isl_map_transitive_closure: reformulate exactness test in terms of extended paths
[isl.git] / isl_transitive_closure.c
blob3e93a6eda7d1e3a89284c6fd69b35a9661eb81a8
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_seq.h"
15 /* Given a map that represents a path with the length of the path
16 * encoded as the difference between the last output coordindate
17 * and the last input coordinate, set this length to either
18 * exactly "length" (if "exactly" is set) or at least "length"
19 * (if "exactly" is not set).
21 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
22 int exactly, int length)
24 struct isl_dim *dim;
25 struct isl_basic_map *bmap;
26 unsigned d;
27 unsigned nparam;
28 int k;
29 isl_int *c;
31 if (!map)
32 return NULL;
34 dim = isl_map_get_dim(map);
35 d = isl_dim_size(dim, isl_dim_in);
36 nparam = isl_dim_size(dim, isl_dim_param);
37 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
38 if (exactly) {
39 k = isl_basic_map_alloc_equality(bmap);
40 c = bmap->eq[k];
41 } else {
42 k = isl_basic_map_alloc_inequality(bmap);
43 c = bmap->ineq[k];
45 if (k < 0)
46 goto error;
47 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
48 isl_int_set_si(c[0], -length);
49 isl_int_set_si(c[1 + nparam + d - 1], -1);
50 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
52 bmap = isl_basic_map_finalize(bmap);
53 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
55 return map;
56 error:
57 isl_basic_map_free(bmap);
58 isl_map_free(map);
59 return NULL;
62 /* Check whether the overapproximation of the power of "map" is exactly
63 * the power of "map". Let R be "map" and A_k the overapproximation.
64 * The approximation is exact if
66 * A_1 = R
67 * A_k = A_{k-1} \circ R k >= 2
69 * Since A_k is known to be an overapproximation, we only need to check
71 * A_1 \subset R
72 * A_k \subset A_{k-1} \circ R k >= 2
74 * In practice, "app" has an extra input and output coordinate
75 * to encode the length of the path. So, we first need to add
76 * this coordinate to "map" and set the length of the path to
77 * one.
79 static int check_power_exactness(__isl_take isl_map *map,
80 __isl_take isl_map *app)
82 int exact;
83 isl_map *app_1;
84 isl_map *app_2;
86 map = isl_map_add(map, isl_dim_in, 1);
87 map = isl_map_add(map, isl_dim_out, 1);
88 map = set_path_length(map, 1, 1);
90 app_1 = set_path_length(isl_map_copy(app), 1, 1);
92 exact = isl_map_is_subset(app_1, map);
93 isl_map_free(app_1);
95 if (!exact || exact < 0) {
96 isl_map_free(app);
97 isl_map_free(map);
98 return exact;
101 app_1 = set_path_length(isl_map_copy(app), 0, 1);
102 app_2 = set_path_length(app, 0, 2);
103 app_1 = isl_map_apply_range(map, app_1);
105 exact = isl_map_is_subset(app_2, app_1);
107 isl_map_free(app_1);
108 isl_map_free(app_2);
110 return exact;
113 /* Check whether the overapproximation of the power of "map" is exactly
114 * the power of "map", possibly after projecting out the power (if "project"
115 * is set).
117 * If "project" is set and if "steps" can only result in acyclic paths,
118 * then we check
120 * A = R \cup (A \circ R)
122 * where A is the overapproximation with the power projected out, i.e.,
123 * an overapproximation of the transitive closure.
124 * More specifically, since A is known to be an overapproximation, we check
126 * A \subset R \cup (A \circ R)
128 * Otherwise, we check if the power is exact.
130 * Note that "app" has an extra input and output coordinate to encode
131 * the length of the part. If we are only interested in the transitive
132 * closure, then we can simply project out these coordinates first.
