test_inputs/codegen/{atomic,separate}.*: explicitly specify order of statements
[isl.git] / isl_scheduler.c
blob28f2ce7e275fc8b227157919aca8cb4328dbc954
1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015-2016 Sven Verdoolaege
5 * Copyright 2016 INRIA Paris
7 * Use of this software is governed by the MIT license
9 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
10 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
11 * 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 * and Centre de Recherche Inria de Paris, 2 rue Simone Iff - Voie DQ12,
14 * CS 42112, 75589 Paris Cedex 12, France
17 #include <isl_ctx_private.h>
18 #include <isl_map_private.h>
19 #include <isl_space_private.h>
20 #include <isl_aff_private.h>
21 #include <isl/hash.h>
22 #include <isl/constraint.h>
23 #include <isl/schedule.h>
24 #include <isl_schedule_constraints.h>
25 #include <isl/schedule_node.h>
26 #include <isl_mat_private.h>
27 #include <isl_vec_private.h>
28 #include <isl/set.h>
29 #include <isl/union_set.h>
30 #include <isl_seq.h>
31 #include <isl_tab.h>
32 #include <isl_dim_map.h>
33 #include <isl/map_to_basic_set.h>
34 #include <isl_sort.h>
35 #include <isl_options_private.h>
36 #include <isl_tarjan.h>
37 #include <isl_morph.h>
38 #include <isl/ilp.h>
39 #include <isl_val_private.h>
42 * The scheduling algorithm implemented in this file was inspired by
43 * Bondhugula et al., "Automatic Transformations for Communication-Minimized
44 * Parallelization and Locality Optimization in the Polyhedral Model".
48 /* Internal information about a node that is used during the construction
49 * of a schedule.
50 * space represents the original space in which the domain lives;
51 * that is, the space is not affected by compression
52 * sched is a matrix representation of the schedule being constructed
53 * for this node; if compressed is set, then this schedule is
54 * defined over the compressed domain space
55 * sched_map is an isl_map representation of the same (partial) schedule
56 * sched_map may be NULL; if compressed is set, then this map
57 * is defined over the uncompressed domain space
58 * rank is the number of linearly independent rows in the linear part
59 * of sched
60 * the columns of cmap represent a change of basis for the schedule
61 * coefficients; the first rank columns span the linear part of
62 * the schedule rows
63 * cinv is the inverse of cmap.
64 * ctrans is the transpose of cmap.
65 * start is the first variable in the LP problem in the sequences that
66 * represents the schedule coefficients of this node
67 * nvar is the dimension of the domain
68 * nparam is the number of parameters or 0 if we are not constructing
69 * a parametric schedule
71 * If compressed is set, then hull represents the constraints
72 * that were used to derive the compression, while compress and
73 * decompress map the original space to the compressed space and
74 * vice versa.
76 * scc is the index of SCC (or WCC) this node belongs to
78 * "cluster" is only used inside extract_clusters and identifies
79 * the cluster of SCCs that the node belongs to.
81 * coincident contains a boolean for each of the rows of the schedule,
82 * indicating whether the corresponding scheduling dimension satisfies
83 * the coincidence constraints in the sense that the corresponding
84 * dependence distances are zero.
86 * If the schedule_treat_coalescing option is set, then
87 * "sizes" contains the sizes of the (compressed) instance set
88 * in each direction. If there is no fixed size in a given direction,
89 * then the corresponding size value is set to infinity.
90 * If the schedule_treat_coalescing option or the schedule_max_coefficient
91 * option is set, then "max" contains the maximal values for
92 * schedule coefficients of the (compressed) variables. If no bound
93 * needs to be imposed on a particular variable, then the corresponding
94 * value is negative.
96 struct isl_sched_node {
97 isl_space *space;
98 int compressed;
99 isl_set *hull;
100 isl_multi_aff *compress;
101 isl_multi_aff *decompress;
102 isl_mat *sched;
103 isl_map *sched_map;
104 int rank;
105 isl_mat *cmap;
106 isl_mat *cinv;
107 isl_mat *ctrans;
108 int start;
109 int nvar;
110 int nparam;
112 int scc;
113 int cluster;
115 int *coincident;
117 isl_multi_val *sizes;
118 isl_vec *max;
121 static int node_has_space(const void *entry, const void *val)
123 struct isl_sched_node *node = (struct isl_sched_node *)entry;
124 isl_space *dim = (isl_space *)val;
126 return isl_space_is_equal(node->space, dim);
129 static int node_scc_exactly(struct isl_sched_node *node, int scc)
131 return node->scc == scc;
134 static int node_scc_at_most(struct isl_sched_node *node, int scc)
136 return node->scc <= scc;
139 static int node_scc_at_least(struct isl_sched_node *node, int scc)
141 return node->scc >= scc;
144 /* An edge in the dependence graph. An edge may be used to
145 * ensure validity of the generated schedule, to minimize the dependence
146 * distance or both
148 * map is the dependence relation, with i -> j in the map if j depends on i
149 * tagged_condition and tagged_validity contain the union of all tagged
150 * condition or conditional validity dependence relations that
151 * specialize the dependence relation "map"; that is,
152 * if (i -> a) -> (j -> b) is an element of "tagged_condition"
153 * or "tagged_validity", then i -> j is an element of "map".
154 * If these fields are NULL, then they represent the empty relation.
155 * src is the source node
156 * dst is the sink node
158 * types is a bit vector containing the types of this edge.
159 * validity is set if the edge is used to ensure correctness
160 * coincidence is used to enforce zero dependence distances
161 * proximity is set if the edge is used to minimize dependence distances
162 * condition is set if the edge represents a condition
163 * for a conditional validity schedule constraint
164 * local can only be set for condition edges and indicates that
165 * the dependence distance over the edge should be zero
166 * conditional_validity is set if the edge is used to conditionally
167 * ensure correctness
169 * For validity edges, start and end mark the sequence of inequality
170 * constraints in the LP problem that encode the validity constraint
171 * corresponding to this edge.
173 * During clustering, an edge may be marked "no_merge" if it should
174 * not be used to merge clusters.
175 * The weight is also only used during clustering and it is
176 * an indication of how many schedule dimensions on either side
177 * of the schedule constraints can be aligned.
