isl_lp.c: add missing include
[isl.git] / isl_tab_pip.c
blobcd901eb92c738c9300c61325b1c6cc5f10039db8
1 #include "isl_map_private.h"
2 #include "isl_seq.h"
3 #include "isl_tab.h"
5 /*
6 * The implementation of parametric integer linear programming in this file
7 * was inspired by the paper "Parametric Integer Programming" and the
8 * report "Solving systems of affine (in)equalities" by Paul Feautrier
9 * (and others).
11 * The strategy used for obtaining a feasible solution is different
12 * from the one used in isl_tab.c. In particular, in isl_tab.c,
13 * upon finding a constraint that is not yet satisfied, we pivot
14 * in a row that increases the constant term of row holding the
15 * constraint, making sure the sample solution remains feasible
16 * for all the constraints it already satisfied.
17 * Here, we always pivot in the row holding the constraint,
18 * choosing a column that induces the lexicographically smallest
19 * increment to the sample solution.
21 * By starting out from a sample value that is lexicographically
22 * smaller than any integer point in the problem space, the first
23 * feasible integer sample point we find will also be the lexicographically
24 * smallest. If all variables can be assumed to be non-negative,
25 * then the initial sample value may be chosen equal to zero.
26 * However, we will not make this assumption. Instead, we apply
27 * the "big parameter" trick. Any variable x is then not directly
28 * used in the tableau, but instead it its represented by another
29 * variable x' = M + x, where M is an arbitrarily large (positive)
30 * value. x' is therefore always non-negative, whatever the value of x.
31 * Taking as initial smaple value x' = 0 corresponds to x = -M,
32 * which is always smaller than any possible value of x.
34 * We use the big parameter trick both in the main tableau and
35 * the context tableau, each of course having its own big parameter.
36 * Before doing any real work, we check if all the parameters
37 * happen to be non-negative. If so, we drop the column corresponding
38 * to M from the initial context tableau.
41 /* isl_sol is an interface for constructing a solution to
42 * a parametric integer linear programming problem.
43 * Every time the algorithm reaches a state where a solution
44 * can be read off from the tableau (including cases where the tableau
45 * is empty), the function "add" is called on the isl_sol passed
46 * to find_solutions_main.
48 * The context tableau is owned by isl_sol and is updated incrementally.
50 * There is currently only one implementation of this interface,
51 * isl_sol_map, which simply collects the solutions in an isl_map
52 * and (optionally) the parts of the context where there is no solution
53 * in an isl_set.
55 struct isl_sol {
56 struct isl_tab *context_tab;
57 struct isl_sol *(*add)(struct isl_sol *sol, struct isl_tab *tab);
58 void (*free)(struct isl_sol *sol);
61 static void sol_free(struct isl_sol *sol)
63 if (!sol)
64 return;
65 sol->free(sol);
68 struct isl_sol_map {
69 struct isl_sol sol;
70 struct isl_map *map;
71 struct isl_set *empty;
72 int max;
75 static void sol_map_free(struct isl_sol_map *sol_map)
77 isl_tab_free(sol_map->sol.context_tab);
78 isl_map_free(sol_map->map);
79 isl_set_free(sol_map->empty);
80 free(sol_map);
83 static void sol_map_free_wrap(struct isl_sol *sol)
85 sol_map_free((struct isl_sol_map *)sol);
88 static struct isl_sol_map *add_empty(struct isl_sol_map *sol)
90 struct isl_basic_set *bset;
92 if (!sol->empty)
93 return sol;
94 sol->empty = isl_set_grow(sol->empty, 1);
95 bset = isl_basic_set_copy(sol->sol.context_tab->bset);
96 bset = isl_basic_set_simplify(bset);
97 bset = isl_basic_set_finalize(bset);
98 sol->empty = isl_set_add(sol->empty, bset);
99 if (!sol->empty)
100 goto error;
101 return sol;
102 error:
103 sol_map_free(sol);
104 return NULL;
107 /* Add the solution identified by the tableau and the context tableau.
109 * The layout of the variables is as follows.
110 * tab->n_var is equal to the total number of variables in the input
111 * map (including divs that were copied from the context)
112 * + the number of extra divs constructed
113 * Of these, the first tab->n_param and the last tab->n_div variables
114 * correspond to the variables in the context, i.e.,
115 tab->n_param + tab->n_div = context_tab->n_var
116 * tab->n_param is equal to the number of parameters and input
117 * dimensions in the input map
118 * tab->n_div is equal to the number of divs in the context
120 * If there is no solution, then the basic set corresponding to the
121 * context tableau is added to the set "empty".
123 * Otherwise, a basic map is constructed with the same parameters
124 * and divs as the context, the dimensions of the context as input
125 * dimensions and a number of output dimensions that is equal to
126 * the number of output dimensions in the input map.
127 * The divs in the input map (if any) that do not correspond to any
128 * div in the context do not appear in the solution.
129 * The algorithm will make sure that they have an integer value,
130 * but these values themselves are of no interest.
132 * The constraints and divs of the context are simply copied
133 * fron context_tab->bset.
134 * To extract the value of the output variables, it should be noted
135 * that we always use a big parameter M and so the variable stored
136 * in the tableau is not an output variable x itself, but
137 * x' = M + x (in case of minimization)
138 * or
139 * x' = M - x (in case of maximization)
140 * If x' appears in a column, then its optimal value is zero,
141 * which means that the optimal value of x is an unbounded number
142 * (-M for minimization and M for maximization).
143 * We currently assume that the output dimensions in the original map
144 * are bounded, so this cannot occur.
145 * Similarly, when x' appears in a row, then the coefficient of M in that
146 * row is necessarily 1.
147 * If the row represents
148 * d x' = c + d M + e(y)
149 * then, in case of minimization, an equality
150 * c + e(y) - d x' = 0
151 * is added, and in case of maximization,
152 * c + e(y) + d x' = 0
154 static struct isl_sol_map *sol_map_add(struct isl_sol_map *sol,
155 struct isl_tab *tab)
157 int i;
158 struct isl_basic_map *bmap = NULL;
159 struct isl_tab *context_tab;
160 unsigned n_eq;
161 unsigned n_ineq;
162 unsigned nparam;
163 unsigned total;
164 unsigned n_div;
165 unsigned n_out;
166 unsigned off;
168 if (!sol || !tab)
169 goto error;
171 if (tab->empty)
172 return add_empty(sol);
174 context_tab = sol->sol.context_tab;
175 off = 2 + tab->M;
176 n_out = isl_map_dim(sol->map, isl_dim_out);
177 n_eq = context_tab->bset->n_eq + n_out;
178 n_ineq = context_tab->bset->n_ineq;
179 nparam = tab->n_param;
180 total = isl_map_dim(sol->map, isl_dim_all);
181 bmap = isl_basic_map_alloc_dim(isl_map_get_dim(sol->map),
182 tab->n_div, n_eq, 2 * tab->n_div + n_ineq);
183 if (!bmap)
184 goto error;
185 n_div = tab->n_div;
186 if (tab->rational)
187 ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL);
188 for (i = 0; i < context_tab->bset->n_div; ++i) {
189 int k = isl_basic_map_alloc_div(bmap);
190 if (k < 0)
191 goto error;
192 isl_seq_cpy(bmap->div[k],
193 context_tab->bset->div[i], 1 + 1 + nparam);
194 isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam);
195 isl_seq_cpy(bmap->div[k] + 1 + 1 + total,
196 context_tab->bset->div[i] + 1 + 1 + nparam, i);
198 for (i = 0; i < context_tab->bset->n_eq; ++i) {
199 int k = isl_basic_map_alloc_equality(bmap);
200 if (k < 0)
201 goto error;
202 isl_seq_cpy(bmap->eq[k], context_tab->bset->eq[i], 1 + nparam);
203 isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam);
204 isl_seq_cpy(bmap->eq[k] + 1 + total,
205 context_tab->bset->eq[i] + 1 + nparam, n_div);
207 for (i = 0; i < context_tab->bset->n_ineq; ++i) {
208 int k = isl_basic_map_alloc_inequality(bmap);
209 if (k < 0)
210 goto error;
211 isl_seq_cpy(bmap->ineq[k],
212 context_tab->bset->ineq[i], 1 + nparam);
213 isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam);
214 isl_seq_cpy(bmap->ineq[k] + 1 + total,
215 context_tab->bset->ineq[i] + 1 + nparam, n_div);
217 for (i = tab->n_param; i < total; ++i) {
218 int k = isl_basic_map_alloc_equality(bmap);
219 if (k < 0)
220 goto error;
221 isl_seq_clr(bmap->eq[k] + 1, isl_basic_map_total_dim(bmap));
222 if (!tab->var[i].is_row) {
223 /* no unbounded */
224 isl_assert(bmap->ctx, !tab->M, goto error);
225 isl_int_set_si(bmap->eq[k][0], 0);
226 if (sol->max)
227 isl_int_set_si(bmap->eq[k][1 + i], 1);
228 else
229 isl_int_set_si(bmap->eq[k][1 + i], -1);
230 } else {
231 int row, j;
232 row = tab->var[i].index;
233 /* no unbounded */
234 if (tab->M)
235 isl_assert(bmap->ctx,
236 isl_int_eq(tab->mat->row[row][2],
237 tab->mat->row[row][0]),
238 goto error);
239 isl_int_set(bmap->eq[k][0], tab->mat->row[row][1]);
240 for (j = 0; j < tab->n_param; ++j) {
241 int col;
242 if (tab->var[j].is_row)
243 continue;
244 col = tab->var[j].index;
245 isl_int_set(bmap->eq[k][1 + j],
246 tab->mat->row[row][off + col]);
248 for (j = 0; j < tab->n_div; ++j) {
249 int col;
250 if (tab->var[tab->n_var - tab->n_div+j].is_row)
251 continue;
252 col = tab->var[tab->n_var - tab->n_div+j].index;
253 isl_int_set(bmap->eq[k][1 + total + j],
254 tab->mat->row[row][off + col]);
256 if (sol->max)
257 isl_int_set(bmap->eq[k][1 + i],
258 tab->mat->row[row][0]);
259 else
260 isl_int_neg(bmap->eq[k][1 + i],
261 tab->mat->row[row][0]);
264 bmap = isl_basic_map_gauss(bmap, NULL);
265 bmap = isl_basic_map_normalize_constraints(bmap);
266 bmap = isl_basic_map_finalize(bmap);
267 sol->map = isl_map_grow(sol->map, 1);
268 sol->map = isl_map_add(sol->map, bmap);
269 if (!sol->map)
270 goto error;
271 return sol;
272 error:
273 isl_basic_map_free(bmap);
274 sol_free(&sol->sol);
275 return NULL;
278 static struct isl_sol *sol_map_add_wrap(struct isl_sol *sol,
279 struct isl_tab *tab)
281 return (struct isl_sol *)sol_map_add((struct isl_sol_map *)sol, tab);
285 static struct isl_basic_set *isl_basic_set_add_ineq(struct isl_basic_set *bset,
286 isl_int *ineq)
288 int k;
290 bset = isl_basic_set_extend_constraints(bset, 0, 1);
291 if (!bset)
292 return NULL;
293 k = isl_basic_set_alloc_inequality(bset);
294 if (k < 0)
295 goto error;
296 isl_seq_cpy(bset->ineq[k], ineq, 1 + isl_basic_set_total_dim(bset));
297 return bset;
298 error:
299 isl_basic_set_free(bset);
300 return NULL;
303 static struct isl_basic_set *isl_basic_set_add_eq(struct isl_basic_set *bset,
304 isl_int *eq)
306 int k;
308 bset = isl_basic_set_extend_constraints(bset, 1, 0);
309 if (!bset)
310 return NULL;
311 k = isl_basic_set_alloc_equality(bset);
312 if (k < 0)
313 goto error;
314 isl_seq_cpy(bset->eq[k], eq, 1 + isl_basic_set_total_dim(bset));
315 return bset;
316 error:
317 isl_basic_set_free(bset);
318 return NULL;
322 /* Store the "parametric constant" of row "row" of tableau "tab" in "line",
323 * i.e., the constant term and the coefficients of all variables that
324 * appear in the context tableau.