134 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
135 int project)
137 isl_map *test;
138 int exact;
139 unsigned d;
141 if (!project)
142 return check_power_exactness(map, app);
144 d = isl_map_dim(map, isl_dim_in);
145 app = set_path_length(app, 0, 1);
146 app = isl_map_project_out(app, isl_dim_in, d, 1);
147 app = isl_map_project_out(app, isl_dim_out, d, 1);
149 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
150 test = isl_map_union(test, isl_map_copy(map));
152 exact = isl_map_is_subset(app, test);
154 isl_map_free(app);
155 isl_map_free(test);
157 isl_map_free(map);
159 return exact;
160 error:
161 isl_map_free(app);
162 isl_map_free(map);
163 return -1;
167 * The transitive closure implementation is based on the paper
168 * "Computing the Transitive Closure of a Union of Affine Integer
169 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
170 * Albert Cohen.
173 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
174 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
175 * that maps an element x to any element that can be reached
176 * by taking a non-negative number of steps along any of
177 * the extended offsets v'_i = [v_i 1].
178 * That is, construct
180 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
182 * For any element in this relation, the number of steps taken
183 * is equal to the difference in the final coordinates.
185 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
186 __isl_keep isl_mat *steps)
188 int i, j, k;
189 struct isl_basic_map *path = NULL;
190 unsigned d;
191 unsigned n;
192 unsigned nparam;
194 if (!dim || !steps)
195 goto error;
197 d = isl_dim_size(dim, isl_dim_in);
198 n = steps->n_row;
199 nparam = isl_dim_size(dim, isl_dim_param);
201 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
203 for (i = 0; i < n; ++i) {
204 k = isl_basic_map_alloc_div(path);
205 if (k < 0)
206 goto error;
207 isl_assert(steps->ctx, i == k, goto error);
208 isl_int_set_si(path->div[k][0], 0);
211 for (i = 0; i < d; ++i) {
212 k = isl_basic_map_alloc_equality(path);
213 if (k < 0)
214 goto error;
215 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
216 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
217 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
218 if (i == d - 1)
219 for (j = 0; j < n; ++j)
220 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
221 else
222 for (j = 0; j < n; ++j)
223 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
224 steps->row[j][i]);
227 for (i = 0; i < n; ++i) {
228 k = isl_basic_map_alloc_inequality(path);
229 if (k < 0)
230 goto error;
231 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
232 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
235 isl_dim_free(dim);
237 path = isl_basic_map_simplify(path);
238 path = isl_basic_map_finalize(path);
239 return isl_map_from_basic_map(path);
240 error:
241 isl_dim_free(dim);
242 isl_basic_map_free(path);
243 return NULL;
246 #define IMPURE 0
247 #define PURE_PARAM 1
248 #define PURE_VAR 2
250 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
251 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
252 * Return IMPURE otherwise.
254 static int purity(__isl_keep isl_basic_set *bset, isl_int *c)
256 unsigned d;
257 unsigned n_div;
258 unsigned nparam;
260 n_div = isl_basic_set_dim(bset, isl_dim_div);
261 d = isl_basic_set_dim(bset, isl_dim_set);
262 nparam = isl_basic_set_dim(bset, isl_dim_param);
264 if (isl_seq_first_non_zero(c + 1 + nparam + d, n_div) != -1)
265 return IMPURE;
266 if (isl_seq_first_non_zero(c + 1, nparam) == -1)
267 return PURE_VAR;
268 if (isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
269 return PURE_PARAM;
270 return IMPURE;
273 /* Given a set of offsets "delta", construct a relation of the
274 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
275 * is an overapproximation of the relations that
276 * maps an element x to any element that can be reached
277 * by taking a non-negative number of steps along any of
278 * the elements in "delta".
279 * That is, construct an approximation of
281 * { [x] -> [y] : exists f \in \delta, k \in Z :
282 * y = x + k [f, 1] and k >= 0 }
284 * For any element in this relation, the number of steps taken
285 * is equal to the difference in the final coordinates.
287 * In particular, let delta be defined as
289 * \delta = [p] -> { [x] : A x + a >= and B p + b >= 0 and
290 * C x + C'p + c >= 0 }
292 * then the relation is constructed as
294 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
295 * A f + k a >= 0 and B p + b >= 0 and k >= 1 }
296 * union { [x] -> [x] }
298 * Existentially quantified variables in \delta are currently ignored.
