add isl_ast_expr_from_val
[isl.git] / isl_ast_codegen.c
blob5806c663b6bbfcaab93cd887bd2dc83a91d9a565
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <limits.h>
11 #include <isl/aff.h>
12 #include <isl/set.h>
13 #include <isl/ilp.h>
14 #include <isl/union_map.h>
15 #include <isl_sort.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
22 /* Add the constraint to the list that "user" points to, if it is not
23 * a div constraint.
25 static int collect_constraint(__isl_take isl_constraint *constraint,
26 void *user)
28 isl_constraint_list **list = user;
30 if (isl_constraint_is_div_constraint(constraint))
31 isl_constraint_free(constraint);
32 else
33 *list = isl_constraint_list_add(*list, constraint);
35 return 0;
38 /* Extract the constraints of "bset" (except the div constraints)
39 * and collect them in an isl_constraint_list.
41 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
42 __isl_take isl_basic_set *bset)
44 int n;
45 isl_ctx *ctx;
46 isl_constraint_list *list;
48 if (!bset)
49 return NULL;
51 ctx = isl_basic_set_get_ctx(bset);
53 n = isl_basic_set_n_constraint(bset);
54 list = isl_constraint_list_alloc(ctx, n);
55 if (isl_basic_set_foreach_constraint(bset,
56 &collect_constraint, &list) < 0)
57 list = isl_constraint_list_free(list);
59 isl_basic_set_free(bset);
60 return list;
63 /* Data used in generate_domain.
65 * "build" is the input build.
66 * "list" collects the results.
68 struct isl_generate_domain_data {
69 isl_ast_build *build;
71 isl_ast_graft_list *list;
74 static __isl_give isl_ast_graft_list *generate_next_level(
75 __isl_take isl_union_map *executed,
76 __isl_take isl_ast_build *build);
77 static __isl_give isl_ast_graft_list *generate_code(
78 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
79 int internal);
81 /* Generate an AST for a single domain based on
82 * the (non single valued) inverse schedule "executed".
84 * We extend the schedule with the iteration domain
85 * and continue generating through a call to generate_code.
87 * In particular, if executed has the form
89 * S -> D
91 * then we continue generating code on
93 * [S -> D] -> D
95 * The extended inverse schedule is clearly single valued
96 * ensuring that the nested generate_code will not reach this function,
97 * but will instead create calls to all elements of D that need
98 * to be executed from the current schedule domain.
100 static int generate_non_single_valued(__isl_take isl_map *executed,
101 struct isl_generate_domain_data *data)
103 isl_map *identity;
104 isl_ast_build *build;
105 isl_ast_graft_list *list;
107 build = isl_ast_build_copy(data->build);
109 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
110 executed = isl_map_domain_product(executed, identity);
111 build = isl_ast_build_set_single_valued(build, 1);
113 list = generate_code(isl_union_map_from_map(executed), build, 1);
115 data->list = isl_ast_graft_list_concat(data->list, list);
117 return 0;
120 /* Call the at_each_domain callback, if requested by the user,
121 * after recording the current inverse schedule in the build.
123 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
124 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
126 if (!graft || !build)
127 return isl_ast_graft_free(graft);
128 if (!build->at_each_domain)
129 return graft;
131 build = isl_ast_build_copy(build);
132 build = isl_ast_build_set_executed(build,
133 isl_union_map_from_map(isl_map_copy(executed)));
134 if (!build)
135 return isl_ast_graft_free(graft);
137 graft->node = build->at_each_domain(graft->node,
138 build, build->at_each_domain_user);
139 isl_ast_build_free(build);
141 if (!graft->node)
142 graft = isl_ast_graft_free(graft);
144 return graft;
147 /* Generate an AST for a single domain based on
148 * the inverse schedule "executed".
150 * If there is more than one domain element associated to the current
151 * schedule "time", then we need to continue the generation process
152 * in generate_non_single_valued.
153 * Note that the inverse schedule being single-valued may depend
154 * on constraints that are only available in the original context
155 * domain specified by the user. We therefore first introduce
156 * the constraints from data->build->domain.
157 * On the other hand, we only perform the test after having taken the gist
158 * of the domain as the resulting map is the one from which the call
159 * expression is constructed. Using this map to construct the call
160 * expression usually yields simpler results.
161 * Because we perform the single-valuedness test on the gisted map,
162 * we may in rare cases fail to recognize that the inverse schedule
163 * is single-valued. This becomes problematic if this happens
164 * from the recursive call through generate_non_single_valued
165 * as we would then end up in an infinite recursion.
166 * We therefore check if we are inside a call to generate_non_single_valued
167 * and revert to the ungisted map if the gisted map turns out not to be
168 * single-valued.
170 * Otherwise, we generate a call expression for the single executed
171 * domain element and put a guard around it based on the (simplified)
172 * domain of "executed".
174 * If the user has set an at_each_domain callback, it is called
175 * on the constructed call expression node.
177 static int generate_domain(__isl_take isl_map *executed, void *user)
179 struct isl_generate_domain_data *data = user;
180 isl_ast_graft *graft;
181 isl_ast_graft_list *list;
182 isl_set *guard;
183 isl_map *map;
184 int sv;
186 executed = isl_map_intersect_domain(executed,
187 isl_set_copy(data->build->domain));
189 executed = isl_map_coalesce(executed);
190 map = isl_map_copy(executed);
191 map = isl_ast_build_compute_gist_map_domain(data->build, map);
192 sv = isl_map_is_single_valued(map);
193 if (sv < 0)
194 goto error;
195 if (!sv) {
196 isl_map_free(map);
197 if (data->build->single_valued)
198 map = isl_map_copy(executed);
199 else
200 return generate_non_single_valued(executed, data);
202 guard = isl_map_domain(isl_map_copy(map));
203 guard = isl_set_coalesce(guard);
204 guard = isl_ast_build_compute_gist(data->build, guard);
205 graft = isl_ast_graft_alloc_domain(map, data->build);
206 graft = at_each_domain(graft, executed, data->build);
208 isl_map_free(executed);
209 graft = isl_ast_graft_add_guard(graft, guard, data->build);
211 list = isl_ast_graft_list_from_ast_graft(graft);
212 data->list = isl_ast_graft_list_concat(data->list, list);
214 return 0;
215 error:
216 isl_map_free(map);
217 isl_map_free(executed);
218 return -1;
221 /* Call build->create_leaf to a create "leaf" node in the AST,
222 * encapsulate the result in an isl_ast_graft and return the result
223 * as a 1-element list.
225 * Note that the node returned by the user may be an entire tree.
227 * Before we pass control to the user, we first clear some information
228 * from the build that is (presumbably) only meaningful
229 * for the current code generation.
230 * This includes the create_leaf callback itself, so we make a copy
231 * of the build first.
233 static __isl_give isl_ast_graft_list *call_create_leaf(
234 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
236 isl_ast_node *node;
237 isl_ast_graft *graft;
238 isl_ast_build *user_build;
240 user_build = isl_ast_build_copy(build);
241 user_build = isl_ast_build_set_executed(user_build, executed);
242 user_build = isl_ast_build_clear_local_info(user_build);
243 if (!user_build)
244 node = NULL;
245 else
246 node = build->create_leaf(user_build, build->create_leaf_user);
247 graft = isl_ast_graft_alloc(node, build);
248 isl_ast_build_free(build);
249 return isl_ast_graft_list_from_ast_graft(graft);
252 /* Generate an AST after having handled the complete schedule
253 * of this call to the code generator.
255 * If the user has specified a create_leaf callback, control
256 * is passed to the user in call_create_leaf.
258 * Otherwise, we generate one or more calls for each individual
259 * domain in generate_domain.
261 static __isl_give isl_ast_graft_list *generate_inner_level(
262 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
264 isl_ctx *ctx;
265 struct isl_generate_domain_data data = { build };
267 if (!build || !executed)
268 goto error;
270 if (build->create_leaf)
271 return call_create_leaf(executed, build);
273 ctx = isl_union_map_get_ctx(executed);
274 data.list = isl_ast_graft_list_alloc(ctx, 0);
275 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
276 data.list = isl_ast_graft_list_free(data.list);
278 if (0)
279 error: data.list = NULL;
280 isl_ast_build_free(build);
281 isl_union_map_free(executed);
282 return data.list;
285 /* Call the before_each_for callback, if requested by the user.
287 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
288 __isl_keep isl_ast_build *build)
290 isl_id *id;
292 if (!node || !build)
293 return isl_ast_node_free(node);
294 if (!build->before_each_for)
295 return node;
296 id = build->before_each_for(build, build->before_each_for_user);
297 node = isl_ast_node_set_annotation(node, id);
298 return node;
301 /* Call the after_each_for callback, if requested by the user.
303 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
304 __isl_keep isl_ast_build *build)
306 if (!graft || !build)
307 return isl_ast_graft_free(graft);
308 if (!build->after_each_for)
309 return graft;
310 graft->node = build->after_each_for(graft->node, build,
311 build->after_each_for_user);
312 if (!graft->node)
313 return isl_ast_graft_free(graft);
314 return graft;
317 /* Plug in all the know values of the current and outer dimensions
318 * in the domain of "executed". In principle, we only need to plug
319 * in the known value of the current dimension since the values of
320 * outer dimensions have been plugged in already.
321 * However, it turns out to be easier to just plug in all known values.
323 static __isl_give isl_union_map *plug_in_values(
324 __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build)
326 return isl_ast_build_substitute_values_union_map_domain(build,
327 executed);
330 /* Check if the constraint "c" is a lower bound on dimension "pos",
331 * an upper bound, or independent of dimension "pos".
333 static int constraint_type(isl_constraint *c, int pos)
335 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
336 return 1;
337 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
338 return 2;
339 return 0;
342 /* Compare the types of the constraints "a" and "b",
343 * resulting in constraints that are independent of "depth"
344 * to be sorted before the lower bounds on "depth", which in
345 * turn are sorted before the upper bounds on "depth".
347 static int cmp_constraint(__isl_keep isl_constraint *a,
348 __isl_keep isl_constraint *b, void *user)
350 int *depth = user;
351 int t1 = constraint_type(a, *depth);
352 int t2 = constraint_type(b, *depth);
354 return t1 - t2;
357 /* Extract a lower bound on dimension "pos" from constraint "c".
359 * If the constraint is of the form
361 * a x + f(...) >= 0
363 * then we essentially return
365 * l = ceil(-f(...)/a)
367 * However, if the current dimension is strided, then we need to make
368 * sure that the lower bound we construct is of the form
370 * f + s a
372 * with f the offset and s the stride.
373 * We therefore compute
375 * f + s * ceil((l - f)/s)
377 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
378 int pos, __isl_keep isl_ast_build *build)
380 isl_aff *aff;
382 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
383 aff = isl_aff_ceil(aff);
385 if (isl_ast_build_has_stride(build, pos)) {
386 isl_aff *offset;
387 isl_int stride;
389 isl_int_init(stride);
391 offset = isl_ast_build_get_offset(build, pos);
392 isl_ast_build_get_stride(build, pos, &stride);
394 aff = isl_aff_sub(aff, isl_aff_copy(offset));
395 aff = isl_aff_scale_down(aff, stride);
396 aff = isl_aff_ceil(aff);
397 aff = isl_aff_scale(aff, stride);
398 aff = isl_aff_add(aff, offset);
400 isl_int_clear(stride);
403 aff = isl_ast_build_compute_gist_aff(build, aff);
405 return aff;
408 /* Return the exact lower bound (or upper bound if "upper" is set)
409 * of "domain" as a piecewise affine expression.
411 * If we are computing a lower bound (of a strided dimension), then
412 * we need to make sure it is of the form
414 * f + s a
416 * where f is the offset and s is the stride.
417 * We therefore need to include the stride constraint before computing
418 * the minimum.
420 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
421 __isl_keep isl_ast_build *build, int upper)
423 isl_set *stride;
424 isl_map *it_map;
425 isl_pw_aff *pa;
426 isl_pw_multi_aff *pma;
428 domain = isl_set_copy(domain);
429 if (!upper) {
430 stride = isl_ast_build_get_stride_constraint(build);
431 domain = isl_set_intersect(domain, stride);
433 it_map = isl_ast_build_map_to_iterator(build, domain);
434 if (upper)
435 pma = isl_map_lexmax_pw_multi_aff(it_map);
436 else
437 pma = isl_map_lexmin_pw_multi_aff(it_map);
438 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
439 isl_pw_multi_aff_free(pma);
440 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
441 pa = isl_pw_aff_coalesce(pa);
443 return pa;
446 /* Extract a lower bound on dimension "pos" from each constraint
447 * in "constraints" and return the list of lower bounds.
448 * If "constraints" has zero elements, then we extract a lower bound
449 * from "domain" instead.
451 static __isl_give isl_pw_aff_list *lower_bounds(
452 __isl_keep isl_constraint_list *constraints, int pos,
453 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
455 isl_ctx *ctx;
456 isl_pw_aff_list *list;
457 int i, n;
459 if (!build)
460 return NULL;
462 n = isl_constraint_list_n_constraint(constraints);
463 if (n == 0) {
464 isl_pw_aff *pa;
465 pa = exact_bound(domain, build, 0);
466 return isl_pw_aff_list_from_pw_aff(pa);
469 ctx = isl_ast_build_get_ctx(build);
470 list = isl_pw_aff_list_alloc(ctx,n);
472 for (i = 0; i < n; ++i) {
473 isl_aff *aff;
474 isl_constraint *c;
476 c = isl_constraint_list_get_constraint(constraints, i);
477 aff = lower_bound(c, pos, build);
478 isl_constraint_free(c);
479 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
482 return list;
485 /* Extract an upper bound on dimension "pos" from each constraint
486 * in "constraints" and return the list of upper bounds.
487 * If "constraints" has zero elements, then we extract an upper bound
488 * from "domain" instead.
490 static __isl_give isl_pw_aff_list *upper_bounds(
491 __isl_keep isl_constraint_list *constraints, int pos,
492 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
494 isl_ctx *ctx;
495 isl_pw_aff_list *list;
496 int i, n;
498 n = isl_constraint_list_n_constraint(constraints);
499 if (n == 0) {
500 isl_pw_aff *pa;
501 pa = exact_bound(domain, build, 1);
502 return isl_pw_aff_list_from_pw_aff(pa);
505 ctx = isl_ast_build_get_ctx(build);
506 list = isl_pw_aff_list_alloc(ctx,n);
508 for (i = 0; i < n; ++i) {
509 isl_aff *aff;
510 isl_constraint *c;
512 c = isl_constraint_list_get_constraint(constraints, i);
513 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
514 isl_constraint_free(c);
515 aff = isl_aff_floor(aff);
516 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
519 return list;
522 /* Return an isl_ast_expr that performs the reduction of type "type"
523 * on AST expressions corresponding to the elements in "list".
