isl_tab_pip.c: set free callback before any other fields
[isl.git] / isl_affine_hull.c
blob148dcb2b581b74b2e1064e496e973e2dd46dc2a2
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010 INRIA Saclay
4 * Copyright 2012 Ecole Normale Superieure
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include <isl_seq.h>
18 #include <isl/set.h>
19 #include <isl/lp.h>
20 #include <isl/map.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
23 #include "isl_tab.h"
24 #include <isl_mat_private.h>
25 #include <isl_vec_private.h>
27 #include <bset_to_bmap.c>
28 #include <bset_from_bmap.c>
29 #include <set_to_map.c>
30 #include <set_from_map.c>
32 struct isl_basic_map *isl_basic_map_implicit_equalities(
33 struct isl_basic_map *bmap)
35 struct isl_tab *tab;
37 if (!bmap)
38 return bmap;
40 bmap = isl_basic_map_gauss(bmap, NULL);
41 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
42 return bmap;
43 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
44 return bmap;
45 if (bmap->n_ineq <= 1)
46 return bmap;
48 tab = isl_tab_from_basic_map(bmap, 0);
49 if (isl_tab_detect_implicit_equalities(tab) < 0)
50 goto error;
51 bmap = isl_basic_map_update_from_tab(bmap, tab);
52 isl_tab_free(tab);
53 bmap = isl_basic_map_gauss(bmap, NULL);
54 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
55 return bmap;
56 error:
57 isl_tab_free(tab);
58 isl_basic_map_free(bmap);
59 return NULL;
62 struct isl_basic_set *isl_basic_set_implicit_equalities(
63 struct isl_basic_set *bset)
65 return bset_from_bmap(
66 isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
69 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
71 int i;
73 if (!map)
74 return map;
76 for (i = 0; i < map->n; ++i) {
77 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
78 if (!map->p[i])
79 goto error;
82 return map;
83 error:
84 isl_map_free(map);
85 return NULL;
88 /* Make eq[row][col] of both bmaps equal so we can add the row
89 * add the column to the common matrix.
90 * Note that because of the echelon form, the columns of row row
91 * after column col are zero.
93 static void set_common_multiple(
94 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
95 unsigned row, unsigned col)
97 isl_int m, c;
99 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
100 return;
102 isl_int_init(c);
103 isl_int_init(m);
104 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
105 isl_int_divexact(c, m, bset1->eq[row][col]);
106 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
107 isl_int_divexact(c, m, bset2->eq[row][col]);
108 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
109 isl_int_clear(c);
110 isl_int_clear(m);
113 /* Delete a given equality, moving all the following equalities one up.
115 static void delete_row(struct isl_basic_set *bset, unsigned row)
117 isl_int *t;
118 int r;
120 t = bset->eq[row];
121 bset->n_eq--;
122 for (r = row; r < bset->n_eq; ++r)
123 bset->eq[r] = bset->eq[r+1];
124 bset->eq[bset->n_eq] = t;
127 /* Make first row entries in column col of bset1 identical to
128 * those of bset2, using the fact that entry bset1->eq[row][col]=a
129 * is non-zero. Initially, these elements of bset1 are all zero.
130 * For each row i < row, we set
131 * A[i] = a * A[i] + B[i][col] * A[row]
132 * B[i] = a * B[i]
133 * so that
134 * A[i][col] = B[i][col] = a * old(B[i][col])
136 static void construct_column(
137 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
138 unsigned row, unsigned col)
140 int r;
141 isl_int a;
142 isl_int b;
143 unsigned total;
145 isl_int_init(a);
146 isl_int_init(b);
147 total = 1 + isl_basic_set_n_dim(bset1);
148 for (r = 0; r < row; ++r) {
149 if (isl_int_is_zero(bset2->eq[r][col]))
150 continue;
151 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
152 isl_int_divexact(a, bset1->eq[row][col], b);
153 isl_int_divexact(b, bset2->eq[r][col], b);
154 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
155 b, bset1->eq[row], total);
156 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
158 isl_int_clear(a);
159 isl_int_clear(b);
160 delete_row(bset1, row);
163 /* Make first row entries in column col of bset1 identical to
164 * those of bset2, using only these entries of the two matrices.
165 * Let t be the last row with different entries.