299 * This is safe, but leads to an additional overapproximation.
301 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
302 __isl_take isl_basic_set *delta)
304 isl_basic_map *path = NULL;
305 unsigned d;
306 unsigned n_div;
307 unsigned nparam;
308 unsigned off;
309 int i, k;
311 if (!delta)
312 goto error;
313 n_div = isl_basic_set_dim(delta, isl_dim_div);
314 d = isl_basic_set_dim(delta, isl_dim_set);
315 nparam = isl_basic_set_dim(delta, isl_dim_param);
316 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
317 d + 1 + delta->n_eq, delta->n_ineq + 1);
318 off = 1 + nparam + 2 * (d + 1) + n_div;
320 for (i = 0; i < n_div + d + 1; ++i) {
321 k = isl_basic_map_alloc_div(path);
322 if (k < 0)
323 goto error;
324 isl_int_set_si(path->div[k][0], 0);
327 for (i = 0; i < d + 1; ++i) {
328 k = isl_basic_map_alloc_equality(path);
329 if (k < 0)
330 goto error;
331 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
332 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
333 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
334 isl_int_set_si(path->eq[k][off + i], 1);
337 for (i = 0; i < delta->n_eq; ++i) {
338 int p = purity(delta, delta->eq[i]);
339 if (p == IMPURE)
340 continue;
341 k = isl_basic_map_alloc_equality(path);
342 if (k < 0)
343 goto error;
344 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
345 if (p == PURE_VAR) {
346 isl_seq_cpy(path->eq[k] + off,
347 delta->eq[i] + 1 + nparam, d);
348 isl_int_set(path->eq[k][off + d], delta->eq[i][0]);
349 } else
350 isl_seq_cpy(path->eq[k], delta->eq[i], 1 + nparam);
353 for (i = 0; i < delta->n_ineq; ++i) {
354 int p = purity(delta, delta->ineq[i]);
355 if (p == IMPURE)
356 continue;
357 k = isl_basic_map_alloc_inequality(path);
358 if (k < 0)
359 goto error;
360 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
361 if (p == PURE_VAR) {
362 isl_seq_cpy(path->ineq[k] + off,
363 delta->ineq[i] + 1 + nparam, d);
364 isl_int_set(path->ineq[k][off + d], delta->ineq[i][0]);
365 } else
366 isl_seq_cpy(path->ineq[k], delta->ineq[i], 1 + nparam);
369 k = isl_basic_map_alloc_inequality(path);
370 if (k < 0)
371 goto error;
372 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
373 isl_int_set_si(path->ineq[k][0], -1);
374 isl_int_set_si(path->ineq[k][off + d], 1);
376 isl_basic_set_free(delta);
377 path = isl_basic_map_finalize(path);
378 return isl_basic_map_union(path,
379 isl_basic_map_identity(isl_dim_domain(dim)));
380 error:
381 isl_dim_free(dim);
382 isl_basic_set_free(delta);
383 isl_basic_map_free(path);
384 return NULL;
387 /* Given a dimenion specification Z^{n+1} -> Z^{n+1} and a parameter "param",
388 * construct a map that equates the parameter to the difference
389 * in the final coordinates and imposes that this difference is positive.
390 * That is, construct
392 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
394 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
395 unsigned param)
397 struct isl_basic_map *bmap;
398 unsigned d;
399 unsigned nparam;
400 int k;
402 d = isl_dim_size(dim, isl_dim_in);
403 nparam = isl_dim_size(dim, isl_dim_param);
404 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
405 k = isl_basic_map_alloc_equality(bmap);
406 if (k < 0)
407 goto error;
408 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
409 isl_int_set_si(bmap->eq[k][1 + param], -1);
410 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
411 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
413 k = isl_basic_map_alloc_inequality(bmap);
414 if (k < 0)
415 goto error;
416 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
417 isl_int_set_si(bmap->ineq[k][1 + param], 1);
418 isl_int_set_si(bmap->ineq[k][0], -1);
420 bmap = isl_basic_map_finalize(bmap);
421 return isl_map_from_basic_map(bmap);
422 error:
423 isl_basic_map_free(bmap);
424 return NULL;
427 /* Check whether "path" is acyclic, where the last coordinates of domain
428 * and range of path encode the number of steps taken.
