isl_{map,set}_n_basic_{map,set}: return isl_size
[isl.git] / isl_convex_hull.c
blobdd2d8fb1e0a769d0da6217bb9c46b4f09f022f80
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_lp_private.h>
16 #include <isl/map.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include <isl/set.h>
20 #include <isl_seq.h>
21 #include <isl_options_private.h>
22 #include "isl_equalities.h"
23 #include "isl_tab.h"
24 #include <isl_sort.h>
26 #include <bset_to_bmap.c>
27 #include <bset_from_bmap.c>
28 #include <set_to_map.c>
30 static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded(
31 __isl_take isl_set *set);
33 /* Remove redundant
34 * constraints. If the minimal value along the normal of a constraint
35 * is the same if the constraint is removed, then the constraint is redundant.
37 * Since some constraints may be mutually redundant, sort the constraints
38 * first such that constraints that involve existentially quantified
39 * variables are considered for removal before those that do not.
40 * The sorting is also needed for the use in map_simple_hull.
42 * Note that isl_tab_detect_implicit_equalities may also end up
43 * marking some constraints as redundant. Make sure the constraints
44 * are preserved and undo those marking such that isl_tab_detect_redundant
45 * can consider the constraints in the sorted order.
47 * Alternatively, we could have intersected the basic map with the
48 * corresponding equality and then checked if the dimension was that
49 * of a facet.
51 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
52 __isl_take isl_basic_map *bmap)
54 struct isl_tab *tab;
56 if (!bmap)
57 return NULL;
59 bmap = isl_basic_map_gauss(bmap, NULL);
60 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
61 return bmap;
62 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
63 return bmap;
64 if (bmap->n_ineq <= 1)
65 return bmap;
67 bmap = isl_basic_map_sort_constraints(bmap);
68 tab = isl_tab_from_basic_map(bmap, 0);
69 if (!tab)
70 goto error;
71 tab->preserve = 1;
72 if (isl_tab_detect_implicit_equalities(tab) < 0)
73 goto error;
74 if (isl_tab_restore_redundant(tab) < 0)
75 goto error;
76 tab->preserve = 0;
77 if (isl_tab_detect_redundant(tab) < 0)
78 goto error;
79 bmap = isl_basic_map_update_from_tab(bmap, tab);
80 isl_tab_free(tab);
81 if (!bmap)
82 return NULL;
83 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
84 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
85 return bmap;
86 error:
87 isl_tab_free(tab);
88 isl_basic_map_free(bmap);
89 return NULL;
92 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
93 __isl_take isl_basic_set *bset)
95 return bset_from_bmap(
96 isl_basic_map_remove_redundancies(bset_to_bmap(bset)));
99 /* Remove redundant constraints in each of the basic maps.
101 __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map)
103 return isl_map_inline_foreach_basic_map(map,
104 &isl_basic_map_remove_redundancies);
107 __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set)
109 return isl_map_remove_redundancies(set);
112 /* Check if the set set is bound in the direction of the affine
113 * constraint c and if so, set the constant term such that the
114 * resulting constraint is a bounding constraint for the set.
116 static isl_bool uset_is_bound(__isl_keep isl_set *set, isl_int *c, unsigned len)
118 int first;
119 int j;
120 isl_int opt;
121 isl_int opt_denom;
123 isl_int_init(opt);
124 isl_int_init(opt_denom);
125 first = 1;
126 for (j = 0; j < set->n; ++j) {
127 enum isl_lp_result res;
129 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
130 continue;
132 res = isl_basic_set_solve_lp(set->p[j],
133 0, c, set->ctx->one, &opt, &opt_denom, NULL);
134 if (res == isl_lp_unbounded)
135 break;
136 if (res == isl_lp_error)
137 goto error;
138 if (res == isl_lp_empty) {
139 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
140 if (!set->p[j])
141 goto error;
142 continue;
144 if (first || isl_int_is_neg(opt)) {
145 if (!isl_int_is_one(opt_denom))
146 isl_seq_scale(c, c, opt_denom, len);
147 isl_int_sub(c[0], c[0], opt);
149 first = 0;
151 isl_int_clear(opt);
152 isl_int_clear(opt_denom);
153 return j >= set->n;
154 error:
155 isl_int_clear(opt);
156 isl_int_clear(opt_denom);
157 return isl_bool_error;
160 static __isl_give isl_set *isl_set_add_basic_set_equality(
161 __isl_take isl_set *set, isl_int *c)
163 int i;
165 set = isl_set_cow(set);
166 if (!set)
167 return NULL;
168 for (i = 0; i < set->n; ++i) {
169 set->p[i] = isl_basic_set_add_eq(set->p[i], c);
170 if (!set->p[i])
171 goto error;
173 return set;
174 error:
175 isl_set_free(set);
176 return NULL;
179 /* Given a union of basic sets, construct the constraints for wrapping
180 * a facet around one of its ridges.
181 * In particular, if each of n the d-dimensional basic sets i in "set"
182 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
183 * and is defined by the constraints
184 * [ 1 ]
185 * A_i [ x ] >= 0
187 * then the resulting set is of dimension n*(1+d) and has as constraints
189 * [ a_i ]
190 * A_i [ x_i ] >= 0
192 * a_i >= 0
194 * \sum_i x_{i,1} = 1
196 static __isl_give isl_basic_set *wrap_constraints(__isl_keep isl_set *set)
198 struct isl_basic_set *lp;
199 unsigned n_eq;
200 unsigned n_ineq;
201 int i, j, k;
202 isl_size dim, lp_dim;
204 dim = isl_set_dim(set, isl_dim_set);
205 if (dim < 0)
206 return NULL;
208 dim += 1;
209 n_eq = 1;
210 n_ineq = set->n;
211 for (i = 0; i < set->n; ++i) {
212 n_eq += set->p[i]->n_eq;
213 n_ineq += set->p[i]->n_ineq;
215 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
216 lp = isl_basic_set_set_rational(lp);
217 if (!lp)
218 return NULL;
219 lp_dim = isl_basic_set_dim(lp, isl_dim_set);
220 if (lp_dim < 0)
221 return isl_basic_set_free(lp);
222 k = isl_basic_set_alloc_equality(lp);
223 isl_int_set_si(lp->eq[k][0], -1);
224 for (i = 0; i < set->n; ++i) {
225 isl_int_set_si(lp->eq[k][1+dim*i], 0);
226 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
227 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
229 for (i = 0; i < set->n; ++i) {
230 k = isl_basic_set_alloc_inequality(lp);
231 isl_seq_clr(lp->ineq[k], 1+lp_dim);
232 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
234 for (j = 0; j < set->p[i]->n_eq; ++j) {
235 k = isl_basic_set_alloc_equality(lp);
236 isl_seq_clr(lp->eq[k], 1+dim*i);
237 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
238 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
241 for (j = 0; j < set->p[i]->n_ineq; ++j) {
242 k = isl_basic_set_alloc_inequality(lp);
243 isl_seq_clr(lp->ineq[k], 1+dim*i);
244 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
245 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
248 return lp;
251 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
252 * of that facet, compute the other facet of the convex hull that contains
253 * the ridge.
255 * We first transform the set such that the facet constraint becomes
257 * x_1 >= 0
259 * I.e., the facet lies in
261 * x_1 = 0
263 * and on that facet, the constraint that defines the ridge is
265 * x_2 >= 0
267 * (This transformation is not strictly needed, all that is needed is
268 * that the ridge contains the origin.)
270 * Since the ridge contains the origin, the cone of the convex hull
271 * will be of the form
273 * x_1 >= 0
274 * x_2 >= a x_1
276 * with this second constraint defining the new facet.
277 * The constant a is obtained by settting x_1 in the cone of the
278 * convex hull to 1 and minimizing x_2.
279 * Now, each element in the cone of the convex hull is the sum
280 * of elements in the cones of the basic sets.
281 * If a_i is the dilation factor of basic set i, then the problem
282 * we need to solve is
284 * min \sum_i x_{i,2}
285 * st
286 * \sum_i x_{i,1} = 1
287 * a_i >= 0
288 * [ a_i ]
289 * A [ x_i ] >= 0
291 * with
292 * [ 1 ]
293 * A_i [ x_i ] >= 0
295 * the constraints of each (transformed) basic set.
296 * If a = n/d, then the constraint defining the new facet (in the transformed
297 * space) is
299 * -n x_1 + d x_2 >= 0
301 * In the original space, we need to take the same combination of the
302 * corresponding constraints "facet" and "ridge".
304 * If a = -infty = "-1/0", then we just return the original facet constraint.
305 * This means that the facet is unbounded, but has a bounded intersection
306 * with the union of sets.
308 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
309 isl_int *facet, isl_int *ridge)
311 int i;
312 isl_ctx *ctx;
313 struct isl_mat *T = NULL;
314 struct isl_basic_set *lp = NULL;
315 struct isl_vec *obj;
316 enum isl_lp_result res;
317 isl_int num, den;
318 isl_size dim;
320 dim = isl_set_dim(set, isl_dim_set);
321 if (dim < 0)
322 return NULL;
323 ctx = set->ctx;
324 set = isl_set_copy(set);
325 set = isl_set_set_rational(set);
327 dim += 1;
328 T = isl_mat_alloc(ctx, 3, dim);
329 if (!T)
330 goto error;
331 isl_int_set_si(T->row[0][0], 1);
332 isl_seq_clr(T->row[0]+1, dim - 1);
333 isl_seq_cpy(T->row[1], facet, dim);
334 isl_seq_cpy(T->row[2], ridge, dim);
335 T = isl_mat_right_inverse(T);
336 set = isl_set_preimage(set, T);
337 T = NULL;
338 if (!set)
339 goto error;
340 lp = wrap_constraints(set);
341 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
342 if (!obj)
343 goto error;
344 isl_int_set_si(obj->block.data[0], 0);
345 for (i = 0; i < set->n; ++i) {
346 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
347 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
348 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
350 isl_int_init(num);
351 isl_int_init(den);
352 res = isl_basic_set_solve_lp(lp, 0,
353 obj->block.data, ctx->one, &num, &den, NULL);
354 if (res == isl_lp_ok) {
355 isl_int_neg(num, num);
356 isl_seq_combine(facet, num, facet, den, ridge, dim);
357 isl_seq_normalize(ctx, facet, dim);
359 isl_int_clear(num);
360 isl_int_clear(den);
361 isl_vec_free(obj);
362 isl_basic_set_free(lp);
363 isl_set_free(set);
364 if (res == isl_lp_error)
365 return NULL;
366 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
367 return NULL);
368 return facet;
369 error:
370 isl_basic_set_free(lp);
371 isl_mat_free(T);
372 isl_set_free(set);
373 return NULL;
376 /* Compute the constraint of a facet of "set".
378 * We first compute the intersection with a bounding constraint
379 * that is orthogonal to one of the coordinate axes.
380 * If the affine hull of this intersection has only one equality,
381 * we have found a facet.
382 * Otherwise, we wrap the current bounding constraint around
383 * one of the equalities of the face (one that is not equal to
384 * the current bounding constraint).
385 * This process continues until we have found a facet.
386 * The dimension of the intersection increases by at least
387 * one on each iteration, so termination is guaranteed.
389 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
391 struct isl_set *slice = NULL;
392 struct isl_basic_set *face = NULL;
393 int i;
394 isl_size dim = isl_set_dim(set, isl_dim_set);
395 isl_bool is_bound;
396 isl_mat *bounds = NULL;
398 if (dim < 0)
399 return NULL;
400 isl_assert(set->ctx, set->n > 0, goto error);
401 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
402 if (!bounds)
403 return NULL;
405 isl_seq_clr(bounds->row[0], dim);
406 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
407 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
408 if (is_bound < 0)
409 goto error;
410 isl_assert(set->ctx, is_bound, goto error);
411 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
412 bounds->n_row = 1;
414 for (;;) {
415 slice = isl_set_copy(set);
416 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
417 face = isl_set_affine_hull(slice);
418 if (!face)
419 goto error;
420 if (face->n_eq == 1) {
421 isl_basic_set_free(face);
422 break;
424 for (i = 0; i < face->n_eq; ++i)
425 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
426 !isl_seq_is_neg(bounds->row[0],
427 face->eq[i], 1 + dim))
428 break;
429 isl_assert(set->ctx, i < face->n_eq, goto error);
430 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
431 goto error;
432 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
433 isl_basic_set_free(face);
436 return bounds;
437 error:
438 isl_basic_set_free(face);
439 isl_mat_free(bounds);
440 return NULL;
443 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
444 * compute a hyperplane description of the facet, i.e., compute the facets
445 * of the facet.
