isl_map_simplify.c: uset_gist: drop redundant intersection
[isl.git] / isl_map_simplify.c
blob5c4f6f6c1a45065f28c58ce0c5d1bd747b684b14
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include "isl_equalities.h"
18 #include <isl/map.h>
19 #include <isl_seq.h>
20 #include "isl_tab.h"
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
25 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
27 isl_int *t = bmap->eq[a];
28 bmap->eq[a] = bmap->eq[b];
29 bmap->eq[b] = t;
32 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
34 if (a != b) {
35 isl_int *t = bmap->ineq[a];
36 bmap->ineq[a] = bmap->ineq[b];
37 bmap->ineq[b] = t;
41 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
43 isl_seq_cpy(c, c + n, rem);
44 isl_seq_clr(c + rem, n);
47 /* Drop n dimensions starting at first.
49 * In principle, this frees up some extra variables as the number
50 * of columns remains constant, but we would have to extend
51 * the div array too as the number of rows in this array is assumed
52 * to be equal to extra.
54 struct isl_basic_set *isl_basic_set_drop_dims(
55 struct isl_basic_set *bset, unsigned first, unsigned n)
57 int i;
59 if (!bset)
60 goto error;
62 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
64 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
65 return bset;
67 bset = isl_basic_set_cow(bset);
68 if (!bset)
69 return NULL;
71 for (i = 0; i < bset->n_eq; ++i)
72 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
73 (bset->dim->n_out-first-n)+bset->extra);
75 for (i = 0; i < bset->n_ineq; ++i)
76 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
77 (bset->dim->n_out-first-n)+bset->extra);
79 for (i = 0; i < bset->n_div; ++i)
80 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
81 (bset->dim->n_out-first-n)+bset->extra);
83 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
84 if (!bset->dim)
85 goto error;
87 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
88 bset = isl_basic_set_simplify(bset);
89 return isl_basic_set_finalize(bset);
90 error:
91 isl_basic_set_free(bset);
92 return NULL;
95 struct isl_set *isl_set_drop_dims(
96 struct isl_set *set, unsigned first, unsigned n)
98 int i;
100 if (!set)
101 goto error;
103 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
105 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
106 return set;
107 set = isl_set_cow(set);
108 if (!set)
109 goto error;
110 set->dim = isl_space_drop_outputs(set->dim, first, n);
111 if (!set->dim)
112 goto error;
114 for (i = 0; i < set->n; ++i) {
115 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
116 if (!set->p[i])
117 goto error;
120 ISL_F_CLR(set, ISL_SET_NORMALIZED);
121 return set;
122 error:
123 isl_set_free(set);
124 return NULL;
127 /* Move "n" divs starting at "first" to the end of the list of divs.
129 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
130 unsigned first, unsigned n)
132 isl_int **div;
133 int i;
135 if (first + n == bmap->n_div)
136 return bmap;
138 div = isl_alloc_array(bmap->ctx, isl_int *, n);
139 if (!div)
140 goto error;
141 for (i = 0; i < n; ++i)
142 div[i] = bmap->div[first + i];
143 for (i = 0; i < bmap->n_div - first - n; ++i)
144 bmap->div[first + i] = bmap->div[first + n + i];
145 for (i = 0; i < n; ++i)
146 bmap->div[bmap->n_div - n + i] = div[i];
147 free(div);
148 return bmap;
149 error:
150 isl_basic_map_free(bmap);
151 return NULL;
154 /* Drop "n" dimensions of type "type" starting at "first".
156 * In principle, this frees up some extra variables as the number
157 * of columns remains constant, but we would have to extend
158 * the div array too as the number of rows in this array is assumed
159 * to be equal to extra.
161 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
162 enum isl_dim_type type, unsigned first, unsigned n)
164 int i;
165 unsigned dim;
166 unsigned offset;
167 unsigned left;
169 if (!bmap)
170 goto error;
172 dim = isl_basic_map_dim(bmap, type);
173 isl_assert(bmap->ctx, first + n <= dim, goto error);
175 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
176 return bmap;
178 bmap = isl_basic_map_cow(bmap);
179 if (!bmap)
180 return NULL;
182 offset = isl_basic_map_offset(bmap, type) + first;
183 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
184 for (i = 0; i < bmap->n_eq; ++i)
185 constraint_drop_vars(bmap->eq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_ineq; ++i)
188 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
190 for (i = 0; i < bmap->n_div; ++i)
191 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
193 if (type == isl_dim_div) {
194 bmap = move_divs_last(bmap, first, n);
195 if (!bmap)
196 goto error;
197 isl_basic_map_free_div(bmap, n);
198 } else
199 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
200 if (!bmap->dim)
201 goto error;
203 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
204 bmap = isl_basic_map_simplify(bmap);
205 return isl_basic_map_finalize(bmap);
206 error:
207 isl_basic_map_free(bmap);
208 return NULL;
211 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
212 enum isl_dim_type type, unsigned first, unsigned n)
214 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
215 type, first, n);
218 struct isl_basic_map *isl_basic_map_drop_inputs(
219 struct isl_basic_map *bmap, unsigned first, unsigned n)
221 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
224 struct isl_map *isl_map_drop(struct isl_map *map,
225 enum isl_dim_type type, unsigned first, unsigned n)
227 int i;
229 if (!map)
230 goto error;
232 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
234 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
235 return map;
236 map = isl_map_cow(map);
237 if (!map)
238 goto error;
239 map->dim = isl_space_drop_dims(map->dim, type, first, n);
240 if (!map->dim)
241 goto error;
243 for (i = 0; i < map->n; ++i) {
244 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
245 if (!map->p[i])
246 goto error;
248 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
250 return map;
251 error:
252 isl_map_free(map);
253 return NULL;
256 struct isl_set *isl_set_drop(struct isl_set *set,
257 enum isl_dim_type type, unsigned first, unsigned n)
259 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
262 struct isl_map *isl_map_drop_inputs(
263 struct isl_map *map, unsigned first, unsigned n)
265 return isl_map_drop(map, isl_dim_in, first, n);
269 * We don't cow, as the div is assumed to be redundant.
271 static struct isl_basic_map *isl_basic_map_drop_div(
272 struct isl_basic_map *bmap, unsigned div)
274 int i;
275 unsigned pos;
277 if (!bmap)
278 goto error;
280 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
282 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
284 for (i = 0; i < bmap->n_eq; ++i)
285 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
287 for (i = 0; i < bmap->n_ineq; ++i) {
288 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
289 isl_basic_map_drop_inequality(bmap, i);
290 --i;
291 continue;
293 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
296 for (i = 0; i < bmap->n_div; ++i)
297 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
299 if (div != bmap->n_div - 1) {
300 int j;
301 isl_int *t = bmap->div[div];
303 for (j = div; j < bmap->n_div - 1; ++j)
304 bmap->div[j] = bmap->div[j+1];
306 bmap->div[bmap->n_div - 1] = t;
308 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
309 isl_basic_map_free_div(bmap, 1);
311 return bmap;
312 error:
313 isl_basic_map_free(bmap);
314 return NULL;
317 struct isl_basic_map *isl_basic_map_normalize_constraints(
318 struct isl_basic_map *bmap)
320 int i;
321 isl_int gcd;
322 unsigned total = isl_basic_map_total_dim(bmap);
324 if (!bmap)
325 return NULL;
327 isl_int_init(gcd);
328 for (i = bmap->n_eq - 1; i >= 0; --i) {
329 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
330 if (isl_int_is_zero(gcd)) {
331 if (!isl_int_is_zero(bmap->eq[i][0])) {
332 bmap = isl_basic_map_set_to_empty(bmap);
333 break;
335 isl_basic_map_drop_equality(bmap, i);
336 continue;
338 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
339 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
340 if (isl_int_is_one(gcd))
341 continue;
342 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
343 bmap = isl_basic_map_set_to_empty(bmap);
344 break;
346 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
349 for (i = bmap->n_ineq - 1; i >= 0; --i) {
350 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
351 if (isl_int_is_zero(gcd)) {
352 if (isl_int_is_neg(bmap->ineq[i][0])) {
353 bmap = isl_basic_map_set_to_empty(bmap);
354 break;
356 isl_basic_map_drop_inequality(bmap, i);
357 continue;
359 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
360 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
361 if (isl_int_is_one(gcd))
362 continue;
363 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
364 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
366 isl_int_clear(gcd);
368 return bmap;
371 struct isl_basic_set *isl_basic_set_normalize_constraints(
372 struct isl_basic_set *bset)
374 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
375 (struct isl_basic_map *)bset);
378 /* Assuming the variable at position "pos" has an integer coefficient
379 * in integer division "div", extract it from this integer division.
380 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
381 * corresponds to the constant term.
383 * That is, the integer division is of the form
385 * floor((... + c * d * x_pos + ...)/d)
387 * Replace it by
389 * floor((... + 0 * x_pos + ...)/d) + c * x_pos
391 static __isl_give isl_basic_map *remove_var_from_div(
392 __isl_take isl_basic_map *bmap, int div, int pos)
394 isl_int shift;
396 isl_int_init(shift);
397 isl_int_divexact(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
398 isl_int_neg(shift, shift);
399 bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
400 isl_int_clear(shift);
402 return bmap;
405 /* Check if integer division "div" has any integral coefficient
406 * (or constant term). If so, extract them from the integer division.
408 static __isl_give isl_basic_map *remove_independent_vars_from_div(
409 __isl_take isl_basic_map *bmap, int div)
411 int i;
412 unsigned total = 1 + isl_basic_map_total_dim(bmap);
414 for (i = 0; i < total; ++i) {
415 if (isl_int_is_zero(bmap->div[div][1 + i]))
416 continue;
417 if (!isl_int_is_divisible_by(bmap->div[div][1 + i],
418 bmap->div[div][0]))
419 continue;
420 bmap = remove_var_from_div(bmap, div, i);
421 if (!bmap)
422 break;
425 return bmap;
428 /* Check if any known integer division has any integral coefficient
429 * (or constant term). If so, extract them from the integer division.
431 static __isl_give isl_basic_map *remove_independent_vars_from_divs(
432 __isl_take isl_basic_map *bmap)
434 int i;
436 if (!bmap)
437 return NULL;
438 if (bmap->n_div == 0)
439 return bmap;
441 for (i = 0; i < bmap->n_div; ++i) {
442 if (isl_int_is_zero(bmap->div[i][0]))
443 continue;
444 bmap = remove_independent_vars_from_div(bmap, i);
445 if (!bmap)
446 break;
449 return bmap;
452 /* Remove any common factor in numerator and denominator of the div expression,
453 * not taking into account the constant term.
454 * That is, if the div is of the form
456 * floor((a + m f(x))/(m d))
458 * then replace it by
460 * floor((floor(a/m) + f(x))/d)
462 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
463 * and can therefore not influence the result of the floor.
465 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
467 unsigned total = isl_basic_map_total_dim(bmap);
468 isl_ctx *ctx = bmap->ctx;
470 if (isl_int_is_zero(bmap->div[div][0]))
471 return;
472 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
473 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
474 if (isl_int_is_one(ctx->normalize_gcd))
475 return;
476 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
477 ctx->normalize_gcd);
478 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
479 ctx->normalize_gcd);
480 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
481 ctx->normalize_gcd, total);
484 /* Remove any common factor in numerator and denominator of a div expression,
485 * not taking into account the constant term.
486 * That is, look for any div of the form
488 * floor((a + m f(x))/(m d))
490 * and replace it by
492 * floor((floor(a/m) + f(x))/d)
494 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
495 * and can therefore not influence the result of the floor.
497 static __isl_give isl_basic_map *normalize_div_expressions(
498 __isl_take isl_basic_map *bmap)
500 int i;
502 if (!bmap)
503 return NULL;
504 if (bmap->n_div == 0)
505 return bmap;
507 for (i = 0; i < bmap->n_div; ++i)
508 normalize_div_expression(bmap, i);
510 return bmap;
513 /* Assumes divs have been ordered if keep_divs is set.
515 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
516 unsigned pos, isl_int *eq, int keep_divs, int *progress)
518 unsigned total;
519 unsigned space_total;
520 int k;
521 int last_div;
523 total = isl_basic_map_total_dim(bmap);
524 space_total = isl_space_dim(bmap->dim, isl_dim_all);
525 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
526 for (k = 0; k < bmap->n_eq; ++k) {
527 if (bmap->eq[k] == eq)
528 continue;
529 if (isl_int_is_zero(bmap->eq[k][1+pos]))
530 continue;
531 if (progress)
532 *progress = 1;
533 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
534 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
537 for (k = 0; k < bmap->n_ineq; ++k) {
538 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
539 continue;
540 if (progress)
541 *progress = 1;
542 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
543 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
544 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
547 for (k = 0; k < bmap->n_div; ++k) {
548 if (isl_int_is_zero(bmap->div[k][0]))
549 continue;
550 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
551 continue;
552 if (progress)
553 *progress = 1;
554 /* We need to be careful about circular definitions,
555 * so for now we just remove the definition of div k
556 * if the equality contains any divs.
557 * If keep_divs is set, then the divs have been ordered
558 * and we can keep the definition as long as the result
559 * is still ordered.
561 if (last_div == -1 || (keep_divs && last_div < k)) {
562 isl_seq_elim(bmap->div[k]+1, eq,
563 1+pos, 1+total, &bmap->div[k][0]);
564 normalize_div_expression(bmap, k);
565 } else
566 isl_seq_clr(bmap->div[k], 1 + total);
567 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
571 /* Assumes divs have been ordered if keep_divs is set.
573 static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
574 isl_int *eq, unsigned div, int keep_divs)
576 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
578 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
580 bmap = isl_basic_map_drop_div(bmap, div);
582 return bmap;
585 /* Check if elimination of div "div" using equality "eq" would not
586 * result in a div depending on a later div.