525 * The list is assumed to contain at least one element.
526 * If the list contains exactly one element, then the returned isl_ast_expr
527 * simply computes that affine expression.
529 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
530 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
532 int i, n;
533 isl_ctx *ctx;
534 isl_ast_expr *expr;
536 if (!list)
537 return NULL;
539 n = isl_pw_aff_list_n_pw_aff(list);
541 if (n == 1)
542 return isl_ast_build_expr_from_pw_aff_internal(build,
543 isl_pw_aff_list_get_pw_aff(list, 0));
545 ctx = isl_pw_aff_list_get_ctx(list);
546 expr = isl_ast_expr_alloc_op(ctx, type, n);
547 if (!expr)
548 return NULL;
550 for (i = 0; i < n; ++i) {
551 isl_ast_expr *expr_i;
553 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
554 isl_pw_aff_list_get_pw_aff(list, i));
555 if (!expr_i)
556 return isl_ast_expr_free(expr);
557 expr->u.op.args[i] = expr_i;
560 return expr;
563 /* Add a guard to "graft" based on "bound" in the case of a degenerate
564 * level (including the special case of an eliminated level).
566 * We eliminate the current dimension, simplify the result in the current
567 * build and add the result as guards to the graft.
569 * Note that we cannot simply drop the constraints on the current dimension
570 * even in the eliminated case, because the single affine expression may
571 * not be explicitly available in "bounds". Moreover, the single affine
572 * expression may only be defined on a subset of the build domain,
573 * so we do in some cases need to insert a guard even in the eliminated case.
575 static __isl_give isl_ast_graft *add_degenerate_guard(
576 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
577 __isl_keep isl_ast_build *build)
579 int depth;
580 isl_set *dom;
582 depth = isl_ast_build_get_depth(build);
584 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
585 if (isl_ast_build_has_stride(build, depth)) {
586 isl_set *stride;
588 stride = isl_ast_build_get_stride_constraint(build);
589 dom = isl_set_intersect(dom, stride);
591 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
592 dom = isl_ast_build_compute_gist(build, dom);
594 graft = isl_ast_graft_add_guard(graft, dom, build);
596 return graft;
599 /* Update "graft" based on "bounds" for the eliminated case.
601 * In the eliminated case, no for node is created, so we only need
602 * to check if "bounds" imply any guards that need to be inserted.
604 static __isl_give isl_ast_graft *refine_eliminated(
605 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
606 __isl_keep isl_ast_build *build)
608 return add_degenerate_guard(graft, bounds, build);
611 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
613 * "build" is the build in which graft->node was created
614 * "sub_build" contains information about the current level itself,
615 * including the single value attained.
617 * We first set the initialization part of the for loop to the single
618 * value attained by the current dimension.
619 * The increment and condition are not strictly needed as the are known
620 * to be "1" and "iterator <= value" respectively.
621 * Then we set the size of the iterator and
622 * check if "bounds" imply any guards that need to be inserted.
624 static __isl_give isl_ast_graft *refine_degenerate(
625 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
626 __isl_keep isl_ast_build *build,
627 __isl_keep isl_ast_build *sub_build)
629 isl_pw_aff *value;
631 if (!graft || !sub_build)
632 return isl_ast_graft_free(graft);
634 value = isl_pw_aff_copy(sub_build->value);
636 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
637 value);
638 if (!graft->node->u.f.init)
639 return isl_ast_graft_free(graft);
641 graft = add_degenerate_guard(graft, bounds, build);
643 return graft;
646 /* Return the intersection of constraints in "list" as a set.
648 static __isl_give isl_set *intersect_constraints(
649 __isl_keep isl_constraint_list *list)
651 int i, n;
652 isl_basic_set *bset;
654 n = isl_constraint_list_n_constraint(list);
655 if (n < 1)
656 isl_die(isl_constraint_list_get_ctx(list), isl_error_internal,
657 "expecting at least one constraint", return NULL);
659 bset = isl_basic_set_from_constraint(
660 isl_constraint_list_get_constraint(list, 0));
661 for (i = 1; i < n; ++i) {
662 isl_basic_set *bset_i;
664 bset_i = isl_basic_set_from_constraint(
665 isl_constraint_list_get_constraint(list, i));
666 bset = isl_basic_set_intersect(bset, bset_i);
669 return isl_set_from_basic_set(bset);
672 /* Compute the constraints on the outer dimensions enforced by
673 * graft->node and add those constraints to graft->enforced,
674 * in case the upper bound is expressed as a set "upper".
676 * In particular, if l(...) is a lower bound in "lower", and
678 * -a i + f(...) >= 0 or a i <= f(...)
680 * is an upper bound ocnstraint on the current dimension i,
681 * then the for loop enforces the constraint
683 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
685 * We therefore simply take each lower bound in turn, plug it into
686 * the upper bounds and compute the intersection over all lower bounds.
688 * If a lower bound is a rational expression, then
689 * isl_basic_set_preimage_multi_aff will force this rational
690 * expression to have only integer values. However, the loop
691 * itself does not enforce this integrality constraint. We therefore
692 * use the ceil of the lower bounds instead of the lower bounds themselves.
693 * Other constraints will make sure that the for loop is only executed
694 * when each of the lower bounds attains an integral value.
695 * In particular, potentially rational values only occur in
696 * lower_bound if the offset is a (seemingly) rational expression,
697 * but then outer conditions will make sure that this rational expression
698 * only attains integer values.
700 static __isl_give isl_ast_graft *set_enforced_from_set(
701 __isl_take isl_ast_graft *graft,
702 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
704 isl_space *space;
705 isl_basic_set *enforced;
706 isl_pw_multi_aff *pma;
707 int i, n;
709 if (!graft || !lower)
710 return isl_ast_graft_free(graft);
712 space = isl_set_get_space(upper);
713 enforced = isl_basic_set_universe(isl_space_copy(space));
715 space = isl_space_map_from_set(space);
716 pma = isl_pw_multi_aff_identity(space);
718 n = isl_pw_aff_list_n_pw_aff(lower);
719 for (i = 0; i < n; ++i) {
720 isl_pw_aff *pa;
721 isl_set *enforced_i;
722 isl_basic_set *hull;
723 isl_pw_multi_aff *pma_i;
725 pa = isl_pw_aff_list_get_pw_aff(lower, i);
726 pa = isl_pw_aff_ceil(pa);
727 pma_i = isl_pw_multi_aff_copy(pma);
728 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
729 enforced_i = isl_set_copy(upper);
730 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
731 hull = isl_set_simple_hull(enforced_i);
732 enforced = isl_basic_set_intersect(enforced, hull);
735 isl_pw_multi_aff_free(pma);
737 graft = isl_ast_graft_enforce(graft, enforced);
739 return graft;
742 /* Compute the constraints on the outer dimensions enforced by
743 * graft->node and add those constraints to graft->enforced,
744 * in case the upper bound is expressed as
745 * a list of affine expressions "upper".
747 * The enforced condition is that each lower bound expression is less
748 * than or equal to each upper bound expression.
750 static __isl_give isl_ast_graft *set_enforced_from_list(
751 __isl_take isl_ast_graft *graft,
752 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
754 isl_set *cond;
755 isl_basic_set *enforced;
757 lower = isl_pw_aff_list_copy(lower);
758 upper = isl_pw_aff_list_copy(upper);
759 cond = isl_pw_aff_list_le_set(lower, upper);
760 enforced = isl_set_simple_hull(cond);
761 graft = isl_ast_graft_enforce(graft, enforced);
763 return graft;
766 /* Does "aff" have a negative constant term?
768 static int aff_constant_is_negative(__isl_take isl_set *set,
769 __isl_take isl_aff *aff, void *user)
771 int *neg = user;
772 isl_int v;
774 isl_int_init(v);
775 isl_aff_get_constant(aff, &v);
776 *neg = isl_int_is_neg(v);
777 isl_int_clear(v);
778 isl_set_free(set);
779 isl_aff_free(aff);
781 return *neg ? 0 : -1;
784 /* Does "pa" have a negative constant term over its entire domain?
786 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
788 int r;
789 int *neg = user;
791 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
792 isl_pw_aff_free(pa);
794 return *neg ? 0 : -1;
797 /* Does each element in "list" have a negative constant term?
799 * The callback terminates the iteration as soon an element has been
800 * found that does not have a negative constant term.
802 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
804 int neg = 1;
806 if (isl_pw_aff_list_foreach(list,
807 &pw_aff_constant_is_negative, &neg) < 0 && neg)
808 return -1;
810 return neg;
813 /* Add 1 to each of the elements in "list", where each of these elements
814 * is defined over the internal schedule space of "build".
816 static __isl_give isl_pw_aff_list *list_add_one(
817 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
819 int i, n;
820 isl_space *space;
821 isl_aff *aff;
822 isl_pw_aff *one;
824 space = isl_ast_build_get_space(build, 1);
825 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
826 aff = isl_aff_add_constant_si(aff, 1);
827 one = isl_pw_aff_from_aff(aff);
829 n = isl_pw_aff_list_n_pw_aff(list);
830 for (i = 0; i < n; ++i) {
831 isl_pw_aff *pa;
832 pa = isl_pw_aff_list_get_pw_aff(list, i);
833 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
834 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
837 isl_pw_aff_free(one);
839 return list;
842 /* Set the condition part of the for node graft->node in case
843 * the upper bound is represented as a list of piecewise affine expressions.
845 * In particular, set the condition to
847 * iterator <= min(list of upper bounds)
849 * If each of the upper bounds has a negative constant term, then
850 * set the condition to
852 * iterator < min(list of (upper bound + 1)s)
855 static __isl_give isl_ast_graft *set_for_cond_from_list(
856 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
857 __isl_keep isl_ast_build *build)
859 int neg;
860 isl_ast_expr *bound, *iterator, *cond;
861 enum isl_ast_op_type type = isl_ast_op_le;
863 if (!graft || !list)
864 return isl_ast_graft_free(graft);
866 neg = list_constant_is_negative(list);
867 if (neg < 0)
868 return isl_ast_graft_free(graft);
869 list = isl_pw_aff_list_copy(list);
870 if (neg) {
871 list = list_add_one(list, build);
872 type = isl_ast_op_lt;
875 bound = reduce_list(isl_ast_op_min, list, build);
876 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
877 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
878 graft->node->u.f.cond = cond;
880 isl_pw_aff_list_free(list);
881 if (!graft->node->u.f.cond)
882 return isl_ast_graft_free(graft);
883 return graft;
886 /* Set the condition part of the for node graft->node in case
887 * the upper bound is represented as a set.
889 static __isl_give isl_ast_graft *set_for_cond_from_set(
890 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
891 __isl_keep isl_ast_build *build)
893 isl_ast_expr *cond;
895 if (!graft)
896 return NULL;
898 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
899 graft->node->u.f.cond = cond;
900 if (!graft->node->u.f.cond)
901 return isl_ast_graft_free(graft);
902 return graft;
905 /* Construct an isl_ast_expr for the increment (i.e., stride) of
906 * the current dimension.
908 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
910 int depth;
911 isl_int v;
912 isl_ctx *ctx;
913 isl_ast_expr *inc;
915 if (!build)
916 return NULL;
917 ctx = isl_ast_build_get_ctx(build);
918 depth = isl_ast_build_get_depth(build);
920 if (!isl_ast_build_has_stride(build, depth))
921 return isl_ast_expr_alloc_int_si(ctx, 1);
923 isl_int_init(v);
924 isl_ast_build_get_stride(build, depth, &v);
925 inc = isl_ast_expr_alloc_int(ctx, v);
926 isl_int_clear(v);
928 return inc;
931 /* Should we express the loop condition as
933 * iterator <= min(list of upper bounds)
935 * or as a conjunction of constraints?
937 * The first is constructed from a list of upper bounds.
938 * The second is constructed from a set.
940 * If there are no upper bounds in "constraints", then this could mean
941 * that "domain" simply doesn't have an upper bound or that we didn't
942 * pick any upper bound. In the first case, we want to generate the
943 * loop condition as a(n empty) conjunction of constraints
944 * In the second case, we will compute
945 * a single upper bound from "domain" and so we use the list form.
947 * If there are upper bounds in "constraints",
948 * then we use the list form iff the atomic_upper_bound option is set.
950 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
951 __isl_keep isl_set *domain, int depth)
953 if (n_upper > 0)
954 return isl_options_get_ast_build_atomic_upper_bound(ctx);
955 else
956 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
959 /* Fill in the expressions of the for node in graft->node.
961 * In particular,
962 * - set the initialization part of the loop to the maximum of the lower bounds
963 * - set the size of the iterator based on the values attained by the iterator
964 * - extract the increment from the stride of the current dimension
965 * - construct the for condition either based on a list of upper bounds
966 * or on a set of upper bound constraints.
968 static __isl_give isl_ast_graft *set_for_node_expressions(
969 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
970 int use_list, __isl_keep isl_pw_aff_list *upper_list,
971 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
973 isl_ast_node *node;
975 if (!graft)
976 return NULL;
978 build = isl_ast_build_copy(build);
979 build = isl_ast_build_set_enforced(build,
980 isl_ast_graft_get_enforced(graft));
982 node = graft->node;
983 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
984 node->u.f.inc = for_inc(build);
986 if (use_list)
987 graft = set_for_cond_from_list(graft, upper_list, build);
988 else
989 graft = set_for_cond_from_set(graft, upper_set, build);
991 isl_ast_build_free(build);
993 if (!node->u.f.iterator || !node->u.f.init ||
994 !node->u.f.cond || !node->u.f.inc)
995 return isl_ast_graft_free(graft);
997 return graft;
1000 /* Update "graft" based on "bounds" and "domain" for the generic,
1001 * non-degenerate, case.
1003 * "c_lower" and "c_upper" contain the lower and upper bounds
1004 * that the loop node should express.
1005 * "domain" is the subset of the intersection of the constraints
1006 * for which some code is executed.
1008 * There may be zero lower bounds or zero upper bounds in "constraints"
1009 * in case the list of constraints was created
1010 * based on the atomic option or based on separation with explicit bounds.
1011 * In that case, we use "domain" to derive lower and/or upper bounds.
1013 * We first compute a list of one or more lower bounds.
1015 * Then we decide if we want to express the condition as
1017 * iterator <= min(list of upper bounds)
1019 * or as a conjunction of constraints.
