declare isl_multi_pw_aff_gist_params
[isl.git] / isl_schedule.c
blobf0fddfac912df77d9259dcb3ea534a6a1a39f9d4
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include <isl_space_private.h>
16 #include <isl_aff_private.h>
17 #include <isl/hash.h>
18 #include <isl/constraint.h>
19 #include <isl/schedule.h>
20 #include <isl_mat_private.h>
21 #include <isl_vec_private.h>
22 #include <isl/set.h>
23 #include <isl_seq.h>
24 #include <isl_tab.h>
25 #include <isl_dim_map.h>
26 #include <isl_hmap_map_basic_set.h>
27 #include <isl_sort.h>
28 #include <isl_schedule_private.h>
29 #include <isl_band_private.h>
30 #include <isl_options_private.h>
31 #include <isl_tarjan.h>
34 * The scheduling algorithm implemented in this file was inspired by
35 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
36 * Parallelization and Locality Optimization in the Polyhedral Model".
40 /* Internal information about a node that is used during the construction
41 * of a schedule.
42 * dim represents the space in which the domain lives
43 * sched is a matrix representation of the schedule being constructed
44 * for this node
45 * sched_map is an isl_map representation of the same (partial) schedule
46 * sched_map may be NULL
47 * rank is the number of linearly independent rows in the linear part
48 * of sched
49 * the columns of cmap represent a change of basis for the schedule
50 * coefficients; the first rank columns span the linear part of
51 * the schedule rows
52 * start is the first variable in the LP problem in the sequences that
53 * represents the schedule coefficients of this node
54 * nvar is the dimension of the domain
55 * nparam is the number of parameters or 0 if we are not constructing
56 * a parametric schedule
58 * scc is the index of SCC (or WCC) this node belongs to
60 * band contains the band index for each of the rows of the schedule.
61 * band_id is used to differentiate between separate bands at the same
62 * level within the same parent band, i.e., bands that are separated
63 * by the parent band or bands that are independent of each other.
64 * zero contains a boolean for each of the rows of the schedule,
65 * indicating whether the corresponding scheduling dimension results
66 * in zero dependence distances within its band and with respect
67 * to the proximity edges.
69 struct isl_sched_node {
70 isl_space *dim;
71 isl_mat *sched;
72 isl_map *sched_map;
73 int rank;
74 isl_mat *cmap;
75 int start;
76 int nvar;
77 int nparam;
79 int scc;
81 int *band;
82 int *band_id;
83 int *zero;
86 static int node_has_dim(const void *entry, const void *val)
88 struct isl_sched_node *node = (struct isl_sched_node *)entry;
89 isl_space *dim = (isl_space *)val;
91 return isl_space_is_equal(node->dim, dim);
94 /* An edge in the dependence graph. An edge may be used to
95 * ensure validity of the generated schedule, to minimize the dependence
96 * distance or both
98 * map is the dependence relation
99 * src is the source node
100 * dst is the sink node
101 * validity is set if the edge is used to ensure correctness
102 * proximity is set if the edge is used to minimize dependence distances
104 * For validity edges, start and end mark the sequence of inequality
105 * constraints in the LP problem that encode the validity constraint
106 * corresponding to this edge.
108 struct isl_sched_edge {
109 isl_map *map;
111 struct isl_sched_node *src;
112 struct isl_sched_node *dst;
114 int validity;
115 int proximity;
117 int start;
118 int end;
121 enum isl_edge_type {
122 isl_edge_validity = 0,
123 isl_edge_first = isl_edge_validity,
124 isl_edge_proximity,
125 isl_edge_last = isl_edge_proximity
128 /* Internal information about the dependence graph used during
129 * the construction of the schedule.
131 * intra_hmap is a cache, mapping dependence relations to their dual,
132 * for dependences from a node to itself
133 * inter_hmap is a cache, mapping dependence relations to their dual,
134 * for dependences between distinct nodes
136 * n is the number of nodes
137 * node is the list of nodes
138 * maxvar is the maximal number of variables over all nodes
139 * max_row is the allocated number of rows in the schedule
140 * n_row is the current (maximal) number of linearly independent
141 * rows in the node schedules
142 * n_total_row is the current number of rows in the node schedules
143 * n_band is the current number of completed bands
144 * band_start is the starting row in the node schedules of the current band
145 * root is set if this graph is the original dependence graph,
146 * without any splitting
148 * sorted contains a list of node indices sorted according to the
149 * SCC to which a node belongs
151 * n_edge is the number of edges
152 * edge is the list of edges
153 * max_edge contains the maximal number of edges of each type;
154 * in particular, it contains the number of edges in the inital graph.
155 * edge_table contains pointers into the edge array, hashed on the source
156 * and sink spaces; there is one such table for each type;
157 * a given edge may be referenced from more than one table
158 * if the corresponding relation appears in more than of the
159 * sets of dependences
161 * node_table contains pointers into the node array, hashed on the space
163 * region contains a list of variable sequences that should be non-trivial
165 * lp contains the (I)LP problem used to obtain new schedule rows
167 * src_scc and dst_scc are the source and sink SCCs of an edge with
168 * conflicting constraints
170 * scc represents the number of components
172 struct isl_sched_graph {
173 isl_hmap_map_basic_set *intra_hmap;
174 isl_hmap_map_basic_set *inter_hmap;
176 struct isl_sched_node *node;
177 int n;
178 int maxvar;
179 int max_row;
180 int n_row;
182 int *sorted;
184 int n_band;
185 int n_total_row;
186 int band_start;
188 int root;
190 struct isl_sched_edge *edge;
191 int n_edge;
192 int max_edge[isl_edge_last + 1];
193 struct isl_hash_table *edge_table[isl_edge_last + 1];
195 struct isl_hash_table *node_table;
196 struct isl_region *region;
198 isl_basic_set *lp;
200 int src_scc;
201 int dst_scc;
203 int scc;
206 /* Initialize node_table based on the list of nodes.
208 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
210 int i;
212 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
213 if (!graph->node_table)
214 return -1;
216 for (i = 0; i < graph->n; ++i) {
217 struct isl_hash_table_entry *entry;
218 uint32_t hash;
220 hash = isl_space_get_hash(graph->node[i].dim);
221 entry = isl_hash_table_find(ctx, graph->node_table, hash,
222 &node_has_dim,
223 graph->node[i].dim, 1);
224 if (!entry)
225 return -1;
226 entry->data = &graph->node[i];
229 return 0;
232 /* Return a pointer to the node that lives within the given space,
233 * or NULL if there is no such node.
235 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
236 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
238 struct isl_hash_table_entry *entry;
239 uint32_t hash;
241 hash = isl_space_get_hash(dim);
242 entry = isl_hash_table_find(ctx, graph->node_table, hash,
243 &node_has_dim, dim, 0);
245 return entry ? entry->data : NULL;
248 static int edge_has_src_and_dst(const void *entry, const void *val)
250 const struct isl_sched_edge *edge = entry;
251 const struct isl_sched_edge *temp = val;
253 return edge->src == temp->src && edge->dst == temp->dst;
256 /* Add the given edge to graph->edge_table[type].
258 static int graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph,
259 enum isl_edge_type type, struct isl_sched_edge *edge)
261 struct isl_hash_table_entry *entry;
262 uint32_t hash;
264 hash = isl_hash_init();
265 hash = isl_hash_builtin(hash, edge->src);
266 hash = isl_hash_builtin(hash, edge->dst);
267 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
268 &edge_has_src_and_dst, edge, 1);
269 if (!entry)
270 return -1;
271 entry->data = edge;
273 return 0;
276 /* Allocate the edge_tables based on the maximal number of edges of
277 * each type.
279 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
281 int i;
283 for (i = 0; i <= isl_edge_last; ++i) {
284 graph->edge_table[i] = isl_hash_table_alloc(ctx,
285 graph->max_edge[i]);
286 if (!graph->edge_table[i])
287 return -1;
290 return 0;
293 /* If graph->edge_table[type] contains an edge from the given source
294 * to the given destination, then return the hash table entry of this edge.
295 * Otherwise, return NULL.
297 static struct isl_hash_table_entry *graph_find_edge_entry(
298 struct isl_sched_graph *graph,
299 enum isl_edge_type type,
300 struct isl_sched_node *src, struct isl_sched_node *dst)
302 isl_ctx *ctx = isl_space_get_ctx(src->dim);
303 uint32_t hash;
304 struct isl_sched_edge temp = { .src = src, .dst = dst };
306 hash = isl_hash_init();
307 hash = isl_hash_builtin(hash, temp.src);
308 hash = isl_hash_builtin(hash, temp.dst);
309 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
310 &edge_has_src_and_dst, &temp, 0);
314 /* If graph->edge_table[type] contains an edge from the given source
315 * to the given destination, then return this edge.
316 * Otherwise, return NULL.
318 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
319 enum isl_edge_type type,
320 struct isl_sched_node *src, struct isl_sched_node *dst)
322 struct isl_hash_table_entry *entry;
324 entry = graph_find_edge_entry(graph, type, src, dst);
325 if (!entry)
326 return NULL;
328 return entry->data;
331 /* Check whether the dependence graph has an edge of the given type
332 * between the given two nodes.
334 static int graph_has_edge(struct isl_sched_graph *graph,
335 enum isl_edge_type type,
336 struct isl_sched_node *src, struct isl_sched_node *dst)
338 struct isl_sched_edge *edge;
339 int empty;
341 edge = graph_find_edge(graph, type, src, dst);
342 if (!edge)
343 return 0;
345 empty = isl_map_plain_is_empty(edge->map);
346 if (empty < 0)
347 return -1;
349 return !empty;
352 /* If there is an edge from the given source to the given destination
353 * of any type then return this edge.
354 * Otherwise, return NULL.
356 static struct isl_sched_edge *graph_find_any_edge(struct isl_sched_graph *graph,
357 struct isl_sched_node *src, struct isl_sched_node *dst)
359 enum isl_edge_type i;
360 struct isl_sched_edge *edge;
362 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
363 edge = graph_find_edge(graph, i, src, dst);
364 if (edge)
365 return edge;
368 return NULL;
371 /* Remove the given edge from all the edge_tables that refer to it.
373 static void graph_remove_edge(struct isl_sched_graph *graph,
374 struct isl_sched_edge *edge)
376 isl_ctx *ctx = isl_map_get_ctx(edge->map);
377 enum isl_edge_type i;
379 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
380 struct isl_hash_table_entry *entry;
382 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
383 if (!entry)
384 continue;
385 if (entry->data != edge)
386 continue;
387 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
391 /* Check whether the dependence graph has any edge
392 * between the given two nodes.
394 static int graph_has_any_edge(struct isl_sched_graph *graph,
395 struct isl_sched_node *src, struct isl_sched_node *dst)
397 enum isl_edge_type i;
398 int r;
400 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
401 r = graph_has_edge(graph, i, src, dst);
402 if (r < 0 || r)
403 return r;
406 return r;
409 /* Check whether the dependence graph has a validity edge
410 * between the given two nodes.
412 static int graph_has_validity_edge(struct isl_sched_graph *graph,
413 struct isl_sched_node *src, struct isl_sched_node *dst)
415 return graph_has_edge(graph, isl_edge_validity, src, dst);
418 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
419 int n_node, int n_edge)
421 int i;
423 graph->n = n_node;
424 graph->n_edge = n_edge;
425 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
426 graph->sorted = isl_calloc_array(ctx, int, graph->n);
427 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
428 graph->edge = isl_calloc_array(ctx,
429 struct isl_sched_edge, graph->n_edge);
431 graph->intra_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
432 graph->inter_hmap = isl_hmap_map_basic_set_alloc(ctx, 2 * n_edge);
434 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
435 !graph->sorted)
436 return -1;
438 for(i = 0; i < graph->n; ++i)
439 graph->sorted[i] = i;
441 return 0;
444 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
446 int i;
448 isl_hmap_map_basic_set_free(ctx, graph->intra_hmap);
449 isl_hmap_map_basic_set_free(ctx, graph->inter_hmap);
451 for (i = 0; i < graph->n; ++i) {
452 isl_space_free(graph->node[i].dim);
453 isl_mat_free(graph->node[i].sched);
454 isl_map_free(graph->node[i].sched_map);
455 isl_mat_free(graph->node[i].cmap);
456 if (graph->root) {
457 free(graph->node[i].band);
458 free(graph->node[i].band_id);
459 free(graph->node[i].zero);
462 free(graph->node);
463 free(graph->sorted);
464 for (i = 0; i < graph->n_edge; ++i)
465 isl_map_free(graph->edge[i].map);
466 free(graph->edge);
467 free(graph->region);
468 for (i = 0; i <= isl_edge_last; ++i)
469 isl_hash_table_free(ctx, graph->edge_table[i]);
470 isl_hash_table_free(ctx, graph->node_table);
471 isl_basic_set_free(graph->lp);
474 /* For each "set" on which this function is called, increment
475 * graph->n by one and update graph->maxvar.
477 static int init_n_maxvar(__isl_take isl_set *set, void *user)
479 struct isl_sched_graph *graph = user;
480 int nvar = isl_set_dim(set, isl_dim_set);
482 graph->n++;
483 if (nvar > graph->maxvar)
484 graph->maxvar = nvar;
486 isl_set_free(set);
488 return 0;
491 /* Compute the number of rows that should be allocated for the schedule.
492 * The graph can be split at most "n - 1" times, there can be at most
493 * two rows for each dimension in the iteration domains (in particular,
494 * we usually have one row, but it may be split by split_scaled),
495 * and there can be one extra row for ordering the statements.
496 * Note that if we have actually split "n - 1" times, then no ordering
497 * is needed, so in principle we could use "graph->n + 2 * graph->maxvar - 1".
499 static int compute_max_row(struct isl_sched_graph *graph,
500 __isl_keep isl_union_set *domain)
502 graph->n = 0;
503 graph->maxvar = 0;
504 if (isl_union_set_foreach_set(domain, &init_n_maxvar, graph) < 0)
505 return -1;
506 graph->max_row = graph->n + 2 * graph->maxvar;
508 return 0;
511 /* Add a new node to the graph representing the given set.