447 * We compute an affine transformation that transforms the constraint
449 * [ 1 ]
450 * c [ x ] = 0
452 * to the constraint
454 * z_1 = 0
456 * by computing the right inverse U of a matrix that starts with the rows
458 * [ 1 0 ]
459 * [ c ]
461 * Then
462 * [ 1 ] [ 1 ]
463 * [ x ] = U [ z ]
464 * and
465 * [ 1 ] [ 1 ]
466 * [ z ] = Q [ x ]
468 * with Q = U^{-1}
469 * Since z_1 is zero, we can drop this variable as well as the corresponding
470 * column of U to obtain
472 * [ 1 ] [ 1 ]
473 * [ x ] = U' [ z' ]
474 * and
475 * [ 1 ] [ 1 ]
476 * [ z' ] = Q' [ x ]
478 * with Q' equal to Q, but without the corresponding row.
479 * After computing the facets of the facet in the z' space,
480 * we convert them back to the x space through Q.
482 static __isl_give isl_basic_set *compute_facet(__isl_keep isl_set *set,
483 isl_int *c)
485 struct isl_mat *m, *U, *Q;
486 struct isl_basic_set *facet = NULL;
487 struct isl_ctx *ctx;
488 isl_size dim;
490 dim = isl_set_dim(set, isl_dim_set);
491 if (dim < 0)
492 return NULL;
493 ctx = set->ctx;
494 set = isl_set_copy(set);
495 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
496 if (!m)
497 goto error;
498 isl_int_set_si(m->row[0][0], 1);
499 isl_seq_clr(m->row[0]+1, dim);
500 isl_seq_cpy(m->row[1], c, 1+dim);
501 U = isl_mat_right_inverse(m);
502 Q = isl_mat_right_inverse(isl_mat_copy(U));
503 U = isl_mat_drop_cols(U, 1, 1);
504 Q = isl_mat_drop_rows(Q, 1, 1);
505 set = isl_set_preimage(set, U);
506 facet = uset_convex_hull_wrap_bounded(set);
507 facet = isl_basic_set_preimage(facet, Q);
508 if (facet && facet->n_eq != 0)
509 isl_die(ctx, isl_error_internal, "unexpected equality",
510 return isl_basic_set_free(facet));
511 return facet;
512 error:
513 isl_basic_set_free(facet);
514 isl_set_free(set);
515 return NULL;
518 /* Given an initial facet constraint, compute the remaining facets.
519 * We do this by running through all facets found so far and computing
520 * the adjacent facets through wrapping, adding those facets that we
521 * hadn't already found before.
523 * For each facet we have found so far, we first compute its facets
524 * in the resulting convex hull. That is, we compute the ridges
525 * of the resulting convex hull contained in the facet.
526 * We also compute the corresponding facet in the current approximation
527 * of the convex hull. There is no need to wrap around the ridges
528 * in this facet since that would result in a facet that is already
529 * present in the current approximation.
531 * This function can still be significantly optimized by checking which of
532 * the facets of the basic sets are also facets of the convex hull and
533 * using all the facets so far to help in constructing the facets of the
534 * facets
535 * and/or
536 * using the technique in section "3.1 Ridge Generation" of
537 * "Extended Convex Hull" by Fukuda et al.
539 static __isl_give isl_basic_set *extend(__isl_take isl_basic_set *hull,
540 __isl_keep isl_set *set)
542 int i, j, f;
543 int k;
544 struct isl_basic_set *facet = NULL;
545 struct isl_basic_set *hull_facet = NULL;
546 isl_size dim;
548 dim = isl_set_dim(set, isl_dim_set);
549 if (dim < 0 || !hull)
550 return isl_basic_set_free(hull);
552 isl_assert(set->ctx, set->n > 0, goto error);
554 for (i = 0; i < hull->n_ineq; ++i) {
555 facet = compute_facet(set, hull->ineq[i]);
556 facet = isl_basic_set_add_eq(facet, hull->ineq[i]);
557 facet = isl_basic_set_gauss(facet, NULL);
558 facet = isl_basic_set_normalize_constraints(facet);
559 hull_facet = isl_basic_set_copy(hull);
560 hull_facet = isl_basic_set_add_eq(hull_facet, hull->ineq[i]);
561 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
562 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
563 if (!facet || !hull_facet)
564 goto error;
565 hull = isl_basic_set_cow(hull);
566 hull = isl_basic_set_extend_space(hull,
567 isl_space_copy(hull->dim), 0, 0, facet->n_ineq);
568 if (!hull)
569 goto error;
570 for (j = 0; j < facet->n_ineq; ++j) {
571 for (f = 0; f < hull_facet->n_ineq; ++f)
572 if (isl_seq_eq(facet->ineq[j],
573 hull_facet->ineq[f], 1 + dim))
574 break;
575 if (f < hull_facet->n_ineq)
576 continue;
577 k = isl_basic_set_alloc_inequality(hull);
578 if (k < 0)
579 goto error;
580 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
581 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
582 goto error;
584 isl_basic_set_free(hull_facet);
585 isl_basic_set_free(facet);
587 hull = isl_basic_set_simplify(hull);
588 hull = isl_basic_set_finalize(hull);
589 return hull;
590 error:
591 isl_basic_set_free(hull_facet);
592 isl_basic_set_free(facet);
593 isl_basic_set_free(hull);
594 return NULL;
597 /* Special case for computing the convex hull of a one dimensional set.
598 * We simply collect the lower and upper bounds of each basic set
599 * and the biggest of those.
601 static __isl_give isl_basic_set *convex_hull_1d(__isl_take isl_set *set)
603 struct isl_mat *c = NULL;
604 isl_int *lower = NULL;
605 isl_int *upper = NULL;
606 int i, j, k;
607 isl_int a, b;
608 struct isl_basic_set *hull;
610 for (i = 0; i < set->n; ++i) {
611 set->p[i] = isl_basic_set_simplify(set->p[i]);
612 if (!set->p[i])
613 goto error;
615 set = isl_set_remove_empty_parts(set);
616 if (!set)
617 goto error;
618 isl_assert(set->ctx, set->n > 0, goto error);
619 c = isl_mat_alloc(set->ctx, 2, 2);
620 if (!c)
621 goto error;
623 if (set->p[0]->n_eq > 0) {
624 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
625 lower = c->row[0];
626 upper = c->row[1];
627 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
628 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
629 isl_seq_neg(upper, set->p[0]->eq[0], 2);
630 } else {
631 isl_seq_neg(lower, set->p[0]->eq[0], 2);
632 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
634 } else {
635 for (j = 0; j < set->p[0]->n_ineq; ++j) {
636 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
637 lower = c->row[0];
638 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
639 } else {
640 upper = c->row[1];
641 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
646 isl_int_init(a);
647 isl_int_init(b);
648 for (i = 0; i < set->n; ++i) {
649 struct isl_basic_set *bset = set->p[i];
650 int has_lower = 0;
651 int has_upper = 0;
653 for (j = 0; j < bset->n_eq; ++j) {
654 has_lower = 1;
655 has_upper = 1;
656 if (lower) {
657 isl_int_mul(a, lower[0], bset->eq[j][1]);
658 isl_int_mul(b, lower[1], bset->eq[j][0]);
659 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
660 isl_seq_cpy(lower, bset->eq[j], 2);
661 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
662 isl_seq_neg(lower, bset->eq[j], 2);
664 if (upper) {
665 isl_int_mul(a, upper[0], bset->eq[j][1]);
666 isl_int_mul(b, upper[1], bset->eq[j][0]);
667 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
668 isl_seq_neg(upper, bset->eq[j], 2);
669 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
670 isl_seq_cpy(upper, bset->eq[j], 2);
673 for (j = 0; j < bset->n_ineq; ++j) {
674 if (isl_int_is_pos(bset->ineq[j][1]))
675 has_lower = 1;
676 if (isl_int_is_neg(bset->ineq[j][1]))
677 has_upper = 1;
678 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
679 isl_int_mul(a, lower[0], bset->ineq[j][1]);
680 isl_int_mul(b, lower[1], bset->ineq[j][0]);
681 if (isl_int_lt(a, b))
682 isl_seq_cpy(lower, bset->ineq[j], 2);
684 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
685 isl_int_mul(a, upper[0], bset->ineq[j][1]);
686 isl_int_mul(b, upper[1], bset->ineq[j][0]);
687 if (isl_int_gt(a, b))
688 isl_seq_cpy(upper, bset->ineq[j], 2);
691 if (!has_lower)
692 lower = NULL;
693 if (!has_upper)
694 upper = NULL;
696 isl_int_clear(a);
697 isl_int_clear(b);
699 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
700 hull = isl_basic_set_set_rational(hull);
701 if (!hull)
702 goto error;
703 if (lower) {
704 k = isl_basic_set_alloc_inequality(hull);
705 isl_seq_cpy(hull->ineq[k], lower, 2);
707 if (upper) {
708 k = isl_basic_set_alloc_inequality(hull);
709 isl_seq_cpy(hull->ineq[k], upper, 2);
711 hull = isl_basic_set_finalize(hull);
712 isl_set_free(set);
713 isl_mat_free(c);
714 return hull;
715 error:
716 isl_set_free(set);
717 isl_mat_free(c);
718 return NULL;
721 static __isl_give isl_basic_set *convex_hull_0d(__isl_take isl_set *set)
723 struct isl_basic_set *convex_hull;
725 if (!set)
726 return NULL;
728 if (isl_set_is_empty(set))
729 convex_hull = isl_basic_set_empty(isl_space_copy(set->dim));
730 else
731 convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
732 isl_set_free(set);
733 return convex_hull;
736 /* Compute the convex hull of a pair of basic sets without any parameters or
737 * integer divisions using Fourier-Motzkin elimination.
738 * The convex hull is the set of all points that can be written as
739 * the sum of points from both basic sets (in homogeneous coordinates).
740 * We set up the constraints in a space with dimensions for each of
741 * the three sets and then project out the dimensions corresponding
742 * to the two original basic sets, retaining only those corresponding
743 * to the convex hull.
745 static __isl_give isl_basic_set *convex_hull_pair_elim(
746 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
748 int i, j, k;
749 struct isl_basic_set *bset[2];
750 struct isl_basic_set *hull = NULL;
751 isl_size dim;
753 dim = isl_basic_set_dim(bset1, isl_dim_set);
754 if (dim < 0 || !bset2)
755 goto error;
757 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
758 1 + dim + bset1->n_eq + bset2->n_eq,
759 2 + bset1->n_ineq + bset2->n_ineq);
760 bset[0] = bset1;
761 bset[1] = bset2;
762 for (i = 0; i < 2; ++i) {
763 for (j = 0; j < bset[i]->n_eq; ++j) {
764 k = isl_basic_set_alloc_equality(hull);
765 if (k < 0)
766 goto error;
767 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
768 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
769 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
770 1+dim);
772 for (j = 0; j < bset[i]->n_ineq; ++j) {
773 k = isl_basic_set_alloc_inequality(hull);
774 if (k < 0)
775 goto error;
776 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
777 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
778 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
779 bset[i]->ineq[j], 1+dim);
781 k = isl_basic_set_alloc_inequality(hull);
782 if (k < 0)
783 goto error;
784 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
785 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
787 for (j = 0; j < 1+dim; ++j) {
788 k = isl_basic_set_alloc_equality(hull);
789 if (k < 0)
790 goto error;
791 isl_seq_clr(hull->eq[k], 1+2+3*dim);
792 isl_int_set_si(hull->eq[k][j], -1);
793 isl_int_set_si(hull->eq[k][1+dim+j], 1);
794 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
796 hull = isl_basic_set_set_rational(hull);
797 hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim));
798 hull = isl_basic_set_remove_redundancies(hull);
799 isl_basic_set_free(bset1);
800 isl_basic_set_free(bset2);
801 return hull;
802 error:
803 isl_basic_set_free(bset1);
804 isl_basic_set_free(bset2);
805 isl_basic_set_free(hull);
806 return NULL;
809 /* Is the set bounded for each value of the parameters?