178 * If the weight is negative, then this means that this edge was postponed
179 * by has_bounded_distances or any_no_merge. The original weight can
180 * be retrieved by adding 1 + graph->max_weight, with "graph"
181 * the graph containing this edge.
183 struct isl_sched_edge {
184 isl_map *map;
185 isl_union_map *tagged_condition;
186 isl_union_map *tagged_validity;
188 struct isl_sched_node *src;
189 struct isl_sched_node *dst;
191 unsigned types;
193 int start;
194 int end;
196 int no_merge;
197 int weight;
200 /* Is "edge" marked as being of type "type"?
202 static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type)
204 return ISL_FL_ISSET(edge->types, 1 << type);
207 /* Mark "edge" as being of type "type".
209 static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type)
211 ISL_FL_SET(edge->types, 1 << type);
214 /* No longer mark "edge" as being of type "type"?
216 static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type)
218 ISL_FL_CLR(edge->types, 1 << type);
221 /* Is "edge" marked as a validity edge?
223 static int is_validity(struct isl_sched_edge *edge)
225 return is_type(edge, isl_edge_validity);
228 /* Mark "edge" as a validity edge.
230 static void set_validity(struct isl_sched_edge *edge)
232 set_type(edge, isl_edge_validity);
235 /* Is "edge" marked as a proximity edge?
237 static int is_proximity(struct isl_sched_edge *edge)
239 return is_type(edge, isl_edge_proximity);
242 /* Is "edge" marked as a local edge?
244 static int is_local(struct isl_sched_edge *edge)
246 return is_type(edge, isl_edge_local);
249 /* Mark "edge" as a local edge.
251 static void set_local(struct isl_sched_edge *edge)
253 set_type(edge, isl_edge_local);
256 /* No longer mark "edge" as a local edge.
258 static void clear_local(struct isl_sched_edge *edge)
260 clear_type(edge, isl_edge_local);
263 /* Is "edge" marked as a coincidence edge?
265 static int is_coincidence(struct isl_sched_edge *edge)
267 return is_type(edge, isl_edge_coincidence);
270 /* Is "edge" marked as a condition edge?
272 static int is_condition(struct isl_sched_edge *edge)
274 return is_type(edge, isl_edge_condition);
277 /* Is "edge" marked as a conditional validity edge?
279 static int is_conditional_validity(struct isl_sched_edge *edge)
281 return is_type(edge, isl_edge_conditional_validity);
284 /* Internal information about the dependence graph used during
285 * the construction of the schedule.
287 * intra_hmap is a cache, mapping dependence relations to their dual,
288 * for dependences from a node to itself
289 * inter_hmap is a cache, mapping dependence relations to their dual,
290 * for dependences between distinct nodes
291 * if compression is involved then the key for these maps
292 * is the original, uncompressed dependence relation, while
293 * the value is the dual of the compressed dependence relation.
295 * n is the number of nodes
296 * node is the list of nodes
297 * maxvar is the maximal number of variables over all nodes
298 * max_row is the allocated number of rows in the schedule
299 * n_row is the current (maximal) number of linearly independent
300 * rows in the node schedules
301 * n_total_row is the current number of rows in the node schedules
302 * band_start is the starting row in the node schedules of the current band
303 * root is set if this graph is the original dependence graph,
304 * without any splitting
306 * sorted contains a list of node indices sorted according to the
307 * SCC to which a node belongs
309 * n_edge is the number of edges
310 * edge is the list of edges
311 * max_edge contains the maximal number of edges of each type;
312 * in particular, it contains the number of edges in the inital graph.
313 * edge_table contains pointers into the edge array, hashed on the source
314 * and sink spaces; there is one such table for each type;
315 * a given edge may be referenced from more than one table
316 * if the corresponding relation appears in more than one of the
317 * sets of dependences; however, for each type there is only
318 * a single edge between a given pair of source and sink space
319 * in the entire graph
321 * node_table contains pointers into the node array, hashed on the space
323 * region contains a list of variable sequences that should be non-trivial
325 * lp contains the (I)LP problem used to obtain new schedule rows
327 * src_scc and dst_scc are the source and sink SCCs of an edge with
328 * conflicting constraints
330 * scc represents the number of components
331 * weak is set if the components are weakly connected
333 * max_weight is used during clustering and represents the maximal
334 * weight of the relevant proximity edges.
336 struct isl_sched_graph {
337 isl_map_to_basic_set *intra_hmap;
338 isl_map_to_basic_set *inter_hmap;
340 struct isl_sched_node *node;
341 int n;
342 int maxvar;
343 int max_row;
344 int n_row;
346 int *sorted;
348 int n_total_row;
349 int band_start;
351 int root;
353 struct isl_sched_edge *edge;
354 int n_edge;
355 int max_edge[isl_edge_last + 1];
356 struct isl_hash_table *edge_table[isl_edge_last + 1];
358 struct isl_hash_table *node_table;
359 struct isl_region *region;
361 isl_basic_set *lp;
363 int src_scc;
364 int dst_scc;
366 int scc;
367 int weak;
369 int max_weight;
372 /* Initialize node_table based on the list of nodes.
374 static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph)
376 int i;
378 graph->node_table = isl_hash_table_alloc(ctx, graph->n);
379 if (!graph->node_table)
380 return -1;
382 for (i = 0; i < graph->n; ++i) {
383 struct isl_hash_table_entry *entry;
384 uint32_t hash;
386 hash = isl_space_get_hash(graph->node[i].space);
387 entry = isl_hash_table_find(ctx, graph->node_table, hash,
388 &node_has_space,
389 graph->node[i].space, 1);
390 if (!entry)
391 return -1;
392 entry->data = &graph->node[i];
395 return 0;
398 /* Return a pointer to the node that lives within the given space,
399 * or NULL if there is no such node.
401 static struct isl_sched_node *graph_find_node(isl_ctx *ctx,
402 struct isl_sched_graph *graph, __isl_keep isl_space *dim)
404 struct isl_hash_table_entry *entry;
405 uint32_t hash;
407 hash = isl_space_get_hash(dim);
408 entry = isl_hash_table_find(ctx, graph->node_table, hash,
409 &node_has_space, dim, 0);
411 return entry ? entry->data : NULL;
414 static int edge_has_src_and_dst(const void *entry, const void *val)
416 const struct isl_sched_edge *edge = entry;
417 const struct isl_sched_edge *temp = val;
419 return edge->src == temp->src && edge->dst == temp->dst;
422 /* Add the given edge to graph->edge_table[type].