513 static int extract_node(__isl_take isl_set *set, void *user)
515 int nvar, nparam;
516 isl_ctx *ctx;
517 isl_space *dim;
518 isl_mat *sched;
519 struct isl_sched_graph *graph = user;
520 int *band, *band_id, *zero;
522 ctx = isl_set_get_ctx(set);
523 dim = isl_set_get_space(set);
524 isl_set_free(set);
525 nvar = isl_space_dim(dim, isl_dim_set);
526 nparam = isl_space_dim(dim, isl_dim_param);
527 if (!ctx->opt->schedule_parametric)
528 nparam = 0;
529 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
530 graph->node[graph->n].dim = dim;
531 graph->node[graph->n].nvar = nvar;
532 graph->node[graph->n].nparam = nparam;
533 graph->node[graph->n].sched = sched;
534 graph->node[graph->n].sched_map = NULL;
535 band = isl_alloc_array(ctx, int, graph->max_row);
536 graph->node[graph->n].band = band;
537 band_id = isl_calloc_array(ctx, int, graph->max_row);
538 graph->node[graph->n].band_id = band_id;
539 zero = isl_calloc_array(ctx, int, graph->max_row);
540 graph->node[graph->n].zero = zero;
541 graph->n++;
543 if (!sched || (graph->max_row && (!band || !band_id || !zero)))
544 return -1;
546 return 0;
549 struct isl_extract_edge_data {
550 enum isl_edge_type type;
551 struct isl_sched_graph *graph;
554 /* Add a new edge to the graph based on the given map
555 * and add it to data->graph->edge_table[data->type].
556 * If a dependence relation of a given type happens to be identical
557 * to one of the dependence relations of a type that was added before,
558 * then we don't create a new edge, but instead mark the original edge
559 * as also representing a dependence of the current type.
561 static int extract_edge(__isl_take isl_map *map, void *user)
563 isl_ctx *ctx = isl_map_get_ctx(map);
564 struct isl_extract_edge_data *data = user;
565 struct isl_sched_graph *graph = data->graph;
566 struct isl_sched_node *src, *dst;
567 isl_space *dim;
568 struct isl_sched_edge *edge;
569 int is_equal;
571 dim = isl_space_domain(isl_map_get_space(map));
572 src = graph_find_node(ctx, graph, dim);
573 isl_space_free(dim);
574 dim = isl_space_range(isl_map_get_space(map));
575 dst = graph_find_node(ctx, graph, dim);
576 isl_space_free(dim);
578 if (!src || !dst) {
579 isl_map_free(map);
580 return 0;
583 graph->edge[graph->n_edge].src = src;
584 graph->edge[graph->n_edge].dst = dst;
585 graph->edge[graph->n_edge].map = map;
586 if (data->type == isl_edge_validity) {
587 graph->edge[graph->n_edge].validity = 1;
588 graph->edge[graph->n_edge].proximity = 0;
590 if (data->type == isl_edge_proximity) {
591 graph->edge[graph->n_edge].validity = 0;
592 graph->edge[graph->n_edge].proximity = 1;
594 graph->n_edge++;
596 edge = graph_find_any_edge(graph, src, dst);
597 if (!edge)
598 return graph_edge_table_add(ctx, graph, data->type,
599 &graph->edge[graph->n_edge - 1]);
600 is_equal = isl_map_plain_is_equal(map, edge->map);
601 if (is_equal < 0)
602 return -1;
603 if (!is_equal)
604 return graph_edge_table_add(ctx, graph, data->type,
605 &graph->edge[graph->n_edge - 1]);
607 graph->n_edge--;
608 edge->validity |= graph->edge[graph->n_edge].validity;
609 edge->proximity |= graph->edge[graph->n_edge].proximity;
610 isl_map_free(map);
612 return graph_edge_table_add(ctx, graph, data->type, edge);
615 /* Check whether there is any dependence from node[j] to node[i]
616 * or from node[i] to node[j].
618 static int node_follows_weak(int i, int j, void *user)
620 int f;
621 struct isl_sched_graph *graph = user;
623 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
624 if (f < 0 || f)
625 return f;
626 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
629 /* Check whether there is a validity dependence from node[j] to node[i],
630 * forcing node[i] to follow node[j].
632 static int node_follows_strong(int i, int j, void *user)
634 struct isl_sched_graph *graph = user;
636 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
639 /* Use Tarjan's algorithm for computing the strongly connected components
640 * in the dependence graph (only validity edges).
641 * If weak is set, we consider the graph to be undirected and
642 * we effectively compute the (weakly) connected components.
643 * Additionally, we also consider other edges when weak is set.
645 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak)
647 int i, n;
648 struct isl_tarjan_graph *g = NULL;
650 g = isl_tarjan_graph_init(ctx, graph->n,
651 weak ? &node_follows_weak : &node_follows_strong, graph);
652 if (!g)
653 return -1;
655 graph->scc = 0;
656 i = 0;
657 n = graph->n;
658 while (n) {
659 while (g->order[i] != -1) {
660 graph->node[g->order[i]].scc = graph->scc;
661 --n;
662 ++i;
664 ++i;
665 graph->scc++;
668 isl_tarjan_graph_free(g);
670 return 0;
673 /* Apply Tarjan's algorithm to detect the strongly connected components
674 * in the dependence graph.
676 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
678 return detect_ccs(ctx, graph, 0);
681 /* Apply Tarjan's algorithm to detect the (weakly) connected components
682 * in the dependence graph.
684 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
686 return detect_ccs(ctx, graph, 1);
689 static int cmp_scc(const void *a, const void *b, void *data)
691 struct isl_sched_graph *graph = data;
692 const int *i1 = a;
693 const int *i2 = b;
695 return graph->node[*i1].scc - graph->node[*i2].scc;
698 /* Sort the elements of graph->sorted according to the corresponding SCCs.
700 static int sort_sccs(struct isl_sched_graph *graph)
702 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
705 /* Given a dependence relation R from a node to itself,
706 * construct the set of coefficients of valid constraints for elements
707 * in that dependence relation.
708 * In particular, the result contains tuples of coefficients
709 * c_0, c_n, c_x such that
711 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
713 * or, equivalently,
715 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
717 * We choose here to compute the dual of delta R.
718 * Alternatively, we could have computed the dual of R, resulting
719 * in a set of tuples c_0, c_n, c_x, c_y, and then
720 * plugged in (c_0, c_n, c_x, -c_x).
722 static __isl_give isl_basic_set *intra_coefficients(
723 struct isl_sched_graph *graph, __isl_take isl_map *map)
725 isl_ctx *ctx = isl_map_get_ctx(map);
726 isl_set *delta;
727 isl_basic_set *coef;
729 if (isl_hmap_map_basic_set_has(ctx, graph->intra_hmap, map))
730 return isl_hmap_map_basic_set_get(ctx, graph->intra_hmap, map);
732 delta = isl_set_remove_divs(isl_map_deltas(isl_map_copy(map)));
733 coef = isl_set_coefficients(delta);
734 isl_hmap_map_basic_set_set(ctx, graph->intra_hmap, map,
735 isl_basic_set_copy(coef));
737 return coef;
740 /* Given a dependence relation R, * construct the set of coefficients
741 * of valid constraints for elements in that dependence relation.
742 * In particular, the result contains tuples of coefficients
743 * c_0, c_n, c_x, c_y such that
745 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
748 static __isl_give isl_basic_set *inter_coefficients(
749 struct isl_sched_graph *graph, __isl_take isl_map *map)
751 isl_ctx *ctx = isl_map_get_ctx(map);
752 isl_set *set;
753 isl_basic_set *coef;
755 if (isl_hmap_map_basic_set_has(ctx, graph->inter_hmap, map))
756 return isl_hmap_map_basic_set_get(ctx, graph->inter_hmap, map);
758 set = isl_map_wrap(isl_map_remove_divs(isl_map_copy(map)));
759 coef = isl_set_coefficients(set);
760 isl_hmap_map_basic_set_set(ctx, graph->inter_hmap, map,
761 isl_basic_set_copy(coef));
763 return coef;
766 /* Add constraints to graph->lp that force validity for the given
767 * dependence from a node i to itself.
768 * That is, add constraints that enforce
770 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
771 * = c_i_x (y - x) >= 0
773 * for each (x,y) in R.
774 * We obtain general constraints on coefficients (c_0, c_n, c_x)
775 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
776 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
777 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
779 * Actually, we do not construct constraints for the c_i_x themselves,
780 * but for the coefficients of c_i_x written as a linear combination
781 * of the columns in node->cmap.
783 static int add_intra_validity_constraints(struct isl_sched_graph *graph,
784 struct isl_sched_edge *edge)
786 unsigned total;
787 isl_map *map = isl_map_copy(edge->map);
788 isl_ctx *ctx = isl_map_get_ctx(map);
789 isl_space *dim;
790 isl_dim_map *dim_map;
791 isl_basic_set *coef;
792 struct isl_sched_node *node = edge->src;
794 coef = intra_coefficients(graph, map);
796 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
798 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
799 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
800 if (!coef)
801 goto error;
803 total = isl_basic_set_total_dim(graph->lp);
804 dim_map = isl_dim_map_alloc(ctx, total);
805 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
806 isl_space_dim(dim, isl_dim_set), 1,
807 node->nvar, -1);
808 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
809 isl_space_dim(dim, isl_dim_set), 1,
810 node->nvar, 1);
811 graph->lp = isl_basic_set_extend_constraints(graph->lp,
812 coef->n_eq, coef->n_ineq);
813 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
814 coef, dim_map);
815 isl_space_free(dim);
817 return 0;
818 error:
819 isl_space_free(dim);
820 return -1;
823 /* Add constraints to graph->lp that force validity for the given
824 * dependence from node i to node j.
825 * That is, add constraints that enforce
827 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
829 * for each (x,y) in R.
830 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
831 * of valid constraints for R and then plug in
832 * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-),
833 * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)),
834 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
835 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
837 * Actually, we do not construct constraints for the c_*_x themselves,
838 * but for the coefficients of c_*_x written as a linear combination
839 * of the columns in node->cmap.
841 static int add_inter_validity_constraints(struct isl_sched_graph *graph,
842 struct isl_sched_edge *edge)
844 unsigned total;
845 isl_map *map = isl_map_copy(edge->map);
846 isl_ctx *ctx = isl_map_get_ctx(map);
847 isl_space *dim;
848 isl_dim_map *dim_map;
849 isl_basic_set *coef;
850 struct isl_sched_node *src = edge->src;
851 struct isl_sched_node *dst = edge->dst;
853 coef = inter_coefficients(graph, map);
855 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
857 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
858 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
859 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
860 isl_space_dim(dim, isl_dim_set) + src->nvar,
861 isl_mat_copy(dst->cmap));
862 if (!coef)
863 goto error;
865 total = isl_basic_set_total_dim(graph->lp);
866 dim_map = isl_dim_map_alloc(ctx, total);
868 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
869 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
870 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
871 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
872 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
873 dst->nvar, -1);
874 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
875 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
876 dst->nvar, 1);
878 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
879 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
880 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
881 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
882 isl_space_dim(dim, isl_dim_set), 1,
883 src->nvar, 1);
884 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
885 isl_space_dim(dim, isl_dim_set), 1,
886 src->nvar, -1);
888 edge->start = graph->lp->n_ineq;
889 graph->lp = isl_basic_set_extend_constraints(graph->lp,
890 coef->n_eq, coef->n_ineq);
891 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
892 coef, dim_map);
893 if (!graph->lp)
894 goto error;
895 isl_space_free(dim);
896 edge->end = graph->lp->n_ineq;
898 return 0;
899 error:
900 isl_space_free(dim);
901 return -1;
904 /* Add constraints to graph->lp that bound the dependence distance for the given
905 * dependence from a node i to itself.
906 * If s = 1, we add the constraint
908 * c_i_x (y - x) <= m_0 + m_n n
910 * or
912 * -c_i_x (y - x) + m_0 + m_n n >= 0
914 * for each (x,y) in R.
915 * If s = -1, we add the constraint
917 * -c_i_x (y - x) <= m_0 + m_n n
919 * or
921 * c_i_x (y - x) + m_0 + m_n n >= 0
923 * for each (x,y) in R.
924 * We obtain general constraints on coefficients (c_0, c_n, c_x)
925 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
926 * with each coefficient (except m_0) represented as a pair of non-negative
927 * coefficients.
929 * Actually, we do not construct constraints for the c_i_x themselves,
930 * but for the coefficients of c_i_x written as a linear combination
931 * of the columns in node->cmap.
933 static int add_intra_proximity_constraints(struct isl_sched_graph *graph,
934 struct isl_sched_edge *edge, int s)
936 unsigned total;
937 unsigned nparam;
938 isl_map *map = isl_map_copy(edge->map);
939 isl_ctx *ctx = isl_map_get_ctx(map);
940 isl_space *dim;
941 isl_dim_map *dim_map;
942 isl_basic_set *coef;
943 struct isl_sched_node *node = edge->src;
945 coef = intra_coefficients(graph, map);
947 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
949 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
950 isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap));
951 if (!coef)
952 goto error;
954 nparam = isl_space_dim(node->dim, isl_dim_param);
955 total = isl_basic_set_total_dim(graph->lp);
956 dim_map = isl_dim_map_alloc(ctx, total);
957 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
958 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
959 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
960 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
961 isl_space_dim(dim, isl_dim_set), 1,
962 node->nvar, s);
963 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
964 isl_space_dim(dim, isl_dim_set), 1,
965 node->nvar, -s);
966 graph->lp = isl_basic_set_extend_constraints(graph->lp,
967 coef->n_eq, coef->n_ineq);
968 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
969 coef, dim_map);
970 isl_space_free(dim);
972 return 0;
973 error:
974 isl_space_free(dim);
975 return -1;
978 /* Add constraints to graph->lp that bound the dependence distance for the given
979 * dependence from node i to node j.
980 * If s = 1, we add the constraint
982 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
983 * <= m_0 + m_n n
985 * or
987 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
988 * m_0 + m_n n >= 0
990 * for each (x,y) in R.