811 isl_bool isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
813 struct isl_tab *tab;
814 isl_bool bounded;
816 if (!bset)
817 return isl_bool_error;
818 if (isl_basic_set_plain_is_empty(bset))
819 return isl_bool_true;
821 tab = isl_tab_from_recession_cone(bset, 1);
822 bounded = isl_tab_cone_is_bounded(tab);
823 isl_tab_free(tab);
824 return bounded;
827 /* Is the image bounded for each value of the parameters and
828 * the domain variables?
830 isl_bool isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap)
832 isl_size nparam = isl_basic_map_dim(bmap, isl_dim_param);
833 isl_size n_in = isl_basic_map_dim(bmap, isl_dim_in);
834 isl_bool bounded;
836 if (nparam < 0 || n_in < 0)
837 return isl_bool_error;
839 bmap = isl_basic_map_copy(bmap);
840 bmap = isl_basic_map_cow(bmap);
841 bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam,
842 isl_dim_in, 0, n_in);
843 bounded = isl_basic_set_is_bounded(bset_from_bmap(bmap));
844 isl_basic_map_free(bmap);
846 return bounded;
849 /* Is the set bounded for each value of the parameters?
851 isl_bool isl_set_is_bounded(__isl_keep isl_set *set)
853 int i;
855 if (!set)
856 return isl_bool_error;
858 for (i = 0; i < set->n; ++i) {
859 isl_bool bounded = isl_basic_set_is_bounded(set->p[i]);
860 if (!bounded || bounded < 0)
861 return bounded;
863 return isl_bool_true;
866 /* Compute the lineality space of the convex hull of bset1 and bset2.
868 * We first compute the intersection of the recession cone of bset1
869 * with the negative of the recession cone of bset2 and then compute
870 * the linear hull of the resulting cone.
872 static __isl_give isl_basic_set *induced_lineality_space(
873 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
875 int i, k;
876 struct isl_basic_set *lin = NULL;
877 isl_size dim;
879 dim = isl_basic_set_dim(bset1, isl_dim_all);
880 if (dim < 0 || !bset2)
881 goto error;
883 lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0,
884 bset1->n_eq + bset2->n_eq,
885 bset1->n_ineq + bset2->n_ineq);
886 lin = isl_basic_set_set_rational(lin);
887 if (!lin)
888 goto error;
889 for (i = 0; i < bset1->n_eq; ++i) {
890 k = isl_basic_set_alloc_equality(lin);
891 if (k < 0)
892 goto error;
893 isl_int_set_si(lin->eq[k][0], 0);
894 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
896 for (i = 0; i < bset1->n_ineq; ++i) {
897 k = isl_basic_set_alloc_inequality(lin);
898 if (k < 0)
899 goto error;
900 isl_int_set_si(lin->ineq[k][0], 0);
901 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
903 for (i = 0; i < bset2->n_eq; ++i) {
904 k = isl_basic_set_alloc_equality(lin);
905 if (k < 0)
906 goto error;
907 isl_int_set_si(lin->eq[k][0], 0);
908 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
910 for (i = 0; i < bset2->n_ineq; ++i) {
911 k = isl_basic_set_alloc_inequality(lin);
912 if (k < 0)
913 goto error;
914 isl_int_set_si(lin->ineq[k][0], 0);
915 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
918 isl_basic_set_free(bset1);
919 isl_basic_set_free(bset2);
920 return isl_basic_set_affine_hull(lin);
921 error:
922 isl_basic_set_free(lin);
923 isl_basic_set_free(bset1);
924 isl_basic_set_free(bset2);
925 return NULL;
928 static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set);
930 /* Given a set and a linear space "lin" of dimension n > 0,
931 * project the linear space from the set, compute the convex hull
932 * and then map the set back to the original space.
934 * Let
936 * M x = 0
938 * describe the linear space. We first compute the Hermite normal
939 * form H = M U of M = H Q, to obtain
941 * H Q x = 0
943 * The last n rows of H will be zero, so the last n variables of x' = Q x
944 * are the one we want to project out. We do this by transforming each
945 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
946 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
947 * we transform the hull back to the original space as A' Q_1 x >= b',
948 * with Q_1 all but the last n rows of Q.
950 static __isl_give isl_basic_set *modulo_lineality(__isl_take isl_set *set,
951 __isl_take isl_basic_set *lin)
953 isl_size total = isl_basic_set_dim(lin, isl_dim_all);
954 unsigned lin_dim;
955 struct isl_basic_set *hull;
956 struct isl_mat *M, *U, *Q;
958 if (!set || total < 0)
959 goto error;
960 lin_dim = total - lin->n_eq;
961 M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
962 M = isl_mat_left_hermite(M, 0, &U, &Q);
963 if (!M)
964 goto error;
965 isl_mat_free(M);
966 isl_basic_set_free(lin);
968 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
970 U = isl_mat_lin_to_aff(U);
971 Q = isl_mat_lin_to_aff(Q);
973 set = isl_set_preimage(set, U);
974 set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim);
975 hull = uset_convex_hull(set);
976 hull = isl_basic_set_preimage(hull, Q);
978 return hull;
979 error:
980 isl_basic_set_free(lin);
981 isl_set_free(set);
982 return NULL;
985 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
986 * set up an LP for solving
988 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
990 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
991 * The next \alpha{ij} correspond to the equalities and come in pairs.
992 * The final \alpha{ij} correspond to the inequalities.
994 static __isl_give isl_basic_set *valid_direction_lp(
995 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
997 isl_space *dim;
998 struct isl_basic_set *lp;
999 unsigned d;
1000 int n;
1001 int i, j, k;
1002 isl_size total;
1004 total = isl_basic_set_dim(bset1, isl_dim_all);
1005 if (total < 0 || !bset2)
1006 goto error;
1007 d = 1 + total;
1008 n = 2 +
1009 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1010 dim = isl_space_set_alloc(bset1->ctx, 0, n);
1011 lp = isl_basic_set_alloc_space(dim, 0, d, n);
1012 if (!lp)
1013 goto error;
1014 for (i = 0; i < n; ++i) {
1015 k = isl_basic_set_alloc_inequality(lp);
1016 if (k < 0)
1017 goto error;
1018 isl_seq_clr(lp->ineq[k] + 1, n);
1019 isl_int_set_si(lp->ineq[k][0], -1);
1020 isl_int_set_si(lp->ineq[k][1 + i], 1);
1022 for (i = 0; i < d; ++i) {
1023 k = isl_basic_set_alloc_equality(lp);
1024 if (k < 0)
1025 goto error;
1026 n = 0;
1027 isl_int_set_si(lp->eq[k][n], 0); n++;
1028 /* positivity constraint 1 >= 0 */
1029 isl_int_set_si(lp->eq[k][n], i == 0); n++;
1030 for (j = 0; j < bset1->n_eq; ++j) {
1031 isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
1032 isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
1034 for (j = 0; j < bset1->n_ineq; ++j) {
1035 isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
1037 /* positivity constraint 1 >= 0 */
1038 isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
1039 for (j = 0; j < bset2->n_eq; ++j) {
1040 isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
1041 isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
1043 for (j = 0; j < bset2->n_ineq; ++j) {
1044 isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
1047 lp = isl_basic_set_gauss(lp, NULL);
1048 isl_basic_set_free(bset1);
1049 isl_basic_set_free(bset2);
1050 return lp;
1051 error:
1052 isl_basic_set_free(bset1);
1053 isl_basic_set_free(bset2);
1054 return NULL;
1057 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1058 * for all rays in the homogeneous space of the two cones that correspond
1059 * to the input polyhedra bset1 and bset2.
1061 * We compute s as a vector that satisfies
1063 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1065 * with h_{ij} the normals of the facets of polyhedron i
1066 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1067 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1068 * We first set up an LP with as variables the \alpha{ij}.
1069 * In this formulation, for each polyhedron i,
1070 * the first constraint is the positivity constraint, followed by pairs
1071 * of variables for the equalities, followed by variables for the inequalities.
1072 * We then simply pick a feasible solution and compute s using (*).
1074 * Note that we simply pick any valid direction and make no attempt
1075 * to pick a "good" or even the "best" valid direction.
1077 static __isl_give isl_vec *valid_direction(
1078 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1080 struct isl_basic_set *lp;
1081 struct isl_tab *tab;
1082 struct isl_vec *sample = NULL;
1083 struct isl_vec *dir;
1084 isl_size d;
1085 int i;
1086 int n;
1088 if (!bset1 || !bset2)
1089 goto error;
1090 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1091 isl_basic_set_copy(bset2));
1092 tab = isl_tab_from_basic_set(lp, 0);
1093 sample = isl_tab_get_sample_value(tab);
1094 isl_tab_free(tab);
1095 isl_basic_set_free(lp);
1096 if (!sample)
1097 goto error;
1098 d = isl_basic_set_dim(bset1, isl_dim_all);
1099 if (d < 0)
1100 goto error;
1101 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1102 if (!dir)
1103 goto error;
1104 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1105 n = 1;
1106 /* positivity constraint 1 >= 0 */
1107 isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
1108 for (i = 0; i < bset1->n_eq; ++i) {
1109 isl_int_sub(sample->block.data[n],
1110 sample->block.data[n], sample->block.data[n+1]);
1111 isl_seq_combine(dir->block.data,
1112 bset1->ctx->one, dir->block.data,
1113 sample->block.data[n], bset1->eq[i], 1 + d);
1115 n += 2;
1117 for (i = 0; i < bset1->n_ineq; ++i)
1118 isl_seq_combine(dir->block.data,
1119 bset1->ctx->one, dir->block.data,
1120 sample->block.data[n++], bset1->ineq[i], 1 + d);
1121 isl_vec_free(sample);
1122 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1123 isl_basic_set_free(bset1);
1124 isl_basic_set_free(bset2);
1125 return dir;
1126 error:
1127 isl_vec_free(sample);
1128 isl_basic_set_free(bset1);
1129 isl_basic_set_free(bset2);
1130 return NULL;
1133 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1134 * compute b_i' + A_i' x' >= 0, with
1136 * [ b_i A_i ] [ y' ] [ y' ]
1137 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1139 * In particular, add the "positivity constraint" and then perform
1140 * the mapping.
1142 static __isl_give isl_basic_set *homogeneous_map(__isl_take isl_basic_set *bset,
1143 __isl_take isl_mat *T)
1145 int k;
1146 isl_size total;
1148 total = isl_basic_set_dim(bset, isl_dim_all);
1149 if (total < 0)
1150 goto error;
1151 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1152 k = isl_basic_set_alloc_inequality(bset);
1153 if (k < 0)
1154 goto error;
1155 isl_seq_clr(bset->ineq[k] + 1, total);
1156 isl_int_set_si(bset->ineq[k][0], 1);
1157 bset = isl_basic_set_preimage(bset, T);
1158 return bset;
1159 error:
1160 isl_mat_free(T);
1161 isl_basic_set_free(bset);
1162 return NULL;
1165 /* Compute the convex hull of a pair of basic sets without any parameters or
1166 * integer divisions, where the convex hull is known to be pointed,
1167 * but the basic sets may be unbounded.
1169 * We turn this problem into the computation of a convex hull of a pair
1170 * _bounded_ polyhedra by "changing the direction of the homogeneous
1171 * dimension". This idea is due to Matthias Koeppe.
1173 * Consider the cones in homogeneous space that correspond to the
1174 * input polyhedra. The rays of these cones are also rays of the
1175 * polyhedra if the coordinate that corresponds to the homogeneous
1176 * dimension is zero. That is, if the inner product of the rays
1177 * with the homogeneous direction is zero.