166 * For each row i < t, we set
167 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
168 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
169 * so that
170 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
172 static int transform_column(
173 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
174 unsigned row, unsigned col)
176 int i, t;
177 isl_int a, b, g;
178 unsigned total;
180 for (t = row-1; t >= 0; --t)
181 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
182 break;
183 if (t < 0)
184 return 0;
186 total = 1 + isl_basic_set_n_dim(bset1);
187 isl_int_init(a);
188 isl_int_init(b);
189 isl_int_init(g);
190 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
191 for (i = 0; i < t; ++i) {
192 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
193 isl_int_gcd(g, a, b);
194 isl_int_divexact(a, a, g);
195 isl_int_divexact(g, b, g);
196 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
197 total);
198 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
199 total);
201 isl_int_clear(a);
202 isl_int_clear(b);
203 isl_int_clear(g);
204 delete_row(bset1, t);
205 delete_row(bset2, t);
206 return 1;
209 /* The implementation is based on Section 5.2 of Michael Karr,
210 * "Affine Relationships Among Variables of a Program",
211 * except that the echelon form we use starts from the last column
212 * and that we are dealing with integer coefficients.
214 static struct isl_basic_set *affine_hull(
215 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
217 unsigned total;
218 int col;
219 int row;
221 if (!bset1 || !bset2)
222 goto error;
224 total = 1 + isl_basic_set_n_dim(bset1);
226 row = 0;
227 for (col = total-1; col >= 0; --col) {
228 int is_zero1 = row >= bset1->n_eq ||
229 isl_int_is_zero(bset1->eq[row][col]);
230 int is_zero2 = row >= bset2->n_eq ||
231 isl_int_is_zero(bset2->eq[row][col]);
232 if (!is_zero1 && !is_zero2) {
233 set_common_multiple(bset1, bset2, row, col);
234 ++row;
235 } else if (!is_zero1 && is_zero2) {
236 construct_column(bset1, bset2, row, col);
237 } else if (is_zero1 && !is_zero2) {
238 construct_column(bset2, bset1, row, col);
239 } else {
240 if (transform_column(bset1, bset2, row, col))
241 --row;
244 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
245 isl_basic_set_free(bset2);
246 bset1 = isl_basic_set_normalize_constraints(bset1);
247 return bset1;
248 error:
249 isl_basic_set_free(bset1);
250 isl_basic_set_free(bset2);
251 return NULL;
254 /* Find an integer point in the set represented by "tab"
255 * that lies outside of the equality "eq" e(x) = 0.
256 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
257 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
258 * The point, if found, is returned.
259 * If no point can be found, a zero-length vector is returned.
261 * Before solving an ILP problem, we first check if simply
262 * adding the normal of the constraint to one of the known
263 * integer points in the basic set represented by "tab"
264 * yields another point inside the basic set.
266 * The caller of this function ensures that the tableau is bounded or
267 * that tab->basis and tab->n_unbounded have been set appropriately.
269 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
271 struct isl_ctx *ctx;
272 struct isl_vec *sample = NULL;
273 struct isl_tab_undo *snap;
274 unsigned dim;
276 if (!tab)
277 return NULL;
278 ctx = tab->mat->ctx;
280 dim = tab->n_var;
281 sample = isl_vec_alloc(ctx, 1 + dim);
282 if (!sample)
283 return NULL;
284 isl_int_set_si(sample->el[0], 1);
285 isl_seq_combine(sample->el + 1,
286 ctx->one, tab->bmap->sample->el + 1,
287 up ? ctx->one : ctx->negone, eq + 1, dim);
288 if (isl_basic_map_contains(tab->bmap, sample))
289 return sample;
290 isl_vec_free(sample);
291 sample = NULL;
293 snap = isl_tab_snap(tab);
295 if (!up)
296 isl_seq_neg(eq, eq, 1 + dim);
297 isl_int_sub_ui(eq[0], eq[0], 1);
299 if (isl_tab_extend_cons(tab, 1) < 0)
300 goto error;
301 if (isl_tab_add_ineq(tab, eq) < 0)
302 goto error;
304 sample = isl_tab_sample(tab);
306 isl_int_add_ui(eq[0], eq[0], 1);
307 if (!up)
308 isl_seq_neg(eq, eq, 1 + dim);
310 if (sample && isl_tab_rollback(tab, snap) < 0)
311 goto error;
313 return sample;
314 error:
315 isl_vec_free(sample);
316 return NULL;
319 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
321 int i;
323 bset = isl_basic_set_cow(bset);
324 if (!bset)
325 return NULL;
326 isl_assert(bset->ctx, bset->n_div == 0, goto error);
328 for (i = 0; i < bset->n_eq; ++i)
329 isl_int_set_si(bset->eq[i][0], 0);
331 for (i = 0; i < bset->n_ineq; ++i)
332 isl_int_set_si(bset->ineq[i][0], 0);
334 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
335 return isl_basic_set_implicit_equalities(bset);
336 error:
337 isl_basic_set_free(bset);
338 return NULL;
341 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
343 int i;
345 if (!set)
346 return NULL;
347 if (set->n == 0)
348 return set;
350 set = isl_set_remove_divs(set);
351 set = isl_set_cow(set);
352 if (!set)
353 return NULL;
355 for (i = 0; i < set->n; ++i) {
356 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
357 if (!set->p[i])
358 goto error;
361 return set;
362 error:
363 isl_set_free(set);
364 return NULL;
367 /* Move "sample" to a point that is one up (or down) from the original
368 * point in dimension "pos".