991 * If s = -1, we add the constraint
993 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
994 * <= m_0 + m_n n
996 * or
998 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
999 * m_0 + m_n n >= 0
1001 * for each (x,y) in R.
1002 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1003 * of valid constraints for R and then plug in
1004 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1005 * -s*c_j_x+s*c_i_x)
1006 * with each coefficient (except m_0, c_j_0 and c_i_0)
1007 * represented as a pair of non-negative coefficients.
1009 * Actually, we do not construct constraints for the c_*_x themselves,
1010 * but for the coefficients of c_*_x written as a linear combination
1011 * of the columns in node->cmap.
1013 static int add_inter_proximity_constraints(struct isl_sched_graph *graph,
1014 struct isl_sched_edge *edge, int s)
1016 unsigned total;
1017 unsigned nparam;
1018 isl_map *map = isl_map_copy(edge->map);
1019 isl_ctx *ctx = isl_map_get_ctx(map);
1020 isl_space *dim;
1021 isl_dim_map *dim_map;
1022 isl_basic_set *coef;
1023 struct isl_sched_node *src = edge->src;
1024 struct isl_sched_node *dst = edge->dst;
1026 coef = inter_coefficients(graph, map);
1028 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
1030 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1031 isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap));
1032 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1033 isl_space_dim(dim, isl_dim_set) + src->nvar,
1034 isl_mat_copy(dst->cmap));
1035 if (!coef)
1036 goto error;
1038 nparam = isl_space_dim(src->dim, isl_dim_param);
1039 total = isl_basic_set_total_dim(graph->lp);
1040 dim_map = isl_dim_map_alloc(ctx, total);
1042 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1043 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1044 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1046 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s);
1047 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s);
1048 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s);
1049 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
1050 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1051 dst->nvar, s);
1052 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
1053 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
1054 dst->nvar, -s);
1056 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s);
1057 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s);
1058 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s);
1059 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
1060 isl_space_dim(dim, isl_dim_set), 1,
1061 src->nvar, -s);
1062 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
1063 isl_space_dim(dim, isl_dim_set), 1,
1064 src->nvar, s);
1066 graph->lp = isl_basic_set_extend_constraints(graph->lp,
1067 coef->n_eq, coef->n_ineq);
1068 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
1069 coef, dim_map);
1070 isl_space_free(dim);
1072 return 0;
1073 error:
1074 isl_space_free(dim);
1075 return -1;
1078 static int add_all_validity_constraints(struct isl_sched_graph *graph)
1080 int i;
1082 for (i = 0; i < graph->n_edge; ++i) {
1083 struct isl_sched_edge *edge= &graph->edge[i];
1084 if (!edge->validity)
1085 continue;
1086 if (edge->src != edge->dst)
1087 continue;
1088 if (add_intra_validity_constraints(graph, edge) < 0)
1089 return -1;
1092 for (i = 0; i < graph->n_edge; ++i) {
1093 struct isl_sched_edge *edge = &graph->edge[i];
1094 if (!edge->validity)
1095 continue;
1096 if (edge->src == edge->dst)
1097 continue;
1098 if (add_inter_validity_constraints(graph, edge) < 0)
1099 return -1;
1102 return 0;
1105 /* Add constraints to graph->lp that bound the dependence distance
1106 * for all dependence relations.
1107 * If a given proximity dependence is identical to a validity
1108 * dependence, then the dependence distance is already bounded
1109 * from below (by zero), so we only need to bound the distance
1110 * from above.
1111 * Otherwise, we need to bound the distance both from above and from below.
1113 static int add_all_proximity_constraints(struct isl_sched_graph *graph)
1115 int i;
1117 for (i = 0; i < graph->n_edge; ++i) {
1118 struct isl_sched_edge *edge= &graph->edge[i];
1119 if (!edge->proximity)
1120 continue;
1121 if (edge->src == edge->dst &&
1122 add_intra_proximity_constraints(graph, edge, 1) < 0)
1123 return -1;
1124 if (edge->src != edge->dst &&
1125 add_inter_proximity_constraints(graph, edge, 1) < 0)
1126 return -1;
1127 if (edge->validity)
1128 continue;
1129 if (edge->src == edge->dst &&
1130 add_intra_proximity_constraints(graph, edge, -1) < 0)
1131 return -1;
1132 if (edge->src != edge->dst &&
1133 add_inter_proximity_constraints(graph, edge, -1) < 0)
1134 return -1;
1137 return 0;
1140 /* Compute a basis for the rows in the linear part of the schedule
1141 * and extend this basis to a full basis. The remaining rows
1142 * can then be used to force linear independence from the rows
1143 * in the schedule.
1145 * In particular, given the schedule rows S, we compute
1147 * S = H Q
1149 * with H the Hermite normal form of S. That is, all but the
1150 * first rank columns of Q are zero and so each row in S is
1151 * a linear combination of the first rank rows of Q.
1152 * The matrix Q is then transposed because we will write the
1153 * coefficients of the next schedule row as a column vector s
1154 * and express this s as a linear combination s = Q c of the
1155 * computed basis.
1157 static int node_update_cmap(struct isl_sched_node *node)
1159 isl_mat *H, *Q;
1160 int n_row = isl_mat_rows(node->sched);
1162 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1163 1 + node->nparam, node->nvar);
1165 H = isl_mat_left_hermite(H, 0, NULL, &Q);
1166 isl_mat_free(node->cmap);
1167 node->cmap = isl_mat_transpose(Q);
1168 node->rank = isl_mat_initial_non_zero_cols(H);
1169 isl_mat_free(H);
1171 if (!node->cmap || node->rank < 0)
1172 return -1;
1173 return 0;
1176 /* Count the number of equality and inequality constraints
1177 * that will be added for the given map.
1178 * If carry is set, then we are counting the number of (validity)
1179 * constraints that will be added in setup_carry_lp and we count
1180 * each edge exactly once. Otherwise, we count as follows
1181 * validity -> 1 (>= 0)
1182 * validity+proximity -> 2 (>= 0 and upper bound)
1183 * proximity -> 2 (lower and upper bound)
1185 static int count_map_constraints(struct isl_sched_graph *graph,
1186 struct isl_sched_edge *edge, __isl_take isl_map *map,
1187 int *n_eq, int *n_ineq, int carry)
1189 isl_basic_set *coef;
1190 int f = carry ? 1 : edge->proximity ? 2 : 1;
1192 if (carry && !edge->validity) {
1193 isl_map_free(map);
1194 return 0;
1197 if (edge->src == edge->dst)
1198 coef = intra_coefficients(graph, map);
1199 else
1200 coef = inter_coefficients(graph, map);
1201 if (!coef)
1202 return -1;
1203 *n_eq += f * coef->n_eq;
1204 *n_ineq += f * coef->n_ineq;
1205 isl_basic_set_free(coef);
1207 return 0;
1210 /* Count the number of equality and inequality constraints
1211 * that will be added to the main lp problem.
1212 * We count as follows
1213 * validity -> 1 (>= 0)
1214 * validity+proximity -> 2 (>= 0 and upper bound)
1215 * proximity -> 2 (lower and upper bound)
1217 static int count_constraints(struct isl_sched_graph *graph,
1218 int *n_eq, int *n_ineq)
1220 int i;
1222 *n_eq = *n_ineq = 0;
1223 for (i = 0; i < graph->n_edge; ++i) {
1224 struct isl_sched_edge *edge= &graph->edge[i];
1225 isl_map *map = isl_map_copy(edge->map);
1227 if (count_map_constraints(graph, edge, map,
1228 n_eq, n_ineq, 0) < 0)
1229 return -1;
1232 return 0;
1235 /* Count the number of constraints that will be added by
1236 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
1237 * accordingly.
1239 * In practice, add_bound_coefficient_constraints only adds inequalities.
1241 static int count_bound_coefficient_constraints(isl_ctx *ctx,
1242 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
1244 int i;
1246 if (ctx->opt->schedule_max_coefficient == -1)
1247 return 0;
1249 for (i = 0; i < graph->n; ++i)
1250 *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar;
1252 return 0;
1255 /* Add constraints that bound the values of the variable and parameter
1256 * coefficients of the schedule.
1258 * The maximal value of the coefficients is defined by the option
1259 * 'schedule_max_coefficient'.
1261 static int add_bound_coefficient_constraints(isl_ctx *ctx,
1262 struct isl_sched_graph *graph)
1264 int i, j, k;
1265 int max_coefficient;
1266 int total;
1268 max_coefficient = ctx->opt->schedule_max_coefficient;
1270 if (max_coefficient == -1)
1271 return 0;
1273 total = isl_basic_set_total_dim(graph->lp);
1275 for (i = 0; i < graph->n; ++i) {
1276 struct isl_sched_node *node = &graph->node[i];
1277 for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) {
1278 int dim;
1279 k = isl_basic_set_alloc_inequality(graph->lp);
1280 if (k < 0)
1281 return -1;
1282 dim = 1 + node->start + 1 + j;
1283 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1284 isl_int_set_si(graph->lp->ineq[k][dim], -1);
1285 isl_int_set_si(graph->lp->ineq[k][0], max_coefficient);
1289 return 0;
1292 /* Construct an ILP problem for finding schedule coefficients
1293 * that result in non-negative, but small dependence distances
1294 * over all dependences.
1295 * In particular, the dependence distances over proximity edges
1296 * are bounded by m_0 + m_n n and we compute schedule coefficients
1297 * with small values (preferably zero) of m_n and m_0.
1299 * All variables of the ILP are non-negative. The actual coefficients
1300 * may be negative, so each coefficient is represented as the difference
1301 * of two non-negative variables. The negative part always appears
1302 * immediately before the positive part.
1303 * Other than that, the variables have the following order
1305 * - sum of positive and negative parts of m_n coefficients
1306 * - m_0
1307 * - sum of positive and negative parts of all c_n coefficients
1308 * (unconstrained when computing non-parametric schedules)
1309 * - sum of positive and negative parts of all c_x coefficients
1310 * - positive and negative parts of m_n coefficients
1311 * - for each node
1312 * - c_i_0
1313 * - positive and negative parts of c_i_n (if parametric)
1314 * - positive and negative parts of c_i_x
1316 * The c_i_x are not represented directly, but through the columns of
1317 * node->cmap. That is, the computed values are for variable t_i_x
1318 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
1320 * The constraints are those from the edges plus two or three equalities
1321 * to express the sums.
1323 * If force_zero is set, then we add equalities to ensure that
1324 * the sum of the m_n coefficients and m_0 are both zero.
1326 static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
1327 int force_zero)
1329 int i, j;
1330 int k;
1331 unsigned nparam;
1332 unsigned total;
1333 isl_space *dim;
1334 int parametric;
1335 int param_pos;
1336 int n_eq, n_ineq;
1337 int max_constant_term;
1339 max_constant_term = ctx->opt->schedule_max_constant_term;
1341 parametric = ctx->opt->schedule_parametric;
1342 nparam = isl_space_dim(graph->node[0].dim, isl_dim_param);
1343 param_pos = 4;
1344 total = param_pos + 2 * nparam;
1345 for (i = 0; i < graph->n; ++i) {
1346 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
1347 if (node_update_cmap(node) < 0)
1348 return -1;
1349 node->start = total;
1350 total += 1 + 2 * (node->nparam + node->nvar);
1353 if (count_constraints(graph, &n_eq, &n_ineq) < 0)
1354 return -1;
1355 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
1356 return -1;
1358 dim = isl_space_set_alloc(ctx, 0, total);
1359 isl_basic_set_free(graph->lp);
1360 n_eq += 2 + parametric + force_zero;
1361 if (max_constant_term != -1)
1362 n_ineq += graph->n;
1364 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
1366 k = isl_basic_set_alloc_equality(graph->lp);
1367 if (k < 0)
1368 return -1;
1369 isl_seq_clr(graph->lp->eq[k], 1 + total);
1370 if (!force_zero)
1371 isl_int_set_si(graph->lp->eq[k][1], -1);
1372 for (i = 0; i < 2 * nparam; ++i)
1373 isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1);
1375 if (force_zero) {
1376 k = isl_basic_set_alloc_equality(graph->lp);
1377 if (k < 0)
1378 return -1;
1379 isl_seq_clr(graph->lp->eq[k], 1 + total);
1380 isl_int_set_si(graph->lp->eq[k][2], -1);
1383 if (parametric) {
1384 k = isl_basic_set_alloc_equality(graph->lp);
1385 if (k < 0)
1386 return -1;
1387 isl_seq_clr(graph->lp->eq[k], 1 + total);
1388 isl_int_set_si(graph->lp->eq[k][3], -1);
1389 for (i = 0; i < graph->n; ++i) {
1390 int pos = 1 + graph->node[i].start + 1;
1392 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
1393 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1397 k = isl_basic_set_alloc_equality(graph->lp);
1398 if (k < 0)
1399 return -1;
1400 isl_seq_clr(graph->lp->eq[k], 1 + total);
1401 isl_int_set_si(graph->lp->eq[k][4], -1);
1402 for (i = 0; i < graph->n; ++i) {
1403 struct isl_sched_node *node = &graph->node[i];
1404 int pos = 1 + node->start + 1 + 2 * node->nparam;
1406 for (j = 0; j < 2 * node->nvar; ++j)
1407 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
1410 if (max_constant_term != -1)
1411 for (i = 0; i < graph->n; ++i) {
1412 struct isl_sched_node *node = &graph->node[i];
1413 k = isl_basic_set_alloc_inequality(graph->lp);
1414 if (k < 0)
1415 return -1;
1416 isl_seq_clr(graph->lp->ineq[k], 1 + total);
1417 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
1418 isl_int_set_si(graph->lp->ineq[k][0], max_constant_term);
1421 if (add_bound_coefficient_constraints(ctx, graph) < 0)
1422 return -1;
1423 if (add_all_validity_constraints(graph) < 0)
1424 return -1;
1425 if (add_all_proximity_constraints(graph) < 0)
1426 return -1;
1428 return 0;
1431 /* Analyze the conflicting constraint found by
1432 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
1433 * constraint of one of the edges between distinct nodes, living, moreover
1434 * in distinct SCCs, then record the source and sink SCC as this may
1435 * be a good place to cut between SCCs.