1021 * The set of enforced constraints is then computed either based on
1022 * a list of upper bounds or on a set of upper bound constraints.
1023 * We do not compute any enforced constraints if we were forced
1024 * to compute a lower or upper bound using exact_bound. The domains
1025 * of the resulting expressions may imply some bounds on outer dimensions
1026 * that we do not want to appear in the enforced constraints since
1027 * they are not actually enforced by the corresponding code.
1029 * Finally, we fill in the expressions of the for node.
1031 static __isl_give isl_ast_graft *refine_generic_bounds(
1032 __isl_take isl_ast_graft *graft,
1033 __isl_take isl_constraint_list *c_lower,
1034 __isl_take isl_constraint_list *c_upper,
1035 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1037 int depth;
1038 isl_ctx *ctx;
1039 isl_pw_aff_list *lower;
1040 int use_list;
1041 isl_set *upper_set = NULL;
1042 isl_pw_aff_list *upper_list = NULL;
1043 int n_lower, n_upper;
1045 if (!graft || !c_lower || !c_upper || !build)
1046 goto error;
1048 depth = isl_ast_build_get_depth(build);
1049 ctx = isl_ast_graft_get_ctx(graft);
1051 n_lower = isl_constraint_list_n_constraint(c_lower);
1052 n_upper = isl_constraint_list_n_constraint(c_upper);
1054 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1056 lower = lower_bounds(c_lower, depth, domain, build);
1058 if (use_list)
1059 upper_list = upper_bounds(c_upper, depth, domain, build);
1060 else if (n_upper > 0)
1061 upper_set = intersect_constraints(c_upper);
1062 else
1063 upper_set = isl_set_universe(isl_set_get_space(domain));
1065 if (n_lower == 0 || n_upper == 0)
1067 else if (use_list)
1068 graft = set_enforced_from_list(graft, lower, upper_list);
1069 else
1070 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1072 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1073 upper_set, build);
1075 isl_pw_aff_list_free(lower);
1076 isl_pw_aff_list_free(upper_list);
1077 isl_set_free(upper_set);
1078 isl_constraint_list_free(c_lower);
1079 isl_constraint_list_free(c_upper);
1081 return graft;
1082 error:
1083 isl_constraint_list_free(c_lower);
1084 isl_constraint_list_free(c_upper);
1085 return isl_ast_graft_free(graft);
1088 /* Internal data structure used inside count_constraints to keep
1089 * track of the number of constraints that are independent of dimension "pos",
1090 * the lower bounds in "pos" and the upper bounds in "pos".
1092 struct isl_ast_count_constraints_data {
1093 int pos;
1095 int n_indep;
1096 int n_lower;
1097 int n_upper;
1100 /* Increment data->n_indep, data->lower or data->upper depending
1101 * on whether "c" is independenct of dimensions data->pos,
1102 * a lower bound or an upper bound.
1104 static int count_constraints(__isl_take isl_constraint *c, void *user)
1106 struct isl_ast_count_constraints_data *data = user;
1108 if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos))
1109 data->n_lower++;
1110 else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos))
1111 data->n_upper++;
1112 else
1113 data->n_indep++;
1115 isl_constraint_free(c);
1117 return 0;
1120 /* Update "graft" based on "bounds" and "domain" for the generic,
1121 * non-degenerate, case.
1123 * "list" respresent the list of bounds that need to be encoded by
1124 * the for loop (or a guard around the for loop).
1125 * "domain" is the subset of the intersection of the constraints
1126 * for which some code is executed.
1127 * "build" is the build in which graft->node was created.
1129 * We separate lower bounds, upper bounds and constraints that
1130 * are independent of the loop iterator.
1132 * The actual for loop bounds are generated in refine_generic_bounds.
1133 * If there are any constraints that are independent of the loop iterator,
1134 * we need to put a guard around the for loop (which may get hoisted up
1135 * to higher levels) and we call refine_generic_bounds in a build
1136 * where this guard is enforced.
1138 static __isl_give isl_ast_graft *refine_generic_split(
1139 __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list,
1140 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1142 isl_ast_build *for_build;
1143 isl_set *guard;
1144 struct isl_ast_count_constraints_data data;
1145 isl_constraint_list *lower;
1146 isl_constraint_list *upper;
1148 if (!list)
1149 return isl_ast_graft_free(graft);
1151 data.pos = isl_ast_build_get_depth(build);
1153 list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos);
1154 if (!list)
1155 return isl_ast_graft_free(graft);
1157 data.n_indep = data.n_lower = data.n_upper = 0;
1158 if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) {
1159 isl_constraint_list_free(list);
1160 return isl_ast_graft_free(graft);
1163 lower = isl_constraint_list_copy(list);
1164 lower = isl_constraint_list_drop(lower, 0, data.n_indep);
1165 upper = isl_constraint_list_copy(lower);
1166 lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper);
1167 upper = isl_constraint_list_drop(upper, 0, data.n_lower);
1169 if (data.n_indep == 0) {
1170 isl_constraint_list_free(list);
1171 return refine_generic_bounds(graft, lower, upper,
1172 domain, build);
1175 list = isl_constraint_list_drop(list, data.n_indep,
1176 data.n_lower + data.n_upper);
1177 guard = intersect_constraints(list);
1178 isl_constraint_list_free(list);
1180 for_build = isl_ast_build_copy(build);
1181 for_build = isl_ast_build_restrict_pending(for_build,
1182 isl_set_copy(guard));
1183 graft = refine_generic_bounds(graft, lower, upper, domain, for_build);
1184 isl_ast_build_free(for_build);
1186 graft = isl_ast_graft_add_guard(graft, guard, build);
1188 return graft;
1191 /* Add the guard implied by the current stride constraint (if any),
1192 * but not (necessarily) enforced by the generated AST to "graft".
1194 static __isl_give isl_ast_graft *add_stride_guard(
1195 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
1197 int depth;
1198 isl_set *dom;
1200 depth = isl_ast_build_get_depth(build);
1201 if (!isl_ast_build_has_stride(build, depth))
1202 return graft;
1204 dom = isl_ast_build_get_stride_constraint(build);
1205 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
1206 dom = isl_ast_build_compute_gist(build, dom);
1208 graft = isl_ast_graft_add_guard(graft, dom, build);
1210 return graft;
1213 /* Update "graft" based on "bounds" and "domain" for the generic,
1214 * non-degenerate, case.
1216 * "bounds" respresent the bounds that need to be encoded by
1217 * the for loop (or a guard around the for loop).
1218 * "domain" is the subset of "bounds" for which some code is executed.
1219 * "build" is the build in which graft->node was created.
1221 * We break up "bounds" into a list of constraints and continue with
1222 * refine_generic_split.
1224 static __isl_give isl_ast_graft *refine_generic(
1225 __isl_take isl_ast_graft *graft,
1226 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1227 __isl_keep isl_ast_build *build)
1229 isl_constraint_list *list;
1231 if (!build || !graft)
1232 return isl_ast_graft_free(graft);
1234 bounds = isl_basic_set_copy(bounds);
1235 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1236 list = isl_constraint_list_from_basic_set(bounds);
1238 graft = refine_generic_split(graft, list, domain, build);
1239 graft = add_stride_guard(graft, build);
1241 return graft;
1244 /* Create a for node for the current level.
1246 * Mark the for node degenerate if "degenerate" is set.
1248 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1249 int degenerate)
1251 int depth;
1252 isl_id *id;
1253 isl_ast_node *node;
1255 if (!build)
1256 return NULL;
1258 depth = isl_ast_build_get_depth(build);
1259 id = isl_ast_build_get_iterator_id(build, depth);
1260 node = isl_ast_node_alloc_for(id);
1261 if (degenerate)
1262 node = isl_ast_node_for_mark_degenerate(node);
1264 return node;
1267 /* Create an AST node for the current dimension based on
1268 * the schedule domain "bounds" and return the node encapsulated
1269 * in an isl_ast_graft.
1271 * "executed" is the current inverse schedule, taking into account
1272 * the bounds in "bounds"
1273 * "domain" is the domain of "executed", with inner dimensions projected out.
1274 * It may be a strict subset of "bounds" in case "bounds" was created
1275 * based on the atomic option or based on separation with explicit bounds.
1277 * "domain" may satisfy additional equalities that result
1278 * from intersecting "executed" with "bounds" in add_node.
1279 * It may also satisfy some global constraints that were dropped out because
1280 * we performed separation with explicit bounds.
1281 * The very first step is then to copy these constraints to "bounds".
1283 * Since we may be calling before_each_for and after_each_for
1284 * callbacks, we record the current inverse schedule in the build.
1286 * We consider three builds,
1287 * "build" is the one in which the current level is created,
1288 * "body_build" is the build in which the next level is created,
1289 * "sub_build" is essentially the same as "body_build", except that
1290 * the depth has not been increased yet.
1292 * "build" already contains information (in strides and offsets)
1293 * about the strides at the current level, but this information is not
1294 * reflected in the build->domain.
1295 * We first add this information and the "bounds" to the sub_build->domain.
1296 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1297 * only a single value and whether this single value can be represented using
1298 * a single affine expression.
1299 * In the first case, the current level is considered "degenerate".
1300 * In the second, sub-case, the current level is considered "eliminated".
1301 * Eliminated level don't need to be reflected in the AST since we can
1302 * simply plug in the affine expression. For degenerate, but non-eliminated,
1303 * levels, we do introduce a for node, but mark is as degenerate so that
1304 * it can be printed as an assignment of the single value to the loop
1305 * "iterator".
1307 * If the current level is eliminated, we explicitly plug in the value
1308 * for the current level found by isl_ast_build_set_loop_bounds in the
1309 * inverse schedule. This ensures that if we are working on a slice
1310 * of the domain based on information available in the inverse schedule
1311 * and the build domain, that then this information is also reflected
1312 * in the inverse schedule. This operation also eliminates the current
1313 * dimension from the inverse schedule making sure no inner dimensions depend
1314 * on the current dimension. Otherwise, we create a for node, marking
1315 * it degenerate if appropriate. The initial for node is still incomplete
1316 * and will be completed in either refine_degenerate or refine_generic.
1318 * We then generate a sequence of grafts for the next level,
1319 * create a surrounding graft for the current level and insert
1320 * the for node we created (if the current level is not eliminated).
1322 * Finally, we set the bounds of the for loop and insert guards
1323 * (either in the AST or in the graft) in one of
1324 * refine_eliminated, refine_degenerate or refine_generic.
1326 static __isl_give isl_ast_graft *create_node_scaled(
1327 __isl_take isl_union_map *executed,
1328 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1329 __isl_take isl_ast_build *build)
1331 int depth;
1332 int degenerate, eliminated;
1333 isl_basic_set *hull;
1334 isl_ast_node *node = NULL;
1335 isl_ast_graft *graft;
1336 isl_ast_graft_list *children;
1337 isl_ast_build *sub_build;
1338 isl_ast_build *body_build;
1340 domain = isl_ast_build_eliminate_divs(build, domain);
1341 domain = isl_set_detect_equalities(domain);
1342 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1343 bounds = isl_basic_set_intersect(bounds, hull);
1344 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1346 depth = isl_ast_build_get_depth(build);
1347 sub_build = isl_ast_build_copy(build);
1348 sub_build = isl_ast_build_include_stride(sub_build);
1349 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1350 isl_basic_set_copy(bounds));
1351 degenerate = isl_ast_build_has_value(sub_build);
1352 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1353 if (degenerate < 0 || eliminated < 0)
1354 executed = isl_union_map_free(executed);
1355 if (eliminated)
1356 executed = plug_in_values(executed, sub_build);
1357 else
1358 node = create_for(build, degenerate);
1360 body_build = isl_ast_build_copy(sub_build);
1361 body_build = isl_ast_build_increase_depth(body_build);
1362 if (!eliminated)
1363 node = before_each_for(node, body_build);
1364 children = generate_next_level(executed,
1365 isl_ast_build_copy(body_build));
1367 graft = isl_ast_graft_alloc_level(children, build, sub_build);
1368 if (!eliminated)
1369 graft = isl_ast_graft_insert_for(graft, node);
1370 if (eliminated)
1371 graft = refine_eliminated(graft, bounds, build);
1372 else if (degenerate)
1373 graft = refine_degenerate(graft, bounds, build, sub_build);
1374 else
1375 graft = refine_generic(graft, bounds, domain, build);
1376 if (!eliminated)
1377 graft = after_each_for(graft, body_build);
1379 isl_ast_build_free(body_build);
1380 isl_ast_build_free(sub_build);
1381 isl_ast_build_free(build);
1382 isl_basic_set_free(bounds);
1383 isl_set_free(domain);
1385 return graft;
1388 /* Internal data structure for checking if all constraints involving
1389 * the input dimension "depth" are such that the other coefficients
1390 * are multiples of "m", reducing "m" if they are not.
1391 * If "m" is reduced all the way down to "1", then the check has failed
1392 * and we break out of the iteration.
1393 * "d" is an initialized isl_int that can be used internally.
1395 struct isl_check_scaled_data {
1396 int depth;
1397 isl_int m, d;
1400 /* If constraint "c" involves the input dimension data->depth,
1401 * then make sure that all the other coefficients are multiples of data->m,
1402 * reducing data->m if needed.
1403 * Break out of the iteration if data->m has become equal to "1".
1405 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1407 struct isl_check_scaled_data *data = user;
1408 int i, j, n;
1409 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1410 isl_dim_div };
1412 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1413 isl_constraint_free(c);
1414 return 0;
1417 for (i = 0; i < 4; ++i) {
1418 n = isl_constraint_dim(c, t[i]);
1419 for (j = 0; j < n; ++j) {
1420 if (t[i] == isl_dim_in && j == data->depth)
1421 continue;
1422 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1423 continue;
1424 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1425 isl_int_gcd(data->m, data->m, data->d);
1426 if (isl_int_is_one(data->m))
1427 break;
1429 if (j < n)
1430 break;
1433 isl_constraint_free(c);
1435 return i < 4 ? -1 : 0;
1438 /* For each constraint of "bmap" that involves the input dimension data->depth,
1439 * make sure that all the other coefficients are multiples of data->m,
1440 * reducing data->m if needed.
1441 * Break out of the iteration if data->m has become equal to "1".
1443 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1445 int r;
1447 r = isl_basic_map_foreach_constraint(bmap,
1448 &constraint_check_scaled, user);
1449 isl_basic_map_free(bmap);
1451 return r;
1454 /* For each constraint of "map" that involves the input dimension data->depth,
1455 * make sure that all the other coefficients are multiples of data->m,
1456 * reducing data->m if needed.