325 * Note that the coefficient of the big parameter M is NOT copied.
326 * The context tableau may not have a big parameter and even when it
327 * does, it is a different big parameter.
329 static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line)
331 int i;
332 unsigned off = 2 + tab->M;
334 isl_int_set(line[0], tab->mat->row[row][1]);
335 for (i = 0; i < tab->n_param; ++i) {
336 if (tab->var[i].is_row)
337 isl_int_set_si(line[1 + i], 0);
338 else {
339 int col = tab->var[i].index;
340 isl_int_set(line[1 + i], tab->mat->row[row][off + col]);
343 for (i = 0; i < tab->n_div; ++i) {
344 if (tab->var[tab->n_var - tab->n_div + i].is_row)
345 isl_int_set_si(line[1 + tab->n_param + i], 0);
346 else {
347 int col = tab->var[tab->n_var - tab->n_div + i].index;
348 isl_int_set(line[1 + tab->n_param + i],
349 tab->mat->row[row][off + col]);
354 /* Check if rows "row1" and "row2" have identical "parametric constants",
355 * as explained above.
356 * In this case, we also insist that the coefficients of the big parameter
357 * be the same as the values of the constants will only be the same
358 * if these coefficients are also the same.
360 static int identical_parameter_line(struct isl_tab *tab, int row1, int row2)
362 int i;
363 unsigned off = 2 + tab->M;
365 if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1]))
366 return 0;
368 if (tab->M && isl_int_ne(tab->mat->row[row1][2],
369 tab->mat->row[row2][2]))
370 return 0;
372 for (i = 0; i < tab->n_param + tab->n_div; ++i) {
373 int pos = i < tab->n_param ? i :
374 tab->n_var - tab->n_div + i - tab->n_param;
375 int col;
377 if (tab->var[pos].is_row)
378 continue;
379 col = tab->var[pos].index;
380 if (isl_int_ne(tab->mat->row[row1][off + col],
381 tab->mat->row[row2][off + col]))
382 return 0;
384 return 1;
387 /* Return an inequality that expresses that the "parametric constant"
388 * should be non-negative.
389 * This function is only called when the coefficient of the big parameter
390 * is equal to zero.
392 static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row)
394 struct isl_vec *ineq;
396 ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div);
397 if (!ineq)
398 return NULL;
400 get_row_parameter_line(tab, row, ineq->el);
401 if (ineq)
402 ineq = isl_vec_normalize(ineq);
404 return ineq;
407 /* Return a integer division for use in a parametric cut based on the given row.
408 * In particular, let the parametric constant of the row be
410 * \sum_i a_i y_i
412 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
413 * The div returned is equal to
415 * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d)
417 static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row)
419 struct isl_vec *div;
421 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
422 if (!div)
423 return NULL;
425 isl_int_set(div->el[0], tab->mat->row[row][0]);
426 get_row_parameter_line(tab, row, div->el + 1);
427 div = isl_vec_normalize(div);
428 isl_seq_neg(div->el + 1, div->el + 1, div->size - 1);
429 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
431 return div;
434 /* Return a integer division for use in transferring an integrality constraint
435 * to the context.
436 * In particular, let the parametric constant of the row be
438 * \sum_i a_i y_i
440 * where y_0 = 1, but none of the y_i corresponds to the big parameter M.
441 * The the returned div is equal to
443 * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d)
445 static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row)
447 struct isl_vec *div;
449 div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div);
450 if (!div)
451 return NULL;
453 isl_int_set(div->el[0], tab->mat->row[row][0]);
454 get_row_parameter_line(tab, row, div->el + 1);
455 div = isl_vec_normalize(div);
456 isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1);
458 return div;
461 /* Construct and return an inequality that expresses an upper bound
462 * on the given div.
463 * In particular, if the div is given by
465 * d = floor(e/m)
467 * then the inequality expresses
469 * m d <= e
471 static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div)
473 unsigned total;
474 unsigned div_pos;
475 struct isl_vec *ineq;
477 total = isl_basic_set_total_dim(bset);
478 div_pos = 1 + total - bset->n_div + div;
480 ineq = isl_vec_alloc(bset->ctx, 1 + total);
481 if (!ineq)
482 return NULL;
484 isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total);
485 isl_int_neg(ineq->el[div_pos], bset->div[div][0]);
486 return ineq;
489 /* Given a row in the tableau and a div that was created
490 * using get_row_split_div and that been constrained to equality, i.e.,
492 * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i
494 * replace the expression "\sum_i {a_i} y_i" in the row by d,
495 * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d.
496 * The coefficients of the non-parameters in the tableau have been
497 * verified to be integral. We can therefore simply replace coefficient b
498 * by floor(b). For the coefficients of the parameters we have
499 * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have
500 * floor(b) = b.
502 static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div)
504 int col;
505 unsigned off = 2 + tab->M;
507 isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
508 tab->mat->row[row][0], 1 + tab->M + tab->n_col);
510 isl_int_set_si(tab->mat->row[row][0], 1);
512 isl_assert(tab->mat->ctx,
513 !tab->var[tab->n_var - tab->n_div + div].is_row, goto error);
515 col = tab->var[tab->n_var - tab->n_div + div].index;
516 isl_int_set_si(tab->mat->row[row][off + col], 1);
518 return tab;
519 error:
520 isl_tab_free(tab);
521 return NULL;
524 /* Check if the (parametric) constant of the given row is obviously
525 * negative, meaning that we don't need to consult the context tableau.
526 * If there is a big parameter and its coefficient is non-zero,
527 * then this coefficient determines the outcome.
528 * Otherwise, we check whether the constant is negative and
529 * all non-zero coefficients of parameters are negative and
530 * belong to non-negative parameters.
532 static int is_obviously_neg(struct isl_tab *tab, int row)
534 int i;
535 int col;
536 unsigned off = 2 + tab->M;
538 if (tab->M) {
539 if (isl_int_is_pos(tab->mat->row[row][2]))
540 return 0;
541 if (isl_int_is_neg(tab->mat->row[row][2]))
542 return 1;
545 if (isl_int_is_nonneg(tab->mat->row[row][1]))
546 return 0;
547 for (i = 0; i < tab->n_param; ++i) {
548 /* Eliminated parameter */
549 if (tab->var[i].is_row)
550 continue;
551 col = tab->var[i].index;
552 if (isl_int_is_zero(tab->mat->row[row][off + col]))
553 continue;
554 if (!tab->var[i].is_nonneg)
555 return 0;
556 if (isl_int_is_pos(tab->mat->row[row][off + col]))
557 return 0;
559 for (i = 0; i < tab->n_div; ++i) {
560 if (tab->var[tab->n_var - tab->n_div + i].is_row)
561 continue;
562 col = tab->var[tab->n_var - tab->n_div + i].index;
563 if (isl_int_is_zero(tab->mat->row[row][off + col]))
564 continue;
565 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
566 return 0;
567 if (isl_int_is_pos(tab->mat->row[row][off + col]))
568 return 0;
570 return 1;
573 /* Check if the (parametric) constant of the given row is obviously
574 * non-negative, meaning that we don't need to consult the context tableau.
575 * If there is a big parameter and its coefficient is non-zero,
576 * then this coefficient determines the outcome.
577 * Otherwise, we check whether the constant is non-negative and
578 * all non-zero coefficients of parameters are positive and
579 * belong to non-negative parameters.
581 static int is_obviously_nonneg(struct isl_tab *tab, int row)
583 int i;
584 int col;
585 unsigned off = 2 + tab->M;
587 if (tab->M) {
588 if (isl_int_is_pos(tab->mat->row[row][2]))
589 return 1;
590 if (isl_int_is_neg(tab->mat->row[row][2]))
591 return 0;
594 if (isl_int_is_neg(tab->mat->row[row][1]))
595 return 0;
596 for (i = 0; i < tab->n_param; ++i) {
597 /* Eliminated parameter */
598 if (tab->var[i].is_row)
599 continue;
600 col = tab->var[i].index;
601 if (isl_int_is_zero(tab->mat->row[row][off + col]))
602 continue;
603 if (!tab->var[i].is_nonneg)
604 return 0;
605 if (isl_int_is_neg(tab->mat->row[row][off + col]))
606 return 0;
608 for (i = 0; i < tab->n_div; ++i) {
609 if (tab->var[tab->n_var - tab->n_div + i].is_row)
610 continue;
611 col = tab->var[tab->n_var - tab->n_div + i].index;
612 if (isl_int_is_zero(tab->mat->row[row][off + col]))
613 continue;
614 if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg)
615 return 0;
616 if (isl_int_is_neg(tab->mat->row[row][off + col]))
617 return 0;
619 return 1;
622 /* Given a row r and two columns, return the column that would
623 * lead to the lexicographically smallest increment in the sample
624 * solution when leaving the basis in favor of the row.
625 * Pivoting with column c will increment the sample value by a non-negative
626 * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c
627 * corresponding to the non-parametric variables.
628 * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v,
629 * with all other entries in this virtual row equal to zero.
630 * If variable v appears in a row, then a_{v,c} is the element in column c
631 * of that row.
633 * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}.
634 * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e.,
635 * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal
636 * increment. Otherwise, it's c2.