1437 static int check_conflict(int con, void *user)
1439 int i;
1440 struct isl_sched_graph *graph = user;
1442 if (graph->src_scc >= 0)
1443 return 0;
1445 con -= graph->lp->n_eq;
1447 if (con >= graph->lp->n_ineq)
1448 return 0;
1450 for (i = 0; i < graph->n_edge; ++i) {
1451 if (!graph->edge[i].validity)
1452 continue;
1453 if (graph->edge[i].src == graph->edge[i].dst)
1454 continue;
1455 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
1456 continue;
1457 if (graph->edge[i].start > con)
1458 continue;
1459 if (graph->edge[i].end <= con)
1460 continue;
1461 graph->src_scc = graph->edge[i].src->scc;
1462 graph->dst_scc = graph->edge[i].dst->scc;
1465 return 0;
1468 /* Check whether the next schedule row of the given node needs to be
1469 * non-trivial. Lower-dimensional domains may have some trivial rows,
1470 * but as soon as the number of remaining required non-trivial rows
1471 * is as large as the number or remaining rows to be computed,
1472 * all remaining rows need to be non-trivial.
1474 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
1476 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
1479 /* Solve the ILP problem constructed in setup_lp.
1480 * For each node such that all the remaining rows of its schedule
1481 * need to be non-trivial, we construct a non-triviality region.
1482 * This region imposes that the next row is independent of previous rows.
1483 * In particular the coefficients c_i_x are represented by t_i_x
1484 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
1485 * its first columns span the rows of the previously computed part
1486 * of the schedule. The non-triviality region enforces that at least
1487 * one of the remaining components of t_i_x is non-zero, i.e.,
1488 * that the new schedule row depends on at least one of the remaining
1489 * columns of Q.
1491 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
1493 int i;
1494 isl_vec *sol;
1495 isl_basic_set *lp;
1497 for (i = 0; i < graph->n; ++i) {
1498 struct isl_sched_node *node = &graph->node[i];
1499 int skip = node->rank;
1500 graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip);
1501 if (needs_row(graph, node))
1502 graph->region[i].len = 2 * (node->nvar - skip);
1503 else
1504 graph->region[i].len = 0;
1506 lp = isl_basic_set_copy(graph->lp);
1507 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
1508 graph->region, &check_conflict, graph);
1509 return sol;
1512 /* Update the schedules of all nodes based on the given solution
1513 * of the LP problem.
1514 * The new row is added to the current band.
1515 * All possibly negative coefficients are encoded as a difference
1516 * of two non-negative variables, so we need to perform the subtraction
1517 * here. Moreover, if use_cmap is set, then the solution does
1518 * not refer to the actual coefficients c_i_x, but instead to variables
1519 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
1520 * In this case, we then also need to perform this multiplication
1521 * to obtain the values of c_i_x.
1523 * If check_zero is set, then the first two coordinates of sol are
1524 * assumed to correspond to the dependence distance. If these two
1525 * coordinates are zero, then the corresponding scheduling dimension
1526 * is marked as being zero distance.
1528 static int update_schedule(struct isl_sched_graph *graph,
1529 __isl_take isl_vec *sol, int use_cmap, int check_zero)
1531 int i, j;
1532 int zero = 0;
1533 isl_vec *csol = NULL;
1535 if (!sol)
1536 goto error;
1537 if (sol->size == 0)
1538 isl_die(sol->ctx, isl_error_internal,
1539 "no solution found", goto error);
1540 if (graph->n_total_row >= graph->max_row)
1541 isl_die(sol->ctx, isl_error_internal,
1542 "too many schedule rows", goto error);
1544 if (check_zero)
1545 zero = isl_int_is_zero(sol->el[1]) &&
1546 isl_int_is_zero(sol->el[2]);
1548 for (i = 0; i < graph->n; ++i) {
1549 struct isl_sched_node *node = &graph->node[i];
1550 int pos = node->start;
1551 int row = isl_mat_rows(node->sched);
1553 isl_vec_free(csol);
1554 csol = isl_vec_alloc(sol->ctx, node->nvar);
1555 if (!csol)
1556 goto error;
1558 isl_map_free(node->sched_map);
1559 node->sched_map = NULL;
1560 node->sched = isl_mat_add_rows(node->sched, 1);
1561 if (!node->sched)
1562 goto error;
1563 node->sched = isl_mat_set_element(node->sched, row, 0,
1564 sol->el[1 + pos]);
1565 for (j = 0; j < node->nparam + node->nvar; ++j)
1566 isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1],
1567 sol->el[1 + pos + 1 + 2 * j + 1],
1568 sol->el[1 + pos + 1 + 2 * j]);
1569 for (j = 0; j < node->nparam; ++j)
1570 node->sched = isl_mat_set_element(node->sched,
1571 row, 1 + j, sol->el[1+pos+1+2*j+1]);
1572 for (j = 0; j < node->nvar; ++j)
1573 isl_int_set(csol->el[j],
1574 sol->el[1+pos+1+2*(node->nparam+j)+1]);
1575 if (use_cmap)
1576 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
1577 csol);
1578 if (!csol)
1579 goto error;
1580 for (j = 0; j < node->nvar; ++j)
1581 node->sched = isl_mat_set_element(node->sched,
1582 row, 1 + node->nparam + j, csol->el[j]);
1583 node->band[graph->n_total_row] = graph->n_band;
1584 node->zero[graph->n_total_row] = zero;
1586 isl_vec_free(sol);
1587 isl_vec_free(csol);
1589 graph->n_row++;
1590 graph->n_total_row++;
1592 return 0;
1593 error:
1594 isl_vec_free(sol);
1595 isl_vec_free(csol);
1596 return -1;
1599 /* Convert node->sched into a multi_aff and return this multi_aff.
1601 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
1602 struct isl_sched_node *node)
1604 int i, j;
1605 isl_space *space;
1606 isl_local_space *ls;
1607 isl_aff *aff;
1608 isl_multi_aff *ma;
1609 int nrow, ncol;
1610 isl_int v;
1612 nrow = isl_mat_rows(node->sched);
1613 ncol = isl_mat_cols(node->sched) - 1;
1614 space = isl_space_from_domain(isl_space_copy(node->dim));
1615 space = isl_space_add_dims(space, isl_dim_out, nrow);
1616 ma = isl_multi_aff_zero(space);
1617 ls = isl_local_space_from_space(isl_space_copy(node->dim));
1619 isl_int_init(v);
1621 for (i = 0; i < nrow; ++i) {
1622 aff = isl_aff_zero_on_domain(isl_local_space_copy(ls));
1623 isl_mat_get_element(node->sched, i, 0, &v);
1624 aff = isl_aff_set_constant(aff, v);
1625 for (j = 0; j < node->nparam; ++j) {
1626 isl_mat_get_element(node->sched, i, 1 + j, &v);
1627 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
1629 for (j = 0; j < node->nvar; ++j) {
1630 isl_mat_get_element(node->sched,
1631 i, 1 + node->nparam + j, &v);
1632 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
1634 ma = isl_multi_aff_set_aff(ma, i, aff);
1637 isl_int_clear(v);
1639 isl_local_space_free(ls);
1641 return ma;
1644 /* Convert node->sched into a map and return this map.
1646 * The result is cached in node->sched_map, which needs to be released
1647 * whenever node->sched is updated.
1649 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
1651 if (!node->sched_map) {
1652 isl_multi_aff *ma;
1654 ma = node_extract_schedule_multi_aff(node);
1655 node->sched_map = isl_map_from_multi_aff(ma);
1658 return isl_map_copy(node->sched_map);
1661 /* Update the given dependence relation based on the current schedule.
1662 * That is, intersect the dependence relation with a map expressing
1663 * that source and sink are executed within the same iteration of
1664 * the current schedule.
1665 * This is not the most efficient way, but this shouldn't be a critical
1666 * operation.
1668 static __isl_give isl_map *specialize(__isl_take isl_map *map,
1669 struct isl_sched_node *src, struct isl_sched_node *dst)
1671 isl_map *src_sched, *dst_sched, *id;
1673 src_sched = node_extract_schedule(src);
1674 dst_sched = node_extract_schedule(dst);
1675 id = isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
1676 return isl_map_intersect(map, id);
1679 /* Update the dependence relations of all edges based on the current schedule.
1680 * If a dependence is carried completely by the current schedule, then
1681 * it is removed from the edge_tables. It is kept in the list of edges
1682 * as otherwise all edge_tables would have to be recomputed.
1684 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
1686 int i;
1688 for (i = graph->n_edge - 1; i >= 0; --i) {
1689 struct isl_sched_edge *edge = &graph->edge[i];
1690 edge->map = specialize(edge->map, edge->src, edge->dst);
1691 if (!edge->map)
1692 return -1;
1694 if (isl_map_plain_is_empty(edge->map))
1695 graph_remove_edge(graph, edge);
1698 return 0;
1701 static void next_band(struct isl_sched_graph *graph)
1703 graph->band_start = graph->n_total_row;
1704 graph->n_band++;
1707 /* Topologically sort statements mapped to the same schedule iteration
1708 * and add a row to the schedule corresponding to this order.
1710 static int sort_statements(isl_ctx *ctx, struct isl_sched_graph *graph)
1712 int i, j;
1714 if (graph->n <= 1)
1715 return 0;
1717 if (update_edges(ctx, graph) < 0)
1718 return -1;
1720 if (graph->n_edge == 0)
1721 return 0;
1723 if (detect_sccs(ctx, graph) < 0)
1724 return -1;
1726 if (graph->n_total_row >= graph->max_row)
1727 isl_die(ctx, isl_error_internal,
1728 "too many schedule rows", return -1);
1730 for (i = 0; i < graph->n; ++i) {
1731 struct isl_sched_node *node = &graph->node[i];
1732 int row = isl_mat_rows(node->sched);
1733 int cols = isl_mat_cols(node->sched);
1735 isl_map_free(node->sched_map);
1736 node->sched_map = NULL;
1737 node->sched = isl_mat_add_rows(node->sched, 1);
1738 if (!node->sched)
1739 return -1;
1740 node->sched = isl_mat_set_element_si(node->sched, row, 0,
1741 node->scc);
1742 for (j = 1; j < cols; ++j)
1743 node->sched = isl_mat_set_element_si(node->sched,
1744 row, j, 0);
1745 node->band[graph->n_total_row] = graph->n_band;
1748 graph->n_total_row++;
1749 next_band(graph);
1751 return 0;
1754 /* Construct an isl_schedule based on the computed schedule stored
1755 * in graph and with parameters specified by dim.
1757 static __isl_give isl_schedule *extract_schedule(struct isl_sched_graph *graph,
1758 __isl_take isl_space *dim)
1760 int i;
1761 isl_ctx *ctx;
1762 isl_schedule *sched = NULL;
1764 if (!dim)
1765 return NULL;
1767 ctx = isl_space_get_ctx(dim);
1768 sched = isl_calloc(ctx, struct isl_schedule,
1769 sizeof(struct isl_schedule) +
1770 (graph->n - 1) * sizeof(struct isl_schedule_node));
1771 if (!sched)
1772 goto error;
1774 sched->ref = 1;
1775 sched->n = graph->n;
1776 sched->n_band = graph->n_band;
1777 sched->n_total_row = graph->n_total_row;
1779 for (i = 0; i < sched->n; ++i) {
1780 int r, b;
1781 int *band_end, *band_id, *zero;
1783 sched->node[i].sched =
1784 node_extract_schedule_multi_aff(&graph->node[i]);
1785 if (!sched->node[i].sched)
1786 goto error;
1788 sched->node[i].n_band = graph->n_band;
1789 if (graph->n_band == 0)
1790 continue;
1792 band_end = isl_alloc_array(ctx, int, graph->n_band);
1793 band_id = isl_alloc_array(ctx, int, graph->n_band);
1794 zero = isl_alloc_array(ctx, int, graph->n_total_row);
1795 sched->node[i].band_end = band_end;
1796 sched->node[i].band_id = band_id;
1797 sched->node[i].zero = zero;
1798 if (!band_end || !band_id || !zero)
1799 goto error;
1801 for (r = 0; r < graph->n_total_row; ++r)
1802 zero[r] = graph->node[i].zero[r];
1803 for (r = b = 0; r < graph->n_total_row; ++r) {
1804 if (graph->node[i].band[r] == b)
1805 continue;
1806 band_end[b++] = r;
1807 if (graph->node[i].band[r] == -1)
1808 break;
1810 if (r == graph->n_total_row)
1811 band_end[b++] = r;
1812 sched->node[i].n_band = b;
1813 for (--b; b >= 0; --b)
1814 band_id[b] = graph->node[i].band_id[b];
1817 sched->dim = dim;
1819 return sched;
1820 error:
1821 isl_space_free(dim);
1822 isl_schedule_free(sched);
1823 return NULL;
1826 /* Copy nodes that satisfy node_pred from the src dependence graph
1827 * to the dst dependence graph.
1829 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
1830 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1832 int i;
1834 dst->n = 0;
1835 for (i = 0; i < src->n; ++i) {
1836 if (!node_pred(&src->node[i], data))
1837 continue;
1838 dst->node[dst->n].dim = isl_space_copy(src->node[i].dim);
1839 dst->node[dst->n].nvar = src->node[i].nvar;
1840 dst->node[dst->n].nparam = src->node[i].nparam;
1841 dst->node[dst->n].sched = isl_mat_copy(src->node[i].sched);
1842 dst->node[dst->n].sched_map =
1843 isl_map_copy(src->node[i].sched_map);
1844 dst->node[dst->n].band = src->node[i].band;
1845 dst->node[dst->n].band_id = src->node[i].band_id;
1846 dst->node[dst->n].zero = src->node[i].zero;
1847 dst->n++;
1850 return 0;
1853 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
1854 * to the dst dependence graph.
1855 * If the source or destination node of the edge is not in the destination
1856 * graph, then it must be a backward proximity edge and it should simply
1857 * be ignored.