429 * That is, check whether
431 * { d | d = y - x and (x,y) in path }
433 * does not contain any element with positive last coordinate (positive length)
434 * and zero remaining coordinates (cycle).
436 static int is_acyclic(__isl_take isl_map *path)
438 int i;
439 int acyclic;
440 unsigned dim;
441 struct isl_set *delta;
443 delta = isl_map_deltas(path);
444 dim = isl_set_dim(delta, isl_dim_set);
445 for (i = 0; i < dim; ++i) {
446 if (i == dim -1)
447 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
448 else
449 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
452 acyclic = isl_set_is_empty(delta);
453 isl_set_free(delta);
455 return acyclic;
458 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
459 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
460 * construct a map that is an overapproximation of the map
461 * that takes an element from the space D \times Z to another
462 * element from the same space, such that the first n coordinates of the
463 * difference between them is a sum of differences between images
464 * and pre-images in one of the R_i and such that the last coordinate
465 * is equal to the number of steps taken.
466 * That is, let
468 * \Delta_i = { y - x | (x, y) in R_i }
470 * then the constructed map is an overapproximation of
472 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
473 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
475 * The elements of the singleton \Delta_i's are collected as the
476 * rows of the steps matrix. For all these \Delta_i's together,
477 * a single path is constructed.
478 * For each of the other \Delta_i's, we compute an overapproximation
479 * of the paths along elements of \Delta_i.
480 * Since each of these paths performs an addition, composition is
481 * symmetric and we can simply compose all resulting paths in any order.
483 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
484 __isl_keep isl_map *map, int *project)
486 struct isl_mat *steps = NULL;
487 struct isl_map *path = NULL;
488 unsigned d;
489 int i, j, n;
491 d = isl_map_dim(map, isl_dim_in);
493 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
495 steps = isl_mat_alloc(map->ctx, map->n, d);
496 if (!steps)
497 goto error;
499 n = 0;
500 for (i = 0; i < map->n; ++i) {
501 struct isl_basic_set *delta;
503 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
505 for (j = 0; j < d; ++j) {
506 int fixed;
508 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
509 &steps->row[n][j]);
510 if (fixed < 0) {
511 isl_basic_set_free(delta);
512 goto error;
514 if (!fixed)
515 break;
519 if (j < d) {
520 path = isl_map_apply_range(path,
521 path_along_delta(isl_dim_copy(dim), delta));
522 } else {
523 isl_basic_set_free(delta);
524 ++n;
528 if (n > 0) {
529 steps->n_row = n;
530 path = isl_map_apply_range(path,
531 path_along_steps(isl_dim_copy(dim), steps));
534 if (project && *project) {
535 *project = is_acyclic(isl_map_copy(path));
536 if (*project < 0)
537 goto error;
540 isl_dim_free(dim);
541 isl_mat_free(steps);
542 return path;
543 error:
544 isl_dim_free(dim);
545 isl_mat_free(steps);
546 isl_map_free(path);
547 return NULL;
550 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
551 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
552 * construct a map that is the union of the identity map and
553 * an overapproximation of the map
554 * that takes an element from the dom R \times Z to an
555 * element from ran R \times Z, such that the first n coordinates of the
556 * difference between them is a sum of differences between images
557 * and pre-images in one of the R_i and such that the last coordinate
558 * is equal to the number of steps taken.