424 static isl_stat graph_edge_table_add(isl_ctx *ctx,
425 struct isl_sched_graph *graph, enum isl_edge_type type,
426 struct isl_sched_edge *edge)
428 struct isl_hash_table_entry *entry;
429 uint32_t hash;
431 hash = isl_hash_init();
432 hash = isl_hash_builtin(hash, edge->src);
433 hash = isl_hash_builtin(hash, edge->dst);
434 entry = isl_hash_table_find(ctx, graph->edge_table[type], hash,
435 &edge_has_src_and_dst, edge, 1);
436 if (!entry)
437 return isl_stat_error;
438 entry->data = edge;
440 return isl_stat_ok;
443 /* Allocate the edge_tables based on the maximal number of edges of
444 * each type.
446 static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph)
448 int i;
450 for (i = 0; i <= isl_edge_last; ++i) {
451 graph->edge_table[i] = isl_hash_table_alloc(ctx,
452 graph->max_edge[i]);
453 if (!graph->edge_table[i])
454 return -1;
457 return 0;
460 /* If graph->edge_table[type] contains an edge from the given source
461 * to the given destination, then return the hash table entry of this edge.
462 * Otherwise, return NULL.
464 static struct isl_hash_table_entry *graph_find_edge_entry(
465 struct isl_sched_graph *graph,
466 enum isl_edge_type type,
467 struct isl_sched_node *src, struct isl_sched_node *dst)
469 isl_ctx *ctx = isl_space_get_ctx(src->space);
470 uint32_t hash;
471 struct isl_sched_edge temp = { .src = src, .dst = dst };
473 hash = isl_hash_init();
474 hash = isl_hash_builtin(hash, temp.src);
475 hash = isl_hash_builtin(hash, temp.dst);
476 return isl_hash_table_find(ctx, graph->edge_table[type], hash,
477 &edge_has_src_and_dst, &temp, 0);
481 /* If graph->edge_table[type] contains an edge from the given source
482 * to the given destination, then return this edge.
483 * Otherwise, return NULL.
485 static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph,
486 enum isl_edge_type type,
487 struct isl_sched_node *src, struct isl_sched_node *dst)
489 struct isl_hash_table_entry *entry;
491 entry = graph_find_edge_entry(graph, type, src, dst);
492 if (!entry)
493 return NULL;
495 return entry->data;
498 /* Check whether the dependence graph has an edge of the given type
499 * between the given two nodes.
501 static isl_bool graph_has_edge(struct isl_sched_graph *graph,
502 enum isl_edge_type type,
503 struct isl_sched_node *src, struct isl_sched_node *dst)
505 struct isl_sched_edge *edge;
506 isl_bool empty;
508 edge = graph_find_edge(graph, type, src, dst);
509 if (!edge)
510 return 0;
512 empty = isl_map_plain_is_empty(edge->map);
513 if (empty < 0)
514 return isl_bool_error;
516 return !empty;
519 /* Look for any edge with the same src, dst and map fields as "model".
521 * Return the matching edge if one can be found.
522 * Return "model" if no matching edge is found.
523 * Return NULL on error.
525 static struct isl_sched_edge *graph_find_matching_edge(
526 struct isl_sched_graph *graph, struct isl_sched_edge *model)
528 enum isl_edge_type i;
529 struct isl_sched_edge *edge;
531 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
532 int is_equal;
534 edge = graph_find_edge(graph, i, model->src, model->dst);
535 if (!edge)
536 continue;
537 is_equal = isl_map_plain_is_equal(model->map, edge->map);
538 if (is_equal < 0)
539 return NULL;
540 if (is_equal)
541 return edge;
544 return model;
547 /* Remove the given edge from all the edge_tables that refer to it.
549 static void graph_remove_edge(struct isl_sched_graph *graph,
550 struct isl_sched_edge *edge)
552 isl_ctx *ctx = isl_map_get_ctx(edge->map);
553 enum isl_edge_type i;
555 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
556 struct isl_hash_table_entry *entry;
558 entry = graph_find_edge_entry(graph, i, edge->src, edge->dst);
559 if (!entry)
560 continue;
561 if (entry->data != edge)
562 continue;
563 isl_hash_table_remove(ctx, graph->edge_table[i], entry);
567 /* Check whether the dependence graph has any edge
568 * between the given two nodes.
570 static isl_bool graph_has_any_edge(struct isl_sched_graph *graph,
571 struct isl_sched_node *src, struct isl_sched_node *dst)
573 enum isl_edge_type i;
574 isl_bool r;
576 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
577 r = graph_has_edge(graph, i, src, dst);
578 if (r < 0 || r)
579 return r;
582 return r;
585 /* Check whether the dependence graph has a validity edge
586 * between the given two nodes.
588 * Conditional validity edges are essentially validity edges that
589 * can be ignored if the corresponding condition edges are iteration private.
590 * Here, we are only checking for the presence of validity
591 * edges, so we need to consider the conditional validity edges too.
592 * In particular, this function is used during the detection
593 * of strongly connected components and we cannot ignore
594 * conditional validity edges during this detection.