370 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
372 if (up)
373 isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
374 else
375 isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
378 /* Check if any points that are adjacent to "sample" also belong to "bset".
379 * If so, add them to "hull" and return the updated hull.
381 * Before checking whether and adjacent point belongs to "bset", we first
382 * check whether it already belongs to "hull" as this test is typically
383 * much cheaper.
385 static __isl_give isl_basic_set *add_adjacent_points(
386 __isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
387 __isl_keep isl_basic_set *bset)
389 int i, up;
390 int dim;
392 if (!sample)
393 goto error;
395 dim = isl_basic_set_dim(hull, isl_dim_set);
397 for (i = 0; i < dim; ++i) {
398 for (up = 0; up <= 1; ++up) {
399 int contains;
400 isl_basic_set *point;
402 adjacent_point(sample, i, up);
403 contains = isl_basic_set_contains(hull, sample);
404 if (contains < 0)
405 goto error;
406 if (contains) {
407 adjacent_point(sample, i, !up);
408 continue;
410 contains = isl_basic_set_contains(bset, sample);
411 if (contains < 0)
412 goto error;
413 if (contains) {
414 point = isl_basic_set_from_vec(
415 isl_vec_copy(sample));
416 hull = affine_hull(hull, point);
418 adjacent_point(sample, i, !up);
419 if (contains)
420 break;
424 isl_vec_free(sample);
426 return hull;
427 error:
428 isl_vec_free(sample);
429 isl_basic_set_free(hull);
430 return NULL;
433 /* Extend an initial (under-)approximation of the affine hull of basic
434 * set represented by the tableau "tab"
435 * by looking for points that do not satisfy one of the equalities
436 * in the current approximation and adding them to that approximation
437 * until no such points can be found any more.
439 * The caller of this function ensures that "tab" is bounded or
440 * that tab->basis and tab->n_unbounded have been set appropriately.
442 * "bset" may be either NULL or the basic set represented by "tab".
443 * If "bset" is not NULL, we check for any point we find if any
444 * of its adjacent points also belong to "bset".
446 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
447 __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
449 int i, j;
450 unsigned dim;
452 if (!tab || !hull)
453 goto error;
455 dim = tab->n_var;
457 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
458 goto error;
460 for (i = 0; i < dim; ++i) {
461 struct isl_vec *sample;
462 struct isl_basic_set *point;
463 for (j = 0; j < hull->n_eq; ++j) {
464 sample = outside_point(tab, hull->eq[j], 1);
465 if (!sample)
466 goto error;
467 if (sample->size > 0)
468 break;
469 isl_vec_free(sample);
470 sample = outside_point(tab, hull->eq[j], 0);
471 if (!sample)
472 goto error;
473 if (sample->size > 0)
474 break;
475 isl_vec_free(sample);
477 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
478 goto error;
480 if (j == hull->n_eq)
481 break;
482 if (tab->samples &&
483 isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
484 hull = isl_basic_set_free(hull);
485 if (bset)
486 hull = add_adjacent_points(hull, isl_vec_copy(sample),
487 bset);
488 point = isl_basic_set_from_vec(sample);
489 hull = affine_hull(hull, point);
490 if (!hull)
491 return NULL;
494 return hull;
495 error:
496 isl_basic_set_free(hull);
497 return NULL;
500 /* Construct an initial underapproximation of the hull of "bset"
501 * from "sample" and any of its adjacent points that also belong to "bset".