588 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
589 unsigned div)
591 int k;
592 int last_div;
593 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
594 unsigned pos = space_total + div;
596 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
597 if (last_div < 0 || last_div <= div)
598 return 1;
600 for (k = 0; k <= last_div; ++k) {
601 if (isl_int_is_zero(bmap->div[k][0]))
602 return 1;
603 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
604 return 0;
607 return 1;
610 /* Elimininate divs based on equalities
612 static struct isl_basic_map *eliminate_divs_eq(
613 struct isl_basic_map *bmap, int *progress)
615 int d;
616 int i;
617 int modified = 0;
618 unsigned off;
620 bmap = isl_basic_map_order_divs(bmap);
622 if (!bmap)
623 return NULL;
625 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
627 for (d = bmap->n_div - 1; d >= 0 ; --d) {
628 for (i = 0; i < bmap->n_eq; ++i) {
629 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
630 !isl_int_is_negone(bmap->eq[i][off + d]))
631 continue;
632 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
633 continue;
634 modified = 1;
635 *progress = 1;
636 bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
637 if (isl_basic_map_drop_equality(bmap, i) < 0)
638 return isl_basic_map_free(bmap);
639 break;
642 if (modified)
643 return eliminate_divs_eq(bmap, progress);
644 return bmap;
647 /* Elimininate divs based on inequalities
649 static struct isl_basic_map *eliminate_divs_ineq(
650 struct isl_basic_map *bmap, int *progress)
652 int d;
653 int i;
654 unsigned off;
655 struct isl_ctx *ctx;
657 if (!bmap)
658 return NULL;
660 ctx = bmap->ctx;
661 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
663 for (d = bmap->n_div - 1; d >= 0 ; --d) {
664 for (i = 0; i < bmap->n_eq; ++i)
665 if (!isl_int_is_zero(bmap->eq[i][off + d]))
666 break;
667 if (i < bmap->n_eq)
668 continue;
669 for (i = 0; i < bmap->n_ineq; ++i)
670 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
671 break;
672 if (i < bmap->n_ineq)
673 continue;
674 *progress = 1;
675 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
676 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
677 break;
678 bmap = isl_basic_map_drop_div(bmap, d);
679 if (!bmap)
680 break;
682 return bmap;
685 struct isl_basic_map *isl_basic_map_gauss(
686 struct isl_basic_map *bmap, int *progress)
688 int k;
689 int done;
690 int last_var;
691 unsigned total_var;
692 unsigned total;
694 bmap = isl_basic_map_order_divs(bmap);
696 if (!bmap)
697 return NULL;
699 total = isl_basic_map_total_dim(bmap);
700 total_var = total - bmap->n_div;
702 last_var = total - 1;
703 for (done = 0; done < bmap->n_eq; ++done) {
704 for (; last_var >= 0; --last_var) {
705 for (k = done; k < bmap->n_eq; ++k)
706 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
707 break;
708 if (k < bmap->n_eq)
709 break;
711 if (last_var < 0)
712 break;
713 if (k != done)
714 swap_equality(bmap, k, done);
715 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
716 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
718 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
719 progress);
721 if (last_var >= total_var &&
722 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
723 unsigned div = last_var - total_var;
724 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
725 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
726 isl_int_set(bmap->div[div][0],
727 bmap->eq[done][1+last_var]);
728 if (progress)
729 *progress = 1;
730 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
733 if (done == bmap->n_eq)
734 return bmap;
735 for (k = done; k < bmap->n_eq; ++k) {
736 if (isl_int_is_zero(bmap->eq[k][0]))
737 continue;
738 return isl_basic_map_set_to_empty(bmap);
740 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
741 return bmap;
744 struct isl_basic_set *isl_basic_set_gauss(
745 struct isl_basic_set *bset, int *progress)
747 return (struct isl_basic_set*)isl_basic_map_gauss(
748 (struct isl_basic_map *)bset, progress);
752 static unsigned int round_up(unsigned int v)
754 int old_v = v;
756 while (v) {
757 old_v = v;
758 v ^= v & -v;
760 return old_v << 1;
763 /* Hash table of inequalities in a basic map.
764 * "index" is an array of addresses of inequalities in the basic map, some
765 * of which are NULL. The inequalities are hashed on the coefficients
766 * except the constant term.
767 * "size" is the number of elements in the array and is always a power of two
768 * "bits" is the number of bits need to represent an index into the array.
769 * "total" is the total dimension of the basic map.
771 struct isl_constraint_index {
772 unsigned int size;
773 int bits;
774 isl_int ***index;
775 unsigned total;
778 /* Fill in the "ci" data structure for holding the inequalities of "bmap".
780 static isl_stat create_constraint_index(struct isl_constraint_index *ci,
781 __isl_keep isl_basic_map *bmap)
783 isl_ctx *ctx;
785 ci->index = NULL;
786 if (!bmap)
787 return isl_stat_error;
788 ci->total = isl_basic_set_total_dim(bmap);
789 if (bmap->n_ineq == 0)
790 return isl_stat_ok;
791 ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
792 ci->bits = ffs(ci->size) - 1;
793 ctx = isl_basic_map_get_ctx(bmap);
794 ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
795 if (!ci->index)
796 return isl_stat_error;
798 return isl_stat_ok;
801 /* Free the memory allocated by create_constraint_index.
803 static void constraint_index_free(struct isl_constraint_index *ci)
805 free(ci->index);
808 /* Return the position in ci->index that contains the address of
809 * an inequality that is equal to *ineq up to the constant term,
810 * provided this address is not identical to "ineq".
811 * If there is no such inequality, then return the position where
812 * such an inequality should be inserted.
814 static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
816 int h;
817 uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
818 for (h = hash; ci->index[h]; h = (h+1) % ci->size)
819 if (ineq != ci->index[h] &&
820 isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
821 break;
822 return h;
825 /* Return the position in ci->index that contains the address of
826 * an inequality that is equal to the k'th inequality of "bmap"
827 * up to the constant term, provided it does not point to the very
828 * same inequality.
829 * If there is no such inequality, then return the position where
830 * such an inequality should be inserted.
832 static int hash_index(struct isl_constraint_index *ci,
833 __isl_keep isl_basic_map *bmap, int k)
835 return hash_index_ineq(ci, &bmap->ineq[k]);
838 static int set_hash_index(struct isl_constraint_index *ci,
839 struct isl_basic_set *bset, int k)
841 return hash_index(ci, bset, k);
844 /* Fill in the "ci" data structure with the inequalities of "bset".
846 static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
847 __isl_keep isl_basic_set *bset)
849 int k, h;
851 if (create_constraint_index(ci, bset) < 0)
852 return isl_stat_error;
854 for (k = 0; k < bset->n_ineq; ++k) {
855 h = set_hash_index(ci, bset, k);
856 ci->index[h] = &bset->ineq[k];
859 return isl_stat_ok;
862 /* Is the inequality ineq (obviously) redundant with respect
863 * to the constraints in "ci"?
865 * Look for an inequality in "ci" with the same coefficients and then
866 * check if the contant term of "ineq" is greater than or equal
867 * to the constant term of that inequality. If so, "ineq" is clearly
868 * redundant.
870 * Note that hash_index_ineq ignores a stored constraint if it has
871 * the same address as the passed inequality. It is ok to pass
872 * the address of a local variable here since it will never be
873 * the same as the address of a constraint in "ci".
875 static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
876 isl_int *ineq)
878 int h;
880 h = hash_index_ineq(ci, &ineq);
881 if (!ci->index[h])
882 return isl_bool_false;
883 return isl_int_ge(ineq[0], (*ci->index[h])[0]);
886 /* If we can eliminate more than one div, then we need to make
887 * sure we do it from last div to first div, in order not to
888 * change the position of the other divs that still need to
889 * be removed.
891 static struct isl_basic_map *remove_duplicate_divs(
892 struct isl_basic_map *bmap, int *progress)
894 unsigned int size;
895 int *index;
896 int *elim_for;
897 int k, l, h;
898 int bits;
899 struct isl_blk eq;
900 unsigned total_var;
901 unsigned total;
902 struct isl_ctx *ctx;
904 bmap = isl_basic_map_order_divs(bmap);
905 if (!bmap || bmap->n_div <= 1)
906 return bmap;
908 total_var = isl_space_dim(bmap->dim, isl_dim_all);
909 total = total_var + bmap->n_div;
911 ctx = bmap->ctx;
912 for (k = bmap->n_div - 1; k >= 0; --k)
913 if (!isl_int_is_zero(bmap->div[k][0]))
914 break;
915 if (k <= 0)
916 return bmap;
918 size = round_up(4 * bmap->n_div / 3 - 1);
919 if (size == 0)
920 return bmap;
921 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
922 bits = ffs(size) - 1;
923 index = isl_calloc_array(ctx, int, size);
924 if (!elim_for || !index)
925 goto out;
926 eq = isl_blk_alloc(ctx, 1+total);
927 if (isl_blk_is_error(eq))
928 goto out;
930 isl_seq_clr(eq.data, 1+total);
931 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
932 for (--k; k >= 0; --k) {
933 uint32_t hash;
935 if (isl_int_is_zero(bmap->div[k][0]))
936 continue;
938 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
939 for (h = hash; index[h]; h = (h+1) % size)
940 if (isl_seq_eq(bmap->div[k],
941 bmap->div[index[h]-1], 2+total))
942 break;
943 if (index[h]) {
944 *progress = 1;
945 l = index[h] - 1;
946 elim_for[l] = k + 1;
948 index[h] = k+1;
950 for (l = bmap->n_div - 1; l >= 0; --l) {
951 if (!elim_for[l])
952 continue;
953 k = elim_for[l] - 1;
954 isl_int_set_si(eq.data[1+total_var+k], -1);
955 isl_int_set_si(eq.data[1+total_var+l], 1);
956 bmap = eliminate_div(bmap, eq.data, l, 1);
957 if (!bmap)
958 break;
959 isl_int_set_si(eq.data[1+total_var+k], 0);
960 isl_int_set_si(eq.data[1+total_var+l], 0);
963 isl_blk_free(ctx, eq);
964 out:
965 free(index);
966 free(elim_for);
967 return bmap;
970 static int n_pure_div_eq(struct isl_basic_map *bmap)
972 int i, j;
973 unsigned total;
975 total = isl_space_dim(bmap->dim, isl_dim_all);
976 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
977 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
978 --j;
979 if (j < 0)
980 break;
981 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
982 return 0;
984 return i;
987 /* Normalize divs that appear in equalities.
989 * In particular, we assume that bmap contains some equalities
990 * of the form
992 * a x = m * e_i
994 * and we want to replace the set of e_i by a minimal set and
995 * such that the new e_i have a canonical representation in terms
996 * of the vector x.
997 * If any of the equalities involves more than one divs, then
998 * we currently simply bail out.
1000 * Let us first additionally assume that all equalities involve
1001 * a div. The equalities then express modulo constraints on the
1002 * remaining variables and we can use "parameter compression"
1003 * to find a minimal set of constraints. The result is a transformation
1005 * x = T(x') = x_0 + G x'
1007 * with G a lower-triangular matrix with all elements below the diagonal
1008 * non-negative and smaller than the diagonal element on the same row.
1009 * We first normalize x_0 by making the same property hold in the affine
1010 * T matrix.
1011 * The rows i of G with a 1 on the diagonal do not impose any modulo
1012 * constraint and simply express x_i = x'_i.
1013 * For each of the remaining rows i, we introduce a div and a corresponding
1014 * equality. In particular
1016 * g_ii e_j = x_i - g_i(x')
1018 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
1019 * corresponding div (if g_kk != 1).
1021 * If there are any equalities not involving any div, then we
1022 * first apply a variable compression on the variables x:
1024 * x = C x'' x'' = C_2 x
1026 * and perform the above parameter compression on A C instead of on A.
1027 * The resulting compression is then of the form
1029 * x'' = T(x') = x_0 + G x'
1031 * and in constructing the new divs and the corresponding equalities,
1032 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
1033 * by the corresponding row from C_2.