638 static int lexmin_col_pair(struct isl_tab *tab,
639 int row, int col1, int col2, isl_int tmp)
641 int i;
642 isl_int *tr;
644 tr = tab->mat->row[row] + 2 + tab->M;
646 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
647 int s1, s2;
648 isl_int *r;
650 if (!tab->var[i].is_row) {
651 if (tab->var[i].index == col1)
652 return col2;
653 if (tab->var[i].index == col2)
654 return col1;
655 continue;
658 if (tab->var[i].index == row)
659 continue;
661 r = tab->mat->row[tab->var[i].index] + 2 + tab->M;
662 s1 = isl_int_sgn(r[col1]);
663 s2 = isl_int_sgn(r[col2]);
664 if (s1 == 0 && s2 == 0)
665 continue;
666 if (s1 < s2)
667 return col1;
668 if (s2 < s1)
669 return col2;
671 isl_int_mul(tmp, r[col2], tr[col1]);
672 isl_int_submul(tmp, r[col1], tr[col2]);
673 if (isl_int_is_pos(tmp))
674 return col1;
675 if (isl_int_is_neg(tmp))
676 return col2;
678 return -1;
681 /* Given a row in the tableau, find and return the column that would
682 * result in the lexicographically smallest, but positive, increment
683 * in the sample point.
684 * If there is no such column, then return tab->n_col.
685 * If anything goes wrong, return -1.
687 static int lexmin_pivot_col(struct isl_tab *tab, int row)
689 int j;
690 int col = tab->n_col;
691 isl_int *tr;
692 isl_int tmp;
694 tr = tab->mat->row[row] + 2 + tab->M;
696 isl_int_init(tmp);
698 for (j = tab->n_dead; j < tab->n_col; ++j) {
699 if (tab->col_var[j] >= 0 &&
700 (tab->col_var[j] < tab->n_param ||
701 tab->col_var[j] >= tab->n_var - tab->n_div))
702 continue;
704 if (!isl_int_is_pos(tr[j]))
705 continue;
707 if (col == tab->n_col)
708 col = j;
709 else
710 col = lexmin_col_pair(tab, row, col, j, tmp);
711 isl_assert(tab->mat->ctx, col >= 0, goto error);
714 isl_int_clear(tmp);
715 return col;
716 error:
717 isl_int_clear(tmp);
718 return -1;
721 /* Return the first known violated constraint, i.e., a non-negative
722 * contraint that currently has an either obviously negative value
723 * or a previously determined to be negative value.
725 * If any constraint has a negative coefficient for the big parameter,
726 * if any, then we return one of these first.
728 static int first_neg(struct isl_tab *tab)
730 int row;
732 if (tab->M)
733 for (row = tab->n_redundant; row < tab->n_row; ++row) {
734 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
735 continue;
736 if (isl_int_is_neg(tab->mat->row[row][2]))
737 return row;
739 for (row = tab->n_redundant; row < tab->n_row; ++row) {
740 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
741 continue;
742 if (tab->row_sign) {
743 if (tab->row_sign[row] == 0 &&
744 is_obviously_neg(tab, row))
745 tab->row_sign[row] = isl_tab_row_neg;
746 if (tab->row_sign[row] != isl_tab_row_neg)
747 continue;
748 } else if (!is_obviously_neg(tab, row))
749 continue;
750 return row;
752 return -1;
755 /* Resolve all known or obviously violated constraints through pivoting.
756 * In particular, as long as we can find any violated constraint, we
757 * look for a pivoting column that would result in the lexicographicallly
758 * smallest increment in the sample point. If there is no such column
759 * then the tableau is infeasible.
761 static struct isl_tab *restore_lexmin(struct isl_tab *tab)
763 int row, col;
765 if (!tab)
766 return NULL;
767 if (tab->empty)
768 return tab;
769 while ((row = first_neg(tab)) != -1) {
770 col = lexmin_pivot_col(tab, row);
771 if (col >= tab->n_col)
772 return isl_tab_mark_empty(tab);
773 if (col < 0)
774 goto error;
775 isl_tab_pivot(tab, row, col);
777 return tab;
778 error:
779 isl_tab_free(tab);
780 return NULL;
783 /* Given a row that represents an equality, look for an appropriate
784 * pivoting column.
785 * In particular, if there are any non-zero coefficients among
786 * the non-parameter variables, then we take the last of these
787 * variables. Eliminating this variable in terms of the other
788 * variables and/or parameters does not influence the property
789 * that all column in the initial tableau are lexicographically
790 * positive. The row corresponding to the eliminated variable
791 * will only have non-zero entries below the diagonal of the
792 * initial tableau. That is, we transform
794 * I I
795 * 1 into a
796 * I I
798 * If there is no such non-parameter variable, then we are dealing with
799 * pure parameter equality and we pick any parameter with coefficient 1 or -1
800 * for elimination. This will ensure that the eliminated parameter
801 * always has an integer value whenever all the other parameters are integral.
802 * If there is no such parameter then we return -1.
804 static int last_var_col_or_int_par_col(struct isl_tab *tab, int row)
806 unsigned off = 2 + tab->M;
807 int i;
809 for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) {
810 int col;
811 if (tab->var[i].is_row)
812 continue;
813 col = tab->var[i].index;
814 if (col <= tab->n_dead)
815 continue;
816 if (!isl_int_is_zero(tab->mat->row[row][off + col]))
817 return col;
819 for (i = tab->n_dead; i < tab->n_col; ++i) {
820 if (isl_int_is_one(tab->mat->row[row][off + i]))
821 return i;
822 if (isl_int_is_negone(tab->mat->row[row][off + i]))
823 return i;
825 return -1;
828 /* Add an equality that is known to be valid to the tableau.
829 * We first check if we can eliminate a variable or a parameter.
830 * If not, we add the equality as two inequalities.
831 * In this case, the equality was a pure parameter equality and there
832 * is no need to resolve any constraint violations.
834 static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq)
836 int i;
837 int r;
839 if (!tab)
840 return NULL;
841 r = isl_tab_add_row(tab, eq);
842 if (r < 0)
843 goto error;
845 r = tab->con[r].index;
846 i = last_var_col_or_int_par_col(tab, r);
847 if (i < 0) {
848 tab->con[r].is_nonneg = 1;
849 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
850 isl_seq_neg(eq, eq, 1 + tab->n_var);
851 r = isl_tab_add_row(tab, eq);
852 if (r < 0)
853 goto error;
854 tab->con[r].is_nonneg = 1;
855 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
856 } else {
857 isl_tab_pivot(tab, r, i);
858 isl_tab_kill_col(tab, i);
859 tab->n_eq++;
861 tab = restore_lexmin(tab);
864 return tab;
865 error:
866 isl_tab_free(tab);
867 return NULL;
870 /* Check if the given row is a pure constant.
872 static int is_constant(struct isl_tab *tab, int row)
874 unsigned off = 2 + tab->M;
876 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
877 tab->n_col - tab->n_dead) == -1;
880 /* Add an equality that may or may not be valid to the tableau.
881 * If the resulting row is a pure constant, then it must be zero.
882 * Otherwise, the resulting tableau is empty.
884 * If the row is not a pure constant, then we add two inequalities,
885 * each time checking that they can be satisfied.
886 * In the end we try to use one of the two constraints to eliminate
887 * a column.
889 static struct isl_tab *add_lexmin_eq(struct isl_tab *tab, isl_int *eq)
891 int r1, r2;
892 int row;
894 if (!tab)
895 return NULL;
896 if (tab->bset) {
897 tab->bset = isl_basic_set_add_eq(tab->bset, eq);
898 isl_tab_push(tab, isl_tab_undo_bset_eq);
899 if (!tab->bset)
900 goto error;
902 r1 = isl_tab_add_row(tab, eq);
903 if (r1 < 0)
904 goto error;
905 tab->con[r1].is_nonneg = 1;
906 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]);
908 row = tab->con[r1].index;
909 if (is_constant(tab, row)) {
910 if (!isl_int_is_zero(tab->mat->row[row][1]) ||
911 (tab->M && !isl_int_is_zero(tab->mat->row[row][2])))
912 return isl_tab_mark_empty(tab);
913 return tab;
916 tab = restore_lexmin(tab);
917 if (!tab || tab->empty)
918 return tab;
920 isl_seq_neg(eq, eq, 1 + tab->n_var);
922 r2 = isl_tab_add_row(tab, eq);
923 if (r2 < 0)
924 goto error;
925 tab->con[r2].is_nonneg = 1;
926 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]);
928 tab = restore_lexmin(tab);
929 if (!tab || tab->empty)
930 return tab;
932 if (!tab->con[r1].is_row)
933 isl_tab_kill_col(tab, tab->con[r1].index);
934 else if (!tab->con[r2].is_row)
935 isl_tab_kill_col(tab, tab->con[r2].index);
936 else if (isl_int_is_zero(tab->mat->row[tab->con[r1].index][1])) {
937 unsigned off = 2 + tab->M;
938 int i;
939 int row = tab->con[r1].index;
940 i = isl_seq_first_non_zero(tab->mat->row[row]+off+tab->n_dead,
941 tab->n_col - tab->n_dead);
942 if (i != -1) {
943 isl_tab_pivot(tab, row, tab->n_dead + i);
944 isl_tab_kill_col(tab, tab->n_dead + i);
948 return tab;
949 error:
950 isl_tab_free(tab);
951 return NULL;
954 /* Add an inequality to the tableau, resolving violations using
955 * restore_lexmin.
957 static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq)
959 int r;
961 if (!tab)
962 return NULL;
963 if (tab->bset) {
964 tab->bset = isl_basic_set_add_ineq(tab->bset, ineq);
965 isl_tab_push(tab, isl_tab_undo_bset_ineq);
966 if (!tab->bset)
967 goto error;
969 r = isl_tab_add_row(tab, ineq);
970 if (r < 0)
971 goto error;
972 tab->con[r].is_nonneg = 1;
973 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
974 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
975 isl_tab_mark_redundant(tab, tab->con[r].index);
976 return tab;
979 tab = restore_lexmin(tab);
980 if (tab && !tab->empty && tab->con[r].is_row &&
981 isl_tab_row_is_redundant(tab, tab->con[r].index))
982 isl_tab_mark_redundant(tab, tab->con[r].index);
983 return tab;
984 error:
985 isl_tab_free(tab);
986 return NULL;
989 /* Check if the coefficients of the parameters are all integral.
991 static int integer_parameter(struct isl_tab *tab, int row)
993 int i;
994 int col;
995 unsigned off = 2 + tab->M;
997 for (i = 0; i < tab->n_param; ++i) {
998 /* Eliminated parameter */
999 if (tab->var[i].is_row)
1000 continue;
1001 col = tab->var[i].index;
1002 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1003 tab->mat->row[row][0]))
1004 return 0;
1006 for (i = 0; i < tab->n_div; ++i) {
1007 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1008 continue;
1009 col = tab->var[tab->n_var - tab->n_div + i].index;
1010 if (!isl_int_is_divisible_by(tab->mat->row[row][off + col],
1011 tab->mat->row[row][0]))
1012 return 0;
1014 return 1;
1017 /* Check if the coefficients of the non-parameter variables are all integral.