596 static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph,
597 struct isl_sched_node *src, struct isl_sched_node *dst)
599 isl_bool r;
601 r = graph_has_edge(graph, isl_edge_validity, src, dst);
602 if (r < 0 || r)
603 return r;
605 return graph_has_edge(graph, isl_edge_conditional_validity, src, dst);
608 static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph,
609 int n_node, int n_edge)
611 int i;
613 graph->n = n_node;
614 graph->n_edge = n_edge;
615 graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n);
616 graph->sorted = isl_calloc_array(ctx, int, graph->n);
617 graph->region = isl_alloc_array(ctx, struct isl_region, graph->n);
618 graph->edge = isl_calloc_array(ctx,
619 struct isl_sched_edge, graph->n_edge);
621 graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
622 graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge);
624 if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) ||
625 !graph->sorted)
626 return -1;
628 for(i = 0; i < graph->n; ++i)
629 graph->sorted[i] = i;
631 return 0;
634 static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph)
636 int i;
638 isl_map_to_basic_set_free(graph->intra_hmap);
639 isl_map_to_basic_set_free(graph->inter_hmap);
641 if (graph->node)
642 for (i = 0; i < graph->n; ++i) {
643 isl_space_free(graph->node[i].space);
644 isl_set_free(graph->node[i].hull);
645 isl_multi_aff_free(graph->node[i].compress);
646 isl_multi_aff_free(graph->node[i].decompress);
647 isl_mat_free(graph->node[i].sched);
648 isl_map_free(graph->node[i].sched_map);
649 isl_mat_free(graph->node[i].cmap);
650 isl_mat_free(graph->node[i].cinv);
651 isl_mat_free(graph->node[i].ctrans);
652 if (graph->root)
653 free(graph->node[i].coincident);
654 isl_multi_val_free(graph->node[i].sizes);
655 isl_vec_free(graph->node[i].max);
657 free(graph->node);
658 free(graph->sorted);
659 if (graph->edge)
660 for (i = 0; i < graph->n_edge; ++i) {
661 isl_map_free(graph->edge[i].map);
662 isl_union_map_free(graph->edge[i].tagged_condition);
663 isl_union_map_free(graph->edge[i].tagged_validity);
665 free(graph->edge);
666 free(graph->region);
667 for (i = 0; i <= isl_edge_last; ++i)
668 isl_hash_table_free(ctx, graph->edge_table[i]);
669 isl_hash_table_free(ctx, graph->node_table);
670 isl_basic_set_free(graph->lp);
673 /* For each "set" on which this function is called, increment
674 * graph->n by one and update graph->maxvar.
676 static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user)
678 struct isl_sched_graph *graph = user;
679 int nvar = isl_set_dim(set, isl_dim_set);
681 graph->n++;
682 if (nvar > graph->maxvar)
683 graph->maxvar = nvar;
685 isl_set_free(set);
687 return isl_stat_ok;
690 /* Compute the number of rows that should be allocated for the schedule.
691 * In particular, we need one row for each variable or one row
692 * for each basic map in the dependences.
693 * Note that it is practically impossible to exhaust both
694 * the number of dependences and the number of variables.
696 static isl_stat compute_max_row(struct isl_sched_graph *graph,
697 __isl_keep isl_schedule_constraints *sc)
699 int n_edge;
700 isl_stat r;
701 isl_union_set *domain;
703 graph->n = 0;
704 graph->maxvar = 0;
705 domain = isl_schedule_constraints_get_domain(sc);
706 r = isl_union_set_foreach_set(domain, &init_n_maxvar, graph);
707 isl_union_set_free(domain);
708 if (r < 0)
709 return isl_stat_error;
710 n_edge = isl_schedule_constraints_n_basic_map(sc);
711 if (n_edge < 0)
712 return isl_stat_error;
713 graph->max_row = n_edge + graph->maxvar;
715 return isl_stat_ok;
718 /* Does "bset" have any defining equalities for its set variables?
720 static isl_bool has_any_defining_equality(__isl_keep isl_basic_set *bset)
722 int i, n;
724 if (!bset)
725 return isl_bool_error;
727 n = isl_basic_set_dim(bset, isl_dim_set);
728 for (i = 0; i < n; ++i) {
729 isl_bool has;
731 has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i,
732 NULL);
733 if (has < 0 || has)
734 return has;
737 return isl_bool_false;
740 /* Set the entries of node->max to the value of the schedule_max_coefficient
741 * option, if set.
743 static isl_stat set_max_coefficient(isl_ctx *ctx, struct isl_sched_node *node)
745 int max;
747 max = isl_options_get_schedule_max_coefficient(ctx);
748 if (max == -1)
749 return isl_stat_ok;
751 node->max = isl_vec_alloc(ctx, node->nvar);
752 node->max = isl_vec_set_si(node->max, max);
753 if (!node->max)
754 return isl_stat_error;
756 return isl_stat_ok;
759 /* Set the entries of node->max to the minimum of the schedule_max_coefficient
760 * option (if set) and half of the minimum of the sizes in the other
761 * dimensions. If the minimum of the sizes is one, half of the size
762 * is zero and this value is reset to one.
763 * If the global minimum is unbounded (i.e., if both
764 * the schedule_max_coefficient is not set and the sizes in the other
765 * dimensions are unbounded), then store a negative value.
766 * If the schedule coefficient is close to the size of the instance set
767 * in another dimension, then the schedule may represent a loop
768 * coalescing transformation (especially if the coefficient
769 * in that other dimension is one). Forcing the coefficient to be
770 * smaller than or equal to half the minimal size should avoid this
771 * situation.
773 static isl_stat compute_max_coefficient(isl_ctx *ctx,
774 struct isl_sched_node *node)
776 int max;
777 int i, j;
778 isl_vec *v;
780 max = isl_options_get_schedule_max_coefficient(ctx);
781 v = isl_vec_alloc(ctx, node->nvar);
782 if (!v)
783 return isl_stat_error;
785 for (i = 0; i < node->nvar; ++i) {
786 isl_int_set_si(v->el[i], max);
787 isl_int_mul_si(v->el[i], v->el[i], 2);
790 for (i = 0; i < node->nvar; ++i) {
791 isl_val *size;
793 size = isl_multi_val_get_val(node->sizes, i);
794 if (!size)
795 goto error;
796 if (!isl_val_is_int(size)) {
797 isl_val_free(size);
798 continue;
800 for (j = 0; j < node->nvar; ++j) {
801 if (j == i)
802 continue;
803 if (isl_int_is_neg(v->el[j]) ||
804 isl_int_gt(v->el[j], size->n))
805 isl_int_set(v->el[j], size->n);
807 isl_val_free(size);
810 for (i = 0; i < node->nvar; ++i) {
811 isl_int_fdiv_q_ui(v->el[i], v->el[i], 2);
812 if (isl_int_is_zero(v->el[i]))
813 isl_int_set_si(v->el[i], 1);
816 node->max = v;
817 return isl_stat_ok;
818 error:
819 isl_vec_free(v);
820 return isl_stat_error;
823 /* Compute and return the size of "set" in dimension "dim".
824 * The size is taken to be the difference in values for that variable
825 * for fixed values of the other variables.