1457 * Break out of the iteration if data->m has become equal to "1".
1459 static int map_check_scaled(__isl_take isl_map *map, void *user)
1461 int r;
1463 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1464 isl_map_free(map);
1466 return r;
1469 /* Create an AST node for the current dimension based on
1470 * the schedule domain "bounds" and return the node encapsulated
1471 * in an isl_ast_graft.
1473 * "executed" is the current inverse schedule, taking into account
1474 * the bounds in "bounds"
1475 * "domain" is the domain of "executed", with inner dimensions projected out.
1478 * Before moving on to the actual AST node construction in create_node_scaled,
1479 * we first check if the current dimension is strided and if we can scale
1480 * down this stride. Note that we only do this if the ast_build_scale_strides
1481 * option is set.
1483 * In particular, let the current dimension take on values
1485 * f + s a
1487 * with a an integer. We check if we can find an integer m that (obviouly)
1488 * divides both f and s.
1490 * If so, we check if the current dimension only appears in constraints
1491 * where the coefficients of the other variables are multiples of m.
1492 * We perform this extra check to avoid the risk of introducing
1493 * divisions by scaling down the current dimension.
1495 * If so, we scale the current dimension down by a factor of m.
1496 * That is, we plug in
1498 * i = m i' (1)
1500 * Note that in principle we could always scale down strided loops
1501 * by plugging in
1503 * i = f + s i'
1505 * but this may result in i' taking on larger values than the original i,
1506 * due to the shift by "f".
1507 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1509 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1510 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1511 __isl_take isl_ast_build *build)
1513 struct isl_check_scaled_data data;
1514 isl_ctx *ctx;
1515 isl_aff *offset;
1517 ctx = isl_ast_build_get_ctx(build);
1518 if (!isl_options_get_ast_build_scale_strides(ctx))
1519 return create_node_scaled(executed, bounds, domain, build);
1521 data.depth = isl_ast_build_get_depth(build);
1522 if (!isl_ast_build_has_stride(build, data.depth))
1523 return create_node_scaled(executed, bounds, domain, build);
1525 isl_int_init(data.m);
1526 isl_int_init(data.d);
1528 offset = isl_ast_build_get_offset(build, data.depth);
1529 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1530 offset = isl_aff_free(offset);
1531 offset = isl_aff_scale_down(offset, data.m);
1532 if (isl_aff_get_denominator(offset, &data.d) < 0)
1533 executed = isl_union_map_free(executed);
1535 if (executed && isl_int_is_divisible_by(data.m, data.d))
1536 isl_int_divexact(data.m, data.m, data.d);
1537 else
1538 isl_int_set_si(data.m, 1);
1540 if (!isl_int_is_one(data.m)) {
1541 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1542 &data) < 0 &&
1543 !isl_int_is_one(data.m))
1544 executed = isl_union_map_free(executed);
1547 if (!isl_int_is_one(data.m)) {
1548 isl_space *space;
1549 isl_multi_aff *ma;
1550 isl_aff *aff;
1551 isl_map *map;
1552 isl_union_map *umap;
1554 space = isl_ast_build_get_space(build, 1);
1555 space = isl_space_map_from_set(space);
1556 ma = isl_multi_aff_identity(space);
1557 aff = isl_multi_aff_get_aff(ma, data.depth);
1558 aff = isl_aff_scale(aff, data.m);
1559 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1561 bounds = isl_basic_set_preimage_multi_aff(bounds,
1562 isl_multi_aff_copy(ma));
1563 domain = isl_set_preimage_multi_aff(domain,
1564 isl_multi_aff_copy(ma));
1565 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1566 umap = isl_union_map_from_map(map);
1567 executed = isl_union_map_apply_domain(executed,
1568 isl_union_map_copy(umap));
1569 build = isl_ast_build_scale_down(build, data.m, umap);
1571 isl_aff_free(offset);
1573 isl_int_clear(data.d);
1574 isl_int_clear(data.m);
1576 return create_node_scaled(executed, bounds, domain, build);
1579 /* Add the basic set to the list that "user" points to.
1581 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1583 isl_basic_set_list **list = user;
1585 *list = isl_basic_set_list_add(*list, bset);
1587 return 0;
1590 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1592 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1593 __isl_take isl_set *set)
1595 int n;
1596 isl_ctx *ctx;
1597 isl_basic_set_list *list;
1599 if (!set)
1600 return NULL;
1602 ctx = isl_set_get_ctx(set);
1604 n = isl_set_n_basic_set(set);
1605 list = isl_basic_set_list_alloc(ctx, n);
1606 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1607 list = isl_basic_set_list_free(list);
1609 isl_set_free(set);
1610 return list;
1613 /* Generate code for the schedule domain "bounds"
1614 * and add the result to "list".
1616 * We mainly detect strides and additional equalities here
1617 * and then pass over control to create_node.
1619 * "bounds" reflects the bounds on the current dimension and possibly
1620 * some extra conditions on outer dimensions.
1621 * It does not, however, include any divs involving the current dimension,
1622 * so it does not capture any stride constraints.
1623 * We therefore need to compute that part of the schedule domain that
1624 * intersects with "bounds" and derive the strides from the result.
1626 static __isl_give isl_ast_graft_list *add_node(
1627 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1628 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1630 isl_ast_graft *graft;
1631 isl_set *domain = NULL;
1632 isl_union_set *uset;
1633 int empty;
1635 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1636 executed = isl_union_map_intersect_domain(executed, uset);
1637 empty = isl_union_map_is_empty(executed);
1638 if (empty < 0)
1639 goto error;
1640 if (empty)
1641 goto done;
1643 uset = isl_union_map_domain(isl_union_map_copy(executed));
1644 domain = isl_set_from_union_set(uset);
1645 domain = isl_ast_build_compute_gist(build, domain);
1646 empty = isl_set_is_empty(domain);
1647 if (empty < 0)
1648 goto error;
1649 if (empty)
1650 goto done;
1652 domain = isl_ast_build_eliminate_inner(build, domain);
1653 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1655 graft = create_node(executed, bounds, domain,
1656 isl_ast_build_copy(build));
1657 list = isl_ast_graft_list_add(list, graft);
1658 isl_ast_build_free(build);
1659 return list;
1660 error:
1661 list = isl_ast_graft_list_free(list);
1662 done:
1663 isl_set_free(domain);
1664 isl_basic_set_free(bounds);
1665 isl_union_map_free(executed);
1666 isl_ast_build_free(build);
1667 return list;
1670 /* Does any element of i follow or coincide with any element of j
1671 * at the current depth for equal values of the outer dimensions?
1673 static int domain_follows_at_depth(__isl_keep isl_basic_set *i,
1674 __isl_keep isl_basic_set *j, void *user)
1676 int depth = *(int *) user;
1677 isl_basic_map *test;
1678 int empty;
1679 int l;
1681 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1682 isl_basic_set_copy(j));
1683 for (l = 0; l < depth; ++l)
1684 test = isl_basic_map_equate(test, isl_dim_in, l,
1685 isl_dim_out, l);
1686 test = isl_basic_map_order_ge(test, isl_dim_in, depth,
1687 isl_dim_out, depth);
1688 empty = isl_basic_map_is_empty(test);
1689 isl_basic_map_free(test);
1691 return empty < 0 ? -1 : !empty;
1694 /* Split up each element of "list" into a part that is related to "bset"
1695 * according to "gt" and a part that is not.
1696 * Return a list that consist of "bset" and all the pieces.
1698 static __isl_give isl_basic_set_list *add_split_on(
1699 __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset,
1700 __isl_keep isl_basic_map *gt)
1702 int i, n;
1703 isl_basic_set_list *res;
1705 gt = isl_basic_map_copy(gt);
1706 gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset));
1707 n = isl_basic_set_list_n_basic_set(list);
1708 res = isl_basic_set_list_from_basic_set(bset);
1709 for (i = 0; res && i < n; ++i) {
1710 isl_basic_set *bset;
1711 isl_set *set1, *set2;
1712 isl_basic_map *bmap;
1713 int empty;
1715 bset = isl_basic_set_list_get_basic_set(list, i);
1716 bmap = isl_basic_map_copy(gt);
1717 bmap = isl_basic_map_intersect_range(bmap, bset);
1718 bset = isl_basic_map_range(bmap);
1719 empty = isl_basic_set_is_empty(bset);
1720 if (empty < 0)
1721 res = isl_basic_set_list_free(res);
1722 if (empty) {
1723 isl_basic_set_free(bset);
1724 bset = isl_basic_set_list_get_basic_set(list, i);
1725 res = isl_basic_set_list_add(res, bset);
1726 continue;
1729 res = isl_basic_set_list_add(res, isl_basic_set_copy(bset));
1730 set1 = isl_set_from_basic_set(bset);
1731 bset = isl_basic_set_list_get_basic_set(list, i);
1732 set2 = isl_set_from_basic_set(bset);
1733 set1 = isl_set_subtract(set2, set1);
1734 set1 = isl_set_make_disjoint(set1);
1736 res = isl_basic_set_list_concat(res,
1737 isl_basic_set_list_from_set(set1));
1739 isl_basic_map_free(gt);
1740 isl_basic_set_list_free(list);
1741 return res;
1744 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1745 __isl_keep isl_basic_set_list *domain_list,
1746 __isl_keep isl_union_map *executed,
1747 __isl_keep isl_ast_build *build);
1749 /* Internal data structure for add_nodes.
1751 * "executed" and "build" are extra arguments to be passed to add_node.
1752 * "list" collects the results.
1754 struct isl_add_nodes_data {
1755 isl_union_map *executed;
1756 isl_ast_build *build;
1758 isl_ast_graft_list *list;
1761 /* Generate code for the schedule domains in "scc"
1762 * and add the results to "list".
1764 * The domains in "scc" form a strongly connected component in the ordering.
1765 * If the number of domains in "scc" is larger than 1, then this means
1766 * that we cannot determine a valid ordering for the domains in the component.
1767 * This should be fairly rare because the individual domains
1768 * have been made disjoint first.
1769 * The problem is that the domains may be integrally disjoint but not
1770 * rationally disjoint. For example, we may have domains
1772 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1774 * These two domains have an empty intersection, but their rational
1775 * relaxations do intersect. It is impossible to order these domains
1776 * in the second dimension because the first should be ordered before
1777 * the second for outer dimension equal to 0, while it should be ordered
1778 * after for outer dimension equal to 1.
1780 * This may happen in particular in case of unrolling since the domain
1781 * of each slice is replaced by its simple hull.
1783 * For each basic set i in "scc" and for each of the following basic sets j,
1784 * we split off that part of the basic set i that shares the outer dimensions
1785 * with j and lies before j in the current dimension.
1786 * We collect all the pieces in a new list that replaces "scc".
1788 static int add_nodes(__isl_take isl_basic_set_list *scc, void *user)
1790 struct isl_add_nodes_data *data = user;
1791 int i, n, depth;
1792 isl_basic_set *bset;
1793 isl_basic_set_list *list;
1794 isl_space *space;
1795 isl_basic_map *gt;
1797 n = isl_basic_set_list_n_basic_set(scc);
1798 bset = isl_basic_set_list_get_basic_set(scc, 0);
1799 if (n == 1) {
1800 isl_basic_set_list_free(scc);
1801 data->list = add_node(data->list,
1802 isl_union_map_copy(data->executed), bset,
1803 isl_ast_build_copy(data->build));
1804 return data->list ? 0 : -1;
1807 depth = isl_ast_build_get_depth(data->build);
1808 space = isl_basic_set_get_space(bset);
1809 space = isl_space_map_from_set(space);
1810 gt = isl_basic_map_universe(space);
1811 for (i = 0; i < depth; ++i)
1812 gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i);
1813 gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth);
1815 list = isl_basic_set_list_from_basic_set(bset);
1816 for (i = 1; i < n; ++i) {
1817 bset = isl_basic_set_list_get_basic_set(scc, i);
1818 list = add_split_on(list, bset, gt);
1820 isl_basic_map_free(gt);
1821 isl_basic_set_list_free(scc);
1822 scc = list;
1823 data->list = isl_ast_graft_list_concat(data->list,
1824 generate_sorted_domains(scc, data->executed, data->build));
1825 isl_basic_set_list_free(scc);
1827 return data->list ? 0 : -1;
1830 /* Sort the domains in "domain_list" according to the execution order
1831 * at the current depth (for equal values of the outer dimensions),
1832 * generate code for each of them, collecting the results in a list.
1833 * If no code is generated (because the intersection of the inverse schedule
1834 * with the domains turns out to be empty), then an empty list is returned.
1836 * The caller is responsible for ensuring that the basic sets in "domain_list"
1837 * are pair-wise disjoint. It can, however, in principle happen that
1838 * two basic sets should be ordered one way for one value of the outer
1839 * dimensions and the other way for some other value of the outer dimensions.
1840 * We therefore play safe and look for strongly connected components.
1841 * The function add_nodes takes care of handling non-trivial components.
1843 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1844 __isl_keep isl_basic_set_list *domain_list,
1845 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1847 isl_ctx *ctx;
1848 struct isl_add_nodes_data data;
1849 int depth;
1850 int n;
1852 if (!domain_list)
1853 return NULL;
1855 ctx = isl_basic_set_list_get_ctx(domain_list);
1856 n = isl_basic_set_list_n_basic_set(domain_list);
1857 data.list = isl_ast_graft_list_alloc(ctx, n);
1858 if (n == 0)
1859 return data.list;
1860 if (n == 1)
1861 return add_node(data.list, isl_union_map_copy(executed),
1862 isl_basic_set_list_get_basic_set(domain_list, 0),
1863 isl_ast_build_copy(build));
1865 depth = isl_ast_build_get_depth(build);
1866 data.executed = executed;
1867 data.build = build;
1868 if (isl_basic_set_list_foreach_scc(domain_list,
1869 &domain_follows_at_depth, &depth,
1870 &add_nodes, &data) < 0)
1871 data.list = isl_ast_graft_list_free(data.list);
1873 return data.list;
1876 /* Do i and j share any values for the outer dimensions?
1878 static int shared_outer(__isl_keep isl_basic_set *i,
1879 __isl_keep isl_basic_set *j, void *user)
1881 int depth = *(int *) user;
1882 isl_basic_map *test;
1883 int empty;
1884 int l;
1886 test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i),
1887 isl_basic_set_copy(j));
1888 for (l = 0; l < depth; ++l)
1889 test = isl_basic_map_equate(test, isl_dim_in, l,
1890 isl_dim_out, l);
1891 empty = isl_basic_map_is_empty(test);
1892 isl_basic_map_free(test);
1894 return empty < 0 ? -1 : !empty;
1897 /* Internal data structure for generate_sorted_domains_wrap.