503 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
504 __isl_take isl_vec *sample)
506 isl_basic_set *hull;
508 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
509 hull = add_adjacent_points(hull, sample, bset);
511 return hull;
514 /* Look for all equalities satisfied by the integer points in bset,
515 * which is assumed to be bounded.
517 * The equalities are obtained by successively looking for
518 * a point that is affinely independent of the points found so far.
519 * In particular, for each equality satisfied by the points so far,
520 * we check if there is any point on a hyperplane parallel to the
521 * corresponding hyperplane shifted by at least one (in either direction).
523 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
525 struct isl_vec *sample = NULL;
526 struct isl_basic_set *hull;
527 struct isl_tab *tab = NULL;
528 unsigned dim;
530 if (isl_basic_set_plain_is_empty(bset))
531 return bset;
533 dim = isl_basic_set_n_dim(bset);
535 if (bset->sample && bset->sample->size == 1 + dim) {
536 int contains = isl_basic_set_contains(bset, bset->sample);
537 if (contains < 0)
538 goto error;
539 if (contains) {
540 if (dim == 0)
541 return bset;
542 sample = isl_vec_copy(bset->sample);
543 } else {
544 isl_vec_free(bset->sample);
545 bset->sample = NULL;
549 tab = isl_tab_from_basic_set(bset, 1);
550 if (!tab)
551 goto error;
552 if (tab->empty) {
553 isl_tab_free(tab);
554 isl_vec_free(sample);
555 return isl_basic_set_set_to_empty(bset);
558 if (!sample) {
559 struct isl_tab_undo *snap;
560 snap = isl_tab_snap(tab);
561 sample = isl_tab_sample(tab);
562 if (isl_tab_rollback(tab, snap) < 0)
563 goto error;
564 isl_vec_free(tab->bmap->sample);
565 tab->bmap->sample = isl_vec_copy(sample);
568 if (!sample)
569 goto error;
570 if (sample->size == 0) {
571 isl_tab_free(tab);
572 isl_vec_free(sample);
573 return isl_basic_set_set_to_empty(bset);
576 hull = initialize_hull(bset, sample);
578 hull = extend_affine_hull(tab, hull, bset);
579 isl_basic_set_free(bset);
580 isl_tab_free(tab);
582 return hull;
583 error:
584 isl_vec_free(sample);
585 isl_tab_free(tab);
586 isl_basic_set_free(bset);
587 return NULL;
590 /* Given an unbounded tableau and an integer point satisfying the tableau,
591 * construct an initial affine hull containing the recession cone
592 * shifted to the given point.
594 * The unbounded directions are taken from the last rows of the basis,
595 * which is assumed to have been initialized appropriately.
597 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
598 __isl_take isl_vec *vec)
600 int i;
601 int k;
602 struct isl_basic_set *bset = NULL;
603 struct isl_ctx *ctx;
604 unsigned dim;
606 if (!vec || !tab)
607 return NULL;
608 ctx = vec->ctx;
609 isl_assert(ctx, vec->size != 0, goto error);
611 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
612 if (!bset)
613 goto error;
614 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
615 for (i = 0; i < dim; ++i) {
616 k = isl_basic_set_alloc_equality(bset);
617 if (k < 0)
618 goto error;
619 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
620 vec->size - 1);
621 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
622 vec->size - 1, &bset->eq[k][0]);
623 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
625 bset->sample = vec;
626 bset = isl_basic_set_gauss(bset, NULL);
628 return bset;
629 error:
630 isl_basic_set_free(bset);
631 isl_vec_free(vec);
632 return NULL;
635 /* Given a tableau of a set and a tableau of the corresponding
636 * recession cone, detect and add all equalities to the tableau.
637 * If the tableau is bounded, then we can simply keep the
638 * tableau in its state after the return from extend_affine_hull.
639 * However, if the tableau is unbounded, then
640 * isl_tab_set_initial_basis_with_cone will add some additional
641 * constraints to the tableau that have to be removed again.
642 * In this case, we therefore rollback to the state before
643 * any constraints were added and then add the equalities back in.