826 * In particular, the variable is first isolated from the other variables
827 * in the range of a map
829 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [i_dim]
831 * and then duplicated
833 * [i_0, ..., i_dim-1, i_dim+1, ...] -> [[i_dim] -> [i_dim']]
835 * The shared variables are then projected out and the maximal value
836 * of i_dim' - i_dim is computed.
838 static __isl_give isl_val *compute_size(__isl_take isl_set *set, int dim)
840 isl_map *map;
841 isl_local_space *ls;
842 isl_aff *obj;
843 isl_val *v;
845 map = isl_set_project_onto_map(set, isl_dim_set, dim, 1);
846 map = isl_map_project_out(map, isl_dim_in, dim, 1);
847 map = isl_map_range_product(map, isl_map_copy(map));
848 map = isl_set_unwrap(isl_map_range(map));
849 set = isl_map_deltas(map);
850 ls = isl_local_space_from_space(isl_set_get_space(set));
851 obj = isl_aff_var_on_domain(ls, isl_dim_set, 0);
852 v = isl_set_max_val(set, obj);
853 isl_aff_free(obj);
854 isl_set_free(set);
856 return v;
859 /* Compute the size of the instance set "set" of "node", after compression,
860 * as well as bounds on the corresponding coefficients, if needed.
862 * The sizes are needed when the schedule_treat_coalescing option is set.
863 * The bounds are needed when the schedule_treat_coalescing option or
864 * the schedule_max_coefficient option is set.
866 * If the schedule_treat_coalescing option is not set, then at most
867 * the bounds need to be set and this is done in set_max_coefficient.
868 * Otherwise, compress the domain if needed, compute the size
869 * in each direction and store the results in node->size.
870 * Finally, set the bounds on the coefficients based on the sizes
871 * and the schedule_max_coefficient option in compute_max_coefficient.
873 static isl_stat compute_sizes_and_max(isl_ctx *ctx, struct isl_sched_node *node,
874 __isl_take isl_set *set)
876 int j, n;
877 isl_multi_val *mv;
879 if (!isl_options_get_schedule_treat_coalescing(ctx)) {
880 isl_set_free(set);
881 return set_max_coefficient(ctx, node);
884 if (node->compressed)
885 set = isl_set_preimage_multi_aff(set,
886 isl_multi_aff_copy(node->decompress));
887 mv = isl_multi_val_zero(isl_set_get_space(set));
888 n = isl_set_dim(set, isl_dim_set);
889 for (j = 0; j < n; ++j) {
890 isl_val *v;
892 v = compute_size(isl_set_copy(set), j);
893 mv = isl_multi_val_set_val(mv, j, v);
895 node->sizes = mv;
896 isl_set_free(set);
897 if (!node->sizes)
898 return isl_stat_error;
899 return compute_max_coefficient(ctx, node);
902 /* Add a new node to the graph representing the given instance set.
903 * "nvar" is the (possibly compressed) number of variables and
904 * may be smaller than then number of set variables in "set"
905 * if "compressed" is set.
906 * If "compressed" is set, then "hull" represents the constraints
907 * that were used to derive the compression, while "compress" and
908 * "decompress" map the original space to the compressed space and
909 * vice versa.
910 * If "compressed" is not set, then "hull", "compress" and "decompress"
911 * should be NULL.
913 * Compute the size of the instance set and bounds on the coefficients,
914 * if needed.
916 static isl_stat add_node(struct isl_sched_graph *graph,
917 __isl_take isl_set *set, int nvar, int compressed,
918 __isl_take isl_set *hull, __isl_take isl_multi_aff *compress,
919 __isl_take isl_multi_aff *decompress)
921 int nparam;
922 isl_ctx *ctx;
923 isl_mat *sched;
924 isl_space *space;
925 int *coincident;
926 struct isl_sched_node *node;
928 if (!set)
929 return isl_stat_error;
931 ctx = isl_set_get_ctx(set);
932 nparam = isl_set_dim(set, isl_dim_param);
933 if (!ctx->opt->schedule_parametric)
934 nparam = 0;
935 sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar);
936 node = &graph->node[graph->n];
937 graph->n++;
938 space = isl_set_get_space(set);
939 node->space = space;
940 node->nvar = nvar;
941 node->nparam = nparam;
942 node->sched = sched;
943 node->sched_map = NULL;
944 coincident = isl_calloc_array(ctx, int, graph->max_row);
945 node->coincident = coincident;
946 node->compressed = compressed;
947 node->hull = hull;
948 node->compress = compress;
949 node->decompress = decompress;
950 if (compute_sizes_and_max(ctx, node, set) < 0)
951 return isl_stat_error;
953 if (!space || !sched || (graph->max_row && !coincident))
954 return isl_stat_error;
955 if (compressed && (!hull || !compress || !decompress))
956 return isl_stat_error;
958 return isl_stat_ok;
961 /* Add a new node to the graph representing the given set.
963 * If any of the set variables is defined by an equality, then
964 * we perform variable compression such that we can perform
965 * the scheduling on the compressed domain.
967 static isl_stat extract_node(__isl_take isl_set *set, void *user)
969 int nvar;
970 isl_bool has_equality;
971 isl_basic_set *hull;
972 isl_set *hull_set;
973 isl_morph *morph;
974 isl_multi_aff *compress, *decompress;
975 struct isl_sched_graph *graph = user;
977 hull = isl_set_affine_hull(isl_set_copy(set));
978 hull = isl_basic_set_remove_divs(hull);
979 nvar = isl_set_dim(set, isl_dim_set);
980 has_equality = has_any_defining_equality(hull);
982 if (has_equality < 0)
983 goto error;
984 if (!has_equality) {
985 isl_basic_set_free(hull);
986 return add_node(graph, set, nvar, 0, NULL, NULL, NULL);
989 morph = isl_basic_set_variable_compression(hull, isl_dim_set);
990 nvar = isl_morph_ran_dim(morph, isl_dim_set);
991 compress = isl_morph_get_var_multi_aff(morph);
992 morph = isl_morph_inverse(morph);
993 decompress = isl_morph_get_var_multi_aff(morph);
994 isl_morph_free(morph);
996 hull_set = isl_set_from_basic_set(hull);
997 return add_node(graph, set, nvar, 1, hull_set, compress, decompress);
998 error:
999 isl_basic_set_free(hull);
1000 isl_set_free(set);
1001 return isl_stat_error;
1004 struct isl_extract_edge_data {
1005 enum isl_edge_type type;
1006 struct isl_sched_graph *graph;
1009 /* Merge edge2 into edge1, freeing the contents of edge2.