1178 * The cones in the homogeneous space can also be considered to
1179 * correspond to other pairs of polyhedra by chosing a different
1180 * homogeneous direction. To ensure that both of these polyhedra
1181 * are bounded, we need to make sure that all rays of the cones
1182 * correspond to vertices and not to rays.
1183 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1184 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1185 * The vector s is computed in valid_direction.
1187 * Note that we need to consider _all_ rays of the cones and not just
1188 * the rays that correspond to rays in the polyhedra. If we were to
1189 * only consider those rays and turn them into vertices, then we
1190 * may inadvertently turn some vertices into rays.
1192 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1193 * We therefore transform the two polyhedra such that the selected
1194 * direction is mapped onto this standard direction and then proceed
1195 * with the normal computation.
1196 * Let S be a non-singular square matrix with s as its first row,
1197 * then we want to map the polyhedra to the space
1199 * [ y' ] [ y ] [ y ] [ y' ]
1200 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1202 * We take S to be the unimodular completion of s to limit the growth
1203 * of the coefficients in the following computations.
1205 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1206 * We first move to the homogeneous dimension
1208 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1209 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1211 * Then we change directoin
1213 * [ b_i A_i ] [ y' ] [ y' ]
1214 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1216 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1217 * resulting in b' + A' x' >= 0, which we then convert back
1219 * [ y ] [ y ]
1220 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1222 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1224 static __isl_give isl_basic_set *convex_hull_pair_pointed(
1225 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1227 struct isl_ctx *ctx = NULL;
1228 struct isl_vec *dir = NULL;
1229 struct isl_mat *T = NULL;
1230 struct isl_mat *T2 = NULL;
1231 struct isl_basic_set *hull;
1232 struct isl_set *set;
1234 if (!bset1 || !bset2)
1235 goto error;
1236 ctx = isl_basic_set_get_ctx(bset1);
1237 dir = valid_direction(isl_basic_set_copy(bset1),
1238 isl_basic_set_copy(bset2));
1239 if (!dir)
1240 goto error;
1241 T = isl_mat_alloc(ctx, dir->size, dir->size);
1242 if (!T)
1243 goto error;
1244 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1245 T = isl_mat_unimodular_complete(T, 1);
1246 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1248 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1249 bset2 = homogeneous_map(bset2, T2);
1250 set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
1251 set = isl_set_add_basic_set(set, bset1);
1252 set = isl_set_add_basic_set(set, bset2);
1253 hull = uset_convex_hull(set);
1254 hull = isl_basic_set_preimage(hull, T);
1256 isl_vec_free(dir);
1258 return hull;
1259 error:
1260 isl_vec_free(dir);
1261 isl_basic_set_free(bset1);
1262 isl_basic_set_free(bset2);
1263 return NULL;
1266 static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set);
1267 static __isl_give isl_basic_set *modulo_affine_hull(
1268 __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull);
1270 /* Compute the convex hull of a pair of basic sets without any parameters or
1271 * integer divisions.
1273 * This function is called from uset_convex_hull_unbounded, which
1274 * means that the complete convex hull is unbounded. Some pairs
1275 * of basic sets may still be bounded, though.
1276 * They may even lie inside a lower dimensional space, in which
1277 * case they need to be handled inside their affine hull since
1278 * the main algorithm assumes that the result is full-dimensional.
1280 * If the convex hull of the two basic sets would have a non-trivial
1281 * lineality space, we first project out this lineality space.
1283 static __isl_give isl_basic_set *convex_hull_pair(
1284 __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
1286 isl_basic_set *lin, *aff;
1287 isl_bool bounded1, bounded2;
1288 isl_size total;
1290 if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM)
1291 return convex_hull_pair_elim(bset1, bset2);
1293 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1294 isl_basic_set_copy(bset2)));
1295 if (!aff)
1296 goto error;
1297 if (aff->n_eq != 0)
1298 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1299 isl_basic_set_free(aff);
1301 bounded1 = isl_basic_set_is_bounded(bset1);
1302 bounded2 = isl_basic_set_is_bounded(bset2);
1304 if (bounded1 < 0 || bounded2 < 0)
1305 goto error;
1307 if (bounded1 && bounded2)
1308 return uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1310 if (bounded1 || bounded2)
1311 return convex_hull_pair_pointed(bset1, bset2);
1313 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1314 isl_basic_set_copy(bset2));
1315 if (!lin)
1316 goto error;
1317 if (isl_basic_set_plain_is_universe(lin)) {
1318 isl_basic_set_free(bset1);
1319 isl_basic_set_free(bset2);
1320 return lin;
1322 total = isl_basic_set_dim(lin, isl_dim_all);
1323 if (lin->n_eq < total) {
1324 struct isl_set *set;
1325 set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0);
1326 set = isl_set_add_basic_set(set, bset1);
1327 set = isl_set_add_basic_set(set, bset2);
1328 return modulo_lineality(set, lin);
1330 isl_basic_set_free(lin);
1331 if (total < 0)
1332 goto error;
1334 return convex_hull_pair_pointed(bset1, bset2);
1335 error:
1336 isl_basic_set_free(bset1);
1337 isl_basic_set_free(bset2);
1338 return NULL;
1341 /* Compute the lineality space of a basic set.
1342 * We basically just drop the constants and turn every inequality
1343 * into an equality.
1344 * Any explicit representations of local variables are removed
1345 * because they may no longer be valid representations
1346 * in the lineality space.
1348 __isl_give isl_basic_set *isl_basic_set_lineality_space(
1349 __isl_take isl_basic_set *bset)
1351 int i, k;
1352 struct isl_basic_set *lin = NULL;
1353 isl_size n_div, dim;
1355 n_div = isl_basic_set_dim(bset, isl_dim_div);
1356 dim = isl_basic_set_dim(bset, isl_dim_all);
1357 if (n_div < 0 || dim < 0)
1358 return isl_basic_set_free(bset);
1360 lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
1361 n_div, dim, 0);
1362 for (i = 0; i < n_div; ++i)
1363 if (isl_basic_set_alloc_div(lin) < 0)
1364 goto error;
1365 if (!lin)
1366 goto error;
1367 for (i = 0; i < bset->n_eq; ++i) {
1368 k = isl_basic_set_alloc_equality(lin);
1369 if (k < 0)
1370 goto error;
1371 isl_int_set_si(lin->eq[k][0], 0);
1372 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1374 lin = isl_basic_set_gauss(lin, NULL);
1375 if (!lin)
1376 goto error;
1377 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1378 k = isl_basic_set_alloc_equality(lin);
1379 if (k < 0)
1380 goto error;
1381 isl_int_set_si(lin->eq[k][0], 0);
1382 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1383 lin = isl_basic_set_gauss(lin, NULL);
1384 if (!lin)
1385 goto error;
1387 isl_basic_set_free(bset);
1388 return lin;
1389 error:
1390 isl_basic_set_free(lin);
1391 isl_basic_set_free(bset);
1392 return NULL;
1395 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1396 * set "set".
1398 __isl_give isl_basic_set *isl_set_combined_lineality_space(
1399 __isl_take isl_set *set)
1401 int i;
1402 struct isl_set *lin = NULL;
1404 if (!set)
1405 return NULL;
1406 if (set->n == 0) {
1407 isl_space *space = isl_set_get_space(set);
1408 isl_set_free(set);
1409 return isl_basic_set_empty(space);
1412 lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0);
1413 for (i = 0; i < set->n; ++i)
1414 lin = isl_set_add_basic_set(lin,
1415 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1416 isl_set_free(set);
1417 return isl_set_affine_hull(lin);
1420 /* Compute the convex hull of a set without any parameters or
1421 * integer divisions.
1422 * In each step, we combined two basic sets until only one
1423 * basic set is left.
1424 * The input basic sets are assumed not to have a non-trivial
1425 * lineality space. If any of the intermediate results has
1426 * a non-trivial lineality space, it is projected out.
1428 static __isl_give isl_basic_set *uset_convex_hull_unbounded(
1429 __isl_take isl_set *set)
1431 isl_basic_set_list *list;
1433 list = isl_set_get_basic_set_list(set);
1434 isl_set_free(set);
1436 while (list) {
1437 int n;
1438 isl_size total;
1439 struct isl_basic_set *t;
1440 isl_basic_set *bset1, *bset2;
1442 n = isl_basic_set_list_n_basic_set(list);
1443 if (n < 2)
1444 isl_die(isl_basic_set_list_get_ctx(list),
1445 isl_error_internal,
1446 "expecting at least two elements", goto error);
1447 bset1 = isl_basic_set_list_get_basic_set(list, n - 1);
1448 bset2 = isl_basic_set_list_get_basic_set(list, n - 2);
1449 bset1 = convex_hull_pair(bset1, bset2);
1450 if (n == 2) {
1451 isl_basic_set_list_free(list);
1452 return bset1;
1454 bset1 = isl_basic_set_underlying_set(bset1);
1455 list = isl_basic_set_list_drop(list, n - 2, 2);
1456 list = isl_basic_set_list_add(list, bset1);
1458 t = isl_basic_set_list_get_basic_set(list, n - 2);
1459 t = isl_basic_set_lineality_space(t);
1460 if (!t)
1461 goto error;
1462 if (isl_basic_set_plain_is_universe(t)) {
1463 isl_basic_set_list_free(list);
1464 return t;
1466 total = isl_basic_set_dim(t, isl_dim_all);
1467 if (t->n_eq < total) {
1468 set = isl_basic_set_list_union(list);
1469 return modulo_lineality(set, t);
1471 isl_basic_set_free(t);
1472 if (total < 0)
1473 goto error;
1476 return NULL;
1477 error:
1478 isl_basic_set_list_free(list);
1479 return NULL;
1482 /* Compute an initial hull for wrapping containing a single initial
1483 * facet.
1484 * This function assumes that the given set is bounded.
1486 static __isl_give isl_basic_set *initial_hull(__isl_take isl_basic_set *hull,
1487 __isl_keep isl_set *set)
1489 struct isl_mat *bounds = NULL;
1490 isl_size dim;
1491 int k;
1493 if (!hull)
1494 goto error;
1495 bounds = initial_facet_constraint(set);
1496 if (!bounds)
1497 goto error;
1498 k = isl_basic_set_alloc_inequality(hull);
1499 if (k < 0)
1500 goto error;
1501 dim = isl_set_dim(set, isl_dim_set);
1502 if (dim < 0)
1503 goto error;
1504 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1505 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1506 isl_mat_free(bounds);
1508 return hull;
1509 error:
1510 isl_basic_set_free(hull);
1511 isl_mat_free(bounds);
1512 return NULL;
1515 struct max_constraint {
1516 struct isl_mat *c;
1517 int count;
1518 int ineq;
1521 static int max_constraint_equal(const void *entry, const void *val)
1523 struct max_constraint *a = (struct max_constraint *)entry;
1524 isl_int *b = (isl_int *)val;
1526 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1529 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1530 isl_int *con, unsigned len, int n, int ineq)
1532 struct isl_hash_table_entry *entry;
1533 struct max_constraint *c;
1534 uint32_t c_hash;
1536 c_hash = isl_seq_get_hash(con + 1, len);
1537 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1538 con + 1, 0);
1539 if (!entry)
1540 return;
1541 c = entry->data;
1542 if (c->count < n) {
1543 isl_hash_table_remove(ctx, table, entry);
1544 return;
1546 c->count++;
1547 if (isl_int_gt(c->c->row[0][0], con[0]))
1548 return;
1549 if (isl_int_eq(c->c->row[0][0], con[0])) {
1550 if (ineq)
1551 c->ineq = ineq;
1552 return;
1554 c->c = isl_mat_cow(c->c);
1555 isl_int_set(c->c->row[0][0], con[0]);
1556 c->ineq = ineq;
1559 /* Check whether the constraint hash table "table" contains the constraint
1560 * "con".
1562 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1563 isl_int *con, unsigned len, int n)
1565 struct isl_hash_table_entry *entry;
1566 struct max_constraint *c;
1567 uint32_t c_hash;
1569 c_hash = isl_seq_get_hash(con + 1, len);
1570 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1571 con + 1, 0);
1572 if (!entry)
1573 return 0;
1574 c = entry->data;
1575 if (c->count < n)
1576 return 0;
1577 return isl_int_eq(c->c->row[0][0], con[0]);
1580 /* Check for inequality constraints of a basic set without equalities
1581 * such that the same or more stringent copies of the constraint appear
1582 * in all of the basic sets. Such constraints are necessarily facet
1583 * constraints of the convex hull.