1899 * "n" is the total number of basic sets
1900 * "executed" and "build" are extra arguments to be passed
1901 * to generate_sorted_domains.
1903 * "single" is set to 1 by generate_sorted_domains_wrap if there
1904 * is only a single component.
1905 * "list" collects the results.
1907 struct isl_ast_generate_parallel_domains_data {
1908 int n;
1909 isl_union_map *executed;
1910 isl_ast_build *build;
1912 int single;
1913 isl_ast_graft_list *list;
1916 /* Call generate_sorted_domains on "scc", fuse the result into a list
1917 * with either zero or one graft and collect the these single element
1918 * lists into data->list.
1920 * If there is only one component, i.e., if the number of basic sets
1921 * in the current component is equal to the total number of basic sets,
1922 * then data->single is set to 1 and the result of generate_sorted_domains
1923 * is not fused.
1925 static int generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc,
1926 void *user)
1928 struct isl_ast_generate_parallel_domains_data *data = user;
1929 isl_ast_graft_list *list;
1931 list = generate_sorted_domains(scc, data->executed, data->build);
1932 data->single = isl_basic_set_list_n_basic_set(scc) == data->n;
1933 if (!data->single)
1934 list = isl_ast_graft_list_fuse(list, data->build);
1935 if (!data->list)
1936 data->list = list;
1937 else
1938 data->list = isl_ast_graft_list_concat(data->list, list);
1940 isl_basic_set_list_free(scc);
1941 if (!data->list)
1942 return -1;
1944 return 0;
1947 /* Look for any (weakly connected) components in the "domain_list"
1948 * of domains that share some values of the outer dimensions.
1949 * That is, domains in different components do not share any values
1950 * of the outer dimensions. This means that these components
1951 * can be freely reordered.
1952 * Within each of the components, we sort the domains according
1953 * to the execution order at the current depth.
1955 * If there is more than one component, then generate_sorted_domains_wrap
1956 * fuses the result of each call to generate_sorted_domains
1957 * into a list with either zero or one graft and collects these (at most)
1958 * single element lists into a bigger list. This means that the elements of the
1959 * final list can be freely reordered. In particular, we sort them
1960 * according to an arbitrary but fixed ordering to ease merging of
1961 * graft lists from different components.
1963 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1964 __isl_keep isl_basic_set_list *domain_list,
1965 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1967 int depth;
1968 struct isl_ast_generate_parallel_domains_data data;
1970 if (!domain_list)
1971 return NULL;
1973 data.n = isl_basic_set_list_n_basic_set(domain_list);
1974 if (data.n <= 1)
1975 return generate_sorted_domains(domain_list, executed, build);
1977 depth = isl_ast_build_get_depth(build);
1978 data.list = NULL;
1979 data.executed = executed;
1980 data.build = build;
1981 data.single = 0;
1982 if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth,
1983 &generate_sorted_domains_wrap,
1984 &data) < 0)
1985 data.list = isl_ast_graft_list_free(data.list);
1987 if (!data.single)
1988 data.list = isl_ast_graft_list_sort_guard(data.list);
1990 return data.list;
1993 /* Internal data for separate_domain.
1995 * "explicit" is set if we only want to use explicit bounds.
1997 * "domain" collects the separated domains.
1999 struct isl_separate_domain_data {
2000 isl_ast_build *build;
2001 int explicit;
2002 isl_set *domain;
2005 /* Extract implicit bounds on the current dimension for the executed "map".
2007 * The domain of "map" may involve inner dimensions, so we
2008 * need to eliminate them.
2010 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
2011 __isl_keep isl_ast_build *build)
2013 isl_set *domain;
2015 domain = isl_map_domain(map);
2016 domain = isl_ast_build_eliminate(build, domain);
2018 return domain;
2021 /* Extract explicit bounds on the current dimension for the executed "map".
2023 * Rather than eliminating the inner dimensions as in implicit_bounds,
2024 * we simply drop any constraints involving those inner dimensions.
2025 * The idea is that most bounds that are implied by constraints on the
2026 * inner dimensions will be enforced by for loops and not by explicit guards.
2027 * There is then no need to separate along those bounds.
2029 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
2030 __isl_keep isl_ast_build *build)
2032 isl_set *domain;
2033 int depth, dim;
2035 dim = isl_map_dim(map, isl_dim_out);
2036 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
2038 domain = isl_map_domain(map);
2039 depth = isl_ast_build_get_depth(build);
2040 dim = isl_set_dim(domain, isl_dim_set);
2041 domain = isl_set_detect_equalities(domain);
2042 domain = isl_set_drop_constraints_involving_dims(domain,
2043 isl_dim_set, depth + 1, dim - (depth + 1));
2044 domain = isl_set_remove_divs_involving_dims(domain,
2045 isl_dim_set, depth, 1);
2046 domain = isl_set_remove_unknown_divs(domain);
2048 return domain;
2051 /* Split data->domain into pieces that intersect with the range of "map"
2052 * and pieces that do not intersect with the range of "map"
2053 * and then add that part of the range of "map" that does not intersect
2054 * with data->domain.
2056 static int separate_domain(__isl_take isl_map *map, void *user)
2058 struct isl_separate_domain_data *data = user;
2059 isl_set *domain;
2060 isl_set *d1, *d2;
2062 if (data->explicit)
2063 domain = explicit_bounds(map, data->build);
2064 else
2065 domain = implicit_bounds(map, data->build);
2067 domain = isl_set_coalesce(domain);
2068 domain = isl_set_make_disjoint(domain);
2069 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2070 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2071 data->domain = isl_set_intersect(data->domain, domain);
2072 data->domain = isl_set_union(data->domain, d1);
2073 data->domain = isl_set_union(data->domain, d2);
2075 return 0;
2078 /* Separate the schedule domains of "executed".
2080 * That is, break up the domain of "executed" into basic sets,
2081 * such that for each basic set S, every element in S is associated with
2082 * the same domain spaces.
2084 * "space" is the (single) domain space of "executed".
2086 static __isl_give isl_set *separate_schedule_domains(
2087 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2088 __isl_keep isl_ast_build *build)
2090 struct isl_separate_domain_data data = { build };
2091 isl_ctx *ctx;
2093 ctx = isl_ast_build_get_ctx(build);
2094 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2095 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2096 data.domain = isl_set_empty(space);
2097 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2098 data.domain = isl_set_free(data.domain);
2100 isl_union_map_free(executed);
2101 return data.domain;
2104 /* Temporary data used during the search for a lower bound for unrolling.
2106 * "domain" is the original set for which to find a lower bound
2107 * "depth" is the dimension for which to find a lower boudn
2109 * "lower" is the best lower bound found so far. It is NULL if we have not
2110 * found any yet.
2111 * "n" is the corresponding size. If lower is NULL, then the value of n
2112 * is undefined.
2114 * "tmp" is a temporary initialized isl_int.
2116 struct isl_find_unroll_data {
2117 isl_set *domain;
2118 int depth;
2120 isl_aff *lower;
2121 int *n;
2122 isl_int tmp;
2125 /* Check if we can use "c" as a lower bound and if it is better than
2126 * any previously found lower bound.
2128 * If "c" does not involve the dimension at the current depth,
2129 * then we cannot use it.
2130 * Otherwise, let "c" be of the form
2132 * i >= f(j)/a
2134 * We compute the maximal value of
2136 * -ceil(f(j)/a)) + i + 1
2138 * over the domain. If there is such a value "n", then we know
2140 * -ceil(f(j)/a)) + i + 1 <= n
2142 * or
2144 * i < ceil(f(j)/a)) + n
2146 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2147 * We just need to check if we have found any lower bound before and
2148 * if the new lower bound is better (smaller n) than the previously found
2149 * lower bounds.
2151 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2152 __isl_keep isl_constraint *c)
2154 isl_aff *aff, *lower;
2155 enum isl_lp_result res;
2157 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2158 return 0;
2160 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2161 lower = isl_aff_ceil(lower);
2162 aff = isl_aff_copy(lower);
2163 aff = isl_aff_neg(aff);
2164 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2165 aff = isl_aff_add_constant_si(aff, 1);
2166 res = isl_set_max(data->domain, aff, &data->tmp);
2167 isl_aff_free(aff);
2169 if (res == isl_lp_error)
2170 goto error;
2171 if (res == isl_lp_unbounded) {
2172 isl_aff_free(lower);
2173 return 0;
2176 if (isl_int_cmp_si(data->tmp, INT_MAX) <= 0 &&
2177 (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0)) {
2178 isl_aff_free(data->lower);
2179 data->lower = lower;
2180 *data->n = isl_int_get_si(data->tmp);
2181 } else
2182 isl_aff_free(lower);
2184 return 1;
2185 error:
2186 isl_aff_free(lower);
2187 return -1;
2190 /* Check if we can use "c" as a lower bound and if it is better than
2191 * any previously found lower bound.
2193 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2195 struct isl_find_unroll_data *data;
2196 int r;
2198 data = (struct isl_find_unroll_data *) user;
2199 r = update_unrolling_lower_bound(data, c);
2200 isl_constraint_free(c);
2202 return r;
2205 /* Look for a lower bound l(i) on the dimension at "depth"
2206 * and a size n such that "domain" is a subset of
2208 * { [i] : l(i) <= i_d < l(i) + n }
2210 * where d is "depth" and l(i) depends only on earlier dimensions.
2211 * Furthermore, try and find a lower bound such that n is as small as possible.
2212 * In particular, "n" needs to be finite.
2214 * Inner dimensions have been eliminated from "domain" by the caller.
2216 * We first construct a collection of lower bounds on the input set
2217 * by computing its simple hull. We then iterate through them,
2218 * discarding those that we cannot use (either because they do not
2219 * involve the dimension at "depth" or because they have no corresponding
2220 * upper bound, meaning that "n" would be unbounded) and pick out the
2221 * best from the remaining ones.
2223 * If we cannot find a suitable lower bound, then we consider that
2224 * to be an error.
2226 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2227 int depth, int *n)
2229 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2230 isl_basic_set *hull;
2232 isl_int_init(data.tmp);
2233 hull = isl_set_simple_hull(isl_set_copy(domain));
2235 if (isl_basic_set_foreach_constraint(hull,
2236 &constraint_find_unroll, &data) < 0)
2237 goto error;
2239 isl_basic_set_free(hull);
2240 isl_int_clear(data.tmp);
2242 if (!data.lower)
2243 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2244 "cannot find lower bound for unrolling", return NULL);
2246 return data.lower;
2247 error:
2248 isl_basic_set_free(hull);
2249 isl_int_clear(data.tmp);
2250 return isl_aff_free(data.lower);
2253 /* Return the constraint
2255 * i_"depth" = aff + offset
2257 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2258 int offset)
2260 aff = isl_aff_copy(aff);
2261 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2262 aff = isl_aff_add_constant_si(aff, offset);
2263 return isl_equality_from_aff(aff);
2266 /* Return a list of basic sets, one for each value of the current dimension
2267 * in "domain".
2268 * The divs that involve the current dimension have not been projected out
2269 * from this domain.
2271 * Since we are going to be iterating over the individual values,
2272 * we first check if there are any strides on the current dimension.
2273 * If there is, we rewrite the current dimension i as
2275 * i = stride i' + offset
2277 * and then iterate over individual values of i' instead.
2279 * We then look for a lower bound on i' and a size such that the domain
2280 * is a subset of
2282 * { [j,i'] : l(j) <= i' < l(j) + n }
2284 * and then take slices of the domain at values of i'
2285 * between l(j) and l(j) + n - 1.
2287 * We compute the unshifted simple hull of each slice to ensure that
2288 * we have a single basic set per offset. The slicing constraint
2289 * may get simplified away before the unshifted simple hull is taken
2290 * and may therefore in some rare cases disappear from the result.
2291 * We therefore explicitly add the constraint back after computing
2292 * the unshifted simple hull to ensure that the basic sets
2293 * remain disjoint. The constraints that are dropped by taking the hull
2294 * will be taken into account at the next level, as in the case of the
2295 * atomic option.
2297 * Finally, we map i' back to i and add each basic set to the list.
2299 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2300 __isl_keep isl_ast_build *build)
2302 int i, n;
2303 int depth;
2304 isl_ctx *ctx;
2305 isl_aff *lower;
2306 isl_basic_set_list *list;
2307 isl_multi_aff *expansion;
2308 isl_basic_map *bmap;
2310 if (!domain)
2311 return NULL;
2313 ctx = isl_set_get_ctx(domain);
2314 depth = isl_ast_build_get_depth(build);
2315 build = isl_ast_build_copy(build);
2316 domain = isl_ast_build_eliminate_inner(build, domain);
2317 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2318 expansion = isl_ast_build_get_stride_expansion(build);
2320 domain = isl_set_preimage_multi_aff(domain,
2321 isl_multi_aff_copy(expansion));
2322 domain = isl_ast_build_eliminate_divs(build, domain);
2324 isl_ast_build_free(build);
2326 list = isl_basic_set_list_alloc(ctx, 0);
2328 lower = find_unroll_lower_bound(domain, depth, &n);
2329 if (!lower)
2330 list = isl_basic_set_list_free(list);
2332 bmap = isl_basic_map_from_multi_aff(expansion);
2334 for (i = 0; list && i < n; ++i) {
2335 isl_set *set;
2336 isl_basic_set *bset;
2337 isl_constraint *slice;
2339 slice = at_offset(depth, lower, i);
2340 set = isl_set_copy(domain);
2341 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2342 bset = isl_set_unshifted_simple_hull(set);
2343 bset = isl_basic_set_add_constraint(bset, slice);
2344 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2345 list = isl_basic_set_list_add(list, bset);
2348 isl_aff_free(lower);
2349 isl_set_free(domain);
2350 isl_basic_map_free(bmap);
2352 return list;
2355 /* Data structure for storing the results and the intermediate objects
2356 * of compute_domains.
2358 * "list" is the main result of the function and contains a list
2359 * of disjoint basic sets for which code should be generated.
2361 * "executed" and "build" are inputs to compute_domains.
2362 * "schedule_domain" is the domain of "executed".
2364 * "option" constains the domains at the current depth that should by
2365 * atomic, separated or unrolled. These domains are as specified by
2366 * the user, except that inner dimensions have been eliminated and
2367 * that they have been made pair-wise disjoint.
2369 * "sep_class" contains the user-specified split into separation classes
2370 * specialized to the current depth.
