2260 * -c - \sum a_i y_i + m q >= 0
2261 * In the part of the context where this inequality does not hold, the
2262 * main tableau is marked as being empty.
2264 static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab)
2266 struct isl_tab **context_tab;
2268 if (!tab || !sol)
2269 goto error;
2271 context_tab = &sol->context_tab;
2273 if (tab->empty)
2274 goto done;
2275 if ((*context_tab)->empty)
2276 goto done;
2278 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
2279 int flags;
2280 int row;
2281 int sgn;
2282 int split = -1;
2283 int n_split = 0;
2285 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2286 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2287 continue;
2288 sgn = row_sign(tab, sol, row);
2289 if (!sgn)
2290 goto error;
2291 tab->row_sign[row] = sgn;
2292 if (sgn == isl_tab_row_any)
2293 n_split++;
2294 if (sgn == isl_tab_row_any && split == -1)
2295 split = row;
2296 if (sgn == isl_tab_row_neg)
2297 break;
2299 if (row < tab->n_row)
2300 continue;
2301 if (split != -1) {
2302 struct isl_vec *ineq;
2303 if (n_split != 1)
2304 split = best_split(tab, *context_tab);
2305 if (split < 0)
2306 goto error;
2307 ineq = get_row_parameter_ineq(tab, split);
2308 if (!ineq)
2309 goto error;
2310 is_strict(ineq);
2311 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2312 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2313 continue;
2314 if (tab->row_sign[row] == isl_tab_row_any)
2315 tab->row_sign[row] = isl_tab_row_unknown;
2317 tab->row_sign[split] = isl_tab_row_pos;
2318 sol = find_in_pos(sol, tab, ineq->el);
2319 tab->row_sign[split] = isl_tab_row_neg;
2320 row = split;
2321 isl_seq_neg(ineq->el, ineq->el, ineq->size);
2322 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2323 *context_tab = add_lexmin_ineq(*context_tab, ineq->el);
2324 *context_tab = check_samples(*context_tab, ineq->el, 0);
2325 isl_vec_free(ineq);
2326 if (!sol)
2327 goto error;
2328 continue;
2330 if (tab->rational)
2331 break;
2332 row = first_non_integer(tab, &flags);
2333 if (row < 0)
2334 break;
2335 if (ISL_FL_ISSET(flags, I_PAR)) {
2336 if (ISL_FL_ISSET(flags, I_VAR)) {
2337 tab = isl_tab_mark_empty(tab);
2338 break;
2340 row = add_cut(tab, row);
2341 } else if (ISL_FL_ISSET(flags, I_VAR)) {
2342 struct isl_vec *div;
2343 struct isl_vec *ineq;
2344 int d;
2345 if (isl_tab_extend_cons(*context_tab, 3) < 0)
2346 goto error;
2347 div = get_row_split_div(tab, row);
2348 if (!div)
2349 goto error;
2350 d = get_div(tab, context_tab, div);
2351 isl_vec_free(div);
2352 if (d < 0)
2353 goto error;
2354 ineq = ineq_for_div((*context_tab)->bset, d);
2355 sol = no_sol_in_strict(sol, tab, ineq);
2356 isl_seq_neg(ineq->el, ineq->el, ineq->size);
2357 *context_tab = add_lexmin_ineq(*context_tab, ineq->el);
2358 *context_tab = check_samples(*context_tab, ineq->el, 0);
2359 isl_vec_free(ineq);
2360 if (!sol)
2361 goto error;
2362 tab = set_row_cst_to_div(tab, row, d);
2363 } else
2364 row = add_parametric_cut(tab, row, context_tab);
2365 if (row < 0)
2366 goto error;
2368 done:
2369 sol = sol->add(sol, tab);
2370 isl_tab_free(tab);
2371 return sol;
2372 error:
2373 isl_tab_free(tab);
2374 sol_free(sol);
2375 return NULL;
2378 /* Compute the lexicographic minimum of the set represented by the main
2379 * tableau "tab" within the context "sol->context_tab".
2381 * As a preprocessing step, we first transfer all the purely parametric
2382 * equalities from the main tableau to the context tableau, i.e.,
2383 * parameters that have been pivoted to a row.
2384 * These equalities are ignored by the main algorithm, because the
2385 * corresponding rows may not be marked as being non-negative.
2386 * In parts of the context where the added equality does not hold,
2387 * the main tableau is marked as being empty.
2389 static struct isl_sol *find_solutions_main(struct isl_sol *sol,
2390 struct isl_tab *tab)
2392 int row;
2394 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2395 int p;
2396 struct isl_vec *eq;
2398 if (tab->row_var[row] < 0)
2399 continue;
2400 if (tab->row_var[row] >= tab->n_param &&
2401 tab->row_var[row] < tab->n_var - tab->n_div)
2402 continue;
2403 if (tab->row_var[row] < tab->n_param)
2404 p = tab->row_var[row];
2405 else
2406 p = tab->row_var[row]
2407 + tab->n_param - (tab->n_var - tab->n_div);
2409 if (isl_tab_extend_cons(sol->context_tab, 2) < 0)
2410 goto error;
2412 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
2413 get_row_parameter_line(tab, row, eq->el);
2414 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
2415 eq = isl_vec_normalize(eq);
2417 sol = no_sol_in_strict(sol, tab, eq);
2419 isl_seq_neg(eq->el, eq->el, eq->size);
2420 sol = no_sol_in_strict(sol, tab, eq);
2421 isl_seq_neg(eq->el, eq->el, eq->size);
2423 sol->context_tab = add_lexmin_eq(sol->context_tab, eq->el);
2424 context_valid_sample_or_feasible(sol, eq->el, 1);
2425 sol->context_tab = check_samples(sol->context_tab, eq->el, 1);
2427 isl_vec_free(eq);
2429 isl_tab_mark_redundant(tab, row);
2431 if (!sol->context_tab)
2432 goto error;
2433 if (sol->context_tab->empty)
2434 break;
2436 row = tab->n_redundant - 1;
2439 return find_solutions(sol, tab);
2440 error:
2441 isl_tab_free(tab);
2442 sol_free(sol);
2443 return NULL;
2446 static struct isl_sol_map *sol_map_find_solutions(struct isl_sol_map *sol_map,
2447 struct isl_tab *tab)
2449 return (struct isl_sol_map *)find_solutions_main(&sol_map->sol, tab);
2452 /* Check if integer division "div" of "dom" also occurs in "bmap".