1585 * If the resulting basic set is by chance identical to one of
1586 * the basic sets in "set", then we know that this basic set contains
1587 * all other basic sets and is therefore the convex hull of set.
1588 * In this case we set *is_hull to 1.
1590 static __isl_give isl_basic_set *common_constraints(
1591 __isl_take isl_basic_set *hull, __isl_keep isl_set *set, int *is_hull)
1593 int i, j, s, n;
1594 int min_constraints;
1595 int best;
1596 struct max_constraint *constraints = NULL;
1597 struct isl_hash_table *table = NULL;
1598 isl_size total;
1600 *is_hull = 0;
1602 for (i = 0; i < set->n; ++i)
1603 if (set->p[i]->n_eq == 0)
1604 break;
1605 if (i >= set->n)
1606 return hull;
1607 min_constraints = set->p[i]->n_ineq;
1608 best = i;
1609 for (i = best + 1; i < set->n; ++i) {
1610 if (set->p[i]->n_eq != 0)
1611 continue;
1612 if (set->p[i]->n_ineq >= min_constraints)
1613 continue;
1614 min_constraints = set->p[i]->n_ineq;
1615 best = i;
1617 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1618 min_constraints);
1619 if (!constraints)
1620 return hull;
1621 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1622 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1623 goto error;
1625 total = isl_set_dim(set, isl_dim_all);
1626 if (total < 0)
1627 goto error;
1628 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1629 constraints[i].c = isl_mat_sub_alloc6(hull->ctx,
1630 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1631 if (!constraints[i].c)
1632 goto error;
1633 constraints[i].ineq = 1;
1635 for (i = 0; i < min_constraints; ++i) {
1636 struct isl_hash_table_entry *entry;
1637 uint32_t c_hash;
1638 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1639 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1640 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1641 if (!entry)
1642 goto error;
1643 isl_assert(hull->ctx, !entry->data, goto error);
1644 entry->data = &constraints[i];
1647 n = 0;
1648 for (s = 0; s < set->n; ++s) {
1649 if (s == best)
1650 continue;
1652 for (i = 0; i < set->p[s]->n_eq; ++i) {
1653 isl_int *eq = set->p[s]->eq[i];
1654 for (j = 0; j < 2; ++j) {
1655 isl_seq_neg(eq, eq, 1 + total);
1656 update_constraint(hull->ctx, table,
1657 eq, total, n, 0);
1660 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1661 isl_int *ineq = set->p[s]->ineq[i];
1662 update_constraint(hull->ctx, table, ineq, total, n,
1663 set->p[s]->n_eq == 0);
1665 ++n;
1668 for (i = 0; i < min_constraints; ++i) {
1669 if (constraints[i].count < n)
1670 continue;
1671 if (!constraints[i].ineq)
1672 continue;
1673 j = isl_basic_set_alloc_inequality(hull);
1674 if (j < 0)
1675 goto error;
1676 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1679 for (s = 0; s < set->n; ++s) {
1680 if (set->p[s]->n_eq)
1681 continue;
1682 if (set->p[s]->n_ineq != hull->n_ineq)
1683 continue;
1684 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1685 isl_int *ineq = set->p[s]->ineq[i];
1686 if (!has_constraint(hull->ctx, table, ineq, total, n))
1687 break;
1689 if (i == set->p[s]->n_ineq)
1690 *is_hull = 1;
1693 isl_hash_table_clear(table);
1694 for (i = 0; i < min_constraints; ++i)
1695 isl_mat_free(constraints[i].c);
1696 free(constraints);
1697 free(table);
1698 return hull;
1699 error:
1700 isl_hash_table_clear(table);
1701 free(table);
1702 if (constraints)
1703 for (i = 0; i < min_constraints; ++i)
1704 isl_mat_free(constraints[i].c);
1705 free(constraints);
1706 return hull;
1709 /* Create a template for the convex hull of "set" and fill it up
1710 * obvious facet constraints, if any. If the result happens to
1711 * be the convex hull of "set" then *is_hull is set to 1.
1713 static __isl_give isl_basic_set *proto_hull(__isl_keep isl_set *set,
1714 int *is_hull)
1716 struct isl_basic_set *hull;
1717 unsigned n_ineq;
1718 int i;
1720 n_ineq = 1;
1721 for (i = 0; i < set->n; ++i) {
1722 n_ineq += set->p[i]->n_eq;
1723 n_ineq += set->p[i]->n_ineq;
1725 hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
1726 hull = isl_basic_set_set_rational(hull);
1727 if (!hull)
1728 return NULL;
1729 return common_constraints(hull, set, is_hull);
1732 static __isl_give isl_basic_set *uset_convex_hull_wrap(__isl_take isl_set *set)
1734 struct isl_basic_set *hull;
1735 int is_hull;
1737 hull = proto_hull(set, &is_hull);
1738 if (hull && !is_hull) {
1739 if (hull->n_ineq == 0)
1740 hull = initial_hull(hull, set);
1741 hull = extend(hull, set);
1743 isl_set_free(set);
1745 return hull;
1748 /* Compute the convex hull of a set without any parameters or
1749 * integer divisions. Depending on whether the set is bounded,
1750 * we pass control to the wrapping based convex hull or
1751 * the Fourier-Motzkin elimination based convex hull.
1752 * We also handle a few special cases before checking the boundedness.
1754 static __isl_give isl_basic_set *uset_convex_hull(__isl_take isl_set *set)
1756 isl_bool bounded;
1757 isl_size dim;
1758 struct isl_basic_set *convex_hull = NULL;
1759 struct isl_basic_set *lin;
1761 dim = isl_set_dim(set, isl_dim_all);
1762 if (dim < 0)
1763 goto error;
1764 if (dim == 0)
1765 return convex_hull_0d(set);
1767 set = isl_set_coalesce(set);
1768 set = isl_set_set_rational(set);
1770 if (!set)
1771 return NULL;
1772 if (set->n == 1) {
1773 convex_hull = isl_basic_set_copy(set->p[0]);
1774 isl_set_free(set);
1775 return convex_hull;
1777 if (dim == 1)
1778 return convex_hull_1d(set);
1780 bounded = isl_set_is_bounded(set);
1781 if (bounded < 0)
1782 goto error;
1783 if (bounded && set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP)
1784 return uset_convex_hull_wrap(set);
1786 lin = isl_set_combined_lineality_space(isl_set_copy(set));
1787 if (!lin)
1788 goto error;
1789 if (isl_basic_set_plain_is_universe(lin)) {
1790 isl_set_free(set);
1791 return lin;
1793 if (lin->n_eq < dim)
1794 return modulo_lineality(set, lin);
1795 isl_basic_set_free(lin);
1797 return uset_convex_hull_unbounded(set);
1798 error:
1799 isl_set_free(set);
1800 isl_basic_set_free(convex_hull);
1801 return NULL;
1804 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1805 * without parameters or divs and where the convex hull of set is
1806 * known to be full-dimensional.
1808 static __isl_give isl_basic_set *uset_convex_hull_wrap_bounded(
1809 __isl_take isl_set *set)
1811 struct isl_basic_set *convex_hull = NULL;
1812 isl_size dim;
1814 dim = isl_set_dim(set, isl_dim_all);
1815 if (dim < 0)
1816 goto error;
1818 if (dim == 0) {
1819 convex_hull = isl_basic_set_universe(isl_space_copy(set->dim));
1820 isl_set_free(set);
1821 convex_hull = isl_basic_set_set_rational(convex_hull);
1822 return convex_hull;
1825 set = isl_set_set_rational(set);
1826 set = isl_set_coalesce(set);
1827 if (!set)
1828 goto error;
1829 if (set->n == 1) {
1830 convex_hull = isl_basic_set_copy(set->p[0]);
1831 isl_set_free(set);
1832 convex_hull = isl_basic_map_remove_redundancies(convex_hull);
1833 return convex_hull;
1835 if (dim == 1)
1836 return convex_hull_1d(set);
1838 return uset_convex_hull_wrap(set);
1839 error:
1840 isl_set_free(set);
1841 return NULL;
1844 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1845 * We first remove the equalities (transforming the set), compute the
1846 * convex hull of the transformed set and then add the equalities back
1847 * (after performing the inverse transformation.
1849 static __isl_give isl_basic_set *modulo_affine_hull(
1850 __isl_take isl_set *set, __isl_take isl_basic_set *affine_hull)
1852 struct isl_mat *T;
1853 struct isl_mat *T2;
1854 struct isl_basic_set *dummy;
1855 struct isl_basic_set *convex_hull;
1857 dummy = isl_basic_set_remove_equalities(
1858 isl_basic_set_copy(affine_hull), &T, &T2);
1859 if (!dummy)
1860 goto error;
1861 isl_basic_set_free(dummy);
1862 set = isl_set_preimage(set, T);
1863 convex_hull = uset_convex_hull(set);
1864 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1865 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1866 return convex_hull;
1867 error:
1868 isl_mat_free(T);
1869 isl_mat_free(T2);
1870 isl_basic_set_free(affine_hull);
1871 isl_set_free(set);
1872 return NULL;
1875 /* Return an empty basic map living in the same space as "map".
1877 static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1878 __isl_take isl_map *map)
1880 isl_space *space;
1882 space = isl_map_get_space(map);
1883 isl_map_free(map);
1884 return isl_basic_map_empty(space);
1887 /* Compute the convex hull of a map.
1889 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1890 * specifically, the wrapping of facets to obtain new facets.
1892 __isl_give isl_basic_map *isl_map_convex_hull(__isl_take isl_map *map)
1894 struct isl_basic_set *bset;
1895 struct isl_basic_map *model = NULL;
1896 struct isl_basic_set *affine_hull = NULL;
1897 struct isl_basic_map *convex_hull = NULL;
1898 struct isl_set *set = NULL;
1900 map = isl_map_detect_equalities(map);
1901 map = isl_map_align_divs_internal(map);
1902 if (!map)
1903 goto error;
1905 if (map->n == 0)
1906 return replace_map_by_empty_basic_map(map);
1908 model = isl_basic_map_copy(map->p[0]);
1909 set = isl_map_underlying_set(map);
1910 if (!set)
1911 goto error;
1913 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1914 if (!affine_hull)
1915 goto error;
1916 if (affine_hull->n_eq != 0)
1917 bset = modulo_affine_hull(set, affine_hull);
1918 else {
1919 isl_basic_set_free(affine_hull);
1920 bset = uset_convex_hull(set);
1923 convex_hull = isl_basic_map_overlying_set(bset, model);
1924 if (!convex_hull)
1925 return NULL;
1927 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1928 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1929 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1930 return convex_hull;
1931 error:
1932 isl_set_free(set);
1933 isl_basic_map_free(model);
1934 return NULL;
1937 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1939 return bset_from_bmap(isl_map_convex_hull(set_to_map(set)));
1942 __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map)
1944 isl_basic_map *hull;
1946 hull = isl_map_convex_hull(map);
1947 return isl_basic_map_remove_divs(hull);
1950 __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set)
1952 return bset_from_bmap(isl_map_polyhedral_hull(set_to_map(set)));
1955 struct sh_data_entry {
1956 struct isl_hash_table *table;
1957 struct isl_tab *tab;
1960 /* Holds the data needed during the simple hull computation.