1859 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
1860 struct isl_sched_graph *src,
1861 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
1863 int i;
1864 enum isl_edge_type t;
1866 dst->n_edge = 0;
1867 for (i = 0; i < src->n_edge; ++i) {
1868 struct isl_sched_edge *edge = &src->edge[i];
1869 isl_map *map;
1870 struct isl_sched_node *dst_src, *dst_dst;
1872 if (!edge_pred(edge, data))
1873 continue;
1875 if (isl_map_plain_is_empty(edge->map))
1876 continue;
1878 dst_src = graph_find_node(ctx, dst, edge->src->dim);
1879 dst_dst = graph_find_node(ctx, dst, edge->dst->dim);
1880 if (!dst_src || !dst_dst) {
1881 if (edge->validity)
1882 isl_die(ctx, isl_error_internal,
1883 "backward validity edge", return -1);
1884 continue;
1887 map = isl_map_copy(edge->map);
1889 dst->edge[dst->n_edge].src = dst_src;
1890 dst->edge[dst->n_edge].dst = dst_dst;
1891 dst->edge[dst->n_edge].map = map;
1892 dst->edge[dst->n_edge].validity = edge->validity;
1893 dst->edge[dst->n_edge].proximity = edge->proximity;
1894 dst->n_edge++;
1896 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
1897 if (edge !=
1898 graph_find_edge(src, t, edge->src, edge->dst))
1899 continue;
1900 if (graph_edge_table_add(ctx, dst, t,
1901 &dst->edge[dst->n_edge - 1]) < 0)
1902 return -1;
1906 return 0;
1909 /* Given a "src" dependence graph that contains the nodes from "dst"
1910 * that satisfy node_pred, copy the schedule computed in "src"
1911 * for those nodes back to "dst".
1913 static int copy_schedule(struct isl_sched_graph *dst,
1914 struct isl_sched_graph *src,
1915 int (*node_pred)(struct isl_sched_node *node, int data), int data)
1917 int i;
1919 src->n = 0;
1920 for (i = 0; i < dst->n; ++i) {
1921 if (!node_pred(&dst->node[i], data))
1922 continue;
1923 isl_mat_free(dst->node[i].sched);
1924 isl_map_free(dst->node[i].sched_map);
1925 dst->node[i].sched = isl_mat_copy(src->node[src->n].sched);
1926 dst->node[i].sched_map =
1927 isl_map_copy(src->node[src->n].sched_map);
1928 src->n++;
1931 dst->max_row = src->max_row;
1932 dst->n_total_row = src->n_total_row;
1933 dst->n_band = src->n_band;
1935 return 0;
1938 /* Compute the maximal number of variables over all nodes.
1939 * This is the maximal number of linearly independent schedule
1940 * rows that we need to compute.
1941 * Just in case we end up in a part of the dependence graph
1942 * with only lower-dimensional domains, we make sure we will
1943 * compute the required amount of extra linearly independent rows.
1945 static int compute_maxvar(struct isl_sched_graph *graph)
1947 int i;
1949 graph->maxvar = 0;
1950 for (i = 0; i < graph->n; ++i) {
1951 struct isl_sched_node *node = &graph->node[i];
1952 int nvar;
1954 if (node_update_cmap(node) < 0)
1955 return -1;
1956 nvar = node->nvar + graph->n_row - node->rank;
1957 if (nvar > graph->maxvar)
1958 graph->maxvar = nvar;
1961 return 0;
1964 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph);
1965 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph);
1967 /* Compute a schedule for a subgraph of "graph". In particular, for
1968 * the graph composed of nodes that satisfy node_pred and edges that
1969 * that satisfy edge_pred. The caller should precompute the number
1970 * of nodes and edges that satisfy these predicates and pass them along
1971 * as "n" and "n_edge".
1972 * If the subgraph is known to consist of a single component, then wcc should
1973 * be set and then we call compute_schedule_wcc on the constructed subgraph.
1974 * Otherwise, we call compute_schedule, which will check whether the subgraph
1975 * is connected.
1977 static int compute_sub_schedule(isl_ctx *ctx,
1978 struct isl_sched_graph *graph, int n, int n_edge,
1979 int (*node_pred)(struct isl_sched_node *node, int data),
1980 int (*edge_pred)(struct isl_sched_edge *edge, int data),
1981 int data, int wcc)
1983 struct isl_sched_graph split = { 0 };
1984 int t;
1986 if (graph_alloc(ctx, &split, n, n_edge) < 0)
1987 goto error;
1988 if (copy_nodes(&split, graph, node_pred, data) < 0)
1989 goto error;
1990 if (graph_init_table(ctx, &split) < 0)
1991 goto error;
1992 for (t = 0; t <= isl_edge_last; ++t)
1993 split.max_edge[t] = graph->max_edge[t];
1994 if (graph_init_edge_tables(ctx, &split) < 0)
1995 goto error;
1996 if (copy_edges(ctx, &split, graph, edge_pred, data) < 0)
1997 goto error;
1998 split.n_row = graph->n_row;
1999 split.max_row = graph->max_row;
2000 split.n_total_row = graph->n_total_row;
2001 split.n_band = graph->n_band;
2002 split.band_start = graph->band_start;
2004 if (wcc && compute_schedule_wcc(ctx, &split) < 0)
2005 goto error;
2006 if (!wcc && compute_schedule(ctx, &split) < 0)
2007 goto error;
2009 copy_schedule(graph, &split, node_pred, data);
2011 graph_free(ctx, &split);
2012 return 0;
2013 error:
2014 graph_free(ctx, &split);
2015 return -1;
2018 static int node_scc_exactly(struct isl_sched_node *node, int scc)
2020 return node->scc == scc;
2023 static int node_scc_at_most(struct isl_sched_node *node, int scc)
2025 return node->scc <= scc;
2028 static int node_scc_at_least(struct isl_sched_node *node, int scc)
2030 return node->scc >= scc;
2033 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
2035 return edge->src->scc == scc && edge->dst->scc == scc;
2038 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
2040 return edge->dst->scc <= scc;
2043 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
2045 return edge->src->scc >= scc;
2048 /* Pad the schedules of all nodes with zero rows such that in the end
2049 * they all have graph->n_total_row rows.
2050 * The extra rows don't belong to any band, so they get assigned band number -1.
2052 static int pad_schedule(struct isl_sched_graph *graph)
2054 int i, j;
2056 for (i = 0; i < graph->n; ++i) {
2057 struct isl_sched_node *node = &graph->node[i];
2058 int row = isl_mat_rows(node->sched);
2059 if (graph->n_total_row > row) {
2060 isl_map_free(node->sched_map);
2061 node->sched_map = NULL;
2063 node->sched = isl_mat_add_zero_rows(node->sched,
2064 graph->n_total_row - row);
2065 if (!node->sched)
2066 return -1;
2067 for (j = row; j < graph->n_total_row; ++j)
2068 node->band[j] = -1;
2071 return 0;
2074 /* Split the current graph into two parts and compute a schedule for each
2075 * part individually. In particular, one part consists of all SCCs up
2076 * to and including graph->src_scc, while the other part contains the other
2077 * SCCS.
2079 * The split is enforced in the schedule by constant rows with two different
2080 * values (0 and 1). These constant rows replace the previously computed rows
2081 * in the current band.
2082 * It would be possible to reuse them as the first rows in the next
2083 * band, but recomputing them may result in better rows as we are looking
2084 * at a smaller part of the dependence graph.
2085 * compute_split_schedule is only called when no zero-distance schedule row
2086 * could be found on the entire graph, so we wark the splitting row as
2087 * non zero-distance.
2089 * The band_id of the second group is set to n, where n is the number
2090 * of nodes in the first group. This ensures that the band_ids over
2091 * the two groups remain disjoint, even if either or both of the two
2092 * groups contain independent components.
2094 static int compute_split_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2096 int i, j, n, e1, e2;
2097 int n_total_row, orig_total_row;
2098 int n_band, orig_band;
2099 int drop;
2101 if (graph->n_total_row >= graph->max_row)
2102 isl_die(ctx, isl_error_internal,
2103 "too many schedule rows", return -1);
2105 drop = graph->n_total_row - graph->band_start;
2106 graph->n_total_row -= drop;
2107 graph->n_row -= drop;
2109 n = 0;
2110 for (i = 0; i < graph->n; ++i) {
2111 struct isl_sched_node *node = &graph->node[i];
2112 int row = isl_mat_rows(node->sched) - drop;
2113 int cols = isl_mat_cols(node->sched);
2114 int before = node->scc <= graph->src_scc;
2116 if (before)
2117 n++;
2119 isl_map_free(node->sched_map);
2120 node->sched_map = NULL;
2121 node->sched = isl_mat_drop_rows(node->sched,
2122 graph->band_start, drop);
2123 node->sched = isl_mat_add_rows(node->sched, 1);
2124 if (!node->sched)
2125 return -1;
2126 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2127 !before);
2128 for (j = 1; j < cols; ++j)
2129 node->sched = isl_mat_set_element_si(node->sched,
2130 row, j, 0);
2131 node->band[graph->n_total_row] = graph->n_band;
2132 node->zero[graph->n_total_row] = 0;
2135 e1 = e2 = 0;
2136 for (i = 0; i < graph->n_edge; ++i) {
2137 if (graph->edge[i].dst->scc <= graph->src_scc)
2138 e1++;
2139 if (graph->edge[i].src->scc > graph->src_scc)
2140 e2++;
2143 graph->n_total_row++;
2144 next_band(graph);
2146 for (i = 0; i < graph->n; ++i) {
2147 struct isl_sched_node *node = &graph->node[i];
2148 if (node->scc > graph->src_scc)
2149 node->band_id[graph->n_band] = n;
2152 orig_total_row = graph->n_total_row;
2153 orig_band = graph->n_band;
2154 if (compute_sub_schedule(ctx, graph, n, e1,
2155 &node_scc_at_most, &edge_dst_scc_at_most,
2156 graph->src_scc, 0) < 0)
2157 return -1;
2158 n_total_row = graph->n_total_row;
2159 graph->n_total_row = orig_total_row;
2160 n_band = graph->n_band;
2161 graph->n_band = orig_band;
2162 if (compute_sub_schedule(ctx, graph, graph->n - n, e2,
2163 &node_scc_at_least, &edge_src_scc_at_least,
2164 graph->src_scc + 1, 0) < 0)
2165 return -1;
2166 if (n_total_row > graph->n_total_row)
2167 graph->n_total_row = n_total_row;
2168 if (n_band > graph->n_band)
2169 graph->n_band = n_band;
2171 return pad_schedule(graph);
2174 /* Compute the next band of the schedule after updating the dependence
2175 * relations based on the the current schedule.
2177 static int compute_next_band(isl_ctx *ctx, struct isl_sched_graph *graph)
2179 if (update_edges(ctx, graph) < 0)
2180 return -1;
2181 next_band(graph);
2183 return compute_schedule(ctx, graph);
2186 /* Add constraints to graph->lp that force the dependence "map" (which
2187 * is part of the dependence relation of "edge")
2188 * to be respected and attempt to carry it, where the edge is one from
2189 * a node j to itself. "pos" is the sequence number of the given map.
2190 * That is, add constraints that enforce
2192 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
2193 * = c_j_x (y - x) >= e_i
2195 * for each (x,y) in R.
2196 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2197 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
2198 * with each coefficient in c_j_x represented as a pair of non-negative
2199 * coefficients.
2201 static int add_intra_constraints(struct isl_sched_graph *graph,
2202 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2204 unsigned total;
2205 isl_ctx *ctx = isl_map_get_ctx(map);
2206 isl_space *dim;
2207 isl_dim_map *dim_map;
2208 isl_basic_set *coef;
2209 struct isl_sched_node *node = edge->src;
2211 coef = intra_coefficients(graph, map);
2212 if (!coef)
2213 return -1;
2215 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2217 total = isl_basic_set_total_dim(graph->lp);
2218 dim_map = isl_dim_map_alloc(ctx, total);
2219 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2220 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2,
2221 isl_space_dim(dim, isl_dim_set), 1,
2222 node->nvar, -1);
2223 isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2,
2224 isl_space_dim(dim, isl_dim_set), 1,
2225 node->nvar, 1);
2226 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2227 coef->n_eq, coef->n_ineq);
2228 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2229 coef, dim_map);
2230 isl_space_free(dim);
2232 return 0;
2235 /* Add constraints to graph->lp that force the dependence "map" (which
2236 * is part of the dependence relation of "edge")
2237 * to be respected and attempt to carry it, where the edge is one from
2238 * node j to node k. "pos" is the sequence number of the given map.
2239 * That is, add constraints that enforce
2241 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
2243 * for each (x,y) in R.
2244 * We obtain general constraints on coefficients (c_0, c_n, c_x)
2245 * of valid constraints for R and then plug in
2246 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x)
2247 * with each coefficient (except e_i, c_k_0 and c_j_0)
2248 * represented as a pair of non-negative coefficients.
2250 static int add_inter_constraints(struct isl_sched_graph *graph,
2251 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
2253 unsigned total;
2254 isl_ctx *ctx = isl_map_get_ctx(map);
2255 isl_space *dim;
2256 isl_dim_map *dim_map;
2257 isl_basic_set *coef;
2258 struct isl_sched_node *src = edge->src;
2259 struct isl_sched_node *dst = edge->dst;
2261 coef = inter_coefficients(graph, map);
2262 if (!coef)
2263 return -1;
2265 dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef)));
2267 total = isl_basic_set_total_dim(graph->lp);
2268 dim_map = isl_dim_map_alloc(ctx, total);
2270 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
2272 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1);
2273 isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1);
2274 isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1);
2275 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2,
2276 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2277 dst->nvar, -1);
2278 isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2,
2279 isl_space_dim(dim, isl_dim_set) + src->nvar, 1,
2280 dst->nvar, 1);
2282 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1);
2283 isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1);
2284 isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1);
2285 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2,
2286 isl_space_dim(dim, isl_dim_set), 1,
2287 src->nvar, 1);
2288 isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2,
2289 isl_space_dim(dim, isl_dim_set), 1,
2290 src->nvar, -1);
2292 graph->lp = isl_basic_set_extend_constraints(graph->lp,
2293 coef->n_eq, coef->n_ineq);
2294 graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp,
2295 coef, dim_map);
2296 isl_space_free(dim);
2298 return 0;
2301 /* Add constraints to graph->lp that force all validity dependences
2302 * to be respected and attempt to carry them.