2453 * If so, return its position within the divs.
2454 * If not, return -1.
2456 static int find_context_div(struct isl_basic_map *bmap,
2457 struct isl_basic_set *dom, unsigned div)
2459 int i;
2460 unsigned b_dim = isl_dim_total(bmap->dim);
2461 unsigned d_dim = isl_dim_total(dom->dim);
2463 if (isl_int_is_zero(dom->div[div][0]))
2464 return -1;
2465 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
2466 return -1;
2468 for (i = 0; i < bmap->n_div; ++i) {
2469 if (isl_int_is_zero(bmap->div[i][0]))
2470 continue;
2471 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
2472 (b_dim - d_dim) + bmap->n_div) != -1)
2473 continue;
2474 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
2475 return i;
2477 return -1;
2480 /* The correspondence between the variables in the main tableau,
2481 * the context tableau, and the input map and domain is as follows.
2482 * The first n_param and the last n_div variables of the main tableau
2483 * form the variables of the context tableau.
2484 * In the basic map, these n_param variables correspond to the
2485 * parameters and the input dimensions. In the domain, they correspond
2486 * to the parameters and the set dimensions.
2487 * The n_div variables correspond to the integer divisions in the domain.
2488 * To ensure that everything lines up, we may need to copy some of the
2489 * integer divisions of the domain to the map. These have to be placed
2490 * in the same order as those in the context and they have to be placed
2491 * after any other integer divisions that the map may have.
2492 * This function performs the required reordering.
2494 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
2495 struct isl_basic_set *dom)
2497 int i;
2498 int common = 0;
2499 int other;
2501 for (i = 0; i < dom->n_div; ++i)
2502 if (find_context_div(bmap, dom, i) != -1)
2503 common++;
2504 other = bmap->n_div - common;
2505 if (dom->n_div - common > 0) {
2506 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
2507 dom->n_div - common, 0, 0);
2508 if (!bmap)
2509 return NULL;
2511 for (i = 0; i < dom->n_div; ++i) {
2512 int pos = find_context_div(bmap, dom, i);
2513 if (pos < 0) {
2514 pos = isl_basic_map_alloc_div(bmap);
2515 if (pos < 0)
2516 goto error;
2517 isl_int_set_si(bmap->div[pos][0], 0);
2519 if (pos != other + i)
2520 isl_basic_map_swap_div(bmap, pos, other + i);
2522 return bmap;
2523 error:
2524 isl_basic_map_free(bmap);
2525 return NULL;
2528 /* Compute the lexicographic minimum (or maximum if "max" is set)
2529 * of "bmap" over the domain "dom" and return the result as a map.
2530 * If "empty" is not NULL, then *empty is assigned a set that
2531 * contains those parts of the domain where there is no solution.
2532 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
2533 * then we compute the rational optimum. Otherwise, we compute
2534 * the integral optimum.
2536 * We perform some preprocessing. As the PILP solver does not
2537 * handle implicit equalities very well, we first make sure all
2538 * the equalities are explicitly available.
2539 * We also make sure the divs in the domain are properly order,
2540 * because they will be added one by one in the given order
2541 * during the construction of the solution map.
2543 struct isl_map *isl_tab_basic_map_partial_lexopt(
2544 struct isl_basic_map *bmap, struct isl_basic_set *dom,
2545 struct isl_set **empty, int max)
2547 struct isl_tab *tab;
2548 struct isl_map *result = NULL;
2549 struct isl_sol_map *sol_map = NULL;
2551 if (empty)
2552 *empty = NULL;
2553 if (!bmap || !dom)
2554 goto error;
2556 isl_assert(bmap->ctx,
2557 isl_basic_map_compatible_domain(bmap, dom), goto error);
2559 bmap = isl_basic_map_detect_equalities(bmap);
2561 if (dom->n_div) {
2562 dom = isl_basic_set_order_divs(dom);
2563 bmap = align_context_divs(bmap, dom);
2565 sol_map = sol_map_init(bmap, dom, !!empty, max);
2566 if (!sol_map)
2567 goto error;
2569 if (isl_basic_set_fast_is_empty(sol_map->sol.context_tab->bset))
2570 /* nothing */;
2571 else if (isl_basic_map_fast_is_empty(bmap))
2572 sol_map = add_empty(sol_map);
2573 else {
2574 tab = tab_for_lexmin(bmap,
2575 sol_map->sol.context_tab->bset, 1, max);
2576 tab = tab_detect_nonnegative_parameters(tab,
2577 sol_map->sol.context_tab);
2578 sol_map = sol_map_find_solutions(sol_map, tab);
2579 if (!sol_map)
2580 goto error;
2583 result = isl_map_copy(sol_map->map);
2584 if (empty)
2585 *empty = isl_set_copy(sol_map->empty);
2586 sol_map_free(sol_map);
2587 isl_basic_map_free(bmap);
2588 return result;
2589 error:
2590 sol_map_free(sol_map);
2591 isl_basic_map_free(bmap);
2592 return NULL;