645 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
646 struct isl_tab *tab_cone)
648 int j;
649 struct isl_vec *sample;
650 struct isl_basic_set *hull = NULL;
651 struct isl_tab_undo *snap;
653 if (!tab || !tab_cone)
654 goto error;
656 snap = isl_tab_snap(tab);
658 isl_mat_free(tab->basis);
659 tab->basis = NULL;
661 isl_assert(tab->mat->ctx, tab->bmap, goto error);
662 isl_assert(tab->mat->ctx, tab->samples, goto error);
663 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
664 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
666 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
667 goto error;
669 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
670 if (!sample)
671 goto error;
673 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
675 isl_vec_free(tab->bmap->sample);
676 tab->bmap->sample = isl_vec_copy(sample);
678 if (tab->n_unbounded == 0)
679 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
680 else
681 hull = initial_hull(tab, isl_vec_copy(sample));
683 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
684 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
685 hull = affine_hull(hull,
686 isl_basic_set_from_vec(isl_vec_copy(sample)));
689 isl_vec_free(sample);
691 hull = extend_affine_hull(tab, hull, NULL);
692 if (!hull)
693 goto error;
695 if (tab->n_unbounded == 0) {
696 isl_basic_set_free(hull);
697 return tab;
700 if (isl_tab_rollback(tab, snap) < 0)
701 goto error;
703 if (hull->n_eq > tab->n_zero) {
704 for (j = 0; j < hull->n_eq; ++j) {
705 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
706 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
707 goto error;
711 isl_basic_set_free(hull);
713 return tab;
714 error:
715 isl_basic_set_free(hull);
716 isl_tab_free(tab);
717 return NULL;
720 /* Compute the affine hull of "bset", where "cone" is the recession cone
721 * of "bset".
723 * We first compute a unimodular transformation that puts the unbounded
724 * directions in the last dimensions. In particular, we take a transformation
725 * that maps all equalities to equalities (in HNF) on the first dimensions.
726 * Let x be the original dimensions and y the transformed, with y_1 bounded
727 * and y_2 unbounded.
729 * [ y_1 ] [ y_1 ] [ Q_1 ]
730 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
732 * Let's call the input basic set S. We compute S' = preimage(S, U)
733 * and drop the final dimensions including any constraints involving them.
734 * This results in set S''.
735 * Then we compute the affine hull A'' of S''.
736 * Let F y_1 >= g be the constraint system of A''. In the transformed
737 * space the y_2 are unbounded, so we can add them back without any constraints,
738 * resulting in
740 * [ y_1 ]
741 * [ F 0 ] [ y_2 ] >= g
742 * or
743 * [ Q_1 ]
744 * [ F 0 ] [ Q_2 ] x >= g
745 * or
746 * F Q_1 x >= g
748 * The affine hull in the original space is then obtained as
749 * A = preimage(A'', Q_1).
751 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
752 struct isl_basic_set *cone)
754 unsigned total;
755 unsigned cone_dim;
756 struct isl_basic_set *hull;
757 struct isl_mat *M, *U, *Q;
759 if (!bset || !cone)
760 goto error;
762 total = isl_basic_set_total_dim(cone);
763 cone_dim = total - cone->n_eq;
765 M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
766 M = isl_mat_left_hermite(M, 0, &U, &Q);
767 if (!M)
768 goto error;
769 isl_mat_free(M);
771 U = isl_mat_lin_to_aff(U);
772 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
774 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
775 cone_dim);
776 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
778 Q = isl_mat_lin_to_aff(Q);
779 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
781 if (bset && bset->sample && bset->sample->size == 1 + total)
782 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
784 hull = uset_affine_hull_bounded(bset);
786 if (!hull) {
787 isl_mat_free(Q);
788 isl_mat_free(U);
789 } else {
790 struct isl_vec *sample = isl_vec_copy(hull->sample);
791 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
792 if (sample && sample->size > 0)
793 sample = isl_mat_vec_product(U, sample);
794 else
795 isl_mat_free(U);
796 hull = isl_basic_set_preimage(hull, Q);
797 if (hull) {
798 isl_vec_free(hull->sample);
799 hull->sample = sample;
800 } else
801 isl_vec_free(sample);
804 isl_basic_set_free(cone);
806 return hull;
807 error:
808 isl_basic_set_free(bset);
809 isl_basic_set_free(cone);
810 return NULL;
813 /* Look for all equalities satisfied by the integer points in bset,
814 * which is assumed not to have any explicit equalities.
816 * The equalities are obtained by successively looking for
817 * a point that is affinely independent of the points found so far.
818 * In particular, for each equality satisfied by the points so far,
819 * we check if there is any point on a hyperplane parallel to the
820 * corresponding hyperplane shifted by at least one (in either direction).