1961 * In particular,
1962 * n the number of basic sets in the original set
1963 * hull_table a hash table of already computed constraints
1964 * in the simple hull
1965 * p for each basic set,
1966 * table a hash table of the constraints
1967 * tab the tableau corresponding to the basic set
1969 struct sh_data {
1970 struct isl_ctx *ctx;
1971 unsigned n;
1972 struct isl_hash_table *hull_table;
1973 struct sh_data_entry p[1];
1976 static void sh_data_free(struct sh_data *data)
1978 int i;
1980 if (!data)
1981 return;
1982 isl_hash_table_free(data->ctx, data->hull_table);
1983 for (i = 0; i < data->n; ++i) {
1984 isl_hash_table_free(data->ctx, data->p[i].table);
1985 isl_tab_free(data->p[i].tab);
1987 free(data);
1990 struct ineq_cmp_data {
1991 unsigned len;
1992 isl_int *p;
1995 static int has_ineq(const void *entry, const void *val)
1997 isl_int *row = (isl_int *)entry;
1998 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
2000 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
2001 isl_seq_is_neg(row + 1, v->p + 1, v->len);
2004 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
2005 isl_int *ineq, unsigned len)
2007 uint32_t c_hash;
2008 struct ineq_cmp_data v;
2009 struct isl_hash_table_entry *entry;
2011 v.len = len;
2012 v.p = ineq;
2013 c_hash = isl_seq_get_hash(ineq + 1, len);
2014 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
2015 if (!entry)
2016 return - 1;
2017 entry->data = ineq;
2018 return 0;
2021 /* Fill hash table "table" with the constraints of "bset".
2022 * Equalities are added as two inequalities.
2023 * The value in the hash table is a pointer to the (in)equality of "bset".
2025 static isl_stat hash_basic_set(struct isl_hash_table *table,
2026 __isl_keep isl_basic_set *bset)
2028 int i, j;
2029 isl_size dim = isl_basic_set_dim(bset, isl_dim_all);
2031 if (dim < 0)
2032 return isl_stat_error;
2033 for (i = 0; i < bset->n_eq; ++i) {
2034 for (j = 0; j < 2; ++j) {
2035 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2036 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2037 return isl_stat_error;
2040 for (i = 0; i < bset->n_ineq; ++i) {
2041 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2042 return isl_stat_error;
2044 return isl_stat_ok;
2047 static struct sh_data *sh_data_alloc(__isl_keep isl_set *set, unsigned n_ineq)
2049 struct sh_data *data;
2050 int i;
2052 data = isl_calloc(set->ctx, struct sh_data,
2053 sizeof(struct sh_data) +
2054 (set->n - 1) * sizeof(struct sh_data_entry));
2055 if (!data)
2056 return NULL;
2057 data->ctx = set->ctx;
2058 data->n = set->n;
2059 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2060 if (!data->hull_table)
2061 goto error;
2062 for (i = 0; i < set->n; ++i) {
2063 data->p[i].table = isl_hash_table_alloc(set->ctx,
2064 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2065 if (!data->p[i].table)
2066 goto error;
2067 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2068 goto error;
2070 return data;
2071 error:
2072 sh_data_free(data);
2073 return NULL;
2076 /* Check if inequality "ineq" is a bound for basic set "j" or if
2077 * it can be relaxed (by increasing the constant term) to become
2078 * a bound for that basic set. In the latter case, the constant
2079 * term is updated.
2080 * Relaxation of the constant term is only allowed if "shift" is set.
2082 * Return 1 if "ineq" is a bound
2083 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2084 * -1 if some error occurred
2086 static int is_bound(struct sh_data *data, __isl_keep isl_set *set, int j,
2087 isl_int *ineq, int shift)
2089 enum isl_lp_result res;
2090 isl_int opt;
2092 if (!data->p[j].tab) {
2093 data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0);
2094 if (!data->p[j].tab)
2095 return -1;
2098 isl_int_init(opt);
2100 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2101 &opt, NULL, 0);
2102 if (res == isl_lp_ok && isl_int_is_neg(opt)) {
2103 if (shift)
2104 isl_int_sub(ineq[0], ineq[0], opt);
2105 else
2106 res = isl_lp_unbounded;
2109 isl_int_clear(opt);
2111 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2112 res == isl_lp_unbounded ? 0 : -1;
2115 /* Set the constant term of "ineq" to the maximum of those of the constraints
2116 * in the basic sets of "set" following "i" that are parallel to "ineq".
2117 * That is, if any of the basic sets of "set" following "i" have a more
2118 * relaxed copy of "ineq", then replace "ineq" by the most relaxed copy.
2119 * "c_hash" is the hash value of the linear part of "ineq".
2120 * "v" has been set up for use by has_ineq.
2122 * Note that the two inequality constraints corresponding to an equality are
2123 * represented by the same inequality constraint in data->p[j].table
2124 * (but with different hash values). This means the constraint (or at
2125 * least its constant term) may need to be temporarily negated to get
2126 * the actually hashed constraint.
2128 static void set_max_constant_term(struct sh_data *data, __isl_keep isl_set *set,
2129 int i, isl_int *ineq, uint32_t c_hash, struct ineq_cmp_data *v)
2131 int j;
2132 isl_ctx *ctx;
2133 struct isl_hash_table_entry *entry;
2135 ctx = isl_set_get_ctx(set);
2136 for (j = i + 1; j < set->n; ++j) {
2137 int neg;
2138 isl_int *ineq_j;
2140 entry = isl_hash_table_find(ctx, data->p[j].table,
2141 c_hash, &has_ineq, v, 0);
2142 if (!entry)
2143 continue;
2145 ineq_j = entry->data;
2146 neg = isl_seq_is_neg(ineq_j + 1, ineq + 1, v->len);
2147 if (neg)
2148 isl_int_neg(ineq_j[0], ineq_j[0]);
2149 if (isl_int_gt(ineq_j[0], ineq[0]))
2150 isl_int_set(ineq[0], ineq_j[0]);
2151 if (neg)
2152 isl_int_neg(ineq_j[0], ineq_j[0]);
2156 /* Check if inequality "ineq" from basic set "i" is or can be relaxed to
2157 * become a bound on the whole set. If so, add the (relaxed) inequality
2158 * to "hull". Relaxation is only allowed if "shift" is set.
2160 * We first check if "hull" already contains a translate of the inequality.
2161 * If so, we are done.
2162 * Then, we check if any of the previous basic sets contains a translate
2163 * of the inequality. If so, then we have already considered this
2164 * inequality and we are done.
2165 * Otherwise, for each basic set other than "i", we check if the inequality
2166 * is a bound on the basic set, but first replace the constant term
2167 * by the maximal value of any translate of the inequality in any
2168 * of the following basic sets.
2169 * For previous basic sets, we know that they do not contain a translate
2170 * of the inequality, so we directly call is_bound.
2171 * For following basic sets, we first check if a translate of the
2172 * inequality appears in its description. If so, the constant term
2173 * of the inequality has already been updated with respect to this
2174 * translate and the inequality is therefore known to be a bound
2175 * of this basic set.
2177 static __isl_give isl_basic_set *add_bound(__isl_take isl_basic_set *hull,
2178 struct sh_data *data, __isl_keep isl_set *set, int i, isl_int *ineq,
2179 int shift)
2181 uint32_t c_hash;
2182 struct ineq_cmp_data v;
2183 struct isl_hash_table_entry *entry;
2184 int j, k;
2185 isl_size total;
2187 total = isl_basic_set_dim(hull, isl_dim_all);
2188 if (total < 0)
2189 return isl_basic_set_free(hull);
2191 v.len = total;
2192 v.p = ineq;
2193 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2195 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2196 has_ineq, &v, 0);
2197 if (entry)
2198 return hull;
2200 for (j = 0; j < i; ++j) {
2201 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2202 c_hash, has_ineq, &v, 0);
2203 if (entry)
2204 break;
2206 if (j < i)
2207 return hull;
2209 k = isl_basic_set_alloc_inequality(hull);
2210 if (k < 0)
2211 goto error;
2212 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2214 set_max_constant_term(data, set, i, hull->ineq[k], c_hash, &v);
2215 for (j = 0; j < i; ++j) {
2216 int bound;
2217 bound = is_bound(data, set, j, hull->ineq[k], shift);
2218 if (bound < 0)
2219 goto error;
2220 if (!bound)
2221 break;
2223 if (j < i) {
2224 isl_basic_set_free_inequality(hull, 1);
2225 return hull;
2228 for (j = i + 1; j < set->n; ++j) {
2229 int bound;
2230 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2231 c_hash, has_ineq, &v, 0);
2232 if (entry)
2233 continue;
2234 bound = is_bound(data, set, j, hull->ineq[k], shift);
2235 if (bound < 0)
2236 goto error;
2237 if (!bound)
2238 break;
2240 if (j < set->n) {
2241 isl_basic_set_free_inequality(hull, 1);
2242 return hull;
2245 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2246 has_ineq, &v, 1);
2247 if (!entry)
2248 goto error;
2249 entry->data = hull->ineq[k];
2251 return hull;
2252 error:
2253 isl_basic_set_free(hull);
2254 return NULL;
2257 /* Check if any inequality from basic set "i" is or can be relaxed to
2258 * become a bound on the whole set. If so, add the (relaxed) inequality
2259 * to "hull". Relaxation is only allowed if "shift" is set.
2261 static __isl_give isl_basic_set *add_bounds(__isl_take isl_basic_set *bset,
2262 struct sh_data *data, __isl_keep isl_set *set, int i, int shift)
2264 int j, k;
2265 isl_size dim = isl_basic_set_dim(bset, isl_dim_all);
2267 if (dim < 0)
2268 return isl_basic_set_free(bset);
2270 for (j = 0; j < set->p[i]->n_eq; ++j) {
2271 for (k = 0; k < 2; ++k) {
2272 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2273 bset = add_bound(bset, data, set, i, set->p[i]->eq[j],
2274 shift);
2277 for (j = 0; j < set->p[i]->n_ineq; ++j)
2278 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift);
2279 return bset;
2282 /* Compute a superset of the convex hull of set that is described
2283 * by only (translates of) the constraints in the constituents of set.
2284 * Translation is only allowed if "shift" is set.
2286 static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set,
2287 int shift)
2289 struct sh_data *data = NULL;
2290 struct isl_basic_set *hull = NULL;
2291 unsigned n_ineq;
2292 int i;
2294 if (!set)
2295 return NULL;
2297 n_ineq = 0;
2298 for (i = 0; i < set->n; ++i) {
2299 if (!set->p[i])
2300 goto error;
2301 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2304 hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq);
2305 if (!hull)
2306 goto error;
2308 data = sh_data_alloc(set, n_ineq);
2309 if (!data)
2310 goto error;
2312 for (i = 0; i < set->n; ++i)
2313 hull = add_bounds(hull, data, set, i, shift);
2315 sh_data_free(data);
2316 isl_set_free(set);
2318 return hull;
2319 error:
2320 sh_data_free(data);
2321 isl_basic_set_free(hull);
2322 isl_set_free(set);
2323 return NULL;
2326 /* Compute a superset of the convex hull of map that is described
2327 * by only (translates of) the constraints in the constituents of map.
2328 * Handle trivial cases where map is NULL or contains at most one disjunct.
2330 static __isl_give isl_basic_map *map_simple_hull_trivial(
2331 __isl_take isl_map *map)
2333 isl_basic_map *hull;
2335 if (!map)
2336 return NULL;
2337 if (map->n == 0)
2338 return replace_map_by_empty_basic_map(map);
2340 hull = isl_basic_map_copy(map->p[0]);
2341 isl_map_free(map);
2342 return hull;
2345 /* Return a copy of the simple hull cached inside "map".
2346 * "shift" determines whether to return the cached unshifted or shifted
2347 * simple hull.
2349 static __isl_give isl_basic_map *cached_simple_hull(__isl_take isl_map *map,
2350 int shift)
2352 isl_basic_map *hull;
2354 hull = isl_basic_map_copy(map->cached_simple_hull[shift]);
2355 isl_map_free(map);
2357 return hull;
2360 /* Compute a superset of the convex hull of map that is described
2361 * by only (translates of) the constraints in the constituents of map.
2362 * Translation is only allowed if "shift" is set.
2364 * The constraints are sorted while removing redundant constraints
2365 * in order to indicate a preference of which constraints should
2366 * be preserved. In particular, pairs of constraints that are
2367 * sorted together are preferred to either both be preserved
2368 * or both be removed. The sorting is performed inside
2369 * isl_basic_map_remove_redundancies.