1019 static int integer_variable(struct isl_tab *tab, int row)
1021 int i;
1022 unsigned off = 2 + tab->M;
1024 for (i = 0; i < tab->n_col; ++i) {
1025 if (tab->col_var[i] >= 0 &&
1026 (tab->col_var[i] < tab->n_param ||
1027 tab->col_var[i] >= tab->n_var - tab->n_div))
1028 continue;
1029 if (!isl_int_is_divisible_by(tab->mat->row[row][off + i],
1030 tab->mat->row[row][0]))
1031 return 0;
1033 return 1;
1036 /* Check if the constant term is integral.
1038 static int integer_constant(struct isl_tab *tab, int row)
1040 return isl_int_is_divisible_by(tab->mat->row[row][1],
1041 tab->mat->row[row][0]);
1044 #define I_CST 1 << 0
1045 #define I_PAR 1 << 1
1046 #define I_VAR 1 << 2
1048 /* Check for first (non-parameter) variable that is non-integer and
1049 * therefore requires a cut.
1050 * For parametric tableaus, there are three parts in a row,
1051 * the constant, the coefficients of the parameters and the rest.
1052 * For each part, we check whether the coefficients in that part
1053 * are all integral and if so, set the corresponding flag in *f.
1054 * If the constant and the parameter part are integral, then the
1055 * current sample value is integral and no cut is required
1056 * (irrespective of whether the variable part is integral).
1058 static int first_non_integer(struct isl_tab *tab, int *f)
1060 int i;
1062 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1063 int flags = 0;
1064 int row;
1065 if (!tab->var[i].is_row)
1066 continue;
1067 row = tab->var[i].index;
1068 if (integer_constant(tab, row))
1069 ISL_FL_SET(flags, I_CST);
1070 if (integer_parameter(tab, row))
1071 ISL_FL_SET(flags, I_PAR);
1072 if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR))
1073 continue;
1074 if (integer_variable(tab, row))
1075 ISL_FL_SET(flags, I_VAR);
1076 *f = flags;
1077 return row;
1079 return -1;
1082 /* Add a (non-parametric) cut to cut away the non-integral sample
1083 * value of the given row.
1085 * If the row is given by
1087 * m r = f + \sum_i a_i y_i
1089 * then the cut is
1091 * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0
1093 * The big parameter, if any, is ignored, since it is assumed to be big
1094 * enough to be divisible by any integer.
1095 * If the tableau is actually a parametric tableau, then this function
1096 * is only called when all coefficients of the parameters are integral.
1097 * The cut therefore has zero coefficients for the parameters.
1099 * The current value is known to be negative, so row_sign, if it
1100 * exists, is set accordingly.
1102 * Return the row of the cut or -1.
1104 static int add_cut(struct isl_tab *tab, int row)
1106 int i;
1107 int r;
1108 isl_int *r_row;
1109 unsigned off = 2 + tab->M;
1111 if (isl_tab_extend_cons(tab, 1) < 0)
1112 return -1;
1113 r = isl_tab_allocate_con(tab);
1114 if (r < 0)
1115 return -1;
1117 r_row = tab->mat->row[tab->con[r].index];
1118 isl_int_set(r_row[0], tab->mat->row[row][0]);
1119 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1120 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1121 isl_int_neg(r_row[1], r_row[1]);
1122 if (tab->M)
1123 isl_int_set_si(r_row[2], 0);
1124 for (i = 0; i < tab->n_col; ++i)
1125 isl_int_fdiv_r(r_row[off + i],
1126 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1128 tab->con[r].is_nonneg = 1;
1129 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1130 if (tab->row_sign)
1131 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1133 return tab->con[r].index;
1136 /* Given a non-parametric tableau, add cuts until an integer
1137 * sample point is obtained or until the tableau is determined
1138 * to be integer infeasible.
1139 * As long as there is any non-integer value in the sample point,
1140 * we add an appropriate cut, if possible and resolve the violated
1141 * cut constraint using restore_lexmin.
1142 * If one of the corresponding rows is equal to an integral
1143 * combination of variables/constraints plus a non-integral constant,
1144 * then there is no way to obtain an integer point an we return
1145 * a tableau that is marked empty.
1147 static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab)
1149 int row;
1150 int flags;
1152 if (!tab)
1153 return NULL;
1154 if (tab->empty)
1155 return tab;
1157 while ((row = first_non_integer(tab, &flags)) != -1) {
1158 if (ISL_FL_ISSET(flags, I_VAR))
1159 return isl_tab_mark_empty(tab);
1160 row = add_cut(tab, row);
1161 if (row < 0)
1162 goto error;
1163 tab = restore_lexmin(tab);
1164 if (!tab || tab->empty)
1165 break;
1167 return tab;
1168 error:
1169 isl_tab_free(tab);
1170 return NULL;
1173 static struct isl_tab *drop_sample(struct isl_tab *tab, int s)
1175 if (s != tab->n_outside)
1176 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
1177 tab->n_outside++;
1178 isl_tab_push(tab, isl_tab_undo_drop_sample);
1180 return tab;
1183 /* Check whether all the currently active samples also satisfy the inequality
1184 * "ineq" (treated as an equality if eq is set).
1185 * Remove those samples that do not.
1187 static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq)
1189 int i;
1190 isl_int v;
1192 if (!tab)
1193 return NULL;
1195 isl_assert(tab->mat->ctx, tab->bset, goto error);
1196 isl_assert(tab->mat->ctx, tab->samples, goto error);
1197 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
1199 isl_int_init(v);
1200 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1201 int sgn;
1202 isl_seq_inner_product(ineq, tab->samples->row[i],
1203 1 + tab->n_var, &v);
1204 sgn = isl_int_sgn(v);
1205 if (eq ? (sgn == 0) : (sgn >= 0))
1206 continue;
1207 tab = drop_sample(tab, i);
1208 if (!tab)
1209 break;
1211 isl_int_clear(v);
1213 return tab;
1214 error:
1215 isl_tab_free(tab);
1216 return NULL;
1219 /* Check whether the sample value of the tableau is finite,
1220 * i.e., either the tableau does not use a big parameter, or
1221 * all values of the variables are equal to the big parameter plus
1222 * some constant. This constant is the actual sample value.
1224 int sample_is_finite(struct isl_tab *tab)
1226 int i;
1228 if (!tab->M)
1229 return 1;
1231 for (i = 0; i < tab->n_var; ++i) {
1232 int row;
1233 if (!tab->var[i].is_row)
1234 return 0;
1235 row = tab->var[i].index;
1236 if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2]))
1237 return 0;
1239 return 1;
1242 /* Check if the context tableau of sol has any integer points.
1243 * Returns -1 if an error occurred.
1244 * If an integer point can be found and if moreover it is finite,
1245 * then it is added to the list of sample values.
1247 * This function is only called when none of the currently active sample
1248 * values satisfies the most recently added constraint.
1250 static int context_is_feasible(struct isl_sol *sol)
1252 struct isl_tab_undo *snap;
1253 struct isl_tab *tab;
1254 int feasible;
1256 if (!sol || !sol->context_tab)
1257 return -1;
1259 snap = isl_tab_snap(sol->context_tab);
1260 isl_tab_push_basis(sol->context_tab);
1262 sol->context_tab = cut_to_integer_lexmin(sol->context_tab);
1263 if (!sol->context_tab)
1264 goto error;
1266 tab = sol->context_tab;
1267 if (!tab->empty && sample_is_finite(tab)) {
1268 struct isl_vec *sample;
1270 tab->samples = isl_mat_extend(tab->samples,
1271 tab->n_sample + 1, tab->samples->n_col);
1272 if (!tab->samples)
1273 goto error;
1275 sample = isl_tab_get_sample_value(tab);
1276 if (!sample)
1277 goto error;
1278 isl_seq_cpy(tab->samples->row[tab->n_sample],
1279 sample->el, sample->size);
1280 isl_vec_free(sample);
1281 tab->n_sample++;
1284 feasible = !sol->context_tab->empty;
1285 if (isl_tab_rollback(sol->context_tab, snap) < 0)
1286 goto error;
1288 return feasible;
1289 error:
1290 isl_tab_free(sol->context_tab);
1291 sol->context_tab = NULL;
1292 return -1;
1295 /* First check if any of the currently active sample values satisfies
1296 * the inequality "ineq" (an equality if eq is set).
1297 * If not, continue with check_integer_feasible.
1299 static int context_valid_sample_or_feasible(struct isl_sol *sol,
1300 isl_int *ineq, int eq)
1302 int i;
1303 isl_int v;
1304 struct isl_tab *tab;
1306 if (!sol || !sol->context_tab)
1307 return -1;
1309 tab = sol->context_tab;
1310 isl_assert(tab->mat->ctx, tab->bset, return -1);
1311 isl_assert(tab->mat->ctx, tab->samples, return -1);
1312 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1);
1314 isl_int_init(v);
1315 for (i = tab->n_outside; i < tab->n_sample; ++i) {
1316 int sgn;
1317 isl_seq_inner_product(ineq, tab->samples->row[i],
1318 1 + tab->n_var, &v);
1319 sgn = isl_int_sgn(v);
1320 if (eq ? (sgn == 0) : (sgn >= 0))
1321 break;
1323 isl_int_clear(v);
1325 if (i < tab->n_sample)
1326 return 1;
1328 return context_is_feasible(sol);
1331 /* For a div d = floor(f/m), add the constraints
1333 * f - m d >= 0
1334 * -(f-(m-1)) + m d >= 0
1336 * Note that the second constraint is the negation of
1338 * f - m d >= m
1340 static struct isl_tab *add_div_constraints(struct isl_tab *tab, unsigned div)
1342 unsigned total;
1343 unsigned div_pos;
1344 struct isl_vec *ineq;
1346 if (!tab)
1347 return NULL;
1349 total = isl_basic_set_total_dim(tab->bset);
1350 div_pos = 1 + total - tab->bset->n_div + div;
1352 ineq = ineq_for_div(tab->bset, div);
1353 if (!ineq)
1354 goto error;
1356 tab = add_lexmin_ineq(tab, ineq->el);
1358 isl_seq_neg(ineq->el, tab->bset->div[div] + 1, 1 + total);
1359 isl_int_set(ineq->el[div_pos], tab->bset->div[div][0]);
1360 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
1361 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1362 tab = add_lexmin_ineq(tab, ineq->el);
1364 isl_vec_free(ineq);
1366 return tab;
1367 error:
1368 isl_tab_free(tab);
1369 return NULL;
1372 /* Add a div specified by "div" to both the main tableau and
1373 * the context tableau. In case of the main tableau, we only
1374 * need to add an extra div. In the context tableau, we also
1375 * need to express the meaning of the div.