822 * Before looking for any outside points, we first compute the recession
823 * cone. The directions of this recession cone will always be part
824 * of the affine hull, so there is no need for looking for any points
825 * in these directions.
826 * In particular, if the recession cone is full-dimensional, then
827 * the affine hull is simply the whole universe.
829 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
831 struct isl_basic_set *cone;
833 if (isl_basic_set_plain_is_empty(bset))
834 return bset;
836 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
837 if (!cone)
838 goto error;
839 if (cone->n_eq == 0) {
840 isl_space *space;
841 space = isl_basic_set_get_space(bset);
842 isl_basic_set_free(cone);
843 isl_basic_set_free(bset);
844 return isl_basic_set_universe(space);
847 if (cone->n_eq < isl_basic_set_total_dim(cone))
848 return affine_hull_with_cone(bset, cone);
850 isl_basic_set_free(cone);
851 return uset_affine_hull_bounded(bset);
852 error:
853 isl_basic_set_free(bset);
854 return NULL;
857 /* Look for all equalities satisfied by the integer points in bmap
858 * that are independent of the equalities already explicitly available
859 * in bmap.
861 * We first remove all equalities already explicitly available,
862 * then look for additional equalities in the reduced space
863 * and then transform the result to the original space.
864 * The original equalities are _not_ added to this set. This is
865 * the responsibility of the calling function.
866 * The resulting basic set has all meaning about the dimensions removed.
867 * In particular, dimensions that correspond to existential variables
868 * in bmap and that are found to be fixed are not removed.
870 static struct isl_basic_set *equalities_in_underlying_set(
871 struct isl_basic_map *bmap)
873 struct isl_mat *T1 = NULL;
874 struct isl_mat *T2 = NULL;
875 struct isl_basic_set *bset = NULL;
876 struct isl_basic_set *hull = NULL;
878 bset = isl_basic_map_underlying_set(bmap);
879 if (!bset)
880 return NULL;
881 if (bset->n_eq)
882 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
883 if (!bset)
884 goto error;
886 hull = uset_affine_hull(bset);
887 if (!T2)
888 return hull;
890 if (!hull) {
891 isl_mat_free(T1);
892 isl_mat_free(T2);
893 } else {
894 struct isl_vec *sample = isl_vec_copy(hull->sample);
895 if (sample && sample->size > 0)
896 sample = isl_mat_vec_product(T1, sample);
897 else
898 isl_mat_free(T1);
899 hull = isl_basic_set_preimage(hull, T2);
900 if (hull) {
901 isl_vec_free(hull->sample);
902 hull->sample = sample;
903 } else
904 isl_vec_free(sample);
907 return hull;
908 error:
909 isl_mat_free(T1);
910 isl_mat_free(T2);
911 isl_basic_set_free(bset);
912 isl_basic_set_free(hull);
913 return NULL;
916 /* Detect and make explicit all equalities satisfied by the (integer)
917 * points in bmap.
919 struct isl_basic_map *isl_basic_map_detect_equalities(
920 struct isl_basic_map *bmap)
922 int i, j;
923 struct isl_basic_set *hull = NULL;
925 if (!bmap)
926 return NULL;
927 if (bmap->n_ineq == 0)
928 return bmap;
929 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
930 return bmap;
931 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
932 return bmap;
933 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
934 return isl_basic_map_implicit_equalities(bmap);
936 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
937 if (!hull)
938 goto error;
939 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
940 isl_basic_set_free(hull);
941 return isl_basic_map_set_to_empty(bmap);
943 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
944 hull->n_eq, 0);
945 for (i = 0; i < hull->n_eq; ++i) {
946 j = isl_basic_map_alloc_equality(bmap);
947 if (j < 0)
948 goto error;
949 isl_seq_cpy(bmap->eq[j], hull->eq[i],
950 1 + isl_basic_set_total_dim(hull));
952 isl_vec_free(bmap->sample);
953 bmap->sample = isl_vec_copy(hull->sample);
954 isl_basic_set_free(hull);
955 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
956 bmap = isl_basic_map_simplify(bmap);
957 return isl_basic_map_finalize(bmap);
958 error:
959 isl_basic_set_free(hull);
960 isl_basic_map_free(bmap);
961 return NULL;
964 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
965 __isl_take isl_basic_set *bset)
967 return bset_from_bmap(
968 isl_basic_map_detect_equalities(bset_to_bmap(bset)));
971 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
973 return isl_map_inline_foreach_basic_map(map,
974 &isl_basic_map_detect_equalities);
977 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
979 return set_from_map(isl_map_detect_equalities(set_to_map(set)));
982 /* Return the superset of "bmap" described by the equalities
983 * satisfied by "bmap" that are already known.