559 * That is, let
561 * \Delta_i = { y - x | (x, y) in R_i }
563 * then the constructed map is an overapproximation of
565 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
566 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
567 * x in dom R and x + d in ran R } union
568 * { (x) -> (x) }
570 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
571 __isl_keep isl_map *map, int *project)
573 struct isl_set *domain = NULL;
574 struct isl_set *range = NULL;
575 struct isl_map *app = NULL;
576 struct isl_map *path = NULL;
578 domain = isl_map_domain(isl_map_copy(map));
579 domain = isl_set_coalesce(domain);
580 range = isl_map_range(isl_map_copy(map));
581 range = isl_set_coalesce(range);
582 app = isl_map_from_domain_and_range(domain, range);
583 app = isl_map_add(app, isl_dim_in, 1);
584 app = isl_map_add(app, isl_dim_out, 1);
586 path = construct_extended_path(isl_dim_copy(dim), map, project);
587 app = isl_map_intersect(app, path);
589 return isl_map_union(app, isl_map_identity(isl_dim_domain(dim)));
592 /* Structure for representing the nodes in the graph being traversed
593 * using Tarjan's algorithm.
594 * index represents the order in which nodes are visited.
595 * min_index is the index of the root of a (sub)component.
596 * on_stack indicates whether the node is currently on the stack.
598 struct basic_map_sort_node {
599 int index;
600 int min_index;
601 int on_stack;
603 /* Structure for representing the graph being traversed
604 * using Tarjan's algorithm.
605 * len is the number of nodes
606 * node is an array of nodes
607 * stack contains the nodes on the path from the root to the current node
608 * sp is the stack pointer
609 * index is the index of the last node visited
610 * order contains the elements of the components separated by -1
611 * op represents the current position in order
613 struct basic_map_sort {
614 int len;
615 struct basic_map_sort_node *node;
616 int *stack;
617 int sp;
618 int index;
619 int *order;
620 int op;
623 static void basic_map_sort_free(struct basic_map_sort *s)
625 if (!s)
626 return;
627 free(s->node);
628 free(s->stack);
629 free(s->order);
630 free(s);
633 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
635 struct basic_map_sort *s;
636 int i;
638 s = isl_calloc_type(ctx, struct basic_map_sort);
639 if (!s)
640 return NULL;
641 s->len = len;
642 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
643 if (!s->node)
644 goto error;
645 for (i = 0; i < len; ++i)
646 s->node[i].index = -1;
647 s->stack = isl_alloc_array(ctx, int, len);
648 if (!s->stack)
649 goto error;
650 s->order = isl_alloc_array(ctx, int, 2 * len);
651 if (!s->order)
652 goto error;
654 s->sp = 0;
655 s->index = 0;
656 s->op = 0;
658 return s;
659 error:
660 basic_map_sort_free(s);
661 return NULL;
664 /* Check whether in the computation of the transitive closure
665 * "bmap1" (R_1) should follow (or be part of the same component as)
666 * "bmap2" (R_2).
668 * That is check whether
670 * R_1 \circ R_2
672 * is non-empty and that moreover, it is non-empty on the set
673 * of elements that do not get mapped to the same set of elements
674 * by both "R_1 \circ R_2" and "R_2 \circ R_1".
675 * For elements that do get mapped to the same elements by these
676 * two compositions, R_1 and R_2 are commutative, so if these
677 * elements are the only ones for which R_1 \circ R_2 is non-empty,
678 * then you may just as well apply R_1 first.