2304 static int add_all_constraints(struct isl_sched_graph *graph)
2306 int i, j;
2307 int pos;
2309 pos = 0;
2310 for (i = 0; i < graph->n_edge; ++i) {
2311 struct isl_sched_edge *edge= &graph->edge[i];
2313 if (!edge->validity)
2314 continue;
2316 for (j = 0; j < edge->map->n; ++j) {
2317 isl_basic_map *bmap;
2318 isl_map *map;
2320 bmap = isl_basic_map_copy(edge->map->p[j]);
2321 map = isl_map_from_basic_map(bmap);
2323 if (edge->src == edge->dst &&
2324 add_intra_constraints(graph, edge, map, pos) < 0)
2325 return -1;
2326 if (edge->src != edge->dst &&
2327 add_inter_constraints(graph, edge, map, pos) < 0)
2328 return -1;
2329 ++pos;
2333 return 0;
2336 /* Count the number of equality and inequality constraints
2337 * that will be added to the carry_lp problem.
2338 * We count each edge exactly once.
2340 static int count_all_constraints(struct isl_sched_graph *graph,
2341 int *n_eq, int *n_ineq)
2343 int i, j;
2345 *n_eq = *n_ineq = 0;
2346 for (i = 0; i < graph->n_edge; ++i) {
2347 struct isl_sched_edge *edge= &graph->edge[i];
2348 for (j = 0; j < edge->map->n; ++j) {
2349 isl_basic_map *bmap;
2350 isl_map *map;
2352 bmap = isl_basic_map_copy(edge->map->p[j]);
2353 map = isl_map_from_basic_map(bmap);
2355 if (count_map_constraints(graph, edge, map,
2356 n_eq, n_ineq, 1) < 0)
2357 return -1;
2361 return 0;
2364 /* Construct an LP problem for finding schedule coefficients
2365 * such that the schedule carries as many dependences as possible.
2366 * In particular, for each dependence i, we bound the dependence distance
2367 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
2368 * of all e_i's. Dependence with e_i = 0 in the solution are simply
2369 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
2370 * Note that if the dependence relation is a union of basic maps,
2371 * then we have to consider each basic map individually as it may only
2372 * be possible to carry the dependences expressed by some of those
2373 * basic maps and not all off them.
2374 * Below, we consider each of those basic maps as a separate "edge".
2376 * All variables of the LP are non-negative. The actual coefficients
2377 * may be negative, so each coefficient is represented as the difference
2378 * of two non-negative variables. The negative part always appears
2379 * immediately before the positive part.
2380 * Other than that, the variables have the following order
2382 * - sum of (1 - e_i) over all edges
2383 * - sum of positive and negative parts of all c_n coefficients
2384 * (unconstrained when computing non-parametric schedules)
2385 * - sum of positive and negative parts of all c_x coefficients
2386 * - for each edge
2387 * - e_i
2388 * - for each node
2389 * - c_i_0
2390 * - positive and negative parts of c_i_n (if parametric)
2391 * - positive and negative parts of c_i_x
2393 * The constraints are those from the (validity) edges plus three equalities
2394 * to express the sums and n_edge inequalities to express e_i <= 1.
2396 static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph)
2398 int i, j;
2399 int k;
2400 isl_space *dim;
2401 unsigned total;
2402 int n_eq, n_ineq;
2403 int n_edge;
2405 n_edge = 0;
2406 for (i = 0; i < graph->n_edge; ++i)
2407 n_edge += graph->edge[i].map->n;
2409 total = 3 + n_edge;
2410 for (i = 0; i < graph->n; ++i) {
2411 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2412 node->start = total;
2413 total += 1 + 2 * (node->nparam + node->nvar);
2416 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
2417 return -1;
2418 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2419 return -1;
2421 dim = isl_space_set_alloc(ctx, 0, total);
2422 isl_basic_set_free(graph->lp);
2423 n_eq += 3;
2424 n_ineq += n_edge;
2425 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
2426 graph->lp = isl_basic_set_set_rational(graph->lp);
2428 k = isl_basic_set_alloc_equality(graph->lp);
2429 if (k < 0)
2430 return -1;
2431 isl_seq_clr(graph->lp->eq[k], 1 + total);
2432 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
2433 isl_int_set_si(graph->lp->eq[k][1], 1);
2434 for (i = 0; i < n_edge; ++i)
2435 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
2437 k = isl_basic_set_alloc_equality(graph->lp);
2438 if (k < 0)
2439 return -1;
2440 isl_seq_clr(graph->lp->eq[k], 1 + total);
2441 isl_int_set_si(graph->lp->eq[k][2], -1);
2442 for (i = 0; i < graph->n; ++i) {
2443 int pos = 1 + graph->node[i].start + 1;
2445 for (j = 0; j < 2 * graph->node[i].nparam; ++j)
2446 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2449 k = isl_basic_set_alloc_equality(graph->lp);
2450 if (k < 0)
2451 return -1;
2452 isl_seq_clr(graph->lp->eq[k], 1 + total);
2453 isl_int_set_si(graph->lp->eq[k][3], -1);
2454 for (i = 0; i < graph->n; ++i) {
2455 struct isl_sched_node *node = &graph->node[i];
2456 int pos = 1 + node->start + 1 + 2 * node->nparam;
2458 for (j = 0; j < 2 * node->nvar; ++j)
2459 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2462 for (i = 0; i < n_edge; ++i) {
2463 k = isl_basic_set_alloc_inequality(graph->lp);
2464 if (k < 0)
2465 return -1;
2466 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2467 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
2468 isl_int_set_si(graph->lp->ineq[k][0], 1);
2471 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2472 return -1;
2473 if (add_all_constraints(graph) < 0)
2474 return -1;
2476 return 0;
2479 /* If the schedule_split_scaled option is set and if the linear
2480 * parts of the scheduling rows for all nodes in the graphs have
2481 * non-trivial common divisor, then split off the constant term
2482 * from the linear part.
2483 * The constant term is then placed in a separate band and
2484 * the linear part is reduced.
2486 static int split_scaled(isl_ctx *ctx, struct isl_sched_graph *graph)
2488 int i;
2489 int row;
2490 isl_int gcd, gcd_i;
2492 if (!ctx->opt->schedule_split_scaled)
2493 return 0;
2494 if (graph->n <= 1)
2495 return 0;
2497 if (graph->n_total_row >= graph->max_row)
2498 isl_die(ctx, isl_error_internal,
2499 "too many schedule rows", return -1);
2501 isl_int_init(gcd);
2502 isl_int_init(gcd_i);
2504 isl_int_set_si(gcd, 0);
2506 row = isl_mat_rows(graph->node[0].sched) - 1;
2508 for (i = 0; i < graph->n; ++i) {
2509 struct isl_sched_node *node = &graph->node[i];
2510 int cols = isl_mat_cols(node->sched);
2512 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
2513 isl_int_gcd(gcd, gcd, gcd_i);
2516 isl_int_clear(gcd_i);
2518 if (isl_int_cmp_si(gcd, 1) <= 0) {
2519 isl_int_clear(gcd);
2520 return 0;
2523 next_band(graph);
2525 for (i = 0; i < graph->n; ++i) {
2526 struct isl_sched_node *node = &graph->node[i];
2528 isl_map_free(node->sched_map);
2529 node->sched_map = NULL;
2530 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2531 if (!node->sched)
2532 goto error;
2533 isl_int_fdiv_r(node->sched->row[row + 1][0],
2534 node->sched->row[row][0], gcd);
2535 isl_int_fdiv_q(node->sched->row[row][0],
2536 node->sched->row[row][0], gcd);
2537 isl_int_mul(node->sched->row[row][0],
2538 node->sched->row[row][0], gcd);
2539 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
2540 if (!node->sched)
2541 goto error;
2542 node->band[graph->n_total_row] = graph->n_band;
2545 graph->n_total_row++;
2547 isl_int_clear(gcd);
2548 return 0;
2549 error:
2550 isl_int_clear(gcd);
2551 return -1;
2554 static int compute_component_schedule(isl_ctx *ctx,
2555 struct isl_sched_graph *graph);
2557 /* Is the schedule row "sol" trivial on node "node"?
2558 * That is, is the solution zero on the dimensions orthogonal to
2559 * the previously found solutions?
2560 * Each coefficient is represented as the difference between
2561 * two non-negative values in "sol". The coefficient is then
2562 * zero if those two values are equal to each other.
2564 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
2566 int i;
2567 int pos;
2568 int len;
2570 pos = 1 + node->start + 1 + 2 * (node->nparam + node->rank);
2571 len = 2 * (node->nvar - node->rank);
2573 if (len == 0)
2574 return 0;
2576 for (i = 0; i < len; i += 2)
2577 if (isl_int_ne(sol->el[pos + i], sol->el[pos + i + 1]))
2578 return 0;
2580 return 1;
2583 /* Is the schedule row "sol" trivial on any node where it should
2584 * not be trivial?
2586 static int is_any_trivial(struct isl_sched_graph *graph,
2587 __isl_keep isl_vec *sol)
2589 int i;
2591 for (i = 0; i < graph->n; ++i) {
2592 struct isl_sched_node *node = &graph->node[i];
2594 if (!needs_row(graph, node))
2595 continue;
2596 if (is_trivial(node, sol))
2597 return 1;
2600 return 0;
2603 /* Construct a schedule row for each node such that as many dependences
2604 * as possible are carried and then continue with the next band.
2606 * If the computed schedule row turns out to be trivial on one or
2607 * more nodes where it should not be trivial, then we throw it away
2608 * and try again on each component separately.
2610 static int carry_dependences(isl_ctx *ctx, struct isl_sched_graph *graph)
2612 int i;
2613 int n_edge;
2614 isl_vec *sol;
2615 isl_basic_set *lp;
2617 n_edge = 0;
2618 for (i = 0; i < graph->n_edge; ++i)
2619 n_edge += graph->edge[i].map->n;
2621 if (setup_carry_lp(ctx, graph) < 0)
2622 return -1;
2624 lp = isl_basic_set_copy(graph->lp);
2625 sol = isl_tab_basic_set_non_neg_lexmin(lp);
2626 if (!sol)
2627 return -1;
2629 if (sol->size == 0) {
2630 isl_vec_free(sol);
2631 isl_die(ctx, isl_error_internal,
2632 "error in schedule construction", return -1);
2635 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
2636 if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) {
2637 isl_vec_free(sol);
2638 isl_die(ctx, isl_error_unknown,
2639 "unable to carry dependences", return -1);
2642 if (is_any_trivial(graph, sol)) {
2643 isl_vec_free(sol);
2644 if (graph->scc > 1)
2645 return compute_component_schedule(ctx, graph);
2646 isl_die(ctx, isl_error_unknown,
2647 "unable to construct non-trivial solution", return -1);
2650 if (update_schedule(graph, sol, 0, 0) < 0)
2651 return -1;
2653 if (split_scaled(ctx, graph) < 0)
2654 return -1;
2656 return compute_next_band(ctx, graph);
2659 /* Are there any (non-empty) validity edges in the graph?
2661 static int has_validity_edges(struct isl_sched_graph *graph)
2663 int i;
2665 for (i = 0; i < graph->n_edge; ++i) {
2666 int empty;
2668 empty = isl_map_plain_is_empty(graph->edge[i].map);
2669 if (empty < 0)
2670 return -1;
2671 if (empty)
2672 continue;
2673 if (graph->edge[i].validity)
2674 return 1;
2677 return 0;
2680 /* Should we apply a Feautrier step?
2681 * That is, did the user request the Feautrier algorithm and are
2682 * there any validity dependences (left)?
2684 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
2686 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
2687 return 0;
2689 return has_validity_edges(graph);
2692 /* Compute a schedule for a connected dependence graph using Feautrier's
2693 * multi-dimensional scheduling algorithm.
2694 * The original algorithm is described in [1].
2695 * The main idea is to minimize the number of scheduling dimensions, by
2696 * trying to satisfy as many dependences as possible per scheduling dimension.
2698 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
2699 * Problem, Part II: Multi-Dimensional Time.
2700 * In Intl. Journal of Parallel Programming, 1992.
2702 static int compute_schedule_wcc_feautrier(isl_ctx *ctx,
2703 struct isl_sched_graph *graph)
2705 return carry_dependences(ctx, graph);
2708 /* Compute a schedule for a connected dependence graph.
2709 * We try to find a sequence of as many schedule rows as possible that result
2710 * in non-negative dependence distances (independent of the previous rows
2711 * in the sequence, i.e., such that the sequence is tilable).
2712 * If we can't find any more rows we either
2713 * - split between SCCs and start over (assuming we found an interesting
2714 * pair of SCCs between which to split)
2715 * - continue with the next band (assuming the current band has at least
2716 * one row)
2717 * - try to carry as many dependences as possible and continue with the next
2718 * band
2720 * If Feautrier's algorithm is selected, we first recursively try to satisfy
2721 * as many validity dependences as possible. When all validity dependences
2722 * are satisfied we extend the schedule to a full-dimensional schedule.
2724 * If we manage to complete the schedule, we finish off by topologically
2725 * sorting the statements based on the remaining dependences.
2727 * If ctx->opt->schedule_outer_zero_distance is set, then we force the
2728 * outermost dimension in the current band to be zero distance. If this
2729 * turns out to be impossible, we fall back on the general scheme above
2730 * and try to carry as many dependences as possible.