985 __isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
986 __isl_take isl_basic_map *bmap)
988 bmap = isl_basic_map_cow(bmap);
989 if (bmap)
990 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
991 bmap = isl_basic_map_finalize(bmap);
992 return bmap;
995 /* Return the superset of "bset" described by the equalities
996 * satisfied by "bset" that are already known.
998 __isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
999 __isl_take isl_basic_set *bset)
1001 return isl_basic_map_plain_affine_hull(bset);
1004 /* After computing the rational affine hull (by detecting the implicit
1005 * equalities), we compute the additional equalities satisfied by
1006 * the integer points (if any) and add the original equalities back in.
1008 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
1010 bmap = isl_basic_map_detect_equalities(bmap);
1011 bmap = isl_basic_map_plain_affine_hull(bmap);
1012 return bmap;
1015 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1017 return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
1020 /* Given a rational affine matrix "M", add stride constraints to "bmap"
1021 * that ensure that
1023 * M(x)
1025 * is an integer vector. The variables x include all the variables
1026 * of "bmap" except the unknown divs.
1028 * If d is the common denominator of M, then we need to impose that
1030 * d M(x) = 0 mod d
1032 * or
1034 * exists alpha : d M(x) = d alpha
1036 * This function is similar to add_strides in isl_morph.c
1038 static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
1039 __isl_keep isl_mat *M, int n_known)
1041 int i, div, k;
1042 isl_int gcd;
1044 if (isl_int_is_one(M->row[0][0]))
1045 return bmap;
1047 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1048 M->n_row - 1, M->n_row - 1, 0);
1050 isl_int_init(gcd);
1051 for (i = 1; i < M->n_row; ++i) {
1052 isl_seq_gcd(M->row[i], M->n_col, &gcd);
1053 if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1054 continue;
1055 div = isl_basic_map_alloc_div(bmap);
1056 if (div < 0)
1057 goto error;
1058 isl_int_set_si(bmap->div[div][0], 0);
1059 k = isl_basic_map_alloc_equality(bmap);
1060 if (k < 0)
1061 goto error;
1062 isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1063 isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1064 isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1065 M->row[0][0]);
1067 isl_int_clear(gcd);
1069 return bmap;
1070 error:
1071 isl_int_clear(gcd);
1072 isl_basic_map_free(bmap);
1073 return NULL;
1076 /* If there are any equalities that involve (multiple) unknown divs,
1077 * then extract the stride information encoded by those equalities
1078 * and make it explicitly available in "bmap".
1080 * We first sort the divs so that the unknown divs appear last and
1081 * then we count how many equalities involve these divs.
1083 * Let these equalities be of the form
1085 * A(x) + B y = 0
1087 * where y represents the unknown divs and x the remaining variables.
1088 * Let [H 0] be the Hermite Normal Form of B, i.e.,
1090 * B = [H 0] Q
1092 * Then x is a solution of the equalities iff
1094 * H^-1 A(x) (= - [I 0] Q y)
1096 * is an integer vector. Let d be the common denominator of H^-1.
1097 * We impose
1099 * d H^-1 A(x) = d alpha
1101 * in add_strides, with alpha fresh existentially quantified variables.