1035 static struct isl_basic_map *normalize_divs(
1036 struct isl_basic_map *bmap, int *progress)
1038 int i, j, k;
1039 int total;
1040 int div_eq;
1041 struct isl_mat *B;
1042 struct isl_vec *d;
1043 struct isl_mat *T = NULL;
1044 struct isl_mat *C = NULL;
1045 struct isl_mat *C2 = NULL;
1046 isl_int v;
1047 int *pos;
1048 int dropped, needed;
1050 if (!bmap)
1051 return NULL;
1053 if (bmap->n_div == 0)
1054 return bmap;
1056 if (bmap->n_eq == 0)
1057 return bmap;
1059 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
1060 return bmap;
1062 total = isl_space_dim(bmap->dim, isl_dim_all);
1063 div_eq = n_pure_div_eq(bmap);
1064 if (div_eq == 0)
1065 return bmap;
1067 if (div_eq < bmap->n_eq) {
1068 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1069 bmap->n_eq - div_eq, 0, 1 + total);
1070 C = isl_mat_variable_compression(B, &C2);
1071 if (!C || !C2)
1072 goto error;
1073 if (C->n_col == 0) {
1074 bmap = isl_basic_map_set_to_empty(bmap);
1075 isl_mat_free(C);
1076 isl_mat_free(C2);
1077 goto done;
1081 d = isl_vec_alloc(bmap->ctx, div_eq);
1082 if (!d)
1083 goto error;
1084 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1085 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
1086 --j;
1087 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
1089 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
1091 if (C) {
1092 B = isl_mat_product(B, C);
1093 C = NULL;
1096 T = isl_mat_parameter_compression(B, d);
1097 if (!T)
1098 goto error;
1099 if (T->n_col == 0) {
1100 bmap = isl_basic_map_set_to_empty(bmap);
1101 isl_mat_free(C2);
1102 isl_mat_free(T);
1103 goto done;
1105 isl_int_init(v);
1106 for (i = 0; i < T->n_row - 1; ++i) {
1107 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1108 if (isl_int_is_zero(v))
1109 continue;
1110 isl_mat_col_submul(T, 0, v, 1 + i);
1112 isl_int_clear(v);
1113 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1114 if (!pos)
1115 goto error;
1116 /* We have to be careful because dropping equalities may reorder them */
1117 dropped = 0;
1118 for (j = bmap->n_div - 1; j >= 0; --j) {
1119 for (i = 0; i < bmap->n_eq; ++i)
1120 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
1121 break;
1122 if (i < bmap->n_eq) {
1123 bmap = isl_basic_map_drop_div(bmap, j);
1124 isl_basic_map_drop_equality(bmap, i);
1125 ++dropped;
1128 pos[0] = 0;
1129 needed = 0;
1130 for (i = 1; i < T->n_row; ++i) {
1131 if (isl_int_is_one(T->row[i][i]))
1132 pos[i] = i;
1133 else
1134 needed++;
1136 if (needed > dropped) {
1137 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
1138 needed, needed, 0);
1139 if (!bmap)
1140 goto error;
1142 for (i = 1; i < T->n_row; ++i) {
1143 if (isl_int_is_one(T->row[i][i]))
1144 continue;
1145 k = isl_basic_map_alloc_div(bmap);
1146 pos[i] = 1 + total + k;
1147 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
1148 isl_int_set(bmap->div[k][0], T->row[i][i]);
1149 if (C2)
1150 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
1151 else
1152 isl_int_set_si(bmap->div[k][1 + i], 1);
1153 for (j = 0; j < i; ++j) {
1154 if (isl_int_is_zero(T->row[i][j]))
1155 continue;
1156 if (pos[j] < T->n_row && C2)
1157 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1158 C2->row[pos[j]], 1 + total);
1159 else
1160 isl_int_neg(bmap->div[k][1 + pos[j]],
1161 T->row[i][j]);
1163 j = isl_basic_map_alloc_equality(bmap);
1164 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
1165 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1167 free(pos);
1168 isl_mat_free(C2);
1169 isl_mat_free(T);
1171 if (progress)
1172 *progress = 1;
1173 done:
1174 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1176 return bmap;
1177 error:
1178 isl_mat_free(C);
1179 isl_mat_free(C2);
1180 isl_mat_free(T);
1181 return bmap;
1184 static struct isl_basic_map *set_div_from_lower_bound(
1185 struct isl_basic_map *bmap, int div, int ineq)
1187 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1189 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1190 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1191 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1192 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1193 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1195 return bmap;
1198 /* Check whether it is ok to define a div based on an inequality.
1199 * To avoid the introduction of circular definitions of divs, we
1200 * do not allow such a definition if the resulting expression would refer to
1201 * any other undefined divs or if any known div is defined in
1202 * terms of the unknown div.
1204 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1205 int div, int ineq)
1207 int j;
1208 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1210 /* Not defined in terms of unknown divs */
1211 for (j = 0; j < bmap->n_div; ++j) {
1212 if (div == j)
1213 continue;
1214 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1215 continue;
1216 if (isl_int_is_zero(bmap->div[j][0]))
1217 return 0;
1220 /* No other div defined in terms of this one => avoid loops */
1221 for (j = 0; j < bmap->n_div; ++j) {
1222 if (div == j)
1223 continue;
1224 if (isl_int_is_zero(bmap->div[j][0]))
1225 continue;
1226 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1227 return 0;
1230 return 1;
1233 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1234 * be a better expression than the current one?
1236 * If we do not have any expression yet, then any expression would be better.
1237 * Otherwise we check if the last variable involved in the inequality
1238 * (disregarding the div that it would define) is in an earlier position
1239 * than the last variable involved in the current div expression.
1241 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1242 int div, int ineq)
1244 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1245 int last_div;
1246 int last_ineq;
1248 if (isl_int_is_zero(bmap->div[div][0]))
1249 return 1;
1251 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1252 bmap->n_div - (div + 1)) >= 0)
1253 return 0;
1255 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1256 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1257 total + bmap->n_div);
1259 return last_ineq < last_div;
1262 /* Given two constraints "k" and "l" that are opposite to each other,
1263 * except for the constant term, check if we can use them
1264 * to obtain an expression for one of the hitherto unknown divs or
1265 * a "better" expression for a div for which we already have an expression.
1266 * "sum" is the sum of the constant terms of the constraints.
1267 * If this sum is strictly smaller than the coefficient of one
1268 * of the divs, then this pair can be used define the div.
1269 * To avoid the introduction of circular definitions of divs, we
1270 * do not use the pair if the resulting expression would refer to
1271 * any other undefined divs or if any known div is defined in
1272 * terms of the unknown div.
1274 static struct isl_basic_map *check_for_div_constraints(
1275 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1277 int i;
1278 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1280 for (i = 0; i < bmap->n_div; ++i) {
1281 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1282 continue;
1283 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1284 continue;
1285 if (!better_div_constraint(bmap, i, k))
1286 continue;
1287 if (!ok_to_set_div_from_bound(bmap, i, k))
1288 break;
1289 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1290 bmap = set_div_from_lower_bound(bmap, i, k);
1291 else
1292 bmap = set_div_from_lower_bound(bmap, i, l);
1293 if (progress)
1294 *progress = 1;
1295 break;
1297 return bmap;
1300 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1301 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1303 struct isl_constraint_index ci;
1304 int k, l, h;
1305 unsigned total = isl_basic_map_total_dim(bmap);
1306 isl_int sum;
1308 if (!bmap || bmap->n_ineq <= 1)
1309 return bmap;
1311 if (create_constraint_index(&ci, bmap) < 0)
1312 return bmap;
1314 h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1315 ci.index[h] = &bmap->ineq[0];
1316 for (k = 1; k < bmap->n_ineq; ++k) {
1317 h = hash_index(&ci, bmap, k);
1318 if (!ci.index[h]) {
1319 ci.index[h] = &bmap->ineq[k];
1320 continue;
1322 if (progress)
1323 *progress = 1;
1324 l = ci.index[h] - &bmap->ineq[0];
1325 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1326 swap_inequality(bmap, k, l);
1327 isl_basic_map_drop_inequality(bmap, k);
1328 --k;
1330 isl_int_init(sum);
1331 for (k = 0; k < bmap->n_ineq-1; ++k) {
1332 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1333 h = hash_index(&ci, bmap, k);
1334 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1335 if (!ci.index[h])
1336 continue;
1337 l = ci.index[h] - &bmap->ineq[0];
1338 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1339 if (isl_int_is_pos(sum)) {
1340 if (detect_divs)
1341 bmap = check_for_div_constraints(bmap, k, l,
1342 sum, progress);
1343 continue;
1345 if (isl_int_is_zero(sum)) {
1346 /* We need to break out of the loop after these
1347 * changes since the contents of the hash
1348 * will no longer be valid.
1349 * Plus, we probably we want to regauss first.
1351 if (progress)
1352 *progress = 1;
1353 isl_basic_map_drop_inequality(bmap, l);
1354 isl_basic_map_inequality_to_equality(bmap, k);
1355 } else
1356 bmap = isl_basic_map_set_to_empty(bmap);
1357 break;
1359 isl_int_clear(sum);
1361 constraint_index_free(&ci);
1362 return bmap;
1365 /* Detect all pairs of inequalities that form an equality.
1367 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1368 * Call it repeatedly while it is making progress.
1370 __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1371 __isl_take isl_basic_map *bmap, int *progress)
1373 int duplicate;
1375 do {
1376 duplicate = 0;
1377 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1378 &duplicate, 0);
1379 if (progress && duplicate)
1380 *progress = 1;
1381 } while (duplicate);
1383 return bmap;
1386 /* Eliminate knowns divs from constraints where they appear with
1387 * a (positive or negative) unit coefficient.
1389 * That is, replace
1391 * floor(e/m) + f >= 0
1393 * by
1395 * e + m f >= 0
1397 * and
1399 * -floor(e/m) + f >= 0
1401 * by
1403 * -e + m f + m - 1 >= 0
1405 * The first conversion is valid because floor(e/m) >= -f is equivalent
1406 * to e/m >= -f because -f is an integral expression.
1407 * The second conversion follows from the fact that
1409 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1412 * Note that one of the div constraints may have been eliminated
1413 * due to being redundant with respect to the constraint that is
1414 * being modified by this function. The modified constraint may
1415 * no longer imply this div constraint, so we add it back to make
1416 * sure we do not lose any information.
1418 * We skip integral divs, i.e., those with denominator 1, as we would
1419 * risk eliminating the div from the div constraints. We do not need
1420 * to handle those divs here anyway since the div constraints will turn
1421 * out to form an equality and this equality can then be use to eliminate
1422 * the div from all constraints.
1424 static __isl_give isl_basic_map *eliminate_unit_divs(
1425 __isl_take isl_basic_map *bmap, int *progress)
1427 int i, j;
1428 isl_ctx *ctx;
1429 unsigned total;
1431 if (!bmap)
1432 return NULL;
1434 ctx = isl_basic_map_get_ctx(bmap);
1435 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1437 for (i = 0; i < bmap->n_div; ++i) {
1438 if (isl_int_is_zero(bmap->div[i][0]))
1439 continue;
1440 if (isl_int_is_one(bmap->div[i][0]))
1441 continue;
1442 for (j = 0; j < bmap->n_ineq; ++j) {
1443 int s;
1445 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1446 !isl_int_is_negone(bmap->ineq[j][total + i]))
1447 continue;
1449 *progress = 1;
1451 s = isl_int_sgn(bmap->ineq[j][total + i]);
1452 isl_int_set_si(bmap->ineq[j][total + i], 0);
1453 if (s < 0)
1454 isl_seq_combine(bmap->ineq[j],
1455 ctx->negone, bmap->div[i] + 1,
1456 bmap->div[i][0], bmap->ineq[j],
1457 total + bmap->n_div);
1458 else
1459 isl_seq_combine(bmap->ineq[j],
1460 ctx->one, bmap->div[i] + 1,
1461 bmap->div[i][0], bmap->ineq[j],
1462 total + bmap->n_div);
1463 if (s < 0) {
1464 isl_int_add(bmap->ineq[j][0],
1465 bmap->ineq[j][0], bmap->div[i][0]);
1466 isl_int_sub_ui(bmap->ineq[j][0],
1467 bmap->ineq[j][0], 1);
1470 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1471 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1472 return isl_basic_map_free(bmap);
1476 return bmap;
1479 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1481 int progress = 1;
1482 if (!bmap)
1483 return NULL;
1484 while (progress) {
1485 progress = 0;
1486 if (!bmap)
1487 break;
1488 if (isl_basic_map_plain_is_empty(bmap))
1489 break;
1490 bmap = isl_basic_map_normalize_constraints(bmap);
1491 bmap = remove_independent_vars_from_divs(bmap);
1492 bmap = normalize_div_expressions(bmap);
1493 bmap = remove_duplicate_divs(bmap, &progress);
1494 bmap = eliminate_unit_divs(bmap, &progress);
1495 bmap = eliminate_divs_eq(bmap, &progress);
1496 bmap = eliminate_divs_ineq(bmap, &progress);
1497 bmap = isl_basic_map_gauss(bmap, &progress);
1498 /* requires equalities in normal form */
1499 bmap = normalize_divs(bmap, &progress);
1500 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1501 &progress, 1);
1502 if (bmap && progress)
1503 ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1505 return bmap;
1508 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1510 return (struct isl_basic_set *)
1511 isl_basic_map_simplify((struct isl_basic_map *)bset);
1515 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1516 isl_int *constraint, unsigned div)
1518 unsigned pos;
1520 if (!bmap)
1521 return -1;
1523 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1525 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1526 int neg;
1527 isl_int_sub(bmap->div[div][1],
1528 bmap->div[div][1], bmap->div[div][0]);
1529 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1530 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1531 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1532 isl_int_add(bmap->div[div][1],
1533 bmap->div[div][1], bmap->div[div][0]);
1534 if (!neg)
1535 return 0;
1536 if (isl_seq_first_non_zero(constraint+pos+1,
1537 bmap->n_div-div-1) != -1)
1538 return 0;
1539 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1540 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1541 return 0;
1542 if (isl_seq_first_non_zero(constraint+pos+1,
1543 bmap->n_div-div-1) != -1)
1544 return 0;
1545 } else
1546 return 0;
1548 return 1;
1551 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1552 isl_int *constraint, unsigned div)
1554 return isl_basic_map_is_div_constraint(bset, constraint, div);
1558 /* If the only constraints a div d=floor(f/m)
1559 * appears in are its two defining constraints
1561 * f - m d >=0
1562 * -(f - (m - 1)) + m d >= 0
1564 * then it can safely be removed.
1566 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1568 int i;
1569 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1571 for (i = 0; i < bmap->n_eq; ++i)
1572 if (!isl_int_is_zero(bmap->eq[i][pos]))
1573 return 0;
1575 for (i = 0; i < bmap->n_ineq; ++i) {
1576 if (isl_int_is_zero(bmap->ineq[i][pos]))
1577 continue;
1578 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1579 return 0;
1582 for (i = 0; i < bmap->n_div; ++i) {
1583 if (isl_int_is_zero(bmap->div[i][0]))
1584 continue;
1585 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1586 return 0;
1589 return 1;
1593 * Remove divs that don't occur in any of the constraints or other divs.
1594 * These can arise when dropping constraints from a basic map or
1595 * when the divs of a basic map have been temporarily aligned
1596 * with the divs of another basic map.