1376 * Return the index of the div or -1 if anything went wrong.
1378 static int add_div(struct isl_tab *tab, struct isl_tab **context_tab,
1379 struct isl_vec *div)
1381 int i;
1382 int r;
1383 int k;
1384 struct isl_mat *samples;
1386 if (isl_tab_extend_vars(*context_tab, 1) < 0)
1387 goto error;
1388 r = isl_tab_allocate_var(*context_tab);
1389 if (r < 0)
1390 goto error;
1391 (*context_tab)->var[r].is_nonneg = 1;
1392 (*context_tab)->var[r].frozen = 1;
1394 samples = isl_mat_extend((*context_tab)->samples,
1395 (*context_tab)->n_sample, 1 + (*context_tab)->n_var);
1396 (*context_tab)->samples = samples;
1397 if (!samples)
1398 goto error;
1399 for (i = (*context_tab)->n_outside; i < samples->n_row; ++i) {
1400 isl_seq_inner_product(div->el + 1, samples->row[i],
1401 div->size - 1, &samples->row[i][samples->n_col - 1]);
1402 isl_int_fdiv_q(samples->row[i][samples->n_col - 1],
1403 samples->row[i][samples->n_col - 1], div->el[0]);
1406 (*context_tab)->bset = isl_basic_set_extend_dim((*context_tab)->bset,
1407 isl_basic_set_get_dim((*context_tab)->bset), 1, 0, 2);
1408 k = isl_basic_set_alloc_div((*context_tab)->bset);
1409 if (k < 0)
1410 goto error;
1411 isl_seq_cpy((*context_tab)->bset->div[k], div->el, div->size);
1412 isl_tab_push((*context_tab), isl_tab_undo_bset_div);
1413 *context_tab = add_div_constraints(*context_tab, k);
1414 if (!*context_tab)
1415 goto error;
1417 if (isl_tab_extend_vars(tab, 1) < 0)
1418 goto error;
1419 r = isl_tab_allocate_var(tab);
1420 if (r < 0)
1421 goto error;
1422 if (!(*context_tab)->M)
1423 tab->var[r].is_nonneg = 1;
1424 tab->var[r].frozen = 1;
1425 tab->n_div++;
1427 return tab->n_div - 1;
1428 error:
1429 isl_tab_free(*context_tab);
1430 *context_tab = NULL;
1431 return -1;
1434 static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom)
1436 int i;
1437 unsigned total = isl_basic_set_total_dim(tab->bset);
1439 for (i = 0; i < tab->bset->n_div; ++i) {
1440 if (isl_int_ne(tab->bset->div[i][0], denom))
1441 continue;
1442 if (!isl_seq_eq(tab->bset->div[i] + 1, div, total))
1443 continue;
1444 return i;
1446 return -1;
1449 /* Return the index of a div that corresponds to "div".
1450 * We first check if we already have such a div and if not, we create one.
1452 static int get_div(struct isl_tab *tab, struct isl_tab **context_tab,
1453 struct isl_vec *div)
1455 int d;
1457 d = find_div(*context_tab, div->el + 1, div->el[0]);
1458 if (d != -1)
1459 return d;
1461 return add_div(tab, context_tab, div);
1464 /* Add a parametric cut to cut away the non-integral sample value
1465 * of the give row.
1466 * Let a_i be the coefficients of the constant term and the parameters
1467 * and let b_i be the coefficients of the variables or constraints
1468 * in basis of the tableau.
1469 * Let q be the div q = floor(\sum_i {-a_i} y_i).
1471 * The cut is expressed as
1473 * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0
1475 * If q did not already exist in the context tableau, then it is added first.
1476 * If q is in a column of the main tableau then the "+ q" can be accomplished
1477 * by setting the corresponding entry to the denominator of the constraint.
1478 * If q happens to be in a row of the main tableau, then the corresponding
1479 * row needs to be added instead (taking care of the denominators).
1480 * Note that this is very unlikely, but perhaps not entirely impossible.
1482 * The current value of the cut is known to be negative (or at least
1483 * non-positive), so row_sign is set accordingly.
1485 * Return the row of the cut or -1.
1487 static int add_parametric_cut(struct isl_tab *tab, int row,
1488 struct isl_tab **context_tab)
1490 struct isl_vec *div;
1491 int d;
1492 int i;
1493 int r;
1494 isl_int *r_row;
1495 int col;
1496 unsigned off = 2 + tab->M;
1498 if (!*context_tab)
1499 goto error;
1501 if (isl_tab_extend_cons(*context_tab, 3) < 0)
1502 goto error;
1504 div = get_row_parameter_div(tab, row);
1505 if (!div)
1506 return -1;
1508 d = get_div(tab, context_tab, div);
1509 if (d < 0)
1510 goto error;
1512 if (isl_tab_extend_cons(tab, 1) < 0)
1513 return -1;
1514 r = isl_tab_allocate_con(tab);
1515 if (r < 0)
1516 return -1;
1518 r_row = tab->mat->row[tab->con[r].index];
1519 isl_int_set(r_row[0], tab->mat->row[row][0]);
1520 isl_int_neg(r_row[1], tab->mat->row[row][1]);
1521 isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]);
1522 isl_int_neg(r_row[1], r_row[1]);
1523 if (tab->M)
1524 isl_int_set_si(r_row[2], 0);
1525 for (i = 0; i < tab->n_param; ++i) {
1526 if (tab->var[i].is_row)
1527 continue;
1528 col = tab->var[i].index;
1529 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1530 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1531 tab->mat->row[row][0]);
1532 isl_int_neg(r_row[off + col], r_row[off + col]);
1534 for (i = 0; i < tab->n_div; ++i) {
1535 if (tab->var[tab->n_var - tab->n_div + i].is_row)
1536 continue;
1537 col = tab->var[tab->n_var - tab->n_div + i].index;
1538 isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]);
1539 isl_int_fdiv_r(r_row[off + col], r_row[off + col],
1540 tab->mat->row[row][0]);
1541 isl_int_neg(r_row[off + col], r_row[off + col]);
1543 for (i = 0; i < tab->n_col; ++i) {
1544 if (tab->col_var[i] >= 0 &&
1545 (tab->col_var[i] < tab->n_param ||
1546 tab->col_var[i] >= tab->n_var - tab->n_div))
1547 continue;
1548 isl_int_fdiv_r(r_row[off + i],
1549 tab->mat->row[row][off + i], tab->mat->row[row][0]);
1551 if (tab->var[tab->n_var - tab->n_div + d].is_row) {
1552 isl_int gcd;
1553 int d_row = tab->var[tab->n_var - tab->n_div + d].index;
1554 isl_int_init(gcd);
1555 isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]);
1556 isl_int_divexact(r_row[0], r_row[0], gcd);
1557 isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd);
1558 isl_seq_combine(r_row + 1, gcd, r_row + 1,
1559 r_row[0], tab->mat->row[d_row] + 1,
1560 off - 1 + tab->n_col);
1561 isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]);
1562 isl_int_clear(gcd);
1563 } else {
1564 col = tab->var[tab->n_var - tab->n_div + d].index;
1565 isl_int_set(r_row[off + col], tab->mat->row[row][0]);
1568 tab->con[r].is_nonneg = 1;
1569 isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]);
1570 if (tab->row_sign)
1571 tab->row_sign[tab->con[r].index] = isl_tab_row_neg;
1573 isl_vec_free(div);
1575 return tab->con[r].index;
1576 error:
1577 isl_tab_free(*context_tab);
1578 *context_tab = NULL;
1579 return -1;
1582 /* Construct a tableau for bmap that can be used for computing
1583 * the lexicographic minimum (or maximum) of bmap.
1584 * If not NULL, then dom is the domain where the minimum
1585 * should be computed. In this case, we set up a parametric
1586 * tableau with row signs (initialized to "unknown").
1587 * If M is set, then the tableau will use a big parameter.
1588 * If max is set, then a maximum should be computed instead of a minimum.
1589 * This means that for each variable x, the tableau will contain the variable
1590 * x' = M - x, rather than x' = M + x. This in turn means that the coefficient
1591 * of the variables in all constraints are negated prior to adding them
1592 * to the tableau.
1594 static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap,
1595 struct isl_basic_set *dom, unsigned M, int max)
1597 int i;
1598 struct isl_tab *tab;
1600 tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1,
1601 isl_basic_map_total_dim(bmap), M);
1602 if (!tab)
1603 return NULL;
1605 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1606 if (dom) {
1607 tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div;
1608 tab->n_div = dom->n_div;
1609 tab->row_sign = isl_calloc_array(bmap->ctx,
1610 enum isl_tab_row_sign, tab->mat->n_row);
1611 if (!tab->row_sign)
1612 goto error;
1614 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1615 return isl_tab_mark_empty(tab);
1617 for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) {
1618 tab->var[i].is_nonneg = 1;
1619 tab->var[i].frozen = 1;
1621 for (i = 0; i < bmap->n_eq; ++i) {
1622 if (max)
1623 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1624 bmap->eq[i] + 1 + tab->n_param,
1625 tab->n_var - tab->n_param - tab->n_div);
1626 tab = add_lexmin_valid_eq(tab, bmap->eq[i]);
1627 if (max)
1628 isl_seq_neg(bmap->eq[i] + 1 + tab->n_param,
1629 bmap->eq[i] + 1 + tab->n_param,
1630 tab->n_var - tab->n_param - tab->n_div);
1631 if (!tab || tab->empty)
1632 return tab;
1634 for (i = 0; i < bmap->n_ineq; ++i) {
1635 if (max)
1636 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1637 bmap->ineq[i] + 1 + tab->n_param,
1638 tab->n_var - tab->n_param - tab->n_div);
1639 tab = add_lexmin_ineq(tab, bmap->ineq[i]);
1640 if (max)
1641 isl_seq_neg(bmap->ineq[i] + 1 + tab->n_param,
1642 bmap->ineq[i] + 1 + tab->n_param,
1643 tab->n_var - tab->n_param - tab->n_div);
1644 if (!tab || tab->empty)
1645 return tab;
1647 return tab;
1648 error:
1649 isl_tab_free(tab);
1650 return NULL;
1653 static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset)
1655 struct isl_tab *tab;
1657 bset = isl_basic_set_cow(bset);
1658 if (!bset)
1659 return NULL;
1660 tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0);
1661 if (!tab)
1662 goto error;
1663 tab->bset = bset;
1664 tab->n_sample = 0;
1665 tab->n_outside = 0;
1666 tab->samples = isl_mat_alloc(bset->ctx, 1, 1 + tab->n_var);
1667 if (!tab->samples)
1668 goto error;
1669 return tab;
1670 error:
1671 isl_basic_set_free(bset);
1672 return NULL;
1675 /* Construct an isl_sol_map structure for accumulating the solution.