1010 * Return 0 on success and -1 on failure.
1012 * edge1 and edge2 are assumed to have the same value for the map field.
1014 static int merge_edge(struct isl_sched_edge *edge1,
1015 struct isl_sched_edge *edge2)
1017 edge1->types |= edge2->types;
1018 isl_map_free(edge2->map);
1020 if (is_condition(edge2)) {
1021 if (!edge1->tagged_condition)
1022 edge1->tagged_condition = edge2->tagged_condition;
1023 else
1024 edge1->tagged_condition =
1025 isl_union_map_union(edge1->tagged_condition,
1026 edge2->tagged_condition);
1029 if (is_conditional_validity(edge2)) {
1030 if (!edge1->tagged_validity)
1031 edge1->tagged_validity = edge2->tagged_validity;
1032 else
1033 edge1->tagged_validity =
1034 isl_union_map_union(edge1->tagged_validity,
1035 edge2->tagged_validity);
1038 if (is_condition(edge2) && !edge1->tagged_condition)
1039 return -1;
1040 if (is_conditional_validity(edge2) && !edge1->tagged_validity)
1041 return -1;
1043 return 0;
1046 /* Insert dummy tags in domain and range of "map".
1048 * In particular, if "map" is of the form
1050 * A -> B
1052 * then return
1054 * [A -> dummy_tag] -> [B -> dummy_tag]
1056 * where the dummy_tags are identical and equal to any dummy tags
1057 * introduced by any other call to this function.
1059 static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map)
1061 static char dummy;
1062 isl_ctx *ctx;
1063 isl_id *id;
1064 isl_space *space;
1065 isl_set *domain, *range;
1067 ctx = isl_map_get_ctx(map);
1069 id = isl_id_alloc(ctx, NULL, &dummy);
1070 space = isl_space_params(isl_map_get_space(map));
1071 space = isl_space_set_from_params(space);
1072 space = isl_space_set_tuple_id(space, isl_dim_set, id);
1073 space = isl_space_map_from_set(space);
1075 domain = isl_map_wrap(map);
1076 range = isl_map_wrap(isl_map_universe(space));
1077 map = isl_map_from_domain_and_range(domain, range);
1078 map = isl_map_zip(map);
1080 return map;
1083 /* Given that at least one of "src" or "dst" is compressed, return
1084 * a map between the spaces of these nodes restricted to the affine
1085 * hull that was used in the compression.
1087 static __isl_give isl_map *extract_hull(struct isl_sched_node *src,
1088 struct isl_sched_node *dst)
1090 isl_set *dom, *ran;
1092 if (src->compressed)
1093 dom = isl_set_copy(src->hull);
1094 else
1095 dom = isl_set_universe(isl_space_copy(src->space));
1096 if (dst->compressed)
1097 ran = isl_set_copy(dst->hull);
1098 else
1099 ran = isl_set_universe(isl_space_copy(dst->space));
1101 return isl_map_from_domain_and_range(dom, ran);
1104 /* Intersect the domains of the nested relations in domain and range
1105 * of "tagged" with "map".
1107 static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged,
1108 __isl_keep isl_map *map)
1110 isl_set *set;
1112 tagged = isl_map_zip(tagged);
1113 set = isl_map_wrap(isl_map_copy(map));
1114 tagged = isl_map_intersect_domain(tagged, set);
1115 tagged = isl_map_zip(tagged);
1116 return tagged;
1119 /* Return a pointer to the node that lives in the domain space of "map"
1120 * or NULL if there is no such node.
1122 static struct isl_sched_node *find_domain_node(isl_ctx *ctx,
1123 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1125 struct isl_sched_node *node;
1126 isl_space *space;
1128 space = isl_space_domain(isl_map_get_space(map));
1129 node = graph_find_node(ctx, graph, space);
1130 isl_space_free(space);
1132 return node;
1135 /* Return a pointer to the node that lives in the range space of "map"
1136 * or NULL if there is no such node.
1138 static struct isl_sched_node *find_range_node(isl_ctx *ctx,
1139 struct isl_sched_graph *graph, __isl_keep isl_map *map)
1141 struct isl_sched_node *node;
1142 isl_space *space;
1144 space = isl_space_range(isl_map_get_space(map));
1145 node = graph_find_node(ctx, graph, space);
1146 isl_space_free(space);
1148 return node;
1151 /* Add a new edge to the graph based on the given map
1152 * and add it to data->graph->edge_table[data->type].
1153 * If a dependence relation of a given type happens to be identical
1154 * to one of the dependence relations of a type that was added before,
1155 * then we don't create a new edge, but instead mark the original edge
1156 * as also representing a dependence of the current type.
1158 * Edges of type isl_edge_condition or isl_edge_conditional_validity
1159 * may be specified as "tagged" dependence relations. That is, "map"
1160 * may contain elements (i -> a) -> (j -> b), where i -> j denotes
1161 * the dependence on iterations and a and b are tags.
1162 * edge->map is set to the relation containing the elements i -> j,
1163 * while edge->tagged_condition and edge->tagged_validity contain
1164 * the union of all the "map" relations
1165 * for which extract_edge is called that result in the same edge->map.
1167 * If the source or the destination node is compressed, then
1168 * intersect both "map" and "tagged" with the constraints that
1169 * were used to construct the compression.
1170 * This ensures that there are no schedule constraints defined
1171 * outside of these domains, while the scheduler no longer has
1172 * any control over those outside parts.