1598 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1600 int i;
1602 if (!bmap)
1603 return NULL;
1605 for (i = bmap->n_div-1; i >= 0; --i) {
1606 if (!div_is_redundant(bmap, i))
1607 continue;
1608 bmap = isl_basic_map_drop_div(bmap, i);
1610 return bmap;
1613 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1615 bmap = remove_redundant_divs(bmap);
1616 if (!bmap)
1617 return NULL;
1618 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1619 return bmap;
1622 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1624 return (struct isl_basic_set *)
1625 isl_basic_map_finalize((struct isl_basic_map *)bset);
1628 struct isl_set *isl_set_finalize(struct isl_set *set)
1630 int i;
1632 if (!set)
1633 return NULL;
1634 for (i = 0; i < set->n; ++i) {
1635 set->p[i] = isl_basic_set_finalize(set->p[i]);
1636 if (!set->p[i])
1637 goto error;
1639 return set;
1640 error:
1641 isl_set_free(set);
1642 return NULL;
1645 struct isl_map *isl_map_finalize(struct isl_map *map)
1647 int i;
1649 if (!map)
1650 return NULL;
1651 for (i = 0; i < map->n; ++i) {
1652 map->p[i] = isl_basic_map_finalize(map->p[i]);
1653 if (!map->p[i])
1654 goto error;
1656 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1657 return map;
1658 error:
1659 isl_map_free(map);
1660 return NULL;
1664 /* Remove definition of any div that is defined in terms of the given variable.
1665 * The div itself is not removed. Functions such as
1666 * eliminate_divs_ineq depend on the other divs remaining in place.
1668 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1669 int pos)
1671 int i;
1673 if (!bmap)
1674 return NULL;
1676 for (i = 0; i < bmap->n_div; ++i) {
1677 if (isl_int_is_zero(bmap->div[i][0]))
1678 continue;
1679 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1680 continue;
1681 isl_int_set_si(bmap->div[i][0], 0);
1683 return bmap;
1686 /* Eliminate the specified variables from the constraints using
1687 * Fourier-Motzkin. The variables themselves are not removed.
1689 struct isl_basic_map *isl_basic_map_eliminate_vars(
1690 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1692 int d;
1693 int i, j, k;
1694 unsigned total;
1695 int need_gauss = 0;
1697 if (n == 0)
1698 return bmap;
1699 if (!bmap)
1700 return NULL;
1701 total = isl_basic_map_total_dim(bmap);
1703 bmap = isl_basic_map_cow(bmap);
1704 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1705 bmap = remove_dependent_vars(bmap, d);
1706 if (!bmap)
1707 return NULL;
1709 for (d = pos + n - 1;
1710 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1711 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1712 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1713 int n_lower, n_upper;
1714 if (!bmap)
1715 return NULL;
1716 for (i = 0; i < bmap->n_eq; ++i) {
1717 if (isl_int_is_zero(bmap->eq[i][1+d]))
1718 continue;
1719 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1720 isl_basic_map_drop_equality(bmap, i);
1721 need_gauss = 1;
1722 break;
1724 if (i < bmap->n_eq)
1725 continue;
1726 n_lower = 0;
1727 n_upper = 0;
1728 for (i = 0; i < bmap->n_ineq; ++i) {
1729 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1730 n_lower++;
1731 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1732 n_upper++;
1734 bmap = isl_basic_map_extend_constraints(bmap,
1735 0, n_lower * n_upper);
1736 if (!bmap)
1737 goto error;
1738 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1739 int last;
1740 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1741 continue;
1742 last = -1;
1743 for (j = 0; j < i; ++j) {
1744 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1745 continue;
1746 last = j;
1747 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1748 isl_int_sgn(bmap->ineq[j][1+d]))
1749 continue;
1750 k = isl_basic_map_alloc_inequality(bmap);
1751 if (k < 0)
1752 goto error;
1753 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1754 1+total);
1755 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1756 1+d, 1+total, NULL);
1758 isl_basic_map_drop_inequality(bmap, i);
1759 i = last + 1;
1761 if (n_lower > 0 && n_upper > 0) {
1762 bmap = isl_basic_map_normalize_constraints(bmap);
1763 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1764 NULL, 0);
1765 bmap = isl_basic_map_gauss(bmap, NULL);
1766 bmap = isl_basic_map_remove_redundancies(bmap);
1767 need_gauss = 0;
1768 if (!bmap)
1769 goto error;
1770 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1771 break;
1774 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1775 if (need_gauss)
1776 bmap = isl_basic_map_gauss(bmap, NULL);
1777 return bmap;
1778 error:
1779 isl_basic_map_free(bmap);
1780 return NULL;
1783 struct isl_basic_set *isl_basic_set_eliminate_vars(
1784 struct isl_basic_set *bset, unsigned pos, unsigned n)
1786 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1787 (struct isl_basic_map *)bset, pos, n);
1790 /* Eliminate the specified n dimensions starting at first from the
1791 * constraints, without removing the dimensions from the space.
1792 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1793 * Otherwise, they are projected out and the original space is restored.
1795 __isl_give isl_basic_map *isl_basic_map_eliminate(
1796 __isl_take isl_basic_map *bmap,
1797 enum isl_dim_type type, unsigned first, unsigned n)
1799 isl_space *space;
1801 if (!bmap)
1802 return NULL;
1803 if (n == 0)
1804 return bmap;
1806 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1807 isl_die(bmap->ctx, isl_error_invalid,
1808 "index out of bounds", goto error);
1810 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1811 first += isl_basic_map_offset(bmap, type) - 1;
1812 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1813 return isl_basic_map_finalize(bmap);
1816 space = isl_basic_map_get_space(bmap);
1817 bmap = isl_basic_map_project_out(bmap, type, first, n);
1818 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1819 bmap = isl_basic_map_reset_space(bmap, space);
1820 return bmap;
1821 error:
1822 isl_basic_map_free(bmap);
1823 return NULL;
1826 __isl_give isl_basic_set *isl_basic_set_eliminate(
1827 __isl_take isl_basic_set *bset,
1828 enum isl_dim_type type, unsigned first, unsigned n)
1830 return isl_basic_map_eliminate(bset, type, first, n);
1833 /* Don't assume equalities are in order, because align_divs
1834 * may have changed the order of the divs.
1836 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1838 int d, i;
1839 unsigned total;
1841 total = isl_space_dim(bmap->dim, isl_dim_all);
1842 for (d = 0; d < total; ++d)
1843 elim[d] = -1;
1844 for (i = 0; i < bmap->n_eq; ++i) {
1845 for (d = total - 1; d >= 0; --d) {
1846 if (isl_int_is_zero(bmap->eq[i][1+d]))
1847 continue;
1848 elim[d] = i;
1849 break;
1854 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1856 compute_elimination_index((struct isl_basic_map *)bset, elim);
1859 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1860 struct isl_basic_map *bmap, int *elim)
1862 int d;
1863 int copied = 0;
1864 unsigned total;
1866 total = isl_space_dim(bmap->dim, isl_dim_all);
1867 for (d = total - 1; d >= 0; --d) {
1868 if (isl_int_is_zero(src[1+d]))
1869 continue;
1870 if (elim[d] == -1)
1871 continue;
1872 if (!copied) {
1873 isl_seq_cpy(dst, src, 1 + total);
1874 copied = 1;
1876 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1878 return copied;
1881 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1882 struct isl_basic_set *bset, int *elim)
1884 return reduced_using_equalities(dst, src,
1885 (struct isl_basic_map *)bset, elim);
1888 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1889 struct isl_basic_set *bset, struct isl_basic_set *context)
1891 int i;
1892 int *elim;
1894 if (!bset || !context)
1895 goto error;
1897 if (context->n_eq == 0) {
1898 isl_basic_set_free(context);
1899 return bset;
1902 bset = isl_basic_set_cow(bset);
1903 if (!bset)
1904 goto error;
1906 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1907 if (!elim)
1908 goto error;
1909 set_compute_elimination_index(context, elim);
1910 for (i = 0; i < bset->n_eq; ++i)
1911 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1912 context, elim);
1913 for (i = 0; i < bset->n_ineq; ++i)
1914 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1915 context, elim);
1916 isl_basic_set_free(context);
1917 free(elim);
1918 bset = isl_basic_set_simplify(bset);
1919 bset = isl_basic_set_finalize(bset);
1920 return bset;
1921 error:
1922 isl_basic_set_free(bset);
1923 isl_basic_set_free(context);
1924 return NULL;
1927 /* For each inequality in "ineq" that is a shifted (more relaxed)
1928 * copy of an inequality in "context", mark the corresponding entry
1929 * in "row" with -1.
1930 * If an inequality only has a non-negative constant term, then
1931 * mark it as well.
1933 static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
1934 __isl_keep isl_basic_set *context, int *row)
1936 struct isl_constraint_index ci;
1937 int n_ineq;
1938 unsigned total;
1939 int k;
1941 if (!ineq || !context)
1942 return isl_stat_error;
1943 if (context->n_ineq == 0)
1944 return isl_stat_ok;
1945 if (setup_constraint_index(&ci, context) < 0)
1946 return isl_stat_error;
1948 n_ineq = isl_mat_rows(ineq);
1949 total = isl_mat_cols(ineq) - 1;
1950 for (k = 0; k < n_ineq; ++k) {
1951 int l;
1952 isl_bool redundant;
1954 l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
1955 if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
1956 row[k] = -1;
1957 continue;
1959 redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
1960 if (redundant < 0)
1961 goto error;
1962 if (!redundant)
1963 continue;
1964 row[k] = -1;
1966 constraint_index_free(&ci);
1967 return isl_stat_ok;
1968 error:
1969 constraint_index_free(&ci);
1970 return isl_stat_error;
1973 static struct isl_basic_set *remove_shifted_constraints(
1974 struct isl_basic_set *bset, struct isl_basic_set *context)
1976 struct isl_constraint_index ci;
1977 int k;
1979 if (!bset || !context)
1980 return bset;
1982 if (context->n_ineq == 0)
1983 return bset;
1984 if (setup_constraint_index(&ci, context) < 0)
1985 return bset;
1987 for (k = 0; k < bset->n_ineq; ++k) {
1988 isl_bool redundant;
1990 redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
1991 if (redundant < 0)
1992 goto error;
1993 if (!redundant)
1994 continue;
1995 bset = isl_basic_set_cow(bset);
1996 if (!bset)
1997 goto error;
1998 isl_basic_set_drop_inequality(bset, k);
1999 --k;
2001 constraint_index_free(&ci);
2002 return bset;
2003 error:
2004 constraint_index_free(&ci);
2005 return bset;
2008 /* Remove constraints from "bmap" that are identical to constraints
2009 * in "context" or that are more relaxed (greater constant term).
2011 * We perform the test for shifted copies on the pure constraints
2012 * in remove_shifted_constraints.
2014 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
2015 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
2017 isl_basic_set *bset, *bset_context;
2019 if (!bmap || !context)
2020 goto error;
2022 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
2023 isl_basic_map_free(context);
2024 return bmap;
2027 context = isl_basic_map_align_divs(context, bmap);
2028 bmap = isl_basic_map_align_divs(bmap, context);
2030 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
2031 bset_context = isl_basic_map_underlying_set(context);
2032 bset = remove_shifted_constraints(bset, bset_context);
2033 isl_basic_set_free(bset_context);
2035 bmap = isl_basic_map_overlying_set(bset, bmap);
2037 return bmap;
2038 error:
2039 isl_basic_map_free(bmap);
2040 isl_basic_map_free(context);
2041 return NULL;
2044 /* Does the (linear part of a) constraint "c" involve any of the "len"
2045 * "relevant" dimensions?
2047 static int is_related(isl_int *c, int len, int *relevant)
2049 int i;
2051 for (i = 0; i < len; ++i) {
2052 if (!relevant[i])
2053 continue;
2054 if (!isl_int_is_zero(c[i]))
2055 return 1;
2058 return 0;
2061 /* Drop constraints from "bset" that do not involve any of
2062 * the dimensions marked "relevant".
2064 static __isl_give isl_basic_set *drop_unrelated_constraints(
2065 __isl_take isl_basic_set *bset, int *relevant)
2067 int i, dim;
2069 dim = isl_basic_set_dim(bset, isl_dim_set);
2070 for (i = 0; i < dim; ++i)
2071 if (!relevant[i])
2072 break;
2073 if (i >= dim)
2074 return bset;
2076 for (i = bset->n_eq - 1; i >= 0; --i)
2077 if (!is_related(bset->eq[i] + 1, dim, relevant))
2078 isl_basic_set_drop_equality(bset, i);
2080 for (i = bset->n_ineq - 1; i >= 0; --i)
2081 if (!is_related(bset->ineq[i] + 1, dim, relevant))
2082 isl_basic_set_drop_inequality(bset, i);
2084 return bset;
2087 /* Update the groups in "group" based on the (linear part of a) constraint "c".
2089 * In particular, for any variable involved in the constraint,
2090 * find the actual group id from before and replace the group
2091 * of the corresponding variable by the minimal group of all
2092 * the variables involved in the constraint considered so far
2093 * (if this minimum is smaller) or replace the minimum by this group
2094 * (if the minimum is larger).
2096 * At the end, all the variables in "c" will (indirectly) point
2097 * to the minimal of the groups that they referred to originally.
2099 static void update_groups(int dim, int *group, isl_int *c)
2101 int j;
2102 int min = dim;
2104 for (j = 0; j < dim; ++j) {
2105 if (isl_int_is_zero(c[j]))
2106 continue;
2107 while (group[j] >= 0 && group[group[j]] != group[j])
2108 group[j] = group[group[j]];
2109 if (group[j] == min)
2110 continue;
2111 if (group[j] < min) {
2112 if (min >= 0 && min < dim)
2113 group[min] = group[j];
2114 min = group[j];
2115 } else
2116 group[group[j]] = min;
2120 /* Allocate an array of groups of variables, one for each variable
2121 * in "context", initialized to zero.