1676 * If track_empty is set, then we also keep track of the parts
1677 * of the context where there is no solution.
1678 * If max is set, then we are solving a maximization, rather than
1679 * a minimization problem, which means that the variables in the
1680 * tableau have value "M - x" rather than "M + x".
1682 static struct isl_sol_map *sol_map_init(struct isl_basic_map *bmap,
1683 struct isl_basic_set *dom, int track_empty, int max)
1685 struct isl_sol_map *sol_map;
1686 struct isl_tab *context_tab;
1687 int f;
1689 sol_map = isl_calloc_type(bset->ctx, struct isl_sol_map);
1690 if (!sol_map)
1691 goto error;
1693 sol_map->max = max;
1694 sol_map->sol.add = &sol_map_add_wrap;
1695 sol_map->sol.free = &sol_map_free_wrap;
1696 sol_map->map = isl_map_alloc_dim(isl_basic_map_get_dim(bmap), 1,
1697 ISL_MAP_DISJOINT);
1698 if (!sol_map->map)
1699 goto error;
1701 context_tab = context_tab_for_lexmin(isl_basic_set_copy(dom));
1702 context_tab = restore_lexmin(context_tab);
1703 sol_map->sol.context_tab = context_tab;
1704 f = context_is_feasible(&sol_map->sol);
1705 if (f < 0)
1706 goto error;
1708 if (track_empty) {
1709 sol_map->empty = isl_set_alloc_dim(isl_basic_set_get_dim(dom),
1710 1, ISL_SET_DISJOINT);
1711 if (!sol_map->empty)
1712 goto error;
1715 isl_basic_set_free(dom);
1716 return sol_map;
1717 error:
1718 isl_basic_set_free(dom);
1719 sol_map_free(sol_map);
1720 return NULL;
1723 /* For each variable in the context tableau, check if the variable can
1724 * only attain non-negative values. If so, mark the parameter as non-negative
1725 * in the main tableau. This allows for a more direct identification of some
1726 * cases of violated constraints.
1728 static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab,
1729 struct isl_tab *context_tab)
1731 int i;
1732 struct isl_tab_undo *snap, *snap2;
1733 struct isl_vec *ineq = NULL;
1734 struct isl_tab_var *var;
1735 int n;
1737 if (context_tab->n_var == 0)
1738 return tab;
1740 ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var);
1741 if (!ineq)
1742 goto error;
1744 if (isl_tab_extend_cons(context_tab, 1) < 0)
1745 goto error;
1747 snap = isl_tab_snap(context_tab);
1748 isl_tab_push_basis(context_tab);
1750 snap2 = isl_tab_snap(context_tab);
1752 n = 0;
1753 isl_seq_clr(ineq->el, ineq->size);
1754 for (i = 0; i < context_tab->n_var; ++i) {
1755 isl_int_set_si(ineq->el[1 + i], 1);
1756 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
1757 var = &context_tab->con[context_tab->n_con - 1];
1758 if (!context_tab->empty &&
1759 !isl_tab_min_at_most_neg_one(context_tab, var)) {
1760 int j = i;
1761 if (i >= tab->n_param)
1762 j = i - tab->n_param + tab->n_var - tab->n_div;
1763 tab->var[j].is_nonneg = 1;
1764 n++;
1766 isl_int_set_si(ineq->el[1 + i], 0);
1767 if (isl_tab_rollback(context_tab, snap2) < 0)
1768 goto error;
1771 if (isl_tab_rollback(context_tab, snap) < 0)
1772 goto error;
1774 if (n == context_tab->n_var) {
1775 context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1);
1776 context_tab->M = 0;
1779 isl_vec_free(ineq);
1780 return tab;
1781 error:
1782 isl_vec_free(ineq);
1783 isl_tab_free(tab);
1784 return NULL;
1787 /* Check whether all coefficients of (non-parameter) variables
1788 * are non-positive, meaning that no pivots can be performed on the row.
1790 static int is_critical(struct isl_tab *tab, int row)
1792 int j;
1793 unsigned off = 2 + tab->M;
1795 for (j = tab->n_dead; j < tab->n_col; ++j) {
1796 if (tab->col_var[j] >= 0 &&
1797 (tab->col_var[j] < tab->n_param ||
1798 tab->col_var[j] >= tab->n_var - tab->n_div))
1799 continue;
1801 if (isl_int_is_pos(tab->mat->row[row][off + j]))
1802 return 0;
1805 return 1;
1808 /* Check whether the inequality represented by vec is strict over the integers,
1809 * i.e., there are no integer values satisfying the constraint with
1810 * equality. This happens if the gcd of the coefficients is not a divisor
1811 * of the constant term. If so, scale the constraint down by the gcd
1812 * of the coefficients.
1814 static int is_strict(struct isl_vec *vec)
1816 isl_int gcd;
1817 int strict = 0;
1819 isl_int_init(gcd);
1820 isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd);
1821 if (!isl_int_is_one(gcd)) {
1822 strict = !isl_int_is_divisible_by(vec->el[0], gcd);
1823 isl_int_fdiv_q(vec->el[0], vec->el[0], gcd);
1824 isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1);
1826 isl_int_clear(gcd);
1828 return strict;
1831 /* Determine the sign of the given row of the main tableau.
1832 * The result is one of
1833 * isl_tab_row_pos: always non-negative; no pivot needed
1834 * isl_tab_row_neg: always non-positive; pivot
1835 * isl_tab_row_any: can be both positive and negative; split
1837 * We first handle some simple cases
1838 * - the row sign may be known already
1839 * - the row may be obviously non-negative
1840 * - the parametric constant may be equal to that of another row
1841 * for which we know the sign. This sign will be either "pos" or
1842 * "any". If it had been "neg" then we would have pivoted before.
1844 * If none of these cases hold, we check the value of the row for each
1845 * of the currently active samples. Based on the signs of these values
1846 * we make an initial determination of the sign of the row.
1848 * all zero -> unk(nown)
1849 * all non-negative -> pos
1850 * all non-positive -> neg
1851 * both negative and positive -> all
1853 * If we end up with "all", we are done.
1854 * Otherwise, we perform a check for positive and/or negative
1855 * values as follows.
1857 * samples neg unk pos
1858 * <0 ? Y N Y N
1859 * pos any pos
1860 * >0 ? Y N Y N
1861 * any neg any neg
1863 * There is no special sign for "zero", because we can usually treat zero
1864 * as either non-negative or non-positive, whatever works out best.
1865 * However, if the row is "critical", meaning that pivoting is impossible
1866 * then we don't want to limp zero with the non-positive case, because
1867 * then we we would lose the solution for those values of the parameters
1868 * where the value of the row is zero. Instead, we treat 0 as non-negative
1869 * ensuring a split if the row can attain both zero and negative values.
1870 * The same happens when the original constraint was one that could not
1871 * be satisfied with equality by any integer values of the parameters.
1872 * In this case, we normalize the constraint, but then a value of zero
1873 * for the normalized constraint is actually a positive value for the
1874 * original constraint, so again we need to treat zero as non-negative.
1875 * In both these cases, we have the following decision tree instead:
1877 * all non-negative -> pos
1878 * all negative -> neg
1879 * both negative and non-negative -> all
1881 * samples neg pos
1882 * <0 ? Y N
1883 * any pos
1884 * >=0 ? Y N
1885 * any neg
1887 static int row_sign(struct isl_tab *tab, struct isl_sol *sol, int row)
1889 int i;
1890 struct isl_tab_undo *snap = NULL;
1891 struct isl_vec *ineq = NULL;
1892 int res = isl_tab_row_unknown;
1893 int critical;
1894 int strict;
1895 int sgn;
1896 int row2;
1897 isl_int tmp;
1898 struct isl_tab *context_tab = sol->context_tab;
1900 if (tab->row_sign[row] != isl_tab_row_unknown)
1901 return tab->row_sign[row];
1902 if (is_obviously_nonneg(tab, row))
1903 return isl_tab_row_pos;
1904 for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) {
1905 if (tab->row_sign[row2] == isl_tab_row_unknown)
1906 continue;
1907 if (identical_parameter_line(tab, row, row2))
1908 return tab->row_sign[row2];
1911 critical = is_critical(tab, row);
1913 isl_assert(tab->mat->ctx, context_tab->samples, goto error);
1914 isl_assert(tab->mat->ctx, context_tab->samples->n_col == 1 + context_tab->n_var, goto error);
1916 ineq = get_row_parameter_ineq(tab, row);
1917 if (!ineq)
1918 goto error;
1920 strict = is_strict(ineq);
1922 isl_int_init(tmp);
1923 for (i = context_tab->n_outside; i < context_tab->n_sample; ++i) {
1924 isl_seq_inner_product(context_tab->samples->row[i], ineq->el,
1925 ineq->size, &tmp);
1926 sgn = isl_int_sgn(tmp);
1927 if (sgn > 0 || (sgn == 0 && (critical || strict))) {
1928 if (res == isl_tab_row_unknown)
1929 res = isl_tab_row_pos;
1930 if (res == isl_tab_row_neg)
1931 res = isl_tab_row_any;
1933 if (sgn < 0) {
1934 if (res == isl_tab_row_unknown)
1935 res = isl_tab_row_neg;
1936 if (res == isl_tab_row_pos)
1937 res = isl_tab_row_any;
1939 if (res == isl_tab_row_any)
1940 break;
1942 isl_int_clear(tmp);
1944 if (res != isl_tab_row_any) {
1945 if (isl_tab_extend_cons(context_tab, 1) < 0)
1946 goto error;
1948 snap = isl_tab_snap(context_tab);
1949 isl_tab_push_basis(context_tab);
1952 if (res == isl_tab_row_unknown || res == isl_tab_row_pos) {
1953 /* test for negative values */
1954 int feasible;
1955 isl_seq_neg(ineq->el, ineq->el, ineq->size);
1956 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1958 isl_tab_push_basis(context_tab);
1959 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
1960 feasible = context_is_feasible(sol);
1961 if (feasible < 0)
1962 goto error;
1963 context_tab = sol->context_tab;
1964 if (!feasible)
1965 res = isl_tab_row_pos;
1966 else
1967 res = (res == isl_tab_row_unknown) ? isl_tab_row_neg
1968 : isl_tab_row_any;
1969 if (isl_tab_rollback(context_tab, snap) < 0)
1970 goto error;
1972 if (res == isl_tab_row_neg) {
1973 isl_seq_neg(ineq->el, ineq->el, ineq->size);
1974 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1978 if (res == isl_tab_row_neg) {
1979 /* test for positive values */
1980 int feasible;
1981 if (!critical && !strict)
1982 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
1984 isl_tab_push_basis(context_tab);
1985 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
1986 feasible = context_is_feasible(sol);
1987 if (feasible < 0)
1988 goto error;
1989 context_tab = sol->context_tab;
1990 if (feasible)
1991 res = isl_tab_row_any;
1992 if (isl_tab_rollback(context_tab, snap) < 0)
1993 goto error;
1996 isl_vec_free(ineq);
1997 return res;
1998 error:
1999 isl_vec_free(ineq);
2000 return 0;
2003 static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab);
2005 /* Find solutions for values of the parameters that satisfy the given
2006 * inequality.