2371 * "done" contains the union of the separation domains that have already
2372 * been handled.
2373 * "atomic" contains the domain that has effectively been made atomic.
2374 * This domain may be larger than the intersection of option[atomic]
2375 * and the schedule domain.
2377 struct isl_codegen_domains {
2378 isl_basic_set_list *list;
2380 isl_union_map *executed;
2381 isl_ast_build *build;
2382 isl_set *schedule_domain;
2384 isl_set *option[3];
2386 isl_map *sep_class;
2387 isl_set *done;
2388 isl_set *atomic;
2391 /* Add domains to domains->list for each individual value of the current
2392 * dimension, for that part of the schedule domain that lies in the
2393 * intersection of the option domain and the class domain.
2395 * "domain" is the intersection of the class domain and the schedule domain.
2396 * The divs that involve the current dimension have not been projected out
2397 * from this domain.
2399 * We first break up the unroll option domain into individual pieces
2400 * and then handle each of them separately. The unroll option domain
2401 * has been made disjoint in compute_domains_init_options,
2403 * Note that we actively want to combine different pieces of the
2404 * schedule domain that have the same value at the current dimension.
2405 * We therefore need to break up the unroll option domain before
2406 * intersecting with class and schedule domain, hoping that the
2407 * unroll option domain specified by the user is relatively simple.
2409 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2410 __isl_keep isl_set *domain)
2412 isl_set *unroll_domain;
2413 isl_basic_set_list *unroll_list;
2414 int i, n;
2415 int empty;
2417 empty = isl_set_is_empty(domains->option[unroll]);
2418 if (empty < 0)
2419 return -1;
2420 if (empty)
2421 return 0;
2423 unroll_domain = isl_set_copy(domains->option[unroll]);
2424 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2426 n = isl_basic_set_list_n_basic_set(unroll_list);
2427 for (i = 0; i < n; ++i) {
2428 isl_basic_set *bset;
2429 isl_basic_set_list *list;
2431 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2432 unroll_domain = isl_set_from_basic_set(bset);
2433 unroll_domain = isl_set_intersect(unroll_domain,
2434 isl_set_copy(domain));
2436 empty = isl_set_is_empty(unroll_domain);
2437 if (empty >= 0 && empty) {
2438 isl_set_free(unroll_domain);
2439 continue;
2442 list = do_unroll(unroll_domain, domains->build);
2443 domains->list = isl_basic_set_list_concat(domains->list, list);
2446 isl_basic_set_list_free(unroll_list);
2448 return 0;
2451 /* Construct a single basic set that includes the intersection of
2452 * the schedule domain, the atomic option domain and the class domain.
2453 * Add the resulting basic set to domains->list and save a copy
2454 * in domains->atomic for use in compute_partial_domains.
2456 * We construct a single domain rather than trying to combine
2457 * the schedule domains of individual domains because we are working
2458 * within a single component so that non-overlapping schedule domains
2459 * should already have been separated.
2460 * Note, though, that this does not take into account the class domain.
2461 * So, it is possible for a class domain to carve out a piece of the
2462 * schedule domain with independent pieces and then we would only
2463 * generate a single domain for them. If this proves to be problematic
2464 * for some users, then this function will have to be adjusted.
2466 * "domain" is the intersection of the schedule domain and the class domain,
2467 * with inner dimensions projected out.
2469 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2470 __isl_keep isl_set *domain)
2472 isl_basic_set *bset;
2473 isl_set *atomic_domain;
2474 int empty;
2476 atomic_domain = isl_set_copy(domains->option[atomic]);
2477 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2478 empty = isl_set_is_empty(atomic_domain);
2479 if (empty < 0 || empty) {
2480 domains->atomic = atomic_domain;
2481 return empty < 0 ? -1 : 0;
2484 atomic_domain = isl_set_coalesce(atomic_domain);
2485 bset = isl_set_unshifted_simple_hull(atomic_domain);
2486 domains->atomic = isl_set_from_basic_set(isl_basic_set_copy(bset));
2487 domains->list = isl_basic_set_list_add(domains->list, bset);
2489 return 0;
2492 /* Split up the schedule domain into uniform basic sets,
2493 * in the sense that each element in a basic set is associated to
2494 * elements of the same domains, and add the result to domains->list.
2495 * Do this for that part of the schedule domain that lies in the
2496 * intersection of "class_domain" and the separate option domain.
2498 * "class_domain" may or may not include the constraints
2499 * of the schedule domain, but this does not make a difference
2500 * since we are going to intersect it with the domain of the inverse schedule.
2501 * If it includes schedule domain constraints, then they may involve
2502 * inner dimensions, but we will eliminate them in separation_domain.
2504 static int compute_separate_domain(struct isl_codegen_domains *domains,
2505 __isl_keep isl_set *class_domain)
2507 isl_space *space;
2508 isl_set *domain;
2509 isl_union_map *executed;
2510 isl_basic_set_list *list;
2511 int empty;
2513 domain = isl_set_copy(domains->option[separate]);
2514 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2515 executed = isl_union_map_copy(domains->executed);
2516 executed = isl_union_map_intersect_domain(executed,
2517 isl_union_set_from_set(domain));
2518 empty = isl_union_map_is_empty(executed);
2519 if (empty < 0 || empty) {
2520 isl_union_map_free(executed);
2521 return empty < 0 ? -1 : 0;
2524 space = isl_set_get_space(class_domain);
2525 domain = separate_schedule_domains(space, executed, domains->build);
2527 list = isl_basic_set_list_from_set(domain);
2528 domains->list = isl_basic_set_list_concat(domains->list, list);
2530 return 0;
2533 /* Split up the domain at the current depth into disjoint
2534 * basic sets for which code should be generated separately
2535 * for the given separation class domain.
2537 * If any separation classes have been defined, then "class_domain"
2538 * is the domain of the current class and does not refer to inner dimensions.
2539 * Otherwise, "class_domain" is the universe domain.
2541 * We first make sure that the class domain is disjoint from
2542 * previously considered class domains.
2544 * The separate domains can be computed directly from the "class_domain".
2546 * The unroll, atomic and remainder domains need the constraints
2547 * from the schedule domain.
2549 * For unrolling, the actual schedule domain is needed (with divs that
2550 * may refer to the current dimension) so that stride detection can be
2551 * performed.
2553 * For atomic and remainder domains, inner dimensions and divs involving
2554 * the current dimensions should be eliminated.
2555 * In case we are working within a separation class, we need to intersect
2556 * the result with the current "class_domain" to ensure that the domains
2557 * are disjoint from those generated from other class domains.
2559 * The domain that has been made atomic may be larger than specified
2560 * by the user since it needs to be representable as a single basic set.
2561 * This possibly larger domain is stored in domains->atomic by
2562 * compute_atomic_domain.
2564 * If anything is left after handling separate, unroll and atomic,
2565 * we split it up into basic sets and append the basic sets to domains->list.
2567 static int compute_partial_domains(struct isl_codegen_domains *domains,
2568 __isl_take isl_set *class_domain)
2570 isl_basic_set_list *list;
2571 isl_set *domain;
2573 class_domain = isl_set_subtract(class_domain,
2574 isl_set_copy(domains->done));
2575 domains->done = isl_set_union(domains->done,
2576 isl_set_copy(class_domain));
2578 domain = isl_set_copy(class_domain);
2580 if (compute_separate_domain(domains, domain) < 0)
2581 goto error;
2582 domain = isl_set_subtract(domain,
2583 isl_set_copy(domains->option[separate]));
2585 domain = isl_set_intersect(domain,
2586 isl_set_copy(domains->schedule_domain));
2588 if (compute_unroll_domains(domains, domain) < 0)
2589 goto error;
2590 domain = isl_set_subtract(domain,
2591 isl_set_copy(domains->option[unroll]));
2593 domain = isl_ast_build_eliminate(domains->build, domain);
2594 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2596 if (compute_atomic_domain(domains, domain) < 0)
2597 domain = isl_set_free(domain);
2598 domain = isl_set_subtract(domain, domains->atomic);
2600 domain = isl_set_coalesce(domain);
2601 domain = isl_set_make_disjoint(domain);
2603 list = isl_basic_set_list_from_set(domain);
2604 domains->list = isl_basic_set_list_concat(domains->list, list);
2606 isl_set_free(class_domain);
2608 return 0;
2609 error:
2610 isl_set_free(domain);
2611 isl_set_free(class_domain);
2612 return -1;
2615 /* Split up the domain at the current depth into disjoint
2616 * basic sets for which code should be generated separately
2617 * for the separation class identified by "pnt".
2619 * We extract the corresponding class domain from domains->sep_class,
2620 * eliminate inner dimensions and pass control to compute_partial_domains.
2622 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2624 struct isl_codegen_domains *domains = user;
2625 isl_set *class_set;
2626 isl_set *domain;
2627 int disjoint;
2629 class_set = isl_set_from_point(pnt);
2630 domain = isl_map_domain(isl_map_intersect_range(
2631 isl_map_copy(domains->sep_class), class_set));
2632 domain = isl_ast_build_compute_gist(domains->build, domain);
2633 domain = isl_ast_build_eliminate(domains->build, domain);
2635 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2636 if (disjoint < 0)
2637 return -1;
2638 if (disjoint) {
2639 isl_set_free(domain);
2640 return 0;
2643 return compute_partial_domains(domains, domain);
2646 /* Extract the domains at the current depth that should be atomic,
2647 * separated or unrolled and store them in option.
2649 * The domains specified by the user might overlap, so we make
2650 * them disjoint by subtracting earlier domains from later domains.
2652 static void compute_domains_init_options(isl_set *option[3],
2653 __isl_keep isl_ast_build *build)
2655 enum isl_ast_build_domain_type type, type2;
2657 for (type = atomic; type <= separate; ++type) {
2658 option[type] = isl_ast_build_get_option_domain(build, type);
2659 for (type2 = atomic; type2 < type; ++type2)
2660 option[type] = isl_set_subtract(option[type],
2661 isl_set_copy(option[type2]));
2664 option[unroll] = isl_set_coalesce(option[unroll]);
2665 option[unroll] = isl_set_make_disjoint(option[unroll]);
2668 /* Split up the domain at the current depth into disjoint
2669 * basic sets for which code should be generated separately,
2670 * based on the user-specified options.
2671 * Return the list of disjoint basic sets.
2673 * There are three kinds of domains that we need to keep track of.
2674 * - the "schedule domain" is the domain of "executed"
2675 * - the "class domain" is the domain corresponding to the currrent
2676 * separation class
2677 * - the "option domain" is the domain corresponding to one of the options
2678 * atomic, unroll or separate
2680 * We first consider the individial values of the separation classes
2681 * and split up the domain for each of them separately.
2682 * Finally, we consider the remainder. If no separation classes were
2683 * specified, then we call compute_partial_domains with the universe
2684 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2685 * with inner dimensions removed. We do this because we want to
2686 * avoid computing the complement of the class domains (i.e., the difference
2687 * between the universe and domains->done).
2689 static __isl_give isl_basic_set_list *compute_domains(
2690 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2692 struct isl_codegen_domains domains;
2693 isl_ctx *ctx;
2694 isl_set *domain;
2695 isl_union_set *schedule_domain;
2696 isl_set *classes;
2697 isl_space *space;
2698 int n_param;
2699 enum isl_ast_build_domain_type type;
2700 int empty;
2702 if (!executed)
2703 return NULL;
2705 ctx = isl_union_map_get_ctx(executed);
2706 domains.list = isl_basic_set_list_alloc(ctx, 0);
2708 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2709 domain = isl_set_from_union_set(schedule_domain);
2711 compute_domains_init_options(domains.option, build);
2713 domains.sep_class = isl_ast_build_get_separation_class(build);
2714 classes = isl_map_range(isl_map_copy(domains.sep_class));
2715 n_param = isl_set_dim(classes, isl_dim_param);
2716 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2718 space = isl_set_get_space(domain);
2719 domains.build = build;
2720 domains.schedule_domain = isl_set_copy(domain);
2721 domains.executed = executed;
2722 domains.done = isl_set_empty(space);
2724 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2725 domains.list = isl_basic_set_list_free(domains.list);
2726 isl_set_free(classes);
2728 empty = isl_set_is_empty(domains.done);
2729 if (empty < 0) {
2730 domains.list = isl_basic_set_list_free(domains.list);
2731 domain = isl_set_free(domain);
2732 } else if (empty) {
2733 isl_set_free(domain);
2734 domain = isl_set_universe(isl_set_get_space(domains.done));
2735 } else {
2736 domain = isl_ast_build_eliminate(build, domain);
2738 if (compute_partial_domains(&domains, domain) < 0)
2739 domains.list = isl_basic_set_list_free(domains.list);
2741 isl_set_free(domains.schedule_domain);
2742 isl_set_free(domains.done);
2743 isl_map_free(domains.sep_class);
2744 for (type = atomic; type <= separate; ++type)
2745 isl_set_free(domains.option[type]);
2747 return domains.list;
2750 /* Generate code for a single component, after shifting (if any)
2751 * has been applied.
2753 * We first split up the domain at the current depth into disjoint
2754 * basic sets based on the user-specified options.
2755 * Then we generated code for each of them and concatenate the results.
2757 static __isl_give isl_ast_graft_list *generate_shifted_component(
2758 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2760 isl_basic_set_list *domain_list;
2761 isl_ast_graft_list *list = NULL;
2763 domain_list = compute_domains(executed, build);
2764 list = generate_parallel_domains(domain_list, executed, build);
2766 isl_basic_set_list_free(domain_list);
2767 isl_union_map_free(executed);
2768 isl_ast_build_free(build);
2770 return list;
2773 struct isl_set_map_pair {
2774 isl_set *set;
2775 isl_map *map;
2778 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2779 * of indices into the "domain" array,
2780 * return the union of the "map" fields of the elements
2781 * indexed by the first "n" elements of "order".
2783 static __isl_give isl_union_map *construct_component_executed(
2784 struct isl_set_map_pair *domain, int *order, int n)
2786 int i;
2787 isl_map *map;
2788 isl_union_map *executed;
2790 map = isl_map_copy(domain[order[0]].map);
2791 executed = isl_union_map_from_map(map);
2792 for (i = 1; i < n; ++i) {
2793 map = isl_map_copy(domain[order[i]].map);
2794 executed = isl_union_map_add_map(executed, map);
2797 return executed;
2800 /* Generate code for a single component, after shifting (if any)
2801 * has been applied.
2803 * The component inverse schedule is specified as the "map" fields
2804 * of the elements of "domain" indexed by the first "n" elements of "order".