2123 static int *alloc_groups(__isl_keep isl_basic_set *context)
2125 isl_ctx *ctx;
2126 int dim;
2128 dim = isl_basic_set_dim(context, isl_dim_set);
2129 ctx = isl_basic_set_get_ctx(context);
2130 return isl_calloc_array(ctx, int, dim);
2133 /* Drop constraints from "context" that only involve variables that are
2134 * not related to any of the variables marked with a "-1" in "group".
2136 * We construct groups of variables that collect variables that
2137 * (indirectly) appear in some common constraint of "context".
2138 * Each group is identified by the first variable in the group,
2139 * except for the special group of variables that was already identified
2140 * in the input as -1 (or are related to those variables).
2141 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2142 * otherwise the group of i is the group of group[i].
2144 * We first initialize groups for the remaining variables.
2145 * Then we iterate over the constraints of "context" and update the
2146 * group of the variables in the constraint by the smallest group.
2147 * Finally, we resolve indirect references to groups by running over
2148 * the variables.
2150 * After computing the groups, we drop constraints that do not involve
2151 * any variables in the -1 group.
2153 static __isl_give isl_basic_set *group_and_drop_irrelevant_constraints(
2154 __isl_take isl_basic_set *context, __isl_take int *group)
2156 int dim;
2157 int i;
2158 int last;
2160 dim = isl_basic_set_dim(context, isl_dim_set);
2162 last = -1;
2163 for (i = 0; i < dim; ++i)
2164 if (group[i] >= 0)
2165 last = group[i] = i;
2166 if (last < 0) {
2167 free(group);
2168 return context;
2171 for (i = 0; i < context->n_eq; ++i)
2172 update_groups(dim, group, context->eq[i] + 1);
2173 for (i = 0; i < context->n_ineq; ++i)
2174 update_groups(dim, group, context->ineq[i] + 1);
2176 for (i = 0; i < dim; ++i)
2177 if (group[i] >= 0)
2178 group[i] = group[group[i]];
2180 for (i = 0; i < dim; ++i)
2181 group[i] = group[i] == -1;
2183 context = drop_unrelated_constraints(context, group);
2185 free(group);
2186 return context;
2189 /* Drop constraints from "context" that are irrelevant for computing
2190 * the gist of "bset".
2192 * In particular, drop constraints in variables that are not related
2193 * to any of the variables involved in the constraints of "bset"
2194 * in the sense that there is no sequence of constraints that connects them.
2196 * We first mark all variables that appear in "bset" as belonging
2197 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2199 static __isl_give isl_basic_set *drop_irrelevant_constraints(
2200 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2202 int *group;
2203 int dim;
2204 int i, j;
2206 if (!context || !bset)
2207 return isl_basic_set_free(context);
2209 group = alloc_groups(context);
2211 if (!group)
2212 return isl_basic_set_free(context);
2214 dim = isl_basic_set_dim(bset, isl_dim_set);
2215 for (i = 0; i < dim; ++i) {
2216 for (j = 0; j < bset->n_eq; ++j)
2217 if (!isl_int_is_zero(bset->eq[j][1 + i]))
2218 break;
2219 if (j < bset->n_eq) {
2220 group[i] = -1;
2221 continue;
2223 for (j = 0; j < bset->n_ineq; ++j)
2224 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2225 break;
2226 if (j < bset->n_ineq)
2227 group[i] = -1;
2230 return group_and_drop_irrelevant_constraints(context, group);
2233 /* Drop constraints from "context" that are irrelevant for computing
2234 * the gist of the inequalities "ineq".
2235 * Inequalities in "ineq" for which the corresponding element of row
2236 * is set to -1 have already been marked for removal and should be ignored.
2238 * In particular, drop constraints in variables that are not related
2239 * to any of the variables involved in "ineq"
2240 * in the sense that there is no sequence of constraints that connects them.
2242 * We first mark all variables that appear in "bset" as belonging
2243 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2245 static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2246 __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2248 int *group;
2249 int dim;
2250 int i, j, n;
2252 if (!context || !ineq)
2253 return isl_basic_set_free(context);
2255 group = alloc_groups(context);
2257 if (!group)
2258 return isl_basic_set_free(context);
2260 dim = isl_basic_set_dim(context, isl_dim_set);
2261 n = isl_mat_rows(ineq);
2262 for (i = 0; i < dim; ++i) {
2263 for (j = 0; j < n; ++j) {
2264 if (row[j] < 0)
2265 continue;
2266 if (!isl_int_is_zero(ineq->row[j][1 + i]))
2267 break;
2269 if (j < n)
2270 group[i] = -1;
2273 return group_and_drop_irrelevant_constraints(context, group);
2276 /* Do all "n" entries of "row" contain a negative value?
2278 static int all_neg(int *row, int n)
2280 int i;
2282 for (i = 0; i < n; ++i)
2283 if (row[i] >= 0)
2284 return 0;
2286 return 1;
2289 /* Update the inequalities in "bset" based on the information in "row"
2290 * and "tab".
2292 * In particular, the array "row" contains either -1, meaning that
2293 * the corresponding inequality of "bset" is redundant, or the index
2294 * of an inequality in "tab".
2296 * If the row entry is -1, then drop the inequality.
2297 * Otherwise, if the constraint is marked redundant in the tableau,
2298 * then drop the inequality. Similarly, if it is marked as an equality
2299 * in the tableau, then turn the inequality into an equality and
2300 * perform Gaussian elimination.
2302 static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2303 __isl_keep int *row, struct isl_tab *tab)
2305 int i;
2306 unsigned n_ineq;
2307 unsigned n_eq;
2308 int found_equality = 0;
2310 if (!bset)
2311 return NULL;
2312 if (tab && tab->empty)
2313 return isl_basic_set_set_to_empty(bset);
2315 n_ineq = bset->n_ineq;
2316 for (i = n_ineq - 1; i >= 0; --i) {
2317 if (row[i] < 0) {
2318 if (isl_basic_set_drop_inequality(bset, i) < 0)
2319 return isl_basic_set_free(bset);
2320 continue;
2322 if (!tab)
2323 continue;
2324 n_eq = tab->n_eq;
2325 if (isl_tab_is_equality(tab, n_eq + row[i])) {
2326 isl_basic_map_inequality_to_equality(bset, i);
2327 found_equality = 1;
2328 } else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2329 if (isl_basic_set_drop_inequality(bset, i) < 0)
2330 return isl_basic_set_free(bset);
2334 if (found_equality)
2335 bset = isl_basic_set_gauss(bset, NULL);
2336 bset = isl_basic_set_finalize(bset);
2337 return bset;
2340 /* Update the inequalities in "bset" based on the information in "row"
2341 * and "tab" and free all arguments (other than "bset").
2343 static __isl_give isl_basic_set *update_ineq_free(
2344 __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2345 __isl_take isl_basic_set *context, __isl_take int *row,
2346 struct isl_tab *tab)
2348 isl_mat_free(ineq);
2349 isl_basic_set_free(context);
2351 bset = update_ineq(bset, row, tab);
2353 free(row);
2354 isl_tab_free(tab);
2355 return bset;
2358 /* Remove all information from bset that is redundant in the context
2359 * of context.
2360 * "ineq" contains the (possibly transformed) inequalities of "bset",
2361 * in the same order.
2362 * The (explicit) equalities of "bset" are assumed to have been taken
2363 * into account by the transformation such that only the inequalities
2364 * are relevant.
2366 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2367 * A value of -1 means that the inequality is obviously redundant and may
2368 * not even appear in "tab".
2370 * We first mark the inequalities of "bset"
2371 * that are obviously redundant with respect to some inequality in "context".
2372 * Then we remove those constraints from "context" that have become
2373 * irrelevant for computing the gist of "bset".
2374 * Note that this removal of constraints cannot be replaced by
2375 * a factorization because factors in "bset" may still be connected
2376 * to each other through constraints in "context".
2378 * If there are any inequalities left, we construct a tableau for
2379 * the context and then add the inequalities of "bset".
2380 * Before adding these inequalities, we freeze all constraints such that
2381 * they won't be considered redundant in terms of the constraints of "bset".
2382 * Then we detect all redundant constraints (among the
2383 * constraints that weren't frozen), first by checking for redundancy in the
2384 * the tableau and then by checking if replacing a constraint by its negation
2385 * would lead to an empty set. This last step is fairly expensive
2386 * and could be optimized by more reuse of the tableau.
2387 * Finally, we update bset according to the results.
2389 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2390 __isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2392 int i, r;
2393 int *row = NULL;
2394 isl_ctx *ctx;
2395 isl_basic_set *combined = NULL;
2396 struct isl_tab *tab = NULL;
2397 unsigned n_eq, context_ineq;
2398 unsigned total;
2400 if (!bset || !ineq || !context)
2401 goto error;
2403 if (bset->n_ineq == 0 || isl_basic_set_is_universe(context)) {
2404 isl_basic_set_free(context);
2405 isl_mat_free(ineq);
2406 return bset;
2409 ctx = isl_basic_set_get_ctx(context);
2410 row = isl_calloc_array(ctx, int, bset->n_ineq);
2411 if (!row)
2412 goto error;
2414 if (mark_shifted_constraints(ineq, context, row) < 0)
2415 goto error;
2416 if (all_neg(row, bset->n_ineq))
2417 return update_ineq_free(bset, ineq, context, row, NULL);
2419 context = drop_irrelevant_constraints_marked(context, ineq, row);
2420 if (!context)
2421 goto error;
2422 if (isl_basic_set_is_universe(context))
2423 return update_ineq_free(bset, ineq, context, row, NULL);
2425 n_eq = context->n_eq;
2426 context_ineq = context->n_ineq;
2427 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2428 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2429 tab = isl_tab_from_basic_set(combined, 0);
2430 for (i = 0; i < context_ineq; ++i)
2431 if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2432 goto error;
2433 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2434 goto error;
2435 r = context_ineq;
2436 for (i = 0; i < bset->n_ineq; ++i) {
2437 if (row[i] < 0)
2438 continue;
2439 combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2440 if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2441 goto error;
2442 row[i] = r++;
2444 if (isl_tab_detect_implicit_equalities(tab) < 0)
2445 goto error;
2446 if (isl_tab_detect_redundant(tab) < 0)
2447 goto error;
2448 total = isl_basic_set_total_dim(bset);
2449 for (i = bset->n_ineq - 1; i >= 0; --i) {
2450 isl_basic_set *test;
2451 int is_empty;
2453 if (row[i] < 0)
2454 continue;
2455 r = row[i];
2456 if (tab->con[n_eq + r].is_redundant)
2457 continue;
2458 test = isl_basic_set_dup(combined);
2459 if (isl_inequality_negate(test, r) < 0)
2460 test = isl_basic_set_free(test);
2461 test = isl_basic_set_update_from_tab(test, tab);
2462 is_empty = isl_basic_set_is_empty(test);
2463 isl_basic_set_free(test);
2464 if (is_empty < 0)
2465 goto error;
2466 if (is_empty)
2467 tab->con[n_eq + r].is_redundant = 1;
2469 bset = update_ineq_free(bset, ineq, context, row, tab);
2470 if (bset) {
2471 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2472 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2475 isl_basic_set_free(combined);
2476 return bset;
2477 error:
2478 free(row);
2479 isl_mat_free(ineq);
2480 isl_tab_free(tab);
2481 isl_basic_set_free(combined);
2482 isl_basic_set_free(context);
2483 isl_basic_set_free(bset);
2484 return NULL;
2487 /* Extract the inequalities of "bset" as an isl_mat.
2489 static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2491 unsigned total;
2492 isl_ctx *ctx;
2493 isl_mat *ineq;
2495 if (!bset)
2496 return NULL;
2498 ctx = isl_basic_set_get_ctx(bset);
2499 total = isl_basic_set_total_dim(bset);
2500 ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2501 0, 1 + total);
2503 return ineq;
2506 /* Remove all information from "bset" that is redundant in the context
2507 * of "context", for the case where both "bset" and "context" are
2508 * full-dimensional.
2510 static __isl_give isl_basic_set *uset_gist_uncompressed(
2511 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2513 isl_mat *ineq;
2515 ineq = extract_ineq(bset);
2516 return uset_gist_full(bset, ineq, context);
2519 /* Remove all information from "bset" that is redundant in the context
2520 * of "context", for the case where the combined equalities of
2521 * "bset" and "context" allow for a compression that can be obtained
2522 * by preapplication of "T".
2524 * "bset" itself is not transformed by "T". Instead, the inequalities
2525 * are extracted from "bset" and those are transformed by "T".
2526 * uset_gist_full then determines which of the transformed inequalities
2527 * are redundant with respect to the transformed "context" and removes
2528 * the corresponding inequalities from "bset".
2530 * After preapplying "T" to the inequalities, any common factor is
2531 * removed from the coefficients. If this results in a tightening
2532 * of the constant term, then the same tightening is applied to
2533 * the corresponding untransformed inequality in "bset".