680 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
681 __isl_keep isl_basic_map *bmap2)
683 struct isl_map *map12 = NULL;
684 struct isl_map *map21 = NULL;
685 struct isl_map *d = NULL;
686 struct isl_set *dom = NULL;
687 int empty;
689 map21 = isl_map_from_basic_map(
690 isl_basic_map_apply_range(
691 isl_basic_map_copy(bmap2),
692 isl_basic_map_copy(bmap1)));
693 empty = isl_map_is_empty(map21);
694 if (empty < 0)
695 goto error;
696 if (empty) {
697 isl_map_free(map21);
698 return 0;
701 map12 = isl_map_from_basic_map(
702 isl_basic_map_apply_range(
703 isl_basic_map_copy(bmap1),
704 isl_basic_map_copy(bmap2)));
705 d = isl_map_subtract(isl_map_copy(map12), isl_map_copy(map21));
706 d = isl_map_union(d,
707 isl_map_subtract(isl_map_copy(map21), isl_map_copy(map12)));
708 dom = isl_map_domain(d);
710 map21 = isl_map_intersect_domain(map21, dom);
711 empty = isl_map_is_empty(map21);
713 isl_map_free(map12);
714 isl_map_free(map21);
716 return empty < 0 ? -1 : !empty;
717 error:
718 isl_map_free(map21);
719 return -1;
722 /* Perform Tarjan's algorithm for computing the strongly connected components
723 * in the graph with the disjuncts of "map" as vertices and with an
724 * edge between any pair of disjuncts such that the first has
725 * to be applied after the second.
727 static int power_components_tarjan(struct basic_map_sort *s,
728 __isl_keep isl_map *map, int i)
730 int j;
732 s->node[i].index = s->index;
733 s->node[i].min_index = s->index;
734 s->node[i].on_stack = 1;
735 s->index++;
736 s->stack[s->sp++] = i;
738 for (j = s->len - 1; j >= 0; --j) {
739 int f;
741 if (j == i)
742 continue;
743 if (s->node[j].index >= 0 &&
744 (!s->node[j].on_stack ||
745 s->node[j].index > s->node[i].min_index))
746 continue;
748 f = basic_map_follows(map->p[i], map->p[j]);
749 if (f < 0)
750 return -1;
751 if (!f)
752 continue;
754 if (s->node[j].index < 0) {
755 power_components_tarjan(s, map, j);
756 if (s->node[j].min_index < s->node[i].min_index)
757 s->node[i].min_index = s->node[j].min_index;
758 } else if (s->node[j].index < s->node[i].min_index)
759 s->node[i].min_index = s->node[j].index;
762 if (s->node[i].index != s->node[i].min_index)
763 return 0;
765 do {
766 j = s->stack[--s->sp];
767 s->node[j].on_stack = 0;
768 s->order[s->op++] = j;
769 } while (j != i);
770 s->order[s->op++] = -1;
772 return 0;
775 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
776 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
777 * construct a map that is the union of the identity map and
778 * an overapproximation of the map
779 * that takes an element from the dom R \times Z to an
780 * element from ran R \times Z, such that the first n coordinates of the
781 * difference between them is a sum of differences between images
782 * and pre-images in one of the R_i and such that the last coordinate
783 * is equal to the number of steps taken.
784 * That is, let
786 * \Delta_i = { y - x | (x, y) in R_i }
788 * then the constructed map is an overapproximation of
790 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
791 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
792 * x in dom R and x + d in ran R } union
793 * { (x) -> (x) }
795 * We first split the map into strongly connected components, perform
796 * the above on each component and the join the results in the correct
797 * order. The power of each of the components needs to be extended
798 * with the identity map because a path in the global result need
799 * not go through every component.
800 * The final result will then also contain the identity map, but
801 * this part will be removed when the length of the path is forced
802 * to be strictly positive.
804 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
805 __isl_keep isl_map *map, int *project)
807 int i, n;
808 struct isl_map *path = NULL;
809 struct basic_map_sort *s = NULL;
811 if (!map)
812 goto error;
813 if (map->n <= 1)
814 return construct_component(dim, map, project);
816 s = basic_map_sort_alloc(map->ctx, map->n);
817 if (!s)
818 goto error;
819 for (i = map->n - 1; i >= 0; --i) {
820 if (s->node[i].index >= 0)
821 continue;
822 if (power_components_tarjan(s, map, i) < 0)
823 goto error;
826 i = 0;
827 n = map->n;
828 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
829 while (n) {
830 struct isl_map *comp;
831 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
832 while (s->order[i] != -1) {
833 comp = isl_map_add_basic_map(comp,
834 isl_basic_map_copy(map->p[s->order[i]]));
835 --n;
836 ++i;
838 path = isl_map_apply_range(path,
839 construct_component(isl_dim_copy(dim), comp, project));
840 isl_map_free(comp);
841 ++i;
844 basic_map_sort_free(s);
845 isl_dim_free(dim);
847 return path;
848 error:
849 basic_map_sort_free(s);
850 isl_dim_free(dim);
851 return NULL;
854 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
855 * construct a map that is an overapproximation of the map
856 * that takes an element from the space D to another
857 * element from the same space, such that the difference between
858 * them is a strictly positive sum of differences between images
859 * and pre-images in one of the R_i.