2732 static int compute_schedule_wcc(isl_ctx *ctx, struct isl_sched_graph *graph)
2734 int force_zero = 0;
2736 if (detect_sccs(ctx, graph) < 0)
2737 return -1;
2738 if (sort_sccs(graph) < 0)
2739 return -1;
2741 if (compute_maxvar(graph) < 0)
2742 return -1;
2744 if (need_feautrier_step(ctx, graph))
2745 return compute_schedule_wcc_feautrier(ctx, graph);
2747 if (ctx->opt->schedule_outer_zero_distance)
2748 force_zero = 1;
2750 while (graph->n_row < graph->maxvar) {
2751 isl_vec *sol;
2753 graph->src_scc = -1;
2754 graph->dst_scc = -1;
2756 if (setup_lp(ctx, graph, force_zero) < 0)
2757 return -1;
2758 sol = solve_lp(graph);
2759 if (!sol)
2760 return -1;
2761 if (sol->size == 0) {
2762 isl_vec_free(sol);
2763 if (!ctx->opt->schedule_maximize_band_depth &&
2764 graph->n_total_row > graph->band_start)
2765 return compute_next_band(ctx, graph);
2766 if (graph->src_scc >= 0)
2767 return compute_split_schedule(ctx, graph);
2768 if (graph->n_total_row > graph->band_start)
2769 return compute_next_band(ctx, graph);
2770 return carry_dependences(ctx, graph);
2772 if (update_schedule(graph, sol, 1, 1) < 0)
2773 return -1;
2774 force_zero = 0;
2777 if (graph->n_total_row > graph->band_start)
2778 next_band(graph);
2779 return sort_statements(ctx, graph);
2782 /* Add a row to the schedules that separates the SCCs and move
2783 * to the next band.
2785 static int split_on_scc(isl_ctx *ctx, struct isl_sched_graph *graph)
2787 int i;
2789 if (graph->n_total_row >= graph->max_row)
2790 isl_die(ctx, isl_error_internal,
2791 "too many schedule rows", return -1);
2793 for (i = 0; i < graph->n; ++i) {
2794 struct isl_sched_node *node = &graph->node[i];
2795 int row = isl_mat_rows(node->sched);
2797 isl_map_free(node->sched_map);
2798 node->sched_map = NULL;
2799 node->sched = isl_mat_add_zero_rows(node->sched, 1);
2800 node->sched = isl_mat_set_element_si(node->sched, row, 0,
2801 node->scc);
2802 if (!node->sched)
2803 return -1;
2804 node->band[graph->n_total_row] = graph->n_band;
2807 graph->n_total_row++;
2808 next_band(graph);
2810 return 0;
2813 /* Compute a schedule for each component (identified by node->scc)
2814 * of the dependence graph separately and then combine the results.
2815 * Depending on the setting of schedule_fuse, a component may be
2816 * either weakly or strongly connected.
2818 * The band_id is adjusted such that each component has a separate id.
2819 * Note that the band_id may have already been set to a value different
2820 * from zero by compute_split_schedule.
2822 static int compute_component_schedule(isl_ctx *ctx,
2823 struct isl_sched_graph *graph)
2825 int wcc, i;
2826 int n, n_edge;
2827 int n_total_row, orig_total_row;
2828 int n_band, orig_band;
2830 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN ||
2831 ctx->opt->schedule_separate_components)
2832 if (split_on_scc(ctx, graph) < 0)
2833 return -1;
2835 n_total_row = 0;
2836 orig_total_row = graph->n_total_row;
2837 n_band = 0;
2838 orig_band = graph->n_band;
2839 for (i = 0; i < graph->n; ++i)
2840 graph->node[i].band_id[graph->n_band] += graph->node[i].scc;
2841 for (wcc = 0; wcc < graph->scc; ++wcc) {
2842 n = 0;
2843 for (i = 0; i < graph->n; ++i)
2844 if (graph->node[i].scc == wcc)
2845 n++;
2846 n_edge = 0;
2847 for (i = 0; i < graph->n_edge; ++i)
2848 if (graph->edge[i].src->scc == wcc &&
2849 graph->edge[i].dst->scc == wcc)
2850 n_edge++;
2852 if (compute_sub_schedule(ctx, graph, n, n_edge,
2853 &node_scc_exactly,
2854 &edge_scc_exactly, wcc, 1) < 0)
2855 return -1;
2856 if (graph->n_total_row > n_total_row)
2857 n_total_row = graph->n_total_row;
2858 graph->n_total_row = orig_total_row;
2859 if (graph->n_band > n_band)
2860 n_band = graph->n_band;
2861 graph->n_band = orig_band;
2864 graph->n_total_row = n_total_row;
2865 graph->n_band = n_band;
2867 return pad_schedule(graph);
2870 /* Compute a schedule for the given dependence graph.
2871 * We first check if the graph is connected (through validity dependences)
2872 * and, if not, compute a schedule for each component separately.
2873 * If schedule_fuse is set to minimal fusion, then we check for strongly
2874 * connected components instead and compute a separate schedule for
2875 * each such strongly connected component.
2877 static int compute_schedule(isl_ctx *ctx, struct isl_sched_graph *graph)
2879 if (ctx->opt->schedule_fuse == ISL_SCHEDULE_FUSE_MIN) {
2880 if (detect_sccs(ctx, graph) < 0)
2881 return -1;
2882 } else {
2883 if (detect_wccs(ctx, graph) < 0)
2884 return -1;
2887 if (graph->scc > 1)
2888 return compute_component_schedule(ctx, graph);
2890 return compute_schedule_wcc(ctx, graph);
2893 /* Compute a schedule for the given union of domains that respects
2894 * all the validity dependences.
2895 * If the default isl scheduling algorithm is used, it tries to minimize
2896 * the dependence distances over the proximity dependences.
2897 * If Feautrier's scheduling algorithm is used, the proximity dependence
2898 * distances are only minimized during the extension to a full-dimensional
2899 * schedule.
2901 __isl_give isl_schedule *isl_union_set_compute_schedule(
2902 __isl_take isl_union_set *domain,
2903 __isl_take isl_union_map *validity,
2904 __isl_take isl_union_map *proximity)
2906 isl_ctx *ctx = isl_union_set_get_ctx(domain);
2907 isl_space *dim;
2908 struct isl_sched_graph graph = { 0 };
2909 isl_schedule *sched;
2910 struct isl_extract_edge_data data;
2912 domain = isl_union_set_align_params(domain,
2913 isl_union_map_get_space(validity));
2914 domain = isl_union_set_align_params(domain,
2915 isl_union_map_get_space(proximity));
2916 dim = isl_union_set_get_space(domain);
2917 validity = isl_union_map_align_params(validity, isl_space_copy(dim));
2918 proximity = isl_union_map_align_params(proximity, dim);
2920 if (!domain)
2921 goto error;
2923 graph.n = isl_union_set_n_set(domain);
2924 if (graph.n == 0)
2925 goto empty;
2926 if (graph_alloc(ctx, &graph, graph.n,
2927 isl_union_map_n_map(validity) + isl_union_map_n_map(proximity)) < 0)
2928 goto error;
2929 if (compute_max_row(&graph, domain) < 0)
2930 goto error;
2931 graph.root = 1;
2932 graph.n = 0;
2933 if (isl_union_set_foreach_set(domain, &extract_node, &graph) < 0)
2934 goto error;
2935 if (graph_init_table(ctx, &graph) < 0)
2936 goto error;
2937 graph.max_edge[isl_edge_validity] = isl_union_map_n_map(validity);
2938 graph.max_edge[isl_edge_proximity] = isl_union_map_n_map(proximity);
2939 if (graph_init_edge_tables(ctx, &graph) < 0)
2940 goto error;
2941 graph.n_edge = 0;
2942 data.graph = &graph;
2943 data.type = isl_edge_validity;
2944 if (isl_union_map_foreach_map(validity, &extract_edge, &data) < 0)
2945 goto error;
2946 data.type = isl_edge_proximity;
2947 if (isl_union_map_foreach_map(proximity, &extract_edge, &data) < 0)
2948 goto error;
2950 if (compute_schedule(ctx, &graph) < 0)
2951 goto error;
2953 empty:
2954 sched = extract_schedule(&graph, isl_union_set_get_space(domain));
2956 graph_free(ctx, &graph);
2957 isl_union_set_free(domain);
2958 isl_union_map_free(validity);
2959 isl_union_map_free(proximity);
2961 return sched;
2962 error:
2963 graph_free(ctx, &graph);
2964 isl_union_set_free(domain);
2965 isl_union_map_free(validity);
2966 isl_union_map_free(proximity);
2967 return NULL;
2970 void *isl_schedule_free(__isl_take isl_schedule *sched)
2972 int i;
2973 if (!sched)
2974 return NULL;
2976 if (--sched->ref > 0)
2977 return NULL;
2979 for (i = 0; i < sched->n; ++i) {
2980 isl_multi_aff_free(sched->node[i].sched);
2981 free(sched->node[i].band_end);
2982 free(sched->node[i].band_id);
2983 free(sched->node[i].zero);
2985 isl_space_free(sched->dim);
2986 isl_band_list_free(sched->band_forest);
2987 free(sched);
2988 return NULL;
2991 isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule)
2993 return schedule ? isl_space_get_ctx(schedule->dim) : NULL;
2996 /* Set max_out to the maximal number of output dimensions over
2997 * all maps.
2999 static int update_max_out(__isl_take isl_map *map, void *user)
3001 int *max_out = user;
3002 int n_out = isl_map_dim(map, isl_dim_out);
3004 if (n_out > *max_out)
3005 *max_out = n_out;
3007 isl_map_free(map);
3008 return 0;
3011 /* Internal data structure for map_pad_range.
3013 * "max_out" is the maximal schedule dimension.
3014 * "res" collects the results.
3016 struct isl_pad_schedule_map_data {
3017 int max_out;
3018 isl_union_map *res;
3021 /* Pad the range of the given map with zeros to data->max_out and
3022 * then add the result to data->res.
3024 static int map_pad_range(__isl_take isl_map *map, void *user)
3026 struct isl_pad_schedule_map_data *data = user;
3027 int i;
3028 int n_out = isl_map_dim(map, isl_dim_out);
3030 map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out);
3031 for (i = n_out; i < data->max_out; ++i)
3032 map = isl_map_fix_si(map, isl_dim_out, i, 0);
3034 data->res = isl_union_map_add_map(data->res, map);
3035 if (!data->res)
3036 return -1;
3038 return 0;
3041 /* Pad the ranges of the maps in the union map with zeros such they all have
3042 * the same dimension.
3044 static __isl_give isl_union_map *pad_schedule_map(
3045 __isl_take isl_union_map *umap)
3047 struct isl_pad_schedule_map_data data;
3049 if (!umap)
3050 return NULL;
3051 if (isl_union_map_n_map(umap) <= 1)
3052 return umap;
3054 data.max_out = 0;
3055 if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0)
3056 return isl_union_map_free(umap);
3058 data.res = isl_union_map_empty(isl_union_map_get_space(umap));
3059 if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0)
3060 data.res = isl_union_map_free(data.res);
3062 isl_union_map_free(umap);
3063 return data.res;
3066 /* Return an isl_union_map of the schedule. If we have already constructed
3067 * a band forest, then this band forest may have been modified so we need
3068 * to extract the isl_union_map from the forest rather than from
3069 * the originally computed schedule. This reconstructed schedule map
3070 * then needs to be padded with zeros to unify the schedule space
3071 * since the result of isl_band_list_get_suffix_schedule may not have
3072 * a unified schedule space.
3074 __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched)
3076 int i;
3077 isl_union_map *umap;
3079 if (!sched)
3080 return NULL;
3082 if (sched->band_forest) {
3083 umap = isl_band_list_get_suffix_schedule(sched->band_forest);
3084 return pad_schedule_map(umap);
3087 umap = isl_union_map_empty(isl_space_copy(sched->dim));
3088 for (i = 0; i < sched->n; ++i) {
3089 isl_multi_aff *ma;
3091 ma = isl_multi_aff_copy(sched->node[i].sched);
3092 umap = isl_union_map_add_map(umap, isl_map_from_multi_aff(ma));
3095 return umap;
3098 static __isl_give isl_band_list *construct_band_list(
3099 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3100 int band_nr, int *parent_active, int n_active);
3102 /* Construct an isl_band structure for the band in the given schedule
3103 * with sequence number band_nr for the n_active nodes marked by active.
3104 * If the nodes don't have a band with the given sequence number,
3105 * then a band without members is created.
3107 * Because of the way the schedule is constructed, we know that
3108 * the position of the band inside the schedule of a node is the same
3109 * for all active nodes.
3111 * The partial schedule for the band is created before the children
3112 * are created to that construct_band_list can refer to the partial
3113 * schedule of the parent.
3115 static __isl_give isl_band *construct_band(__isl_keep isl_schedule *schedule,
3116 __isl_keep isl_band *parent,
3117 int band_nr, int *active, int n_active)
3119 int i, j;
3120 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3121 isl_band *band;
3122 unsigned start, end;
3124 band = isl_band_alloc(ctx);
3125 if (!band)
3126 return NULL;
3128 band->schedule = schedule;
3129 band->parent = parent;
3131 for (i = 0; i < schedule->n; ++i)
3132 if (active[i])
3133 break;
3135 if (i >= schedule->n)
3136 isl_die(ctx, isl_error_internal,
3137 "band without active statements", goto error);
3139 start = band_nr ? schedule->node[i].band_end[band_nr - 1] : 0;
3140 end = band_nr < schedule->node[i].n_band ?
3141 schedule->node[i].band_end[band_nr] : start;
3142 band->n = end - start;
3144 band->zero = isl_alloc_array(ctx, int, band->n);
3145 if (band->n && !band->zero)
3146 goto error;
3148 for (j = 0; j < band->n; ++j)
3149 band->zero[j] = schedule->node[i].zero[start + j];
3151 band->pma = isl_union_pw_multi_aff_empty(isl_space_copy(schedule->dim));
3152 for (i = 0; i < schedule->n; ++i) {
3153 isl_multi_aff *ma;
3154 isl_pw_multi_aff *pma;
3155 unsigned n_out;
3157 if (!active[i])
3158 continue;
3160 ma = isl_multi_aff_copy(schedule->node[i].sched);
3161 n_out = isl_multi_aff_dim(ma, isl_dim_out);
3162 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, end, n_out - end);
3163 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, start);
3164 pma = isl_pw_multi_aff_from_multi_aff(ma);
3165 band->pma = isl_union_pw_multi_aff_add_pw_multi_aff(band->pma,
3166 pma);
3168 if (!band->pma)
3169 goto error;
3171 for (i = 0; i < schedule->n; ++i)
3172 if (active[i] && schedule->node[i].n_band > band_nr + 1)
3173 break;
3175 if (i < schedule->n) {
3176 band->children = construct_band_list(schedule, band,
3177 band_nr + 1, active, n_active);
3178 if (!band->children)
3179 goto error;
3182 return band;
3183 error:
3184 isl_band_free(band);
3185 return NULL;
3188 /* Internal data structure used inside cmp_band and pw_multi_aff_extract_int.