2806 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2807 struct isl_set_map_pair *domain, int *order, int n,
2808 __isl_take isl_ast_build *build)
2810 isl_union_map *executed;
2812 executed = construct_component_executed(domain, order, n);
2813 return generate_shifted_component(executed, build);
2816 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2817 * of indices into the "domain" array,
2818 * do all (except for at most one) of the "set" field of the elements
2819 * indexed by the first "n" elements of "order" have a fixed value
2820 * at position "depth"?
2822 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2823 int *order, int n, int depth)
2825 int i;
2826 int non_fixed = -1;
2828 for (i = 0; i < n; ++i) {
2829 int f;
2831 f = isl_set_plain_is_fixed(domain[order[i]].set,
2832 isl_dim_set, depth, NULL);
2833 if (f < 0)
2834 return -1;
2835 if (f)
2836 continue;
2837 if (non_fixed >= 0)
2838 return 0;
2839 non_fixed = i;
2842 return 1;
2845 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2846 * of indices into the "domain" array,
2847 * eliminate the inner dimensions from the "set" field of the elements
2848 * indexed by the first "n" elements of "order", provided the current
2849 * dimension does not have a fixed value.
2851 * Return the index of the first element in "order" with a corresponding
2852 * "set" field that does not have an (obviously) fixed value.
2854 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2855 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2857 int i;
2858 int base = -1;
2860 for (i = n - 1; i >= 0; --i) {
2861 int f;
2862 f = isl_set_plain_is_fixed(domain[order[i]].set,
2863 isl_dim_set, depth, NULL);
2864 if (f < 0)
2865 return -1;
2866 if (f)
2867 continue;
2868 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2869 domain[order[i]].set);
2870 base = i;
2873 return base;
2876 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2877 * of indices into the "domain" array,
2878 * find the element of "domain" (amongst those indexed by the first "n"
2879 * elements of "order") with the "set" field that has the smallest
2880 * value for the current iterator.
2882 * Note that the domain with the smallest value may depend on the parameters
2883 * and/or outer loop dimension. Since the result of this function is only
2884 * used as heuristic, we only make a reasonable attempt at finding the best
2885 * domain, one that should work in case a single domain provides the smallest
2886 * value for the current dimension over all values of the parameters
2887 * and outer dimensions.
2889 * In particular, we compute the smallest value of the first domain
2890 * and replace it by that of any later domain if that later domain
2891 * has a smallest value that is smaller for at least some value
2892 * of the parameters and outer dimensions.
2894 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2895 __isl_keep isl_ast_build *build)
2897 int i;
2898 isl_map *min_first;
2899 int first = 0;
2901 min_first = isl_ast_build_map_to_iterator(build,
2902 isl_set_copy(domain[order[0]].set));
2903 min_first = isl_map_lexmin(min_first);
2905 for (i = 1; i < n; ++i) {
2906 isl_map *min, *test;
2907 int empty;
2909 min = isl_ast_build_map_to_iterator(build,
2910 isl_set_copy(domain[order[i]].set));
2911 min = isl_map_lexmin(min);
2912 test = isl_map_copy(min);
2913 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2914 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2915 empty = isl_map_is_empty(test);
2916 isl_map_free(test);
2917 if (empty >= 0 && !empty) {
2918 isl_map_free(min_first);
2919 first = i;
2920 min_first = min;
2921 } else
2922 isl_map_free(min);
2924 if (empty < 0)
2925 break;
2928 isl_map_free(min_first);
2930 return i < n ? -1 : first;
2933 /* Construct a shifted inverse schedule based on the original inverse schedule,
2934 * the stride and the offset.
2936 * The original inverse schedule is specified as the "map" fields
2937 * of the elements of "domain" indexed by the first "n" elements of "order".
2939 * "stride" and "offset" are such that the difference
2940 * between the values of the current dimension of domain "i"
2941 * and the values of the current dimension for some reference domain are
2942 * equal to
2944 * stride * integer + offset[i]
2946 * Moreover, 0 <= offset[i] < stride.
2948 * For each domain, we create a map
2950 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2952 * where j refers to the current dimension and the other dimensions are
2953 * unchanged, and apply this map to the original schedule domain.
2955 * For example, for the original schedule
2957 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2959 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2960 * we apply the mapping
2962 * { [j] -> [j, 0] }
2964 * to the schedule of the "A" domain and the mapping
2966 * { [j - 1] -> [j, 1] }
2968 * to the schedule of the "B" domain.
2971 * Note that after the transformation, the differences between pairs
2972 * of values of the current dimension over all domains are multiples
2973 * of stride and that we have therefore exposed the stride.
2976 * To see that the mapping preserves the lexicographic order,
2977 * first note that each of the individual maps above preserves the order.
2978 * If the value of the current iterator is j1 in one domain and j2 in another,
2979 * then if j1 = j2, we know that the same map is applied to both domains
2980 * and the order is preserved.
2981 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2982 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2984 * j1 - c1 < j2 - c2
2986 * and the order is preserved.
2987 * If c1 < c2, then we know
2989 * 0 <= c2 - c1 < s
2991 * We also have
2993 * j2 - j1 = n * s + r
2995 * with n >= 0 and 0 <= r < s.
2996 * In other words, r = c2 - c1.
2997 * If n > 0, then
2999 * j1 - c1 < j2 - c2
3001 * If n = 0, then
3003 * j1 - c1 = j2 - c2
3005 * and so
3007 * (j1 - c1, c1) << (j2 - c2, c2)
3009 * with "<<" the lexicographic order, proving that the order is preserved
3010 * in all cases.
3012 static __isl_give isl_union_map *contruct_shifted_executed(
3013 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
3014 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
3016 int i;
3017 isl_int v;
3018 isl_union_map *executed;
3019 isl_space *space;
3020 isl_map *map;
3021 int depth;
3022 isl_constraint *c;
3024 depth = isl_ast_build_get_depth(build);
3025 space = isl_ast_build_get_space(build, 1);
3026 executed = isl_union_map_empty(isl_space_copy(space));
3027 space = isl_space_map_from_set(space);
3028 map = isl_map_identity(isl_space_copy(space));
3029 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
3030 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
3031 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
3033 c = isl_equality_alloc(isl_local_space_from_space(space));
3034 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
3035 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
3037 isl_int_init(v);
3039 for (i = 0; i < n; ++i) {
3040 isl_map *map_i;
3042 if (isl_vec_get_element(offset, i, &v) < 0)
3043 break;
3044 map_i = isl_map_copy(map);
3045 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
3046 isl_int_neg(v, v);
3047 c = isl_constraint_set_constant(c, v);
3048 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
3050 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
3051 map_i);
3052 executed = isl_union_map_add_map(executed, map_i);
3055 isl_constraint_free(c);
3056 isl_map_free(map);
3058 isl_int_clear(v);
3060 if (i < n)
3061 executed = isl_union_map_free(executed);
3063 return executed;
3066 /* Generate code for a single component, after exposing the stride,
3067 * given that the schedule domain is "shifted strided".
3069 * The component inverse schedule is specified as the "map" fields
3070 * of the elements of "domain" indexed by the first "n" elements of "order".
3072 * The schedule domain being "shifted strided" means that the differences
3073 * between the values of the current dimension of domain "i"
3074 * and the values of the current dimension for some reference domain are
3075 * equal to
3077 * stride * integer + offset[i]
3079 * We first look for the domain with the "smallest" value for the current
3080 * dimension and adjust the offsets such that the offset of the "smallest"
3081 * domain is equal to zero. The other offsets are reduced modulo stride.
3083 * Based on this information, we construct a new inverse schedule in
3084 * contruct_shifted_executed that exposes the stride.
3085 * Since this involves the introduction of a new schedule dimension,
3086 * the build needs to be changed accodingly.
3087 * After computing the AST, the newly introduced dimension needs
3088 * to be removed again from the list of grafts. We do this by plugging
3089 * in a mapping that represents the new schedule domain in terms of the
3090 * old schedule domain.
3092 static __isl_give isl_ast_graft_list *generate_shift_component(
3093 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
3094 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
3096 isl_ast_graft_list *list;
3097 int first;
3098 int depth;
3099 isl_ctx *ctx;
3100 isl_int val;
3101 isl_vec *v;
3102 isl_space *space;
3103 isl_multi_aff *ma, *zero;
3104 isl_union_map *executed;
3106 ctx = isl_ast_build_get_ctx(build);
3107 depth = isl_ast_build_get_depth(build);
3109 first = first_offset(domain, order, n, build);
3110 if (first < 0)
3111 return isl_ast_build_free(build);
3113 isl_int_init(val);
3114 v = isl_vec_alloc(ctx, n);
3115 if (isl_vec_get_element(offset, first, &val) < 0)
3116 v = isl_vec_free(v);
3117 isl_int_neg(val, val);
3118 v = isl_vec_set(v, val);
3119 v = isl_vec_add(v, isl_vec_copy(offset));
3120 v = isl_vec_fdiv_r(v, stride);
3122 executed = contruct_shifted_executed(domain, order, n, stride, v,
3123 build);
3124 space = isl_ast_build_get_space(build, 1);
3125 space = isl_space_map_from_set(space);
3126 ma = isl_multi_aff_identity(isl_space_copy(space));
3127 space = isl_space_from_domain(isl_space_domain(space));
3128 space = isl_space_add_dims(space, isl_dim_out, 1);
3129 zero = isl_multi_aff_zero(space);
3130 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3131 build = isl_ast_build_insert_dim(build, depth + 1);
3132 list = generate_shifted_component(executed, build);
3134 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3136 isl_vec_free(v);
3137 isl_int_clear(val);
3139 return list;
3142 /* Generate code for a single component.
3144 * The component inverse schedule is specified as the "map" fields
3145 * of the elements of "domain" indexed by the first "n" elements of "order".
3147 * This function may modify the "set" fields of "domain".
3149 * Before proceeding with the actual code generation for the component,
3150 * we first check if there are any "shifted" strides, meaning that
3151 * the schedule domains of the individual domains are all strided,
3152 * but that they have different offsets, resulting in the union
3153 * of schedule domains not being strided anymore.
3155 * The simplest example is the schedule
3157 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3159 * Both schedule domains are strided, but their union is not.
3160 * This function detects such cases and then rewrites the schedule to
3162 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3164 * In the new schedule, the schedule domains have the same offset (modulo
3165 * the stride), ensuring that the union of schedule domains is also strided.
3168 * If there is only a single domain in the component, then there is
3169 * nothing to do. Similarly, if the current schedule dimension has
3170 * a fixed value for almost all domains then there is nothing to be done.
3171 * In particular, we need at least two domains where the current schedule
3172 * dimension does not have a fixed value.
3173 * Finally, if any of the options refer to the current schedule dimension,
3174 * then we bail out as well. It would be possible to reformulate the options
3175 * in terms of the new schedule domain, but that would introduce constraints
3176 * that separate the domains in the options and that is something we would
3177 * like to avoid.
3180 * To see if there is any shifted stride, we look at the differences
3181 * between the values of the current dimension in pairs of domains
3182 * for equal values of outer dimensions. These differences should be
3183 * of the form
3185 * m x + r
3187 * with "m" the stride and "r" a constant. Note that we cannot perform
3188 * this analysis on individual domains as the lower bound in each domain
3189 * may depend on parameters or outer dimensions and so the current dimension
3190 * itself may not have a fixed remainder on division by the stride.
3192 * In particular, we compare the first domain that does not have an
3193 * obviously fixed value for the current dimension to itself and all
3194 * other domains and collect the offsets and the gcd of the strides.
3195 * If the gcd becomes one, then we failed to find shifted strides.
3196 * If all the offsets are the same (for those domains that do not have
3197 * an obviously fixed value for the current dimension), then we do not
3198 * apply the transformation.
3199 * If none of the domains were skipped, then there is nothing to do.
3200 * If some of them were skipped, then if we apply separation, the schedule
3201 * domain should get split in pieces with a (non-shifted) stride.
3203 * Otherwise, we apply a shift to expose the stride in
3204 * generate_shift_component.
3206 static __isl_give isl_ast_graft_list *generate_component(
3207 struct isl_set_map_pair *domain, int *order, int n,
3208 __isl_take isl_ast_build *build)
3210 int i, d;
3211 int depth;
3212 isl_ctx *ctx;
3213 isl_map *map;
3214 isl_set *deltas;
3215 isl_int m, r, gcd;
3216 isl_vec *v;
3217 int fixed, skip;
3218 int base;
3219 isl_ast_graft_list *list;
3220 int res = 0;
3222 depth = isl_ast_build_get_depth(build);
3224 skip = n == 1;
3225 if (skip >= 0 && !skip)
3226 skip = at_most_one_non_fixed(domain, order, n, depth);
3227 if (skip >= 0 && !skip)
3228 skip = isl_ast_build_options_involve_depth(build);
3229 if (skip < 0)
3230 return isl_ast_build_free(build);
3231 if (skip)
3232 return generate_shifted_component_from_list(domain,
3233 order, n, build);
3235 base = eliminate_non_fixed(domain, order, n, depth, build);
3236 if (base < 0)
3237 return isl_ast_build_free(build);
3239 ctx = isl_ast_build_get_ctx(build);
3241 isl_int_init(m);
3242 isl_int_init(r);
3243 isl_int_init(gcd);
3244 v = isl_vec_alloc(ctx, n);
3246 fixed = 1;
3247 for (i = 0; i < n; ++i) {
3248 map = isl_map_from_domain_and_range(
3249 isl_set_copy(domain[order[base]].set),
3250 isl_set_copy(domain[order[i]].set));
3251 for (d = 0; d < depth; ++d)
3252 map = isl_map_equate(map, isl_dim_in, d,
3253 isl_dim_out, d);
3254 deltas = isl_map_deltas(map);
3255 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3256 isl_set_free(deltas);
3257 if (res < 0)
3258 break;
3260 if (i == 0)
3261 isl_int_set(gcd, m);
3262 else
3263 isl_int_gcd(gcd, gcd, m);
3264 if (isl_int_is_one(gcd))
3265 break;
3266 v = isl_vec_set_element(v, i, r);
3268 res = isl_set_plain_is_fixed(domain[order[i]].set,
3269 isl_dim_set, depth, NULL);
3270 if (res < 0)
3271 break;
3272 if (res)
3273 continue;
3275 if (fixed && i > base) {
3276 isl_vec_get_element(v, base, &m);
3277 if (isl_int_ne(m, r))
3278 fixed = 0;
3282 if (res < 0) {
3283 isl_ast_build_free(build);
3284 list = NULL;
3285 } else if (i < n || fixed) {
3286 list = generate_shifted_component_from_list(domain,
3287 order, n, build);
3288 } else {
3289 list = generate_shift_component(domain, order, n, gcd, v,
3290 build);
3293 isl_vec_free(v);
3294 isl_int_clear(gcd);
3295 isl_int_clear(r);
3296 isl_int_clear(m);
3298 return list;
3301 /* Store both "map" itself and its domain in the
3302 * structure pointed to by *next and advance to the next array element.