2534 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2536 * g f'(x) + r >= 0
2538 * with 0 <= r < g, then it is equivalent to
2540 * f'(x) >= 0
2542 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2543 * subspace compressed by T since the latter would be transformed to
2545 * g f'(x) >= 0
2547 static __isl_give isl_basic_set *uset_gist_compressed(
2548 __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2549 __isl_take isl_mat *T)
2551 isl_ctx *ctx;
2552 isl_mat *ineq;
2553 int i, n_row, n_col;
2554 isl_int rem;
2556 ineq = extract_ineq(bset);
2557 ineq = isl_mat_product(ineq, isl_mat_copy(T));
2558 context = isl_basic_set_preimage(context, T);
2560 if (!ineq)
2561 goto error;
2563 ctx = isl_mat_get_ctx(ineq);
2564 n_row = isl_mat_rows(ineq);
2565 n_col = isl_mat_cols(ineq);
2566 isl_int_init(rem);
2567 for (i = 0; i < n_row; ++i) {
2568 isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2569 if (isl_int_is_zero(ctx->normalize_gcd))
2570 continue;
2571 if (isl_int_is_one(ctx->normalize_gcd))
2572 continue;
2573 isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2574 ctx->normalize_gcd, n_col - 1);
2575 isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2576 isl_int_fdiv_q(ineq->row[i][0],
2577 ineq->row[i][0], ctx->normalize_gcd);
2578 if (isl_int_is_zero(rem))
2579 continue;
2580 bset = isl_basic_set_cow(bset);
2581 if (!bset)
2582 break;
2583 isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2585 isl_int_clear(rem);
2587 return uset_gist_full(bset, ineq, context);
2588 error:
2589 isl_mat_free(ineq);
2590 isl_basic_set_free(context);
2591 isl_basic_set_free(bset);
2592 return NULL;
2595 /* Remove all information from bset that is redundant in the context
2596 * of context. In particular, equalities that are linear combinations
2597 * of those in context are removed. Then the inequalities that are
2598 * redundant in the context of the equalities and inequalities of
2599 * context are removed.
2601 * First of all, we drop those constraints from "context"
2602 * that are irrelevant for computing the gist of "bset".
2603 * Alternatively, we could factorize the intersection of "context" and "bset".
2605 * We first compute the intersection of the integer affine hulls
2606 * of "bset" and "context",
2607 * compute the gist inside this intersection and then reduce
2608 * the constraints with respect to the equalities of the context.
2610 * If two constraints are mutually redundant, then uset_gist_full
2611 * will remove the second of those constraints. We therefore first
2612 * sort the constraints so that constraints not involving existentially
2613 * quantified variables are given precedence over those that do.
2614 * We have to perform this sorting before the variable compression,
2615 * because that may effect the order of the variables.
2617 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2618 __isl_take isl_basic_set *context)
2620 isl_mat *eq;
2621 isl_mat *T;
2622 isl_basic_set *aff;
2623 isl_basic_set *aff_context;
2624 unsigned total;
2626 if (!bset || !context)
2627 goto error;
2629 context = drop_irrelevant_constraints(context, bset);
2631 bset = isl_basic_set_detect_equalities(bset);
2632 aff = isl_basic_set_copy(bset);
2633 aff = isl_basic_set_plain_affine_hull(aff);
2634 context = isl_basic_set_detect_equalities(context);
2635 aff_context = isl_basic_set_copy(context);
2636 aff_context = isl_basic_set_plain_affine_hull(aff_context);
2637 aff = isl_basic_set_intersect(aff, aff_context);
2638 if (!aff)
2639 goto error;
2640 if (isl_basic_set_plain_is_empty(aff)) {
2641 isl_basic_set_free(bset);
2642 isl_basic_set_free(context);
2643 return aff;
2645 bset = isl_basic_set_sort_constraints(bset);
2646 if (aff->n_eq == 0) {
2647 isl_basic_set_free(aff);
2648 return uset_gist_uncompressed(bset, context);
2650 total = isl_basic_set_total_dim(bset);
2651 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2652 eq = isl_mat_cow(eq);
2653 T = isl_mat_variable_compression(eq, NULL);
2654 isl_basic_set_free(aff);
2655 if (T && T->n_col == 0) {
2656 isl_mat_free(T);
2657 isl_basic_set_free(context);
2658 return isl_basic_set_set_to_empty(bset);
2661 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2663 bset = uset_gist_compressed(bset, context, T);
2664 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2666 if (bset) {
2667 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2668 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2671 return bset;
2672 error:
2673 isl_basic_set_free(bset);
2674 isl_basic_set_free(context);
2675 return NULL;
2678 /* Return a basic map that has the same intersection with "context" as "bmap"
2679 * and that is as "simple" as possible.
2681 * The core computation is performed on the pure constraints.
2682 * When we add back the meaning of the integer divisions, we need
2683 * to (re)introduce the div constraints. If we happen to have
2684 * discovered that some of these integer divisions are equal to
2685 * some affine combination of other variables, then these div
2686 * constraints may end up getting simplified in terms of the equalities,
2687 * resulting in extra inequalities on the other variables that
2688 * may have been removed already or that may not even have been
2689 * part of the input. We try and remove those constraints of
2690 * this form that are most obviously redundant with respect to
2691 * the context. We also remove those div constraints that are
2692 * redundant with respect to the other constraints in the result.
2694 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2695 struct isl_basic_map *context)
2697 isl_basic_set *bset, *eq;
2698 isl_basic_map *eq_bmap;
2699 unsigned n_div, n_eq, n_ineq;
2701 if (!bmap || !context)
2702 goto error;
2704 if (isl_basic_map_is_universe(bmap)) {
2705 isl_basic_map_free(context);
2706 return bmap;
2708 if (isl_basic_map_plain_is_empty(context)) {
2709 isl_space *space = isl_basic_map_get_space(bmap);
2710 isl_basic_map_free(bmap);
2711 isl_basic_map_free(context);
2712 return isl_basic_map_universe(space);
2714 if (isl_basic_map_plain_is_empty(bmap)) {
2715 isl_basic_map_free(context);
2716 return bmap;
2719 bmap = isl_basic_map_remove_redundancies(bmap);
2720 context = isl_basic_map_remove_redundancies(context);
2721 if (!context)
2722 goto error;
2724 context = isl_basic_map_align_divs(context, bmap);
2725 bmap = isl_basic_map_align_divs(bmap, context);
2726 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2728 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2729 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
2731 if (!bset || bset->n_eq == 0 || n_div == 0 ||
2732 isl_basic_set_plain_is_empty(bset)) {
2733 isl_basic_map_free(context);
2734 return isl_basic_map_overlying_set(bset, bmap);
2737 n_eq = bset->n_eq;
2738 n_ineq = bset->n_ineq;
2739 eq = isl_basic_set_copy(bset);
2740 eq = isl_basic_set_cow(eq);
2741 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
2742 eq = isl_basic_set_free(eq);
2743 if (isl_basic_set_free_equality(bset, n_eq) < 0)
2744 bset = isl_basic_set_free(bset);
2746 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
2747 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
2748 bmap = isl_basic_map_overlying_set(bset, bmap);
2749 bmap = isl_basic_map_intersect(bmap, eq_bmap);
2750 bmap = isl_basic_map_remove_redundancies(bmap);
2752 return bmap;
2753 error:
2754 isl_basic_map_free(bmap);
2755 isl_basic_map_free(context);
2756 return NULL;
2760 * Assumes context has no implicit divs.
2762 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2763 __isl_take isl_basic_map *context)
2765 int i;
2767 if (!map || !context)
2768 goto error;
2770 if (isl_basic_map_plain_is_empty(context)) {
2771 isl_space *space = isl_map_get_space(map);
2772 isl_map_free(map);
2773 isl_basic_map_free(context);
2774 return isl_map_universe(space);
2777 context = isl_basic_map_remove_redundancies(context);
2778 map = isl_map_cow(map);
2779 if (!map || !context)
2780 goto error;
2781 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2782 map = isl_map_compute_divs(map);
2783 if (!map)
2784 goto error;
2785 for (i = map->n - 1; i >= 0; --i) {
2786 map->p[i] = isl_basic_map_gist(map->p[i],
2787 isl_basic_map_copy(context));
2788 if (!map->p[i])
2789 goto error;
2790 if (isl_basic_map_plain_is_empty(map->p[i])) {
2791 isl_basic_map_free(map->p[i]);
2792 if (i != map->n - 1)
2793 map->p[i] = map->p[map->n - 1];
2794 map->n--;
2797 isl_basic_map_free(context);
2798 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2799 return map;
2800 error:
2801 isl_map_free(map);
2802 isl_basic_map_free(context);
2803 return NULL;
2806 /* Return a map that has the same intersection with "context" as "map"
2807 * and that is as "simple" as possible.
2809 * If "map" is already the universe, then we cannot make it any simpler.
2810 * Similarly, if "context" is the universe, then we cannot exploit it
2811 * to simplify "map"
2812 * If "map" and "context" are identical to each other, then we can
2813 * return the corresponding universe.
2815 * If none of these cases apply, we have to work a bit harder.
2816 * During this computation, we make use of a single disjunct context,
2817 * so if the original context consists of more than one disjunct
2818 * then we need to approximate the context by a single disjunct set.
2819 * Simply taking the simple hull may drop constraints that are
2820 * only implicitly available in each disjunct. We therefore also
2821 * look for constraints among those defining "map" that are valid
2822 * for the context. These can then be used to simplify away
2823 * the corresponding constraints in "map".
2825 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2826 __isl_take isl_map *context)
2828 int equal;
2829 int is_universe;
2830 isl_basic_map *hull;
2832 is_universe = isl_map_plain_is_universe(map);
2833 if (is_universe >= 0 && !is_universe)
2834 is_universe = isl_map_plain_is_universe(context);
2835 if (is_universe < 0)
2836 goto error;
2837 if (is_universe) {
2838 isl_map_free(context);
2839 return map;
2842 equal = isl_map_plain_is_equal(map, context);
2843 if (equal < 0)
2844 goto error;
2845 if (equal) {
2846 isl_map *res = isl_map_universe(isl_map_get_space(map));
2847 isl_map_free(map);
2848 isl_map_free(context);
2849 return res;
2852 context = isl_map_compute_divs(context);
2853 if (!context)
2854 goto error;
2855 if (isl_map_n_basic_map(context) == 1) {
2856 hull = isl_map_simple_hull(context);
2857 } else {
2858 isl_ctx *ctx;
2859 isl_map_list *list;
2861 ctx = isl_map_get_ctx(map);
2862 list = isl_map_list_alloc(ctx, 2);
2863 list = isl_map_list_add(list, isl_map_copy(context));
2864 list = isl_map_list_add(list, isl_map_copy(map));
2865 hull = isl_map_unshifted_simple_hull_from_map_list(context,
2866 list);
2868 return isl_map_gist_basic_map(map, hull);
2869 error:
2870 isl_map_free(map);
2871 isl_map_free(context);
2872 return NULL;
2875 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2876 __isl_take isl_map *context)
2878 return isl_map_align_params_map_map_and(map, context, &map_gist);
2881 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2882 struct isl_basic_set *context)
2884 return (struct isl_basic_set *)isl_basic_map_gist(
2885 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2888 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2889 __isl_take isl_basic_set *context)
2891 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2892 (struct isl_basic_map *)context);
2895 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2896 __isl_take isl_basic_set *context)
2898 isl_space *space = isl_set_get_space(set);
2899 isl_basic_set *dom_context = isl_basic_set_universe(space);
2900 dom_context = isl_basic_set_intersect_params(dom_context, context);
2901 return isl_set_gist_basic_set(set, dom_context);
2904 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2905 __isl_take isl_set *context)
2907 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2908 (struct isl_map *)context);
2911 /* Compute the gist of "bmap" with respect to the constraints "context"
2912 * on the domain.
2914 __isl_give isl_basic_map *isl_basic_map_gist_domain(
2915 __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
2917 isl_space *space = isl_basic_map_get_space(bmap);
2918 isl_basic_map *bmap_context = isl_basic_map_universe(space);
2920 bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
2921 return isl_basic_map_gist(bmap, bmap_context);
2924 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2925 __isl_take isl_set *context)
2927 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2928 map_context = isl_map_intersect_domain(map_context, context);
2929 return isl_map_gist(map, map_context);
2932 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2933 __isl_take isl_set *context)
2935 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2936 map_context = isl_map_intersect_range(map_context, context);
2937 return isl_map_gist(map, map_context);
2940 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2941 __isl_take isl_set *context)
2943 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2944 map_context = isl_map_intersect_params(map_context, context);
2945 return isl_map_gist(map, map_context);
2948 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2949 __isl_take isl_set *context)
2951 return isl_map_gist_params(set, context);
2954 /* Quick check to see if two basic maps are disjoint.
2955 * In particular, we reduce the equalities and inequalities of
2956 * one basic map in the context of the equalities of the other
2957 * basic map and check if we get a contradiction.
2959 isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2960 __isl_keep isl_basic_map *bmap2)
2962 struct isl_vec *v = NULL;
2963 int *elim = NULL;
2964 unsigned total;
2965 int i;
2967 if (!bmap1 || !bmap2)
2968 return isl_bool_error;
2969 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2970 return isl_bool_error);
2971 if (bmap1->n_div || bmap2->n_div)
2972 return isl_bool_false;
2973 if (!bmap1->n_eq && !bmap2->n_eq)
2974 return isl_bool_false;
2976 total = isl_space_dim(bmap1->dim, isl_dim_all);
2977 if (total == 0)
2978 return isl_bool_false;
2979 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2980 if (!v)
2981 goto error;
2982 elim = isl_alloc_array(bmap1->ctx, int, total);
2983 if (!elim)
2984 goto error;
2985 compute_elimination_index(bmap1, elim);
2986 for (i = 0; i < bmap2->n_eq; ++i) {
2987 int reduced;
2988 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2989 bmap1, elim);
2990 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2991 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2992 goto disjoint;
2994 for (i = 0; i < bmap2->n_ineq; ++i) {
2995 int reduced;
2996 reduced = reduced_using_equalities(v->block.data,
2997 bmap2->ineq[i], bmap1, elim);
2998 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2999 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3000 goto disjoint;
3002 compute_elimination_index(bmap2, elim);
3003 for (i = 0; i < bmap1->n_ineq; ++i) {
3004 int reduced;
3005 reduced = reduced_using_equalities(v->block.data,
3006 bmap1->ineq[i], bmap2, elim);
3007 if (reduced && isl_int_is_neg(v->block.data[0]) &&
3008 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3009 goto disjoint;
3011 isl_vec_free(v);
3012 free(elim);
3013 return isl_bool_false;
3014 disjoint:
3015 isl_vec_free(v);
3016 free(elim);
3017 return isl_bool_true;
3018 error:
3019 isl_vec_free(v);
3020 free(elim);
3021 return isl_bool_error;
3024 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
3025 __isl_keep isl_basic_set *bset2)
3027 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
3028 (struct isl_basic_map *)bset2);
3031 /* Are "map1" and "map2" obviously disjoint?