1174 static isl_stat extract_edge(__isl_take isl_map *map, void *user)
1176 isl_ctx *ctx = isl_map_get_ctx(map);
1177 struct isl_extract_edge_data *data = user;
1178 struct isl_sched_graph *graph = data->graph;
1179 struct isl_sched_node *src, *dst;
1180 struct isl_sched_edge *edge;
1181 isl_map *tagged = NULL;
1183 if (data->type == isl_edge_condition ||
1184 data->type == isl_edge_conditional_validity) {
1185 if (isl_map_can_zip(map)) {
1186 tagged = isl_map_copy(map);
1187 map = isl_set_unwrap(isl_map_domain(isl_map_zip(map)));
1188 } else {
1189 tagged = insert_dummy_tags(isl_map_copy(map));
1193 src = find_domain_node(ctx, graph, map);
1194 dst = find_range_node(ctx, graph, map);
1196 if (!src || !dst) {
1197 isl_map_free(map);
1198 isl_map_free(tagged);
1199 return isl_stat_ok;
1202 if (src->compressed || dst->compressed) {
1203 isl_map *hull;
1204 hull = extract_hull(src, dst);
1205 if (tagged)
1206 tagged = map_intersect_domains(tagged, hull);
1207 map = isl_map_intersect(map, hull);
1210 graph->edge[graph->n_edge].src = src;
1211 graph->edge[graph->n_edge].dst = dst;
1212 graph->edge[graph->n_edge].map = map;
1213 graph->edge[graph->n_edge].types = 0;
1214 graph->edge[graph->n_edge].tagged_condition = NULL;
1215 graph->edge[graph->n_edge].tagged_validity = NULL;
1216 set_type(&graph->edge[graph->n_edge], data->type);
1217 if (data->type == isl_edge_condition)
1218 graph->edge[graph->n_edge].tagged_condition =
1219 isl_union_map_from_map(tagged);
1220 if (data->type == isl_edge_conditional_validity)
1221 graph->edge[graph->n_edge].tagged_validity =
1222 isl_union_map_from_map(tagged);
1224 edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]);
1225 if (!edge) {
1226 graph->n_edge++;
1227 return isl_stat_error;
1229 if (edge == &graph->edge[graph->n_edge])
1230 return graph_edge_table_add(ctx, graph, data->type,
1231 &graph->edge[graph->n_edge++]);
1233 if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0)
1234 return -1;
1236 return graph_edge_table_add(ctx, graph, data->type, edge);
1239 /* Initialize the schedule graph "graph" from the schedule constraints "sc".
1241 * The context is included in the domain before the nodes of
1242 * the graphs are extracted in order to be able to exploit
1243 * any possible additional equalities.
1244 * Note that this intersection is only performed locally here.
1246 static isl_stat graph_init(struct isl_sched_graph *graph,
1247 __isl_keep isl_schedule_constraints *sc)
1249 isl_ctx *ctx;
1250 isl_union_set *domain;
1251 isl_union_map *c;
1252 struct isl_extract_edge_data data;
1253 enum isl_edge_type i;
1254 isl_stat r;
1256 if (!sc)
1257 return isl_stat_error;
1259 ctx = isl_schedule_constraints_get_ctx(sc);
1261 domain = isl_schedule_constraints_get_domain(sc);
1262 graph->n = isl_union_set_n_set(domain);
1263 isl_union_set_free(domain);
1265 if (graph_alloc(ctx, graph, graph->n,
1266 isl_schedule_constraints_n_map(sc)) < 0)
1267 return isl_stat_error;
1269 if (compute_max_row(graph, sc) < 0)
1270 return isl_stat_error;
1271 graph->root = 1;
1272 graph->n = 0;
1273 domain = isl_schedule_constraints_get_domain(sc);
1274 domain = isl_union_set_intersect_params(domain,
1275 isl_schedule_constraints_get_context(sc));
1276 r = isl_union_set_foreach_set(domain, &extract_node, graph);
1277 isl_union_set_free(domain);
1278 if (r < 0)
1279 return isl_stat_error;
1280 if (graph_init_table(ctx, graph) < 0)
1281 return isl_stat_error;
1282 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1283 c = isl_schedule_constraints_get(sc, i);
1284 graph->max_edge[i] = isl_union_map_n_map(c);
1285 isl_union_map_free(c);
1286 if (!c)
1287 return isl_stat_error;
1289 if (graph_init_edge_tables(ctx, graph) < 0)
1290 return isl_stat_error;
1291 graph->n_edge = 0;
1292 data.graph = graph;
1293 for (i = isl_edge_first; i <= isl_edge_last; ++i) {
1294 isl_stat r;
1296 data.type = i;
1297 c = isl_schedule_constraints_get(sc, i);
1298 r = isl_union_map_foreach_map(c, &extract_edge, &data);
1299 isl_union_map_free(c);
1300 if (r < 0)
1301 return isl_stat_error;
1304 return isl_stat_ok;
1307 /* Check whether there is any dependence from node[j] to node[i]
1308 * or from node[i] to node[j].
1310 static isl_bool node_follows_weak(int i, int j, void *user)
1312 isl_bool f;
1313 struct isl_sched_graph *graph = user;
1315 f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]);
1316 if (f < 0 || f)
1317 return f;
1318 return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]);
1321 /* Check whether there is a (conditional) validity dependence from node[j]
1322 * to node[i], forcing node[i] to follow node[j].
1324 static isl_bool node_follows_strong(int i, int j, void *user)
1326 struct isl_sched_graph *graph = user;
1328 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
1331 /* Use Tarjan's algorithm for computing the strongly connected components
1332 * in the dependence graph only considering those edges defined by "follows".
1334 static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph,
1335 isl_bool (*follows)(int i, int j, void *user))
1337 int i, n;
1338 struct isl_tarjan_graph *g = NULL;
1340 g = isl_tarjan_graph_init(ctx, graph->n, follows, graph);
1341 if (!g)
1342 return -1;
1344 graph->scc = 0;
1345 i = 0;
1346 n = graph->n;
1347 while (n) {
1348 while (g->order[i] != -1) {
1349 graph->node[g->order[i]].scc = graph->scc;
1350 --n;
1351 ++i;
1353 ++i;
1354 graph->scc++;
1357 isl_tarjan_graph_free(g);
1359 return 0;
1362 /* Apply Tarjan's algorithm to detect the strongly connected components
1363 * in the dependence graph.
1364 * Only consider the (conditional) validity dependences and clear "weak".
1366 static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1368 graph->weak = 0;
1369 return detect_ccs(ctx, graph, &node_follows_strong);
1372 /* Apply Tarjan's algorithm to detect the (weakly) connected components
1373 * in the dependence graph.
1374 * Consider all dependences and set "weak".