1103 static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1104 __isl_take isl_basic_map *bmap)
1106 int known;
1107 int n_known;
1108 int n, n_col;
1109 int total;
1110 isl_ctx *ctx;
1111 isl_mat *A, *B, *M;
1113 known = isl_basic_map_divs_known(bmap);
1114 if (known < 0)
1115 return isl_basic_map_free(bmap);
1116 if (known)
1117 return bmap;
1118 bmap = isl_basic_map_sort_divs(bmap);
1119 bmap = isl_basic_map_gauss(bmap, NULL);
1120 if (!bmap)
1121 return NULL;
1123 for (n_known = 0; n_known < bmap->n_div; ++n_known)
1124 if (isl_int_is_zero(bmap->div[n_known][0]))
1125 break;
1126 ctx = isl_basic_map_get_ctx(bmap);
1127 total = isl_space_dim(bmap->dim, isl_dim_all);
1128 for (n = 0; n < bmap->n_eq; ++n)
1129 if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known,
1130 bmap->n_div - n_known) == -1)
1131 break;
1132 if (n == 0)
1133 return bmap;
1134 B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known);
1135 n_col = bmap->n_div - n_known;
1136 A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col);
1137 A = isl_mat_left_hermite(A, 0, NULL, NULL);
1138 A = isl_mat_drop_cols(A, n, n_col - n);
1139 A = isl_mat_lin_to_aff(A);
1140 A = isl_mat_right_inverse(A);
1141 B = isl_mat_insert_zero_rows(B, 0, 1);
1142 B = isl_mat_set_element_si(B, 0, 0, 1);
1143 M = isl_mat_product(A, B);
1144 if (!M)
1145 return isl_basic_map_free(bmap);
1146 bmap = add_strides(bmap, M, n_known);
1147 bmap = isl_basic_map_gauss(bmap, NULL);
1148 isl_mat_free(M);
1150 return bmap;
1153 /* Compute the affine hull of each basic map in "map" separately
1154 * and make all stride information explicit so that we can remove
1155 * all unknown divs without losing this information.
1156 * The result is also guaranteed to be gaussed.
1158 * In simple cases where a div is determined by an equality,
1159 * calling isl_basic_map_gauss is enough to make the stride information
1160 * explicit, as it will derive an explicit representation for the div
1161 * from the equality. If, however, the stride information
1162 * is encoded through multiple unknown divs then we need to make
1163 * some extra effort in isl_basic_map_make_strides_explicit.
1165 static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1167 int i;
1169 map = isl_map_cow(map);
1170 if (!map)
1171 return NULL;
1173 for (i = 0; i < map->n; ++i) {
1174 map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1175 map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1176 map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1177 if (!map->p[i])
1178 return isl_map_free(map);
1181 return map;
1184 static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1186 return isl_map_local_affine_hull(set);
1189 /* Return an empty basic map living in the same space as "map".
1191 static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1192 __isl_take isl_map *map)
1194 isl_space *space;
1196 space = isl_map_get_space(map);
1197 isl_map_free(map);
1198 return isl_basic_map_empty(space);
1201 /* Compute the affine hull of "map".
1203 * We first compute the affine hull of each basic map separately.
1204 * Then we align the divs and recompute the affine hulls of the basic
1205 * maps since some of them may now have extra divs.
1206 * In order to avoid performing parametric integer programming to
1207 * compute explicit expressions for the divs, possible leading to
1208 * an explosion in the number of basic maps, we first drop all unknown
1209 * divs before aligning the divs. Note that isl_map_local_affine_hull tries
1210 * to make sure that all stride information is explicitly available
1211 * in terms of known divs. This involves calling isl_basic_set_gauss,
1212 * which is also needed because affine_hull assumes its input has been gaussed,
1213 * while isl_map_affine_hull may be called on input that has not been gaussed,
1214 * in particular from initial_facet_constraint.
1215 * Similarly, align_divs may reorder some divs so that we need to
1216 * gauss the result again.
1217 * Finally, we combine the individual affine hulls into a single
1218 * affine hull.
1220 __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1222 struct isl_basic_map *model = NULL;
1223 struct isl_basic_map *hull = NULL;
1224 struct isl_set *set;
1225 isl_basic_set *bset;
1227 map = isl_map_detect_equalities(map);
1228 map = isl_map_local_affine_hull(map);
1229 map = isl_map_remove_empty_parts(map);
1230 map = isl_map_remove_unknown_divs(map);
1231 map = isl_map_align_divs(map);
1233 if (!map)
1234 return NULL;
1236 if (map->n == 0)
1237 return replace_map_by_empty_basic_map(map);
1239 model = isl_basic_map_copy(map->p[0]);
1240 set = isl_map_underlying_set(map);
1241 set = isl_set_cow(set);
1242 set = isl_set_local_affine_hull(set);
1243 if (!set)
1244 goto error;
1246 while (set->n > 1)
1247 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1249 bset = isl_basic_set_copy(set->p[0]);
1250 hull = isl_basic_map_overlying_set(bset, model);
1251 isl_set_free(set);
1252 hull = isl_basic_map_simplify(hull);
1253 return isl_basic_map_finalize(hull);
1254 error:
1255 isl_basic_map_free(model);
1256 isl_set_free(set);
1257 return NULL;
1260 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1262 return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));