3033 * If one of them is empty or if they live in different spaces (ignoring
3034 * parameters), then they are clearly disjoint.
3036 * If they have different parameters, then we skip any further tests.
3038 * If they are obviously equal, but not obviously empty, then we will
3039 * not be able to detect if they are disjoint.
3041 * Otherwise we check if each basic map in "map1" is obviously disjoint
3042 * from each basic map in "map2".
3044 isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
3045 __isl_keep isl_map *map2)
3047 int i, j;
3048 isl_bool disjoint;
3049 isl_bool intersect;
3050 isl_bool match;
3052 if (!map1 || !map2)
3053 return isl_bool_error;
3055 disjoint = isl_map_plain_is_empty(map1);
3056 if (disjoint < 0 || disjoint)
3057 return disjoint;
3059 disjoint = isl_map_plain_is_empty(map2);
3060 if (disjoint < 0 || disjoint)
3061 return disjoint;
3063 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
3064 map2->dim, isl_dim_in);
3065 if (match < 0 || !match)
3066 return match < 0 ? isl_bool_error : isl_bool_true;
3068 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
3069 map2->dim, isl_dim_out);
3070 if (match < 0 || !match)
3071 return match < 0 ? isl_bool_error : isl_bool_true;
3073 match = isl_space_match(map1->dim, isl_dim_param,
3074 map2->dim, isl_dim_param);
3075 if (match < 0 || !match)
3076 return match < 0 ? isl_bool_error : isl_bool_false;
3078 intersect = isl_map_plain_is_equal(map1, map2);
3079 if (intersect < 0 || intersect)
3080 return intersect < 0 ? isl_bool_error : isl_bool_false;
3082 for (i = 0; i < map1->n; ++i) {
3083 for (j = 0; j < map2->n; ++j) {
3084 isl_bool d = isl_basic_map_plain_is_disjoint(map1->p[i],
3085 map2->p[j]);
3086 if (d != isl_bool_true)
3087 return d;
3090 return isl_bool_true;
3093 /* Are "map1" and "map2" disjoint?
3095 * They are disjoint if they are "obviously disjoint" or if one of them
3096 * is empty. Otherwise, they are not disjoint if one of them is universal.
3097 * If none of these cases apply, we compute the intersection and see if
3098 * the result is empty.
3100 isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
3102 isl_bool disjoint;
3103 isl_bool intersect;
3104 isl_map *test;
3106 disjoint = isl_map_plain_is_disjoint(map1, map2);
3107 if (disjoint < 0 || disjoint)
3108 return disjoint;
3110 disjoint = isl_map_is_empty(map1);
3111 if (disjoint < 0 || disjoint)
3112 return disjoint;
3114 disjoint = isl_map_is_empty(map2);
3115 if (disjoint < 0 || disjoint)
3116 return disjoint;
3118 intersect = isl_map_plain_is_universe(map1);
3119 if (intersect < 0 || intersect)
3120 return intersect < 0 ? isl_bool_error : isl_bool_false;
3122 intersect = isl_map_plain_is_universe(map2);
3123 if (intersect < 0 || intersect)
3124 return intersect < 0 ? isl_bool_error : isl_bool_false;
3126 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
3127 disjoint = isl_map_is_empty(test);
3128 isl_map_free(test);
3130 return disjoint;
3133 /* Are "bmap1" and "bmap2" disjoint?
3135 * They are disjoint if they are "obviously disjoint" or if one of them
3136 * is empty. Otherwise, they are not disjoint if one of them is universal.
3137 * If none of these cases apply, we compute the intersection and see if
3138 * the result is empty.
3140 isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
3141 __isl_keep isl_basic_map *bmap2)
3143 isl_bool disjoint;
3144 isl_bool intersect;
3145 isl_basic_map *test;
3147 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
3148 if (disjoint < 0 || disjoint)
3149 return disjoint;
3151 disjoint = isl_basic_map_is_empty(bmap1);
3152 if (disjoint < 0 || disjoint)
3153 return disjoint;
3155 disjoint = isl_basic_map_is_empty(bmap2);
3156 if (disjoint < 0 || disjoint)
3157 return disjoint;
3159 intersect = isl_basic_map_is_universe(bmap1);
3160 if (intersect < 0 || intersect)
3161 return intersect < 0 ? isl_bool_error : isl_bool_false;
3163 intersect = isl_basic_map_is_universe(bmap2);
3164 if (intersect < 0 || intersect)
3165 return intersect < 0 ? isl_bool_error : isl_bool_false;
3167 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
3168 isl_basic_map_copy(bmap2));
3169 disjoint = isl_basic_map_is_empty(test);
3170 isl_basic_map_free(test);
3172 return disjoint;
3175 /* Are "bset1" and "bset2" disjoint?
3177 isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
3178 __isl_keep isl_basic_set *bset2)
3180 return isl_basic_map_is_disjoint(bset1, bset2);
3183 isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
3184 __isl_keep isl_set *set2)
3186 return isl_map_plain_is_disjoint((struct isl_map *)set1,
3187 (struct isl_map *)set2);
3190 /* Are "set1" and "set2" disjoint?
3192 isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
3194 return isl_map_is_disjoint(set1, set2);
3197 /* Check if we can combine a given div with lower bound l and upper
3198 * bound u with some other div and if so return that other div.
3199 * Otherwise return -1.
3201 * We first check that
3202 * - the bounds are opposites of each other (except for the constant
3203 * term)
3204 * - the bounds do not reference any other div
3205 * - no div is defined in terms of this div
3207 * Let m be the size of the range allowed on the div by the bounds.
3208 * That is, the bounds are of the form
3210 * e <= a <= e + m - 1
3212 * with e some expression in the other variables.
3213 * We look for another div b such that no third div is defined in terms
3214 * of this second div b and such that in any constraint that contains
3215 * a (except for the given lower and upper bound), also contains b
3216 * with a coefficient that is m times that of b.
3217 * That is, all constraints (execpt for the lower and upper bound)
3218 * are of the form
3220 * e + f (a + m b) >= 0
3222 * If so, we return b so that "a + m b" can be replaced by
3223 * a single div "c = a + m b".
3225 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
3226 unsigned div, unsigned l, unsigned u)
3228 int i, j;
3229 unsigned dim;
3230 int coalesce = -1;
3232 if (bmap->n_div <= 1)
3233 return -1;
3234 dim = isl_space_dim(bmap->dim, isl_dim_all);
3235 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
3236 return -1;
3237 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
3238 bmap->n_div - div - 1) != -1)
3239 return -1;
3240 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
3241 dim + bmap->n_div))
3242 return -1;
3244 for (i = 0; i < bmap->n_div; ++i) {
3245 if (isl_int_is_zero(bmap->div[i][0]))
3246 continue;
3247 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
3248 return -1;
3251 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
3252 if (isl_int_is_neg(bmap->ineq[l][0])) {
3253 isl_int_sub(bmap->ineq[l][0],
3254 bmap->ineq[l][0], bmap->ineq[u][0]);
3255 bmap = isl_basic_map_copy(bmap);
3256 bmap = isl_basic_map_set_to_empty(bmap);
3257 isl_basic_map_free(bmap);
3258 return -1;
3260 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
3261 for (i = 0; i < bmap->n_div; ++i) {
3262 if (i == div)
3263 continue;
3264 if (!pairs[i])
3265 continue;
3266 for (j = 0; j < bmap->n_div; ++j) {
3267 if (isl_int_is_zero(bmap->div[j][0]))
3268 continue;
3269 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
3270 break;
3272 if (j < bmap->n_div)
3273 continue;
3274 for (j = 0; j < bmap->n_ineq; ++j) {
3275 int valid;
3276 if (j == l || j == u)
3277 continue;
3278 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
3279 continue;
3280 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
3281 break;
3282 isl_int_mul(bmap->ineq[j][1 + dim + div],
3283 bmap->ineq[j][1 + dim + div],
3284 bmap->ineq[l][0]);
3285 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
3286 bmap->ineq[j][1 + dim + i]);
3287 isl_int_divexact(bmap->ineq[j][1 + dim + div],
3288 bmap->ineq[j][1 + dim + div],
3289 bmap->ineq[l][0]);
3290 if (!valid)
3291 break;
3293 if (j < bmap->n_ineq)
3294 continue;
3295 coalesce = i;
3296 break;
3298 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
3299 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
3300 return coalesce;
3303 /* Given a lower and an upper bound on div i, construct an inequality
3304 * that when nonnegative ensures that this pair of bounds always allows
3305 * for an integer value of the given div.
3306 * The lower bound is inequality l, while the upper bound is inequality u.
3307 * The constructed inequality is stored in ineq.
3308 * g, fl, fu are temporary scalars.
3310 * Let the upper bound be
3312 * -n_u a + e_u >= 0
3314 * and the lower bound
3316 * n_l a + e_l >= 0
3318 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
3319 * We have
3321 * - f_u e_l <= f_u f_l g a <= f_l e_u
3323 * Since all variables are integer valued, this is equivalent to
3325 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
3327 * If this interval is at least f_u f_l g, then it contains at least
3328 * one integer value for a.
3329 * That is, the test constraint is
3331 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
3333 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
3334 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
3336 unsigned dim;
3337 dim = isl_space_dim(bmap->dim, isl_dim_all);
3339 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
3340 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
3341 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
3342 isl_int_neg(fu, fu);
3343 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
3344 1 + dim + bmap->n_div);
3345 isl_int_add(ineq[0], ineq[0], fl);
3346 isl_int_add(ineq[0], ineq[0], fu);
3347 isl_int_sub_ui(ineq[0], ineq[0], 1);
3348 isl_int_mul(g, g, fl);
3349 isl_int_mul(g, g, fu);
3350 isl_int_sub(ineq[0], ineq[0], g);
3353 /* Remove more kinds of divs that are not strictly needed.
3354 * In particular, if all pairs of lower and upper bounds on a div
3355 * are such that they allow at least one integer value of the div,
3356 * the we can eliminate the div using Fourier-Motzkin without
3357 * introducing any spurious solutions.
3359 static struct isl_basic_map *drop_more_redundant_divs(
3360 struct isl_basic_map *bmap, int *pairs, int n)
3362 struct isl_tab *tab = NULL;
3363 struct isl_vec *vec = NULL;
3364 unsigned dim;
3365 int remove = -1;
3366 isl_int g, fl, fu;
3368 isl_int_init(g);
3369 isl_int_init(fl);
3370 isl_int_init(fu);
3372 if (!bmap)
3373 goto error;
3375 dim = isl_space_dim(bmap->dim, isl_dim_all);
3376 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
3377 if (!vec)
3378 goto error;
3380 tab = isl_tab_from_basic_map(bmap, 0);
3382 while (n > 0) {
3383 int i, l, u;
3384 int best = -1;
3385 enum isl_lp_result res;
3387 for (i = 0; i < bmap->n_div; ++i) {
3388 if (!pairs[i])
3389 continue;
3390 if (best >= 0 && pairs[best] <= pairs[i])
3391 continue;
3392 best = i;
3395 i = best;
3396 for (l = 0; l < bmap->n_ineq; ++l) {
3397 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
3398 continue;
3399 for (u = 0; u < bmap->n_ineq; ++u) {
3400 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
3401 continue;
3402 construct_test_ineq(bmap, i, l, u,
3403 vec->el, g, fl, fu);
3404 res = isl_tab_min(tab, vec->el,
3405 bmap->ctx->one, &g, NULL, 0);
3406 if (res == isl_lp_error)
3407 goto error;
3408 if (res == isl_lp_empty) {
3409 bmap = isl_basic_map_set_to_empty(bmap);
3410 break;
3412 if (res != isl_lp_ok || isl_int_is_neg(g))
3413 break;
3415 if (u < bmap->n_ineq)
3416 break;
3418 if (l == bmap->n_ineq) {
3419 remove = i;
3420 break;
3422 pairs[i] = 0;
3423 --n;
3426 isl_tab_free(tab);
3427 isl_vec_free(vec);
3429 isl_int_clear(g);
3430 isl_int_clear(fl);
3431 isl_int_clear(fu);
3433 free(pairs);
3435 if (remove < 0)
3436 return bmap;
3438 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
3439 return isl_basic_map_drop_redundant_divs(bmap);
3440 error:
3441 free(pairs);
3442 isl_basic_map_free(bmap);
3443 isl_tab_free(tab);
3444 isl_vec_free(vec);
3445 isl_int_clear(g);
3446 isl_int_clear(fl);
3447 isl_int_clear(fu);
3448 return NULL;
3451 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
3452 * and the upper bound u, div1 always occurs together with div2 in the form
3453 * (div1 + m div2), where m is the constant range on the variable div1
3454 * allowed by l and u, replace the pair div1 and div2 by a single
3455 * div that is equal to div1 + m div2.
3457 * The new div will appear in the location that contains div2.
3458 * We need to modify all constraints that contain
3459 * div2 = (div - div1) / m
3460 * (If a constraint does not contain div2, it will also not contain div1.)
3461 * If the constraint also contains div1, then we know they appear
3462 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
3463 * i.e., the coefficient of div is f.
3465 * Otherwise, we first need to introduce div1 into the constraint.