3304 static int extract_domain(__isl_take isl_map *map, void *user)
3306 struct isl_set_map_pair **next = user;
3308 (*next)->map = isl_map_copy(map);
3309 (*next)->set = isl_map_domain(map);
3310 (*next)++;
3312 return 0;
3315 /* Internal data for any_scheduled_after.
3317 * "depth" is the number of loops that have already been generated
3318 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3319 * "domain" is an array of set-map pairs corresponding to the different
3320 * iteration domains. The set is the schedule domain, i.e., the domain
3321 * of the inverse schedule, while the map is the inverse schedule itself.
3323 struct isl_any_scheduled_after_data {
3324 int depth;
3325 int group_coscheduled;
3326 struct isl_set_map_pair *domain;
3329 /* Is any element of domain "i" scheduled after any element of domain "j"
3330 * (for a common iteration of the first data->depth loops)?
3332 * data->domain[i].set contains the domain of the inverse schedule
3333 * for domain "i", i.e., elements in the schedule domain.
3335 * If data->group_coscheduled is set, then we also return 1 if there
3336 * is any pair of elements in the two domains that are scheduled together.
3338 static int any_scheduled_after(int i, int j, void *user)
3340 struct isl_any_scheduled_after_data *data = user;
3341 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3342 int pos;
3344 for (pos = data->depth; pos < dim; ++pos) {
3345 int follows;
3347 follows = isl_set_follows_at(data->domain[i].set,
3348 data->domain[j].set, pos);
3350 if (follows < -1)
3351 return -1;
3352 if (follows > 0)
3353 return 1;
3354 if (follows < 0)
3355 return 0;
3358 return data->group_coscheduled;
3361 /* Look for independent components at the current depth and generate code
3362 * for each component separately. The resulting lists of grafts are
3363 * merged in an attempt to combine grafts with identical guards.
3365 * Code for two domains can be generated separately if all the elements
3366 * of one domain are scheduled before (or together with) all the elements
3367 * of the other domain. We therefore consider the graph with as nodes
3368 * the domains and an edge between two nodes if any element of the first
3369 * node is scheduled after any element of the second node.
3370 * If the ast_build_group_coscheduled is set, then we also add an edge if
3371 * there is any pair of elements in the two domains that are scheduled
3372 * together.
3373 * Code is then generated (by generate_component)
3374 * for each of the strongly connected components in this graph
3375 * in their topological order.
3377 * Since the test is performed on the domain of the inverse schedules of
3378 * the different domains, we precompute these domains and store
3379 * them in data.domain.
3381 static __isl_give isl_ast_graft_list *generate_components(
3382 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3384 int i;
3385 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3386 int n = isl_union_map_n_map(executed);
3387 struct isl_any_scheduled_after_data data;
3388 struct isl_set_map_pair *next;
3389 struct isl_tarjan_graph *g = NULL;
3390 isl_ast_graft_list *list = NULL;
3391 int n_domain = 0;
3393 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3394 if (!data.domain)
3395 goto error;
3396 n_domain = n;
3398 next = data.domain;
3399 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3400 goto error;
3402 if (!build)
3403 goto error;
3404 data.depth = isl_ast_build_get_depth(build);
3405 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3406 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3408 list = isl_ast_graft_list_alloc(ctx, 0);
3410 i = 0;
3411 while (list && n) {
3412 isl_ast_graft_list *list_c;
3413 int first = i;
3415 if (g->order[i] == -1)
3416 isl_die(ctx, isl_error_internal, "cannot happen",
3417 goto error);
3418 ++i; --n;
3419 while (g->order[i] != -1) {
3420 ++i; --n;
3423 list_c = generate_component(data.domain,
3424 g->order + first, i - first,
3425 isl_ast_build_copy(build));
3426 list = isl_ast_graft_list_merge(list, list_c, build);
3428 ++i;
3431 if (0)
3432 error: list = isl_ast_graft_list_free(list);
3433 isl_tarjan_graph_free(g);
3434 for (i = 0; i < n_domain; ++i) {
3435 isl_map_free(data.domain[i].map);
3436 isl_set_free(data.domain[i].set);
3438 free(data.domain);
3439 isl_union_map_free(executed);
3440 isl_ast_build_free(build);
3442 return list;
3445 /* Generate code for the next level (and all inner levels).
3447 * If "executed" is empty, i.e., no code needs to be generated,
3448 * then we return an empty list.
3450 * If we have already generated code for all loop levels, then we pass
3451 * control to generate_inner_level.
3453 * If "executed" lives in a single space, i.e., if code needs to be
3454 * generated for a single domain, then there can only be a single
3455 * component and we go directly to generate_shifted_component.
3456 * Otherwise, we call generate_components to detect the components
3457 * and to call generate_component on each of them separately.
3459 static __isl_give isl_ast_graft_list *generate_next_level(
3460 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3462 int depth;
3464 if (!build || !executed)
3465 goto error;
3467 if (isl_union_map_is_empty(executed)) {
3468 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3469 isl_union_map_free(executed);
3470 isl_ast_build_free(build);
3471 return isl_ast_graft_list_alloc(ctx, 0);
3474 depth = isl_ast_build_get_depth(build);
3475 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3476 return generate_inner_level(executed, build);
3478 if (isl_union_map_n_map(executed) == 1)
3479 return generate_shifted_component(executed, build);
3481 return generate_components(executed, build);
3482 error:
3483 isl_union_map_free(executed);
3484 isl_ast_build_free(build);
3485 return NULL;
3488 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3489 * internal, executed and build are the inputs to generate_code.
3490 * list collects the output.
3492 struct isl_generate_code_data {
3493 int internal;
3494 isl_union_map *executed;
3495 isl_ast_build *build;
3497 isl_ast_graft_list *list;
3500 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3502 * [E -> S] -> D
3504 * with E the external build schedule and S the additional schedule "space",
3505 * reformulate the inverse schedule in terms of the internal schedule domain,
3506 * i.e., return
3508 * [I -> S] -> D
3510 * We first obtain a mapping
3512 * I -> E
3514 * take the inverse and the product with S -> S, resulting in
3516 * [I -> S] -> [E -> S]
3518 * Applying the map to the input produces the desired result.
3520 static __isl_give isl_union_map *internal_executed(
3521 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3522 __isl_keep isl_ast_build *build)
3524 isl_map *id, *proj;
3526 proj = isl_ast_build_get_schedule_map(build);
3527 proj = isl_map_reverse(proj);
3528 space = isl_space_map_from_set(isl_space_copy(space));
3529 id = isl_map_identity(space);
3530 proj = isl_map_product(proj, id);
3531 executed = isl_union_map_apply_domain(executed,
3532 isl_union_map_from_map(proj));
3533 return executed;
3536 /* Generate an AST that visits the elements in the range of data->executed
3537 * in the relative order specified by the corresponding image element(s)
3538 * for those image elements that belong to "set".
3539 * Add the result to data->list.
3541 * The caller ensures that "set" is a universe domain.
3542 * "space" is the space of the additional part of the schedule.
3543 * It is equal to the space of "set" if build->domain is parametric.
3544 * Otherwise, it is equal to the range of the wrapped space of "set".
3546 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3547 * was called from an outside user (data->internal not set), then
3548 * the (inverse) schedule refers to the external build domain and needs to
3549 * be transformed to refer to the internal build domain.
3551 * The build is extended to include the additional part of the schedule.
3552 * If the original build space was not parametric, then the options
3553 * in data->build refer only to the additional part of the schedule
3554 * and they need to be adjusted to refer to the complete AST build
3555 * domain.
3557 * After having adjusted inverse schedule and build, we start generating
3558 * code with the outer loop of the current code generation
3559 * in generate_next_level.
3561 * If the original build space was not parametric, we undo the embedding
3562 * on the resulting isl_ast_node_list so that it can be used within
3563 * the outer AST build.
3565 static int generate_code_in_space(struct isl_generate_code_data *data,
3566 __isl_take isl_set *set, __isl_take isl_space *space)
3568 isl_union_map *executed;
3569 isl_ast_build *build;
3570 isl_ast_graft_list *list;
3571 int embed;
3573 executed = isl_union_map_copy(data->executed);
3574 executed = isl_union_map_intersect_domain(executed,
3575 isl_union_set_from_set(set));
3577 embed = !isl_set_is_params(data->build->domain);
3578 if (embed && !data->internal)
3579 executed = internal_executed(executed, space, data->build);
3581 build = isl_ast_build_copy(data->build);
3582 build = isl_ast_build_product(build, space);
3584 list = generate_next_level(executed, build);
3586 list = isl_ast_graft_list_unembed(list, embed);
3588 data->list = isl_ast_graft_list_concat(data->list, list);
3590 return 0;
3593 /* Generate an AST that visits the elements in the range of data->executed
3594 * in the relative order specified by the corresponding domain element(s)
3595 * for those domain elements that belong to "set".
3596 * Add the result to data->list.
3598 * The caller ensures that "set" is a universe domain.
3600 * If the build space S is not parametric, then the space of "set"
3601 * need to be a wrapped relation with S as domain. That is, it needs
3602 * to be of the form
3604 * [S -> T]
3606 * Check this property and pass control to generate_code_in_space
3607 * passing along T.
3608 * If the build space is not parametric, then T is the space of "set".
3610 static int generate_code_set(__isl_take isl_set *set, void *user)
3612 struct isl_generate_code_data *data = user;
3613 isl_space *space, *build_space;
3614 int is_domain;
3616 space = isl_set_get_space(set);
3618 if (isl_set_is_params(data->build->domain))
3619 return generate_code_in_space(data, set, space);
3621 build_space = isl_ast_build_get_space(data->build, data->internal);
3622 space = isl_space_unwrap(space);
3623 is_domain = isl_space_is_domain(build_space, space);
3624 isl_space_free(build_space);
3625 space = isl_space_range(space);
3627 if (is_domain < 0)
3628 goto error;
3629 if (!is_domain)
3630 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3631 "invalid nested schedule space", goto error);
3633 return generate_code_in_space(data, set, space);
3634 error:
3635 isl_set_free(set);
3636 isl_space_free(space);
3637 return -1;
3640 /* Generate an AST that visits the elements in the range of "executed"
3641 * in the relative order specified by the corresponding domain element(s).
3643 * "build" is an isl_ast_build that has either been constructed by
3644 * isl_ast_build_from_context or passed to a callback set by
3645 * isl_ast_build_set_create_leaf.
3646 * In the first case, the space of the isl_ast_build is typically
3647 * a parametric space, although this is currently not enforced.
3648 * In the second case, the space is never a parametric space.
3649 * If the space S is not parametric, then the domain space(s) of "executed"
3650 * need to be wrapped relations with S as domain.
3652 * If the domain of "executed" consists of several spaces, then an AST
3653 * is generated for each of them (in arbitrary order) and the results
3654 * are concatenated.
3656 * If "internal" is set, then the domain "S" above refers to the internal
3657 * schedule domain representation. Otherwise, it refers to the external
3658 * representation, as returned by isl_ast_build_get_schedule_space.
3660 * We essentially run over all the spaces in the domain of "executed"
3661 * and call generate_code_set on each of them.
3663 static __isl_give isl_ast_graft_list *generate_code(
3664 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3665 int internal)
3667 isl_ctx *ctx;
3668 struct isl_generate_code_data data = { 0 };
3669 isl_space *space;
3670 isl_union_set *schedule_domain;
3671 isl_union_map *universe;
3673 if (!build)
3674 goto error;
3675 space = isl_ast_build_get_space(build, 1);
3676 space = isl_space_align_params(space,
3677 isl_union_map_get_space(executed));
3678 space = isl_space_align_params(space,
3679 isl_union_map_get_space(build->options));
3680 build = isl_ast_build_align_params(build, isl_space_copy(space));
3681 executed = isl_union_map_align_params(executed, space);
3682 if (!executed || !build)
3683 goto error;
3685 ctx = isl_ast_build_get_ctx(build);
3687 data.internal = internal;
3688 data.executed = executed;
3689 data.build = build;
3690 data.list = isl_ast_graft_list_alloc(ctx, 0);
3692 universe = isl_union_map_universe(isl_union_map_copy(executed));
3693 schedule_domain = isl_union_map_domain(universe);
3694 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3695 &data) < 0)
3696 data.list = isl_ast_graft_list_free(data.list);
3698 isl_union_set_free(schedule_domain);
3699 isl_union_map_free(executed);
3701 isl_ast_build_free(build);
3702 return data.list;
3703 error:
3704 isl_union_map_free(executed);
3705 isl_ast_build_free(build);
3706 return NULL;
3709 /* Generate an AST that visits the elements in the domain of "schedule"
3710 * in the relative order specified by the corresponding image element(s).
3712 * "build" is an isl_ast_build that has either been constructed by
3713 * isl_ast_build_from_context or passed to a callback set by
3714 * isl_ast_build_set_create_leaf.
3715 * In the first case, the space of the isl_ast_build is typically
3716 * a parametric space, although this is currently not enforced.
3717 * In the second case, the space is never a parametric space.
3718 * If the space S is not parametric, then the range space(s) of "schedule"
3719 * need to be wrapped relations with S as domain.
3721 * If the range of "schedule" consists of several spaces, then an AST
3722 * is generated for each of them (in arbitrary order) and the results
3723 * are concatenated.
3725 * We first initialize the local copies of the relevant options.
3726 * We do this here rather than when the isl_ast_build is created
3727 * because the options may have changed between the construction
3728 * of the isl_ast_build and the call to isl_generate_code.
3730 * The main computation is performed on an inverse schedule (with
3731 * the schedule domain in the domain and the elements to be executed
3732 * in the range) called "executed".
3734 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3735 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3737 isl_ast_graft_list *list;
3738 isl_ast_node *node;
3739 isl_union_map *executed;
3741 build = isl_ast_build_copy(build);
3742 build = isl_ast_build_set_single_valued(build, 0);
3743 executed = isl_union_map_reverse(schedule);
3744 list = generate_code(executed, isl_ast_build_copy(build), 0);
3745 node = isl_ast_node_from_graft_list(list, build);
3746 isl_ast_build_free(build);
3748 return node;