2371 * The result of the computation is stored in map->cached_simple_hull[shift]
2372 * such that it can be reused in subsequent calls. The cache is cleared
2373 * whenever the map is modified (in isl_map_cow).
2374 * Note that the results need to be stored in the input map for there
2375 * to be any chance that they may get reused. In particular, they
2376 * are stored in a copy of the input map that is saved before
2377 * the integer division alignment.
2379 static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map,
2380 int shift)
2382 struct isl_set *set = NULL;
2383 struct isl_basic_map *model = NULL;
2384 struct isl_basic_map *hull;
2385 struct isl_basic_map *affine_hull;
2386 struct isl_basic_set *bset = NULL;
2387 isl_map *input;
2389 if (!map || map->n <= 1)
2390 return map_simple_hull_trivial(map);
2392 if (map->cached_simple_hull[shift])
2393 return cached_simple_hull(map, shift);
2395 map = isl_map_detect_equalities(map);
2396 if (!map || map->n <= 1)
2397 return map_simple_hull_trivial(map);
2398 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2399 input = isl_map_copy(map);
2400 map = isl_map_align_divs_internal(map);
2401 model = map ? isl_basic_map_copy(map->p[0]) : NULL;
2403 set = isl_map_underlying_set(map);
2405 bset = uset_simple_hull(set, shift);
2407 hull = isl_basic_map_overlying_set(bset, model);
2409 hull = isl_basic_map_intersect(hull, affine_hull);
2410 hull = isl_basic_map_remove_redundancies(hull);
2412 if (hull) {
2413 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2414 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2417 hull = isl_basic_map_finalize(hull);
2418 if (input)
2419 input->cached_simple_hull[shift] = isl_basic_map_copy(hull);
2420 isl_map_free(input);
2422 return hull;
2425 /* Compute a superset of the convex hull of map that is described
2426 * by only translates of the constraints in the constituents of map.
2428 __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map)
2430 return map_simple_hull(map, 1);
2433 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2435 return bset_from_bmap(isl_map_simple_hull(set_to_map(set)));
2438 /* Compute a superset of the convex hull of map that is described
2439 * by only the constraints in the constituents of map.
2441 __isl_give isl_basic_map *isl_map_unshifted_simple_hull(
2442 __isl_take isl_map *map)
2444 return map_simple_hull(map, 0);
2447 __isl_give isl_basic_set *isl_set_unshifted_simple_hull(
2448 __isl_take isl_set *set)
2450 return isl_map_unshifted_simple_hull(set);
2453 /* Drop all inequalities from "bmap1" that do not also appear in "bmap2".
2454 * A constraint that appears with different constant terms
2455 * in "bmap1" and "bmap2" is also kept, with the least restrictive
2456 * (i.e., greatest) constant term.
2457 * "bmap1" and "bmap2" are assumed to have the same (known)
2458 * integer divisions.
2459 * The constraints of both "bmap1" and "bmap2" are assumed
2460 * to have been sorted using isl_basic_map_sort_constraints.
2462 * Run through the inequality constraints of "bmap1" and "bmap2"
2463 * in sorted order.
2464 * Each constraint of "bmap1" without a matching constraint in "bmap2"
2465 * is removed.
2466 * If a match is found, the constraint is kept. If needed, the constant
2467 * term of the constraint is adjusted.
2469 static __isl_give isl_basic_map *select_shared_inequalities(
2470 __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2)
2472 int i1, i2;
2474 bmap1 = isl_basic_map_cow(bmap1);
2475 if (!bmap1 || !bmap2)
2476 return isl_basic_map_free(bmap1);
2478 i1 = bmap1->n_ineq - 1;
2479 i2 = bmap2->n_ineq - 1;
2480 while (bmap1 && i1 >= 0 && i2 >= 0) {
2481 int cmp;
2483 cmp = isl_basic_map_constraint_cmp(bmap1, bmap1->ineq[i1],
2484 bmap2->ineq[i2]);
2485 if (cmp < 0) {
2486 --i2;
2487 continue;
2489 if (cmp > 0) {
2490 if (isl_basic_map_drop_inequality(bmap1, i1) < 0)
2491 bmap1 = isl_basic_map_free(bmap1);
2492 --i1;
2493 continue;
2495 if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0]))
2496 isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]);
2497 --i1;
2498 --i2;
2500 for (; i1 >= 0; --i1)
2501 if (isl_basic_map_drop_inequality(bmap1, i1) < 0)
2502 bmap1 = isl_basic_map_free(bmap1);
2504 return bmap1;
2507 /* Drop all equalities from "bmap1" that do not also appear in "bmap2".
2508 * "bmap1" and "bmap2" are assumed to have the same (known)
2509 * integer divisions.
2511 * Run through the equality constraints of "bmap1" and "bmap2".
2512 * Each constraint of "bmap1" without a matching constraint in "bmap2"
2513 * is removed.
2515 static __isl_give isl_basic_map *select_shared_equalities(
2516 __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2)
2518 int i1, i2;
2519 isl_size total;
2521 bmap1 = isl_basic_map_cow(bmap1);
2522 total = isl_basic_map_dim(bmap1, isl_dim_all);
2523 if (total < 0 || !bmap2)
2524 return isl_basic_map_free(bmap1);
2526 i1 = bmap1->n_eq - 1;
2527 i2 = bmap2->n_eq - 1;
2528 while (bmap1 && i1 >= 0 && i2 >= 0) {
2529 int last1, last2;
2531 last1 = isl_seq_last_non_zero(bmap1->eq[i1] + 1, total);
2532 last2 = isl_seq_last_non_zero(bmap2->eq[i2] + 1, total);
2533 if (last1 > last2) {
2534 --i2;
2535 continue;
2537 if (last1 < last2) {
2538 if (isl_basic_map_drop_equality(bmap1, i1) < 0)
2539 bmap1 = isl_basic_map_free(bmap1);
2540 --i1;
2541 continue;
2543 if (!isl_seq_eq(bmap1->eq[i1], bmap2->eq[i2], 1 + total)) {
2544 if (isl_basic_map_drop_equality(bmap1, i1) < 0)
2545 bmap1 = isl_basic_map_free(bmap1);
2547 --i1;
2548 --i2;
2550 for (; i1 >= 0; --i1)
2551 if (isl_basic_map_drop_equality(bmap1, i1) < 0)
2552 bmap1 = isl_basic_map_free(bmap1);
2554 return bmap1;
2557 /* Compute a superset of "bmap1" and "bmap2" that is described
2558 * by only the constraints that appear in both "bmap1" and "bmap2".
2560 * First drop constraints that involve unknown integer divisions
2561 * since it is not trivial to check whether two such integer divisions
2562 * in different basic maps are the same.
2563 * Then align the remaining (known) divs and sort the constraints.
2564 * Finally drop all inequalities and equalities from "bmap1" that
2565 * do not also appear in "bmap2".
2567 __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull(
2568 __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2)
2570 bmap1 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap1);
2571 bmap2 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap2);
2572 bmap2 = isl_basic_map_align_divs(bmap2, bmap1);
2573 bmap1 = isl_basic_map_align_divs(bmap1, bmap2);
2574 bmap1 = isl_basic_map_gauss(bmap1, NULL);
2575 bmap2 = isl_basic_map_gauss(bmap2, NULL);
2576 bmap1 = isl_basic_map_sort_constraints(bmap1);
2577 bmap2 = isl_basic_map_sort_constraints(bmap2);
2579 bmap1 = select_shared_inequalities(bmap1, bmap2);
2580 bmap1 = select_shared_equalities(bmap1, bmap2);
2582 isl_basic_map_free(bmap2);
2583 bmap1 = isl_basic_map_finalize(bmap1);
2584 return bmap1;
2587 /* Compute a superset of the convex hull of "map" that is described
2588 * by only the constraints in the constituents of "map".
2589 * In particular, the result is composed of constraints that appear
2590 * in each of the basic maps of "map"
2592 * Constraints that involve unknown integer divisions are dropped
2593 * since it is not trivial to check whether two such integer divisions
2594 * in different basic maps are the same.
2596 * The hull is initialized from the first basic map and then
2597 * updated with respect to the other basic maps in turn.
2599 __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull(
2600 __isl_take isl_map *map)
2602 int i;
2603 isl_basic_map *hull;
2605 if (!map)
2606 return NULL;
2607 if (map->n <= 1)
2608 return map_simple_hull_trivial(map);
2609 map = isl_map_drop_constraint_involving_unknown_divs(map);
2610 hull = isl_basic_map_copy(map->p[0]);
2611 for (i = 1; i < map->n; ++i) {
2612 isl_basic_map *bmap_i;
2614 bmap_i = isl_basic_map_copy(map->p[i]);
2615 hull = isl_basic_map_plain_unshifted_simple_hull(hull, bmap_i);
2618 isl_map_free(map);
2619 return hull;
2622 /* Compute a superset of the convex hull of "set" that is described
2623 * by only the constraints in the constituents of "set".
2624 * In particular, the result is composed of constraints that appear
2625 * in each of the basic sets of "set"
2627 __isl_give isl_basic_set *isl_set_plain_unshifted_simple_hull(
2628 __isl_take isl_set *set)
2630 return isl_map_plain_unshifted_simple_hull(set);
2633 /* Check if "ineq" is a bound on "set" and, if so, add it to "hull".
2635 * For each basic set in "set", we first check if the basic set
2636 * contains a translate of "ineq". If this translate is more relaxed,
2637 * then we assume that "ineq" is not a bound on this basic set.
2638 * Otherwise, we know that it is a bound.
2639 * If the basic set does not contain a translate of "ineq", then
2640 * we call is_bound to perform the test.
2642 static __isl_give isl_basic_set *add_bound_from_constraint(
2643 __isl_take isl_basic_set *hull, struct sh_data *data,
2644 __isl_keep isl_set *set, isl_int *ineq)
2646 int i, k;
2647 isl_ctx *ctx;
2648 uint32_t c_hash;
2649 struct ineq_cmp_data v;
2650 isl_size total;
2652 total = isl_basic_set_dim(hull, isl_dim_all);
2653 if (total < 0 || !set)
2654 return isl_basic_set_free(hull);
2656 v.len = total;
2657 v.p = ineq;
2658 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2660 ctx = isl_basic_set_get_ctx(hull);
2661 for (i = 0; i < set->n; ++i) {
2662 int bound;
2663 struct isl_hash_table_entry *entry;
2665 entry = isl_hash_table_find(ctx, data->p[i].table,
2666 c_hash, &has_ineq, &v, 0);
2667 if (entry) {
2668 isl_int *ineq_i = entry->data;
2669 int neg, more_relaxed;
2671 neg = isl_seq_is_neg(ineq_i + 1, ineq + 1, v.len);
2672 if (neg)
2673 isl_int_neg(ineq_i[0], ineq_i[0]);
2674 more_relaxed = isl_int_gt(ineq_i[0], ineq[0]);
2675 if (neg)
2676 isl_int_neg(ineq_i[0], ineq_i[0]);
2677 if (more_relaxed)
2678 break;
2679 else
2680 continue;
2682 bound = is_bound(data, set, i, ineq, 0);
2683 if (bound < 0)
2684 return isl_basic_set_free(hull);
2685 if (!bound)
2686 break;
2688 if (i < set->n)
2689 return hull;
2691 k = isl_basic_set_alloc_inequality(hull);
2692 if (k < 0)
2693 return isl_basic_set_free(hull);
2694 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2696 return hull;
2699 /* Compute a superset of the convex hull of "set" that is described
2700 * by only some of the "n_ineq" constraints in the list "ineq", where "set"
2701 * has no parameters or integer divisions.
2703 * The inequalities in "ineq" are assumed to have been sorted such
2704 * that constraints with the same linear part appear together and
2705 * that among constraints with the same linear part, those with
2706 * smaller constant term appear first.
2708 * We reuse the same data structure that is used by uset_simple_hull,
2709 * but we do not need the hull table since we will not consider the
2710 * same constraint more than once. We therefore allocate it with zero size.
2712 * We run through the constraints and try to add them one by one,
2713 * skipping identical constraints. If we have added a constraint and
2714 * the next constraint is a more relaxed translate, then we skip this
2715 * next constraint as well.