2008 * We currently take a snapshot of the context tableau that is reset
2009 * when we return from this function, while we make a copy of the main
2010 * tableau, leaving the original main tableau untouched.
2011 * These are fairly arbitrary choices. Making a copy also of the context
2012 * tableau would obviate the need to undo any changes made to it later,
2013 * while taking a snapshot of the main tableau could reduce memory usage.
2014 * If we were to switch to taking a snapshot of the main tableau,
2015 * we would have to keep in mind that we need to save the row signs
2016 * and that we need to do this before saving the current basis
2017 * such that the basis has been restore before we restore the row signs.
2019 static struct isl_sol *find_in_pos(struct isl_sol *sol,
2020 struct isl_tab *tab, isl_int *ineq)
2022 struct isl_tab_undo *snap;
2024 snap = isl_tab_snap(sol->context_tab);
2025 isl_tab_push_basis(sol->context_tab);
2026 if (isl_tab_extend_cons(sol->context_tab, 1) < 0)
2027 goto error;
2029 tab = isl_tab_dup(tab);
2030 if (!tab)
2031 goto error;
2033 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq);
2034 sol->context_tab = check_samples(sol->context_tab, ineq, 0);
2036 sol = find_solutions(sol, tab);
2038 isl_tab_rollback(sol->context_tab, snap);
2039 return sol;
2040 error:
2041 isl_tab_rollback(sol->context_tab, snap);
2042 sol_free(sol);
2043 return NULL;
2046 /* Record the absence of solutions for those values of the parameters
2047 * that do not satisfy the given inequality with equality.
2049 static struct isl_sol *no_sol_in_strict(struct isl_sol *sol,
2050 struct isl_tab *tab, struct isl_vec *ineq)
2052 int empty;
2053 int f;
2054 struct isl_tab_undo *snap;
2055 snap = isl_tab_snap(sol->context_tab);
2056 isl_tab_push_basis(sol->context_tab);
2057 if (isl_tab_extend_cons(sol->context_tab, 1) < 0)
2058 goto error;
2060 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2062 sol->context_tab = add_lexmin_ineq(sol->context_tab, ineq->el);
2063 f = context_valid_sample_or_feasible(sol, ineq->el, 0);
2064 if (f < 0)
2065 goto error;
2067 empty = tab->empty;
2068 tab->empty = 1;
2069 sol = sol->add(sol, tab);
2070 tab->empty = empty;
2072 isl_int_add_ui(ineq->el[0], ineq->el[0], 1);
2074 if (isl_tab_rollback(sol->context_tab, snap) < 0)
2075 goto error;
2076 return sol;
2077 error:
2078 sol_free(sol);
2079 return NULL;
2082 /* Given a main tableau where more than one row requires a split,
2083 * determine and return the "best" row to split on.
2085 * Given two rows in the main tableau, if the inequality corresponding
2086 * to the first row is redundant with respect to that of the second row
2087 * in the current tableau, then it is better to split on the second row,
2088 * since in the positive part, both row will be positive.
2089 * (In the negative part a pivot will have to be performed and just about
2090 * anything can happen to the sign of the other row.)
2092 * As a simple heuristic, we therefore select the row that makes the most
2093 * of the other rows redundant.
2095 * Perhaps it would also be useful to look at the number of constraints
2096 * that conflict with any given constraint.
2098 static int best_split(struct isl_tab *tab, struct isl_tab *context_tab)
2100 struct isl_tab_undo *snap, *snap2;
2101 int split;
2102 int row;
2103 int best = -1;
2104 int best_r;
2106 if (isl_tab_extend_cons(context_tab, 2) < 0)
2107 return -1;
2109 snap = isl_tab_snap(context_tab);
2110 isl_tab_push_basis(context_tab);
2111 snap2 = isl_tab_snap(context_tab);
2113 for (split = tab->n_redundant; split < tab->n_row; ++split) {
2114 struct isl_tab_undo *snap3;
2115 struct isl_vec *ineq = NULL;
2116 int r = 0;
2118 if (!isl_tab_var_from_row(tab, split)->is_nonneg)
2119 continue;
2120 if (tab->row_sign[split] != isl_tab_row_any)
2121 continue;
2123 ineq = get_row_parameter_ineq(tab, split);
2124 if (!ineq)
2125 return -1;
2126 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
2127 isl_vec_free(ineq);
2129 snap3 = isl_tab_snap(context_tab);
2131 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2132 struct isl_tab_var *var;
2134 if (row == split)
2135 continue;
2136 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2137 continue;
2138 if (tab->row_sign[row] != isl_tab_row_any)
2139 continue;
2141 ineq = get_row_parameter_ineq(tab, row);
2142 if (!ineq)
2143 return -1;
2144 context_tab = isl_tab_add_ineq(context_tab, ineq->el);
2145 isl_vec_free(ineq);
2146 var = &context_tab->con[context_tab->n_con - 1];
2147 if (!context_tab->empty &&
2148 !isl_tab_min_at_most_neg_one(context_tab, var))
2149 r++;
2150 if (isl_tab_rollback(context_tab, snap3) < 0)
2151 return -1;
2153 if (best == -1 || r > best_r) {
2154 best = split;
2155 best_r = r;
2157 if (isl_tab_rollback(context_tab, snap2) < 0)
2158 return -1;
2161 if (isl_tab_rollback(context_tab, snap) < 0)
2162 return -1;
2164 return best;
2167 /* Compute the lexicographic minimum of the set represented by the main
2168 * tableau "tab" within the context "sol->context_tab".
2169 * On entry the sample value of the main tableau is lexicographically
2170 * less than or equal to this lexicographic minimum.
2171 * Pivots are performed until a feasible point is found, which is then
2172 * necessarily equal to the minimum, or until the tableau is found to
2173 * be infeasible. Some pivots may need to be performed for only some
2174 * feasible values of the context tableau. If so, the context tableau
2175 * is split into a part where the pivot is needed and a part where it is not.
2177 * Whenever we enter the main loop, the main tableau is such that no
2178 * "obvious" pivots need to be performed on it, where "obvious" means
2179 * that the given row can be seen to be negative without looking at
2180 * the context tableau. In particular, for non-parametric problems,
2181 * no pivots need to be performed on the main tableau.
2182 * The caller of find_solutions is responsible for making this property
2183 * hold prior to the first iteration of the loop, while restore_lexmin
2184 * is called before every other iteration.
2186 * Inside the main loop, we first examine the signs of the rows of
2187 * the main tableau within the context of the context tableau.
2188 * If we find a row that is always non-positive for all values of
2189 * the parameters satisfying the context tableau and negative for at
2190 * least one value of the parameters, we perform the appropriate pivot
2191 * and start over. An exception is the case where no pivot can be
2192 * performed on the row. In this case, we require that the sign of
2193 * the row is negative for all values of the parameters (rather than just
2194 * non-positive). This special case is handled inside row_sign, which
2195 * will say that the row can have any sign if it determines that it can
2196 * attain both negative and zero values.
2198 * If we can't find a row that always requires a pivot, but we can find
2199 * one or more rows that require a pivot for some values of the parameters
2200 * (i.e., the row can attain both positive and negative signs), then we split
2201 * the context tableau into two parts, one where we force the sign to be
2202 * non-negative and one where we force is to be negative.
2203 * The non-negative part is handled by a recursive call (through find_in_pos).
2204 * Upon returning from this call, we continue with the negative part and
2205 * perform the required pivot.
2207 * If no such rows can be found, all rows are non-negative and we have
2208 * found a (rational) feasible point. If we only wanted a rational point
2209 * then we are done.
2210 * Otherwise, we check if all values of the sample point of the tableau
2211 * are integral for the variables. If so, we have found the minimal
2212 * integral point and we are done.
2213 * If the sample point is not integral, then we need to make a distinction
2214 * based on whether the constant term is non-integral or the coefficients
2215 * of the parameters. Furthermore, in order to decide how to handle
2216 * the non-integrality, we also need to know whether the coefficients
2217 * of the other columns in the tableau are integral. This leads
2218 * to the following table. The first two rows do not correspond
2219 * to a non-integral sample point and are only mentioned for completeness.
2221 * constant parameters other
2223 * int int int |
2224 * int int rat | -> no problem
2226 * rat int int -> fail
2228 * rat int rat -> cut
2230 * int rat rat |
2231 * rat rat rat | -> parametric cut
2233 * int rat int |
2234 * rat rat int | -> split context
2236 * If the parametric constant is completely integral, then there is nothing
2237 * to be done. If the constant term is non-integral, but all the other
2238 * coefficient are integral, then there is nothing that can be done
2239 * and the tableau has no integral solution.
2240 * If, on the other hand, one or more of the other columns have rational
2241 * coeffcients, but the parameter coefficients are all integral, then
2242 * we can perform a regular (non-parametric) cut.
2243 * Finally, if there is any parameter coefficient that is non-integral,
2244 * then we need to involve the context tableau. There are two cases here.
2245 * If at least one other column has a rational coefficient, then we
2246 * can perform a parametric cut in the main tableau by adding a new
2247 * integer division in the context tableau.
2248 * If all other columns have integral coefficients, then we need to
2249 * enforce that the rational combination of parameters (c + \sum a_i y_i)/m
2250 * is always integral. We do this by introducing an integer division
2251 * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should
2252 * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i.
2253 * Since q is expressed in the tableau as
2254 * c + \sum a_i y_i - m q >= 0
2255 * -c - \sum a_i y_i + m q + m - 1 >= 0
2256 * it is sufficient to add the inequality
2257 * -c - \sum a_i y_i + m q >= 0
2258 * In the part of the context where this inequality does not hold, the
2259 * main tableau is marked as being empty.