860 * The number of differences in the sum is equated to parameter "param".
861 * That is, let
863 * \Delta_i = { y - x | (x, y) in R_i }
865 * then the constructed map is an overapproximation of
867 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
868 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
870 * We first construct an extended mapping with an extra coordinate
871 * that indicates the number of steps taken. In particular,
872 * the difference in the last coordinate is equal to the number
873 * of steps taken to move from a domain element to the corresponding
874 * image element(s).
875 * In the final step, this difference is equated to the parameter "param"
876 * and made positive. The extra coordinates are subsequently projected out.
878 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
879 unsigned param, int *exact, int project)
881 struct isl_map *app = NULL;
882 struct isl_map *diff;
883 struct isl_dim *dim = NULL;
884 unsigned d;
886 if (!map)
887 return NULL;
889 dim = isl_map_get_dim(map);
891 d = isl_dim_size(dim, isl_dim_in);
892 dim = isl_dim_add(dim, isl_dim_in, 1);
893 dim = isl_dim_add(dim, isl_dim_out, 1);
895 app = construct_power_components(isl_dim_copy(dim), map,
896 exact ? &project : NULL);
898 if (exact &&
899 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
900 project)) < 0)
901 goto error;
903 diff = equate_parameter_to_length(dim, param);
904 app = isl_map_intersect(app, diff);
905 app = isl_map_project_out(app, isl_dim_in, d, 1);
906 app = isl_map_project_out(app, isl_dim_out, d, 1);
908 return app;
909 error:
910 isl_dim_free(dim);
911 isl_map_free(app);
912 return NULL;
915 /* Compute the positive powers of "map", or an overapproximation.
916 * The power is given by parameter "param". If the result is exact,
917 * then *exact is set to 1.
918 * If project is set, then we are actually interested in the transitive
919 * closure, so we can use a more relaxed exactness check.
921 static __isl_give isl_map *map_power(__isl_take isl_map *map, unsigned param,
922 int *exact, int project)
924 struct isl_map *app = NULL;
926 if (exact)
927 *exact = 1;
929 map = isl_map_remove_empty_parts(map);
930 if (!map)
931 return NULL;
933 if (isl_map_fast_is_empty(map))
934 return map;
936 isl_assert(map->ctx, param < isl_map_dim(map, isl_dim_param), goto error);
937 isl_assert(map->ctx,
938 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
939 goto error);
941 app = construct_power(map, param, exact, project);
943 isl_map_free(map);
944 return app;
945 error:
946 isl_map_free(map);
947 isl_map_free(app);
948 return NULL;
951 /* Compute the positive powers of "map", or an overapproximation.
952 * The power is given by parameter "param". If the result is exact,
953 * then *exact is set to 1.
955 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
956 int *exact)
958 return map_power(map, param, exact, 0);
961 /* Compute the transitive closure of "map", or an overapproximation.
962 * If the result is exact, then *exact is set to 1.
963 * Simply compute the powers of map and then project out the parameter
964 * describing the power.
966 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
967 int *exact)
969 unsigned param;
971 if (!map)
972 goto error;
974 param = isl_map_dim(map, isl_dim_param);
975 map = isl_map_add(map, isl_dim_param, 1);
976 map = map_power(map, param, exact, 1);
977 map = isl_map_project_out(map, isl_dim_param, param, 1);
979 return map;
980 error:
981 isl_map_free(map);
982 return NULL;