2717 static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints(
2718 __isl_take isl_set *set, int n_ineq, isl_int **ineq)
2720 int i;
2721 int last_added = 0;
2722 struct sh_data *data = NULL;
2723 isl_basic_set *hull = NULL;
2724 isl_size dim;
2726 hull = isl_basic_set_alloc_space(isl_set_get_space(set), 0, 0, n_ineq);
2727 if (!hull)
2728 goto error;
2730 data = sh_data_alloc(set, 0);
2731 if (!data)
2732 goto error;
2734 dim = isl_set_dim(set, isl_dim_set);
2735 if (dim < 0)
2736 goto error;
2737 for (i = 0; i < n_ineq; ++i) {
2738 int hull_n_ineq = hull->n_ineq;
2739 int parallel;
2741 parallel = i > 0 && isl_seq_eq(ineq[i - 1] + 1, ineq[i] + 1,
2742 dim);
2743 if (parallel &&
2744 (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0])))
2745 continue;
2746 hull = add_bound_from_constraint(hull, data, set, ineq[i]);
2747 if (!hull)
2748 goto error;
2749 last_added = hull->n_ineq > hull_n_ineq;
2752 sh_data_free(data);
2753 isl_set_free(set);
2754 return hull;
2755 error:
2756 sh_data_free(data);
2757 isl_set_free(set);
2758 isl_basic_set_free(hull);
2759 return NULL;
2762 /* Collect pointers to all the inequalities in the elements of "list"
2763 * in "ineq". For equalities, store both a pointer to the equality and
2764 * a pointer to its opposite, which is first copied to "mat".
2765 * "ineq" and "mat" are assumed to have been preallocated to the right size
2766 * (the number of inequalities + 2 times the number of equalites and
2767 * the number of equalities, respectively).
2769 static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat,
2770 __isl_keep isl_basic_set_list *list, isl_int **ineq)
2772 int i, j, n, n_eq, n_ineq;
2774 if (!mat)
2775 return NULL;
2777 n_eq = 0;
2778 n_ineq = 0;
2779 n = isl_basic_set_list_n_basic_set(list);
2780 for (i = 0; i < n; ++i) {
2781 isl_basic_set *bset;
2782 bset = isl_basic_set_list_get_basic_set(list, i);
2783 if (!bset)
2784 return isl_mat_free(mat);
2785 for (j = 0; j < bset->n_eq; ++j) {
2786 ineq[n_ineq++] = mat->row[n_eq];
2787 ineq[n_ineq++] = bset->eq[j];
2788 isl_seq_neg(mat->row[n_eq++], bset->eq[j], mat->n_col);
2790 for (j = 0; j < bset->n_ineq; ++j)
2791 ineq[n_ineq++] = bset->ineq[j];
2792 isl_basic_set_free(bset);
2795 return mat;
2798 /* Comparison routine for use as an isl_sort callback.
2800 * Constraints with the same linear part are sorted together and
2801 * among constraints with the same linear part, those with smaller
2802 * constant term are sorted first.
2804 static int cmp_ineq(const void *a, const void *b, void *arg)
2806 unsigned dim = *(unsigned *) arg;
2807 isl_int * const *ineq1 = a;
2808 isl_int * const *ineq2 = b;
2809 int cmp;
2811 cmp = isl_seq_cmp((*ineq1) + 1, (*ineq2) + 1, dim);
2812 if (cmp != 0)
2813 return cmp;
2814 return isl_int_cmp((*ineq1)[0], (*ineq2)[0]);
2817 /* Compute a superset of the convex hull of "set" that is described
2818 * by only constraints in the elements of "list", where "set" has
2819 * no parameters or integer divisions.
2821 * We collect all the constraints in those elements and then
2822 * sort the constraints such that constraints with the same linear part
2823 * are sorted together and that those with smaller constant term are
2824 * sorted first.
2826 static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list(
2827 __isl_take isl_set *set, __isl_take isl_basic_set_list *list)
2829 int i, n, n_eq, n_ineq;
2830 isl_size dim;
2831 isl_ctx *ctx;
2832 isl_mat *mat = NULL;
2833 isl_int **ineq = NULL;
2834 isl_basic_set *hull;
2836 if (!set)
2837 goto error;
2838 ctx = isl_set_get_ctx(set);
2840 n_eq = 0;
2841 n_ineq = 0;
2842 n = isl_basic_set_list_n_basic_set(list);
2843 for (i = 0; i < n; ++i) {
2844 isl_basic_set *bset;
2845 bset = isl_basic_set_list_get_basic_set(list, i);
2846 if (!bset)
2847 goto error;
2848 n_eq += bset->n_eq;
2849 n_ineq += 2 * bset->n_eq + bset->n_ineq;
2850 isl_basic_set_free(bset);
2853 ineq = isl_alloc_array(ctx, isl_int *, n_ineq);
2854 if (n_ineq > 0 && !ineq)
2855 goto error;
2857 dim = isl_set_dim(set, isl_dim_set);
2858 if (dim < 0)
2859 goto error;
2860 mat = isl_mat_alloc(ctx, n_eq, 1 + dim);
2861 mat = collect_inequalities(mat, list, ineq);
2862 if (!mat)
2863 goto error;
2865 if (isl_sort(ineq, n_ineq, sizeof(ineq[0]), &cmp_ineq, &dim) < 0)
2866 goto error;
2868 hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq);
2870 isl_mat_free(mat);
2871 free(ineq);
2872 isl_basic_set_list_free(list);
2873 return hull;
2874 error:
2875 isl_mat_free(mat);
2876 free(ineq);
2877 isl_set_free(set);
2878 isl_basic_set_list_free(list);
2879 return NULL;
2882 /* Compute a superset of the convex hull of "map" that is described
2883 * by only constraints in the elements of "list".
2885 * If the list is empty, then we can only describe the universe set.
2886 * If the input map is empty, then all constraints are valid, so
2887 * we return the intersection of the elements in "list".
2889 * Otherwise, we align all divs and temporarily treat them
2890 * as regular variables, computing the unshifted simple hull in
2891 * uset_unshifted_simple_hull_from_basic_set_list.
2893 static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list(
2894 __isl_take isl_map *map, __isl_take isl_basic_map_list *list)
2896 isl_basic_map *model;
2897 isl_basic_map *hull;
2898 isl_set *set;
2899 isl_basic_set_list *bset_list;
2901 if (!map || !list)
2902 goto error;
2904 if (isl_basic_map_list_n_basic_map(list) == 0) {
2905 isl_space *space;
2907 space = isl_map_get_space(map);
2908 isl_map_free(map);
2909 isl_basic_map_list_free(list);
2910 return isl_basic_map_universe(space);
2912 if (isl_map_plain_is_empty(map)) {
2913 isl_map_free(map);
2914 return isl_basic_map_list_intersect(list);
2917 map = isl_map_align_divs_to_basic_map_list(map, list);
2918 if (!map)
2919 goto error;
2920 list = isl_basic_map_list_align_divs_to_basic_map(list, map->p[0]);
2922 model = isl_basic_map_list_get_basic_map(list, 0);
2924 set = isl_map_underlying_set(map);
2925 bset_list = isl_basic_map_list_underlying_set(list);
2927 hull = uset_unshifted_simple_hull_from_basic_set_list(set, bset_list);
2928 hull = isl_basic_map_overlying_set(hull, model);
2930 return hull;
2931 error:
2932 isl_map_free(map);
2933 isl_basic_map_list_free(list);
2934 return NULL;
2937 /* Return a sequence of the basic maps that make up the maps in "list".
2939 static __isl_give isl_basic_map_list *collect_basic_maps(
2940 __isl_take isl_map_list *list)
2942 int i, n;
2943 isl_ctx *ctx;
2944 isl_basic_map_list *bmap_list;
2946 if (!list)
2947 return NULL;
2948 n = isl_map_list_n_map(list);
2949 ctx = isl_map_list_get_ctx(list);
2950 bmap_list = isl_basic_map_list_alloc(ctx, 0);
2952 for (i = 0; i < n; ++i) {
2953 isl_map *map;
2954 isl_basic_map_list *list_i;
2956 map = isl_map_list_get_map(list, i);
2957 map = isl_map_compute_divs(map);
2958 list_i = isl_map_get_basic_map_list(map);
2959 isl_map_free(map);
2960 bmap_list = isl_basic_map_list_concat(bmap_list, list_i);
2963 isl_map_list_free(list);
2964 return bmap_list;
2967 /* Compute a superset of the convex hull of "map" that is described
2968 * by only constraints in the elements of "list".
2970 * If "map" is the universe, then the convex hull (and therefore
2971 * any superset of the convexhull) is the universe as well.
2973 * Otherwise, we collect all the basic maps in the map list and
2974 * continue with map_unshifted_simple_hull_from_basic_map_list.
2976 __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list(
2977 __isl_take isl_map *map, __isl_take isl_map_list *list)
2979 isl_basic_map_list *bmap_list;
2980 int is_universe;
2982 is_universe = isl_map_plain_is_universe(map);
2983 if (is_universe < 0)
2984 map = isl_map_free(map);
2985 if (is_universe < 0 || is_universe) {
2986 isl_map_list_free(list);
2987 return isl_map_unshifted_simple_hull(map);
2990 bmap_list = collect_basic_maps(list);
2991 return map_unshifted_simple_hull_from_basic_map_list(map, bmap_list);
2994 /* Compute a superset of the convex hull of "set" that is described
2995 * by only constraints in the elements of "list".
2997 __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list(
2998 __isl_take isl_set *set, __isl_take isl_set_list *list)
3000 return isl_map_unshifted_simple_hull_from_map_list(set, list);
3003 /* Given a set "set", return parametric bounds on the dimension "dim".
3005 static __isl_give isl_basic_set *set_bounds(__isl_keep isl_set *set, int dim)
3007 isl_size set_dim = isl_set_dim(set, isl_dim_set);
3008 if (set_dim < 0)
3009 return NULL;
3010 set = isl_set_copy(set);
3011 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
3012 set = isl_set_eliminate_dims(set, 0, dim);
3013 return isl_set_convex_hull(set);
3016 /* Computes a "simple hull" and then check if each dimension in the
3017 * resulting hull is bounded by a symbolic constant. If not, the
3018 * hull is intersected with the corresponding bounds on the whole set.
3020 __isl_give isl_basic_set *isl_set_bounded_simple_hull(__isl_take isl_set *set)
3022 int i, j;
3023 struct isl_basic_set *hull;
3024 isl_size nparam, dim, total;
3025 unsigned left;
3026 int removed_divs = 0;
3028 hull = isl_set_simple_hull(isl_set_copy(set));
3029 nparam = isl_basic_set_dim(hull, isl_dim_param);
3030 dim = isl_basic_set_dim(hull, isl_dim_set);
3031 total = isl_basic_set_dim(hull, isl_dim_all);
3032 if (nparam < 0 || dim < 0 || total < 0)
3033 goto error;
3035 for (i = 0; i < dim; ++i) {
3036 int lower = 0, upper = 0;
3037 struct isl_basic_set *bounds;
3039 left = total - nparam - i - 1;
3040 for (j = 0; j < hull->n_eq; ++j) {
3041 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
3042 continue;
3043 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
3044 left) == -1)
3045 break;
3047 if (j < hull->n_eq)
3048 continue;
3050 for (j = 0; j < hull->n_ineq; ++j) {
3051 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
3052 continue;
3053 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
3054 left) != -1 ||
3055 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
3056 i) != -1)
3057 continue;
3058 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
3059 lower = 1;
3060 else
3061 upper = 1;
3062 if (lower && upper)
3063 break;
3066 if (lower && upper)
3067 continue;
3069 if (!removed_divs) {
3070 set = isl_set_remove_divs(set);
3071 if (!set)
3072 goto error;
3073 removed_divs = 1;
3075 bounds = set_bounds(set, i);
3076 hull = isl_basic_set_intersect(hull, bounds);
3077 if (!hull)
3078 goto error;
3081 isl_set_free(set);
3082 return hull;
3083 error:
3084 isl_set_free(set);
3085 isl_basic_set_free(hull);
3086 return NULL;