3190 * r is set to a negative value if anything goes wrong.
3192 * c1 stores the result of extract_int.
3193 * c2 is a temporary value used inside cmp_band_in_ancestor.
3194 * t is a temporary value used inside extract_int.
3196 * first and equal are used inside extract_int.
3197 * first is set if we are looking at the first isl_multi_aff inside
3198 * the isl_union_pw_multi_aff.
3199 * equal is set if all the isl_multi_affs have been equal so far.
3201 struct isl_cmp_band_data {
3202 int r;
3204 int first;
3205 int equal;
3207 isl_int t;
3208 isl_int c1;
3209 isl_int c2;
3212 /* Check if "ma" assigns a constant value.
3213 * Note that this function is only called on isl_multi_affs
3214 * with a single output dimension.
3216 * If "ma" assigns a constant value then we compare it to data->c1
3217 * or assign it to data->c1 if this is the first isl_multi_aff we consider.
3218 * If "ma" does not assign a constant value or if it assigns a value
3219 * that is different from data->c1, then we set data->equal to zero
3220 * and terminate the check.
3222 static int multi_aff_extract_int(__isl_take isl_set *set,
3223 __isl_take isl_multi_aff *ma, void *user)
3225 isl_aff *aff;
3226 struct isl_cmp_band_data *data = user;
3228 aff = isl_multi_aff_get_aff(ma, 0);
3229 data->r = isl_aff_is_cst(aff);
3230 if (data->r >= 0 && data->r) {
3231 isl_aff_get_constant(aff, &data->t);
3232 if (data->first) {
3233 isl_int_set(data->c1, data->t);
3234 data->first = 0;
3235 } else if (!isl_int_eq(data->c1, data->t))
3236 data->equal = 0;
3237 } else if (data->r >= 0 && !data->r)
3238 data->equal = 0;
3240 isl_aff_free(aff);
3241 isl_set_free(set);
3242 isl_multi_aff_free(ma);
3244 if (data->r < 0)
3245 return -1;
3246 if (!data->equal)
3247 return -1;
3248 return 0;
3251 /* This function is called for each isl_pw_multi_aff in
3252 * the isl_union_pw_multi_aff checked by extract_int.
3253 * Check all the isl_multi_affs inside "pma".
3255 static int pw_multi_aff_extract_int(__isl_take isl_pw_multi_aff *pma,
3256 void *user)
3258 int r;
3260 r = isl_pw_multi_aff_foreach_piece(pma, &multi_aff_extract_int, user);
3261 isl_pw_multi_aff_free(pma);
3263 return r;
3266 /* Check if "upma" assigns a single constant value to its domain.
3267 * If so, return 1 and store the result in data->c1.
3268 * If not, return 0.
3270 * A negative return value from isl_union_pw_multi_aff_foreach_pw_multi_aff
3271 * means that either an error occurred or that we have broken off the check
3272 * because we already know the result is going to be negative.
3273 * In the latter case, data->equal is set to zero.
3275 static int extract_int(__isl_keep isl_union_pw_multi_aff *upma,
3276 struct isl_cmp_band_data *data)
3278 data->first = 1;
3279 data->equal = 1;
3281 if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma,
3282 &pw_multi_aff_extract_int, data) < 0) {
3283 if (!data->equal)
3284 return 0;
3285 return -1;
3288 return !data->first && data->equal;
3291 /* Compare "b1" and "b2" based on the parent schedule of their ancestor
3292 * "ancestor".
3294 * If the parent of "ancestor" also has a single member, then we
3295 * first try to compare the two band based on the partial schedule
3296 * of this parent.
3298 * Otherwise, or if the result is inconclusive, we look at the partial schedule
3299 * of "ancestor" itself.
3300 * In particular, we specialize the parent schedule based
3301 * on the domains of the child schedules, check if both assign
3302 * a single constant value and, if so, compare the two constant values.
3303 * If the specialized parent schedules do not assign a constant value,
3304 * then they cannot be used to order the two bands and so in this case
3305 * we return 0.
3307 static int cmp_band_in_ancestor(__isl_keep isl_band *b1,
3308 __isl_keep isl_band *b2, struct isl_cmp_band_data *data,
3309 __isl_keep isl_band *ancestor)
3311 isl_union_pw_multi_aff *upma;
3312 isl_union_set *domain;
3313 int r;
3315 if (data->r < 0)
3316 return 0;
3318 if (ancestor->parent && ancestor->parent->n == 1) {
3319 r = cmp_band_in_ancestor(b1, b2, data, ancestor->parent);
3320 if (data->r < 0)
3321 return 0;
3322 if (r)
3323 return r;
3326 upma = isl_union_pw_multi_aff_copy(b1->pma);
3327 domain = isl_union_pw_multi_aff_domain(upma);
3328 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3329 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3330 r = extract_int(upma, data);
3331 isl_union_pw_multi_aff_free(upma);
3333 if (r < 0)
3334 data->r = -1;
3335 if (r < 0 || !r)
3336 return 0;
3338 isl_int_set(data->c2, data->c1);
3340 upma = isl_union_pw_multi_aff_copy(b2->pma);
3341 domain = isl_union_pw_multi_aff_domain(upma);
3342 upma = isl_union_pw_multi_aff_copy(ancestor->pma);
3343 upma = isl_union_pw_multi_aff_intersect_domain(upma, domain);
3344 r = extract_int(upma, data);
3345 isl_union_pw_multi_aff_free(upma);
3347 if (r < 0)
3348 data->r = -1;
3349 if (r < 0 || !r)
3350 return 0;
3352 return isl_int_cmp(data->c2, data->c1);
3355 /* Compare "a" and "b" based on the parent schedule of their parent.
3357 static int cmp_band(const void *a, const void *b, void *user)
3359 isl_band *b1 = *(isl_band * const *) a;
3360 isl_band *b2 = *(isl_band * const *) b;
3361 struct isl_cmp_band_data *data = user;
3363 return cmp_band_in_ancestor(b1, b2, data, b1->parent);
3366 /* Sort the elements in "list" based on the partial schedules of its parent
3367 * (and ancestors). In particular if the parent assigns constant values
3368 * to the domains of the bands in "list", then the elements are sorted
3369 * according to that order.
3370 * This order should be a more "natural" order for the user, but otherwise
3371 * shouldn't have any effect.
3372 * If we would be constructing an isl_band forest directly in
3373 * isl_union_set_compute_schedule then there wouldn't be any need
3374 * for a reordering, since the children would be added to the list
3375 * in their natural order automatically.
3377 * If there is only one element in the list, then there is no need to sort
3378 * anything.
3379 * If the partial schedule of the parent has more than one member
3380 * (or if there is no parent), then it's
3381 * defnitely not assigning constant values to the different children in
3382 * the list and so we wouldn't be able to use it to sort the list.
3384 static __isl_give isl_band_list *sort_band_list(__isl_take isl_band_list *list,
3385 __isl_keep isl_band *parent)
3387 struct isl_cmp_band_data data;
3389 if (!list)
3390 return NULL;
3391 if (list->n <= 1)
3392 return list;
3393 if (!parent || parent->n != 1)
3394 return list;
3396 data.r = 0;
3397 isl_int_init(data.c1);
3398 isl_int_init(data.c2);
3399 isl_int_init(data.t);
3400 isl_sort(list->p, list->n, sizeof(list->p[0]), &cmp_band, &data);
3401 if (data.r < 0)
3402 list = isl_band_list_free(list);
3403 isl_int_clear(data.c1);
3404 isl_int_clear(data.c2);
3405 isl_int_clear(data.t);
3407 return list;
3410 /* Construct a list of bands that start at the same position (with
3411 * sequence number band_nr) in the schedules of the nodes that
3412 * were active in the parent band.
3414 * A separate isl_band structure is created for each band_id
3415 * and for each node that does not have a band with sequence
3416 * number band_nr. In the latter case, a band without members
3417 * is created.
3418 * This ensures that if a band has any children, then each node
3419 * that was active in the band is active in exactly one of the children.
3421 static __isl_give isl_band_list *construct_band_list(
3422 __isl_keep isl_schedule *schedule, __isl_keep isl_band *parent,
3423 int band_nr, int *parent_active, int n_active)
3425 int i, j;
3426 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3427 int *active;
3428 int n_band;
3429 isl_band_list *list;
3431 n_band = 0;
3432 for (i = 0; i < n_active; ++i) {
3433 for (j = 0; j < schedule->n; ++j) {
3434 if (!parent_active[j])
3435 continue;
3436 if (schedule->node[j].n_band <= band_nr)
3437 continue;
3438 if (schedule->node[j].band_id[band_nr] == i) {
3439 n_band++;
3440 break;
3444 for (j = 0; j < schedule->n; ++j)
3445 if (schedule->node[j].n_band <= band_nr)
3446 n_band++;
3448 if (n_band == 1) {
3449 isl_band *band;
3450 list = isl_band_list_alloc(ctx, n_band);
3451 band = construct_band(schedule, parent, band_nr,
3452 parent_active, n_active);
3453 return isl_band_list_add(list, band);
3456 active = isl_alloc_array(ctx, int, schedule->n);
3457 if (schedule->n && !active)
3458 return NULL;
3460 list = isl_band_list_alloc(ctx, n_band);
3462 for (i = 0; i < n_active; ++i) {
3463 int n = 0;
3464 isl_band *band;
3466 for (j = 0; j < schedule->n; ++j) {
3467 active[j] = parent_active[j] &&
3468 schedule->node[j].n_band > band_nr &&
3469 schedule->node[j].band_id[band_nr] == i;
3470 if (active[j])
3471 n++;
3473 if (n == 0)
3474 continue;
3476 band = construct_band(schedule, parent, band_nr, active, n);
3478 list = isl_band_list_add(list, band);
3480 for (i = 0; i < schedule->n; ++i) {
3481 isl_band *band;
3482 if (!parent_active[i])
3483 continue;
3484 if (schedule->node[i].n_band > band_nr)
3485 continue;
3486 for (j = 0; j < schedule->n; ++j)
3487 active[j] = j == i;
3488 band = construct_band(schedule, parent, band_nr, active, 1);
3489 list = isl_band_list_add(list, band);
3492 free(active);
3494 list = sort_band_list(list, parent);
3496 return list;
3499 /* Construct a band forest representation of the schedule and
3500 * return the list of roots.
3502 static __isl_give isl_band_list *construct_forest(
3503 __isl_keep isl_schedule *schedule)
3505 int i;
3506 isl_ctx *ctx = isl_schedule_get_ctx(schedule);
3507 isl_band_list *forest;
3508 int *active;
3510 active = isl_alloc_array(ctx, int, schedule->n);
3511 if (schedule->n && !active)
3512 return NULL;
3514 for (i = 0; i < schedule->n; ++i)
3515 active[i] = 1;
3517 forest = construct_band_list(schedule, NULL, 0, active, schedule->n);
3519 free(active);
3521 return forest;
3524 /* Return the roots of a band forest representation of the schedule.
3526 __isl_give isl_band_list *isl_schedule_get_band_forest(
3527 __isl_keep isl_schedule *schedule)
3529 if (!schedule)
3530 return NULL;
3531 if (!schedule->band_forest)
3532 schedule->band_forest = construct_forest(schedule);
3533 return isl_band_list_dup(schedule->band_forest);
3536 /* Call "fn" on each band in the schedule in depth-first post-order.
3538 int isl_schedule_foreach_band(__isl_keep isl_schedule *sched,
3539 int (*fn)(__isl_keep isl_band *band, void *user), void *user)
3541 int r;
3542 isl_band_list *forest;
3544 if (!sched)
3545 return -1;
3547 forest = isl_schedule_get_band_forest(sched);
3548 r = isl_band_list_foreach_band(forest, fn, user);
3549 isl_band_list_free(forest);
3551 return r;
3554 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3555 __isl_keep isl_band_list *list);
3557 static __isl_give isl_printer *print_band(__isl_take isl_printer *p,
3558 __isl_keep isl_band *band)
3560 isl_band_list *children;
3562 p = isl_printer_start_line(p);
3563 p = isl_printer_print_union_pw_multi_aff(p, band->pma);
3564 p = isl_printer_end_line(p);
3566 if (!isl_band_has_children(band))
3567 return p;
3569 children = isl_band_get_children(band);
3571 p = isl_printer_indent(p, 4);
3572 p = print_band_list(p, children);
3573 p = isl_printer_indent(p, -4);
3575 isl_band_list_free(children);
3577 return p;
3580 static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p,
3581 __isl_keep isl_band_list *list)
3583 int i, n;
3585 n = isl_band_list_n_band(list);
3586 for (i = 0; i < n; ++i) {
3587 isl_band *band;
3588 band = isl_band_list_get_band(list, i);
3589 p = print_band(p, band);
3590 isl_band_free(band);
3593 return p;
3596 __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p,
3597 __isl_keep isl_schedule *schedule)
3599 isl_band_list *forest;
3601 forest = isl_schedule_get_band_forest(schedule);
3603 p = print_band_list(p, forest);
3605 isl_band_list_free(forest);
3607 return p;
3610 void isl_schedule_dump(__isl_keep isl_schedule *schedule)
3612 isl_printer *printer;
3614 if (!schedule)
3615 return;
3617 printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr);
3618 printer = isl_printer_print_schedule(printer, schedule);
3620 isl_printer_free(printer);