3466 * Let the l be
3468 * div1 + f >=0
3470 * and u
3472 * -div1 + f' >= 0
3474 * A lower bound on div2
3476 * n div2 + t >= 0
3478 * can be replaced by
3480 * (n * (m div 2 + div1) + m t + n f)/g >= 0
3482 * with g = gcd(m,n).
3483 * An upper bound
3485 * -n div2 + t >= 0
3487 * can be replaced by
3489 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3491 * These constraint are those that we would obtain from eliminating
3492 * div1 using Fourier-Motzkin.
3494 * After all constraints have been modified, we drop the lower and upper
3495 * bound and then drop div1.
3497 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
3498 unsigned div1, unsigned div2, unsigned l, unsigned u)
3500 isl_int a;
3501 isl_int b;
3502 isl_int m;
3503 unsigned dim, total;
3504 int i;
3506 dim = isl_space_dim(bmap->dim, isl_dim_all);
3507 total = 1 + dim + bmap->n_div;
3509 isl_int_init(a);
3510 isl_int_init(b);
3511 isl_int_init(m);
3512 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
3513 isl_int_add_ui(m, m, 1);
3515 for (i = 0; i < bmap->n_ineq; ++i) {
3516 if (i == l || i == u)
3517 continue;
3518 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
3519 continue;
3520 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
3521 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
3522 isl_int_divexact(a, m, b);
3523 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
3524 if (isl_int_is_pos(b)) {
3525 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3526 b, bmap->ineq[l], total);
3527 } else {
3528 isl_int_neg(b, b);
3529 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3530 b, bmap->ineq[u], total);
3533 isl_int_set(bmap->ineq[i][1 + dim + div2],
3534 bmap->ineq[i][1 + dim + div1]);
3535 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
3538 isl_int_clear(a);
3539 isl_int_clear(b);
3540 isl_int_clear(m);
3541 if (l > u) {
3542 isl_basic_map_drop_inequality(bmap, l);
3543 isl_basic_map_drop_inequality(bmap, u);
3544 } else {
3545 isl_basic_map_drop_inequality(bmap, u);
3546 isl_basic_map_drop_inequality(bmap, l);
3548 bmap = isl_basic_map_drop_div(bmap, div1);
3549 return bmap;
3552 /* First check if we can coalesce any pair of divs and
3553 * then continue with dropping more redundant divs.
3555 * We loop over all pairs of lower and upper bounds on a div
3556 * with coefficient 1 and -1, respectively, check if there
3557 * is any other div "c" with which we can coalesce the div
3558 * and if so, perform the coalescing.
3560 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
3561 struct isl_basic_map *bmap, int *pairs, int n)
3563 int i, l, u;
3564 unsigned dim;
3566 dim = isl_space_dim(bmap->dim, isl_dim_all);
3568 for (i = 0; i < bmap->n_div; ++i) {
3569 if (!pairs[i])
3570 continue;
3571 for (l = 0; l < bmap->n_ineq; ++l) {
3572 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
3573 continue;
3574 for (u = 0; u < bmap->n_ineq; ++u) {
3575 int c;
3577 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3578 continue;
3579 c = div_find_coalesce(bmap, pairs, i, l, u);
3580 if (c < 0)
3581 continue;
3582 free(pairs);
3583 bmap = coalesce_divs(bmap, i, c, l, u);
3584 return isl_basic_map_drop_redundant_divs(bmap);
3589 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3590 return bmap;
3592 return drop_more_redundant_divs(bmap, pairs, n);
3595 /* Remove divs that are not strictly needed.
3596 * In particular, if a div only occurs positively (or negatively)
3597 * in constraints, then it can simply be dropped.
3598 * Also, if a div occurs in only two constraints and if moreover
3599 * those two constraints are opposite to each other, except for the constant
3600 * term and if the sum of the constant terms is such that for any value
3601 * of the other values, there is always at least one integer value of the
3602 * div, i.e., if one plus this sum is greater than or equal to
3603 * the (absolute value) of the coefficent of the div in the constraints,
3604 * then we can also simply drop the div.
3606 * We skip divs that appear in equalities or in the definition of other divs.
3607 * Divs that appear in the definition of other divs usually occur in at least
3608 * 4 constraints, but the constraints may have been simplified.
3610 * If any divs are left after these simple checks then we move on
3611 * to more complicated cases in drop_more_redundant_divs.
3613 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3614 struct isl_basic_map *bmap)
3616 int i, j;
3617 unsigned off;
3618 int *pairs = NULL;
3619 int n = 0;
3621 if (!bmap)
3622 goto error;
3623 if (bmap->n_div == 0)
3624 return bmap;
3626 off = isl_space_dim(bmap->dim, isl_dim_all);
3627 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3628 if (!pairs)
3629 goto error;
3631 for (i = 0; i < bmap->n_div; ++i) {
3632 int pos, neg;
3633 int last_pos, last_neg;
3634 int redundant;
3635 int defined;
3637 defined = !isl_int_is_zero(bmap->div[i][0]);
3638 for (j = i; j < bmap->n_div; ++j)
3639 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3640 break;
3641 if (j < bmap->n_div)
3642 continue;
3643 for (j = 0; j < bmap->n_eq; ++j)
3644 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3645 break;
3646 if (j < bmap->n_eq)
3647 continue;
3648 ++n;
3649 pos = neg = 0;
3650 for (j = 0; j < bmap->n_ineq; ++j) {
3651 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3652 last_pos = j;
3653 ++pos;
3655 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3656 last_neg = j;
3657 ++neg;
3660 pairs[i] = pos * neg;
3661 if (pairs[i] == 0) {
3662 for (j = bmap->n_ineq - 1; j >= 0; --j)
3663 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3664 isl_basic_map_drop_inequality(bmap, j);
3665 bmap = isl_basic_map_drop_div(bmap, i);
3666 free(pairs);
3667 return isl_basic_map_drop_redundant_divs(bmap);
3669 if (pairs[i] != 1)
3670 continue;
3671 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3672 bmap->ineq[last_neg] + 1,
3673 off + bmap->n_div))
3674 continue;
3676 isl_int_add(bmap->ineq[last_pos][0],
3677 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3678 isl_int_add_ui(bmap->ineq[last_pos][0],
3679 bmap->ineq[last_pos][0], 1);
3680 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3681 bmap->ineq[last_pos][1+off+i]);
3682 isl_int_sub_ui(bmap->ineq[last_pos][0],
3683 bmap->ineq[last_pos][0], 1);
3684 isl_int_sub(bmap->ineq[last_pos][0],
3685 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3686 if (!redundant) {
3687 if (defined ||
3688 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3689 pairs[i] = 0;
3690 --n;
3691 continue;
3693 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3694 bmap = isl_basic_map_simplify(bmap);
3695 free(pairs);
3696 return isl_basic_map_drop_redundant_divs(bmap);
3698 if (last_pos > last_neg) {
3699 isl_basic_map_drop_inequality(bmap, last_pos);
3700 isl_basic_map_drop_inequality(bmap, last_neg);
3701 } else {
3702 isl_basic_map_drop_inequality(bmap, last_neg);
3703 isl_basic_map_drop_inequality(bmap, last_pos);
3705 bmap = isl_basic_map_drop_div(bmap, i);
3706 free(pairs);
3707 return isl_basic_map_drop_redundant_divs(bmap);
3710 if (n > 0)
3711 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3713 free(pairs);
3714 return bmap;
3715 error:
3716 free(pairs);
3717 isl_basic_map_free(bmap);
3718 return NULL;
3721 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3722 struct isl_basic_set *bset)
3724 return (struct isl_basic_set *)
3725 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3728 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3730 int i;
3732 if (!map)
3733 return NULL;
3734 for (i = 0; i < map->n; ++i) {
3735 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3736 if (!map->p[i])
3737 goto error;
3739 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3740 return map;
3741 error:
3742 isl_map_free(map);
3743 return NULL;
3746 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3748 return (struct isl_set *)
3749 isl_map_drop_redundant_divs((struct isl_map *)set);
3752 /* Does "bmap" satisfy any equality that involves more than 2 variables
3753 * and/or has coefficients different from -1 and 1?
3755 static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
3757 int i;
3758 unsigned total;
3760 total = isl_basic_map_dim(bmap, isl_dim_all);
3762 for (i = 0; i < bmap->n_eq; ++i) {
3763 int j, k;
3765 j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
3766 if (j < 0)
3767 continue;
3768 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3769 !isl_int_is_negone(bmap->eq[i][1 + j]))
3770 return 1;
3772 j += 1;
3773 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3774 if (k < 0)
3775 continue;
3776 j += k;
3777 if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
3778 !isl_int_is_negone(bmap->eq[i][1 + j]))
3779 return 1;
3781 j += 1;
3782 k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
3783 if (k >= 0)
3784 return 1;
3787 return 0;
3790 /* Remove any common factor g from the constraint coefficients in "v".
3791 * The constant term is stored in the first position and is replaced
3792 * by floor(c/g). If any common factor is removed and if this results
3793 * in a tightening of the constraint, then set *tightened.
3795 static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
3796 int *tightened)
3798 isl_ctx *ctx;
3800 if (!v)
3801 return NULL;
3802 ctx = isl_vec_get_ctx(v);
3803 isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
3804 if (isl_int_is_zero(ctx->normalize_gcd))
3805 return v;
3806 if (isl_int_is_one(ctx->normalize_gcd))
3807 return v;
3808 v = isl_vec_cow(v);
3809 if (!v)
3810 return NULL;
3811 if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
3812 *tightened = 1;
3813 isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
3814 isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
3815 v->size - 1);
3816 return v;
3819 /* If "bmap" is an integer set that satisfies any equality involving
3820 * more than 2 variables and/or has coefficients different from -1 and 1,
3821 * then use variable compression to reduce the coefficients by removing
3822 * any (hidden) common factor.
3823 * In particular, apply the variable compression to each constraint,
3824 * factor out any common factor in the non-constant coefficients and
3825 * then apply the inverse of the compression.
3826 * At the end, we mark the basic map as having reduced constants.
3827 * If this flag is still set on the next invocation of this function,
3828 * then we skip the computation.
3830 * Removing a common factor may result in a tightening of some of
3831 * the constraints. If this happens, then we may end up with two
3832 * opposite inequalities that can be replaced by an equality.
3833 * We therefore call isl_basic_map_detect_inequality_pairs,
3834 * which checks for such pairs of inequalities as well as eliminate_divs_eq
3835 * and isl_basic_map_gauss if such a pair was found.
3837 __isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
3838 __isl_take isl_basic_map *bmap)
3840 unsigned total;
3841 isl_ctx *ctx;
3842 isl_vec *v;
3843 isl_mat *eq, *T, *T2;
3844 int i;
3845 int tightened;
3847 if (!bmap)
3848 return NULL;
3849 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
3850 return bmap;
3851 if (isl_basic_map_is_rational(bmap))
3852 return bmap;
3853 if (bmap->n_eq == 0)
3854 return bmap;
3855 if (!has_multiple_var_equality(bmap))
3856 return bmap;
3858 total = isl_basic_map_dim(bmap, isl_dim_all);
3859 ctx = isl_basic_map_get_ctx(bmap);
3860 v = isl_vec_alloc(ctx, 1 + total);
3861 if (!v)
3862 return isl_basic_map_free(bmap);
3864 eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
3865 T = isl_mat_variable_compression(eq, &T2);
3866 if (!T || !T2)
3867 goto error;
3868 if (T->n_col == 0) {
3869 isl_mat_free(T);
3870 isl_mat_free(T2);
3871 isl_vec_free(v);
3872 return isl_basic_map_set_to_empty(bmap);
3875 tightened = 0;
3876 for (i = 0; i < bmap->n_ineq; ++i) {
3877 isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
3878 v = isl_vec_mat_product(v, isl_mat_copy(T));
3879 v = normalize_constraint(v, &tightened);
3880 v = isl_vec_mat_product(v, isl_mat_copy(T2));
3881 if (!v)
3882 goto error;
3883 isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
3886 isl_mat_free(T);
3887 isl_mat_free(T2);
3888 isl_vec_free(v);
3890 ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
3892 if (tightened) {
3893 int progress = 0;
3895 bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
3896 if (progress) {
3897 bmap = eliminate_divs_eq(bmap, &progress);
3898 bmap = isl_basic_map_gauss(bmap, NULL);
3902 return bmap;
3903 error:
3904 isl_mat_free(T);
3905 isl_mat_free(T2);
3906 isl_vec_free(v);
3907 return isl_basic_map_free(bmap);
3910 /* Shift the integer division at position "div" of "bmap"
3911 * by "shift" times the variable at position "pos".
3912 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
3913 * corresponds to the constant term.
3915 * That is, if the integer division has the form
3917 * floor(f(x)/d)
3919 * then replace it by
3921 * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
3923 __isl_give isl_basic_map *isl_basic_map_shift_div(
3924 __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
3926 int i;
3927 unsigned total;
3929 if (!bmap)
3930 return NULL;
3932 total = isl_basic_map_dim(bmap, isl_dim_all);
3933 total -= isl_basic_map_dim(bmap, isl_dim_div);
3935 isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
3937 for (i = 0; i < bmap->n_eq; ++i) {
3938 if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
3939 continue;
3940 isl_int_submul(bmap->eq[i][pos],
3941 shift, bmap->eq[i][1 + total + div]);
3943 for (i = 0; i < bmap->n_ineq; ++i) {
3944 if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
3945 continue;
3946 isl_int_submul(bmap->ineq[i][pos],
3947 shift, bmap->ineq[i][1 + total + div]);
3949 for (i = 0; i < bmap->n_div; ++i) {
3950 if (isl_int_is_zero(bmap->div[i][0]))
3951 continue;
3952 if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
3953 continue;
3954 isl_int_submul(bmap->div[i][1 + pos],
3955 shift, bmap->div[i][1 + 1 + total + div]);
3958 return bmap;