2261 static struct isl_sol *find_solutions(struct isl_sol *sol, struct isl_tab *tab)
2263 struct isl_tab **context_tab;
2265 if (!tab || !sol)
2266 goto error;
2268 context_tab = &sol->context_tab;
2270 if (tab->empty)
2271 goto done;
2272 if ((*context_tab)->empty)
2273 goto done;
2275 for (; tab && !tab->empty; tab = restore_lexmin(tab)) {
2276 int flags;
2277 int row;
2278 int sgn;
2279 int split = -1;
2280 int n_split = 0;
2282 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2283 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2284 continue;
2285 sgn = row_sign(tab, sol, row);
2286 if (!sgn)
2287 goto error;
2288 tab->row_sign[row] = sgn;
2289 if (sgn == isl_tab_row_any)
2290 n_split++;
2291 if (sgn == isl_tab_row_any && split == -1)
2292 split = row;
2293 if (sgn == isl_tab_row_neg)
2294 break;
2296 if (row < tab->n_row)
2297 continue;
2298 if (split != -1) {
2299 struct isl_vec *ineq;
2300 if (n_split != 1)
2301 split = best_split(tab, *context_tab);
2302 if (split < 0)
2303 goto error;
2304 ineq = get_row_parameter_ineq(tab, split);
2305 if (!ineq)
2306 goto error;
2307 is_strict(ineq);
2308 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2309 if (!isl_tab_var_from_row(tab, row)->is_nonneg)
2310 continue;
2311 if (tab->row_sign[row] == isl_tab_row_any)
2312 tab->row_sign[row] = isl_tab_row_unknown;
2314 tab->row_sign[split] = isl_tab_row_pos;
2315 sol = find_in_pos(sol, tab, ineq->el);
2316 tab->row_sign[split] = isl_tab_row_neg;
2317 row = split;
2318 isl_seq_neg(ineq->el, ineq->el, ineq->size);
2319 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2320 *context_tab = add_lexmin_ineq(*context_tab, ineq->el);
2321 *context_tab = check_samples(*context_tab, ineq->el, 0);
2322 isl_vec_free(ineq);
2323 if (!sol)
2324 goto error;
2325 continue;
2327 if (tab->rational)
2328 break;
2329 row = first_non_integer(tab, &flags);
2330 if (row < 0)
2331 break;
2332 if (ISL_FL_ISSET(flags, I_PAR)) {
2333 if (ISL_FL_ISSET(flags, I_VAR)) {
2334 tab = isl_tab_mark_empty(tab);
2335 break;
2337 row = add_cut(tab, row);
2338 } else if (ISL_FL_ISSET(flags, I_VAR)) {
2339 struct isl_vec *div;
2340 struct isl_vec *ineq;
2341 int d;
2342 if (isl_tab_extend_cons(*context_tab, 3) < 0)
2343 goto error;
2344 div = get_row_split_div(tab, row);
2345 if (!div)
2346 goto error;
2347 d = get_div(tab, context_tab, div);
2348 isl_vec_free(div);
2349 if (d < 0)
2350 goto error;
2351 ineq = ineq_for_div((*context_tab)->bset, d);
2352 sol = no_sol_in_strict(sol, tab, ineq);
2353 isl_seq_neg(ineq->el, ineq->el, ineq->size);
2354 *context_tab = add_lexmin_ineq(*context_tab, ineq->el);
2355 *context_tab = check_samples(*context_tab, ineq->el, 0);
2356 isl_vec_free(ineq);
2357 if (!sol)
2358 goto error;
2359 tab = set_row_cst_to_div(tab, row, d);
2360 } else
2361 row = add_parametric_cut(tab, row, context_tab);
2362 if (row < 0)
2363 goto error;
2365 done:
2366 sol = sol->add(sol, tab);
2367 isl_tab_free(tab);
2368 return sol;
2369 error:
2370 isl_tab_free(tab);
2371 sol_free(sol);
2372 return NULL;
2375 /* Compute the lexicographic minimum of the set represented by the main
2376 * tableau "tab" within the context "sol->context_tab".
2378 * As a preprocessing step, we first transfer all the purely parametric
2379 * equalities from the main tableau to the context tableau, i.e.,
2380 * parameters that have been pivoted to a row.
2381 * These equalities are ignored by the main algorithm, because the
2382 * corresponding rows may not be marked as being non-negative.
2383 * In parts of the context where the added equality does not hold,
2384 * the main tableau is marked as being empty.
2386 static struct isl_sol *find_solutions_main(struct isl_sol *sol,
2387 struct isl_tab *tab)
2389 int row;
2391 for (row = tab->n_redundant; row < tab->n_row; ++row) {
2392 int p;
2393 struct isl_vec *eq;
2395 if (tab->row_var[row] < 0)
2396 continue;
2397 if (tab->row_var[row] >= tab->n_param &&
2398 tab->row_var[row] < tab->n_var - tab->n_div)
2399 continue;
2400 if (tab->row_var[row] < tab->n_param)
2401 p = tab->row_var[row];
2402 else
2403 p = tab->row_var[row]
2404 + tab->n_param - (tab->n_var - tab->n_div);
2406 if (isl_tab_extend_cons(sol->context_tab, 2) < 0)
2407 goto error;
2409 eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div);
2410 get_row_parameter_line(tab, row, eq->el);
2411 isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]);
2412 eq = isl_vec_normalize(eq);
2414 sol = no_sol_in_strict(sol, tab, eq);
2416 isl_seq_neg(eq->el, eq->el, eq->size);
2417 sol = no_sol_in_strict(sol, tab, eq);
2418 isl_seq_neg(eq->el, eq->el, eq->size);
2420 sol->context_tab = add_lexmin_eq(sol->context_tab, eq->el);
2421 context_valid_sample_or_feasible(sol, eq->el, 1);
2422 sol->context_tab = check_samples(sol->context_tab, eq->el, 1);
2424 isl_vec_free(eq);
2426 isl_tab_mark_redundant(tab, row);
2428 if (!sol->context_tab)
2429 goto error;
2430 if (sol->context_tab->empty)
2431 break;
2433 row = tab->n_redundant - 1;
2436 return find_solutions(sol, tab);
2437 error:
2438 isl_tab_free(tab);
2439 sol_free(sol);
2440 return NULL;
2443 static struct isl_sol_map *sol_map_find_solutions(struct isl_sol_map *sol_map,
2444 struct isl_tab *tab)
2446 return (struct isl_sol_map *)find_solutions_main(&sol_map->sol, tab);
2449 /* Check if integer division "div" of "dom" also occurs in "bmap".
2450 * If so, return its position within the divs.
2451 * If not, return -1.
2453 static int find_context_div(struct isl_basic_map *bmap,
2454 struct isl_basic_set *dom, unsigned div)
2456 int i;
2457 unsigned b_dim = isl_dim_total(bmap->dim);
2458 unsigned d_dim = isl_dim_total(dom->dim);
2460 if (isl_int_is_zero(dom->div[div][0]))
2461 return -1;
2462 if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1)
2463 return -1;
2465 for (i = 0; i < bmap->n_div; ++i) {
2466 if (isl_int_is_zero(bmap->div[i][0]))
2467 continue;
2468 if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim,
2469 (b_dim - d_dim) + bmap->n_div) != -1)
2470 continue;
2471 if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim))
2472 return i;
2474 return -1;
2477 /* The correspondence between the variables in the main tableau,
2478 * the context tableau, and the input map and domain is as follows.
2479 * The first n_param and the last n_div variables of the main tableau
2480 * form the variables of the context tableau.
2481 * In the basic map, these n_param variables correspond to the
2482 * parameters and the input dimensions. In the domain, they correspond
2483 * to the parameters and the set dimensions.
2484 * The n_div variables correspond to the integer divisions in the domain.
2485 * To ensure that everything lines up, we may need to copy some of the
2486 * integer divisions of the domain to the map. These have to be placed
2487 * in the same order as those in the context and they have to be placed
2488 * after any other integer divisions that the map may have.
2489 * This function performs the required reordering.
2491 static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap,
2492 struct isl_basic_set *dom)
2494 int i;
2495 int common = 0;
2496 int other;
2498 for (i = 0; i < dom->n_div; ++i)
2499 if (find_context_div(bmap, dom, i) != -1)
2500 common++;
2501 other = bmap->n_div - common;
2502 if (dom->n_div - common > 0) {
2503 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim),
2504 dom->n_div - common, 0, 0);
2505 if (!bmap)
2506 return NULL;
2508 for (i = 0; i < dom->n_div; ++i) {
2509 int pos = find_context_div(bmap, dom, i);
2510 if (pos < 0) {
2511 pos = isl_basic_map_alloc_div(bmap);
2512 if (pos < 0)
2513 goto error;
2514 isl_int_set_si(bmap->div[pos][0], 0);
2516 if (pos != other + i)
2517 isl_basic_map_swap_div(bmap, pos, other + i);
2519 return bmap;
2520 error:
2521 isl_basic_map_free(bmap);
2522 return NULL;
2525 /* Compute the lexicographic minimum (or maximum if "max" is set)
2526 * of "bmap" over the domain "dom" and return the result as a map.
2527 * If "empty" is not NULL, then *empty is assigned a set that
2528 * contains those parts of the domain where there is no solution.
2529 * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL),
2530 * then we compute the rational optimum. Otherwise, we compute
2531 * the integral optimum.
2533 * We perform some preprocessing. As the PILP solver does not
2534 * handle implicit equalities very well, we first make sure all
2535 * the equalities are explicitly available.
2536 * We also make sure the divs in the domain are properly order,
2537 * because they will be added one by one in the given order
2538 * during the construction of the solution map.
2540 struct isl_map *isl_tab_basic_map_partial_lexopt(
2541 struct isl_basic_map *bmap, struct isl_basic_set *dom,
2542 struct isl_set **empty, int max)
2544 struct isl_tab *tab;
2545 struct isl_map *result = NULL;
2546 struct isl_sol_map *sol_map = NULL;
2548 if (empty)
2549 *empty = NULL;
2550 if (!bmap || !dom)
2551 goto error;
2553 isl_assert(bmap->ctx,
2554 isl_basic_map_compatible_domain(bmap, dom), goto error);
2556 bmap = isl_basic_map_detect_equalities(bmap);
2558 if (dom->n_div) {
2559 dom = isl_basic_set_order_divs(dom);
2560 bmap = align_context_divs(bmap, dom);
2562 sol_map = sol_map_init(bmap, dom, !!empty, max);
2563 if (!sol_map)
2564 goto error;
2566 if (isl_basic_set_fast_is_empty(sol_map->sol.context_tab->bset))
2567 /* nothing */;
2568 else if (isl_basic_map_fast_is_empty(bmap))
2569 sol_map = add_empty(sol_map);
2570 else {
2571 tab = tab_for_lexmin(bmap,
2572 sol_map->sol.context_tab->bset, 1, max);
2573 tab = tab_detect_nonnegative_parameters(tab,
2574 sol_map->sol.context_tab);
2575 sol_map = sol_map_find_solutions(sol_map, tab);
2576 if (!sol_map)
2577 goto error;
2580 result = isl_map_copy(sol_map->map);
2581 if (empty)
2582 *empty = isl_set_copy(sol_map->empty);
2583 sol_map_free(sol_map);
2584 isl_basic_map_free(bmap);
2585 return result;
2586 error:
2587 sol_map_free(sol_map);
2588 isl_basic_map_free(bmap);
2589 return NULL;