1376 static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph)
1378 graph->weak = 1;
1379 return detect_ccs(ctx, graph, &node_follows_weak);
1382 static int cmp_scc(const void *a, const void *b, void *data)
1384 struct isl_sched_graph *graph = data;
1385 const int *i1 = a;
1386 const int *i2 = b;
1388 return graph->node[*i1].scc - graph->node[*i2].scc;
1391 /* Sort the elements of graph->sorted according to the corresponding SCCs.
1393 static int sort_sccs(struct isl_sched_graph *graph)
1395 return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph);
1398 /* Given a dependence relation R from "node" to itself,
1399 * construct the set of coefficients of valid constraints for elements
1400 * in that dependence relation.
1401 * In particular, the result contains tuples of coefficients
1402 * c_0, c_n, c_x such that
1404 * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R
1406 * or, equivalently,
1408 * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R }
1410 * We choose here to compute the dual of delta R.
1411 * Alternatively, we could have computed the dual of R, resulting
1412 * in a set of tuples c_0, c_n, c_x, c_y, and then
1413 * plugged in (c_0, c_n, c_x, -c_x).
1415 * If "node" has been compressed, then the dependence relation
1416 * is also compressed before the set of coefficients is computed.
1418 static __isl_give isl_basic_set *intra_coefficients(
1419 struct isl_sched_graph *graph, struct isl_sched_node *node,
1420 __isl_take isl_map *map)
1422 isl_set *delta;
1423 isl_map *key;
1424 isl_basic_set *coef;
1425 isl_maybe_isl_basic_set m;
1427 m = isl_map_to_basic_set_try_get(graph->intra_hmap, map);
1428 if (m.valid < 0 || m.valid) {
1429 isl_map_free(map);
1430 return m.value;
1433 key = isl_map_copy(map);
1434 if (node->compressed) {
1435 map = isl_map_preimage_domain_multi_aff(map,
1436 isl_multi_aff_copy(node->decompress));
1437 map = isl_map_preimage_range_multi_aff(map,
1438 isl_multi_aff_copy(node->decompress));
1440 delta = isl_set_remove_divs(isl_map_deltas(map));
1441 coef = isl_set_coefficients(delta);
1442 graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key,
1443 isl_basic_set_copy(coef));
1445 return coef;
1448 /* Given a dependence relation R, construct the set of coefficients
1449 * of valid constraints for elements in that dependence relation.
1450 * In particular, the result contains tuples of coefficients
1451 * c_0, c_n, c_x, c_y such that
1453 * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R
1455 * If the source or destination nodes of "edge" have been compressed,
1456 * then the dependence relation is also compressed before
1457 * the set of coefficients is computed.
1459 static __isl_give isl_basic_set *inter_coefficients(
1460 struct isl_sched_graph *graph, struct isl_sched_edge *edge,
1461 __isl_take isl_map *map)
1463 isl_set *set;
1464 isl_map *key;
1465 isl_basic_set *coef;
1466 isl_maybe_isl_basic_set m;
1468 m = isl_map_to_basic_set_try_get(graph->inter_hmap, map);
1469 if (m.valid < 0 || m.valid) {
1470 isl_map_free(map);
1471 return m.value;
1474 key = isl_map_copy(map);
1475 if (edge->src->compressed)
1476 map = isl_map_preimage_domain_multi_aff(map,
1477 isl_multi_aff_copy(edge->src->decompress));
1478 if (edge->dst->compressed)
1479 map = isl_map_preimage_range_multi_aff(map,
1480 isl_multi_aff_copy(edge->dst->decompress));
1481 set = isl_map_wrap(isl_map_remove_divs(map));
1482 coef = isl_set_coefficients(set);
1483 graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key,
1484 isl_basic_set_copy(coef));
1486 return coef;
1489 /* Return the position of the coefficients of the variables in
1490 * the coefficients constraints "coef".
1492 * The space of "coef" is of the form
1494 * { coefficients[[cst, params] -> S] }
1496 * Return the position of S.
1498 static int coef_var_offset(__isl_keep isl_basic_set *coef)
1500 int offset;
1501 isl_space *space;
1503 space = isl_space_unwrap(isl_basic_set_get_space(coef));
1504 offset = isl_space_dim(space, isl_dim_in);
1505 isl_space_free(space);
1507 return offset;
1510 /* Return the offset of the coefficients of the variables of "node"
1511 * within the (I)LP.
1513 * Within each node, the coefficients have the following order:
1514 * - c_i_0
1515 * - c_i_n (if parametric)
1516 * - positive and negative parts of c_i_x
1518 static int node_var_coef_offset(struct isl_sched_node *node)
1520 return node->start + 1 + node->nparam;
1523 /* Construct an isl_dim_map for mapping constraints on coefficients
1524 * for "node" to the corresponding positions in graph->lp.
1525 * "offset" is the offset of the coefficients for the variables
1526 * in the input constraints.
1527 * "s" is the sign of the mapping.
1529 * The input constraints are given in terms of the coefficients (c_0, c_n, c_x).
1530 * The mapping produced by this function essentially plugs in
1531 * (0, 0, c_i_x^+ - c_i_x^-) if s = 1 and
1532 * (0, 0, -c_i_x^+ + c_i_x^-) if s = -1.
1533 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1535 * The caller can extend the mapping to also map the other coefficients
1536 * (and therefore not plug in 0).
1538 static __isl_give isl_dim_map *intra_dim_map(isl_ctx *ctx,
1539 struct isl_sched_graph *graph, struct isl_sched_node *node,
1540 int offset, int s)
1542 int pos;
1543 unsigned total;
1544 isl_dim_map *dim_map;
1546 total = isl_basic_set_total_dim(graph->lp);
1547 pos = node_var_coef_offset(node);
1548 dim_map = isl_dim_map_alloc(ctx, total);
1549 isl_dim_map_range(dim_map, pos, 2, offset, 1, node->nvar, -s);
1550 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, node->nvar, s);
1552 return dim_map;
1555 /* Construct an isl_dim_map for mapping constraints on coefficients
1556 * for "src" (node i) and "dst" (node j) to the corresponding positions
1557 * in graph->lp.
1558 * "offset" is the offset of the coefficients for the variables of "src"
1559 * in the input constraints.
1560 * "s" is the sign of the mapping.
1562 * The input constraints are given in terms of the coefficients
1563 * (c_0, c_n, c_x, c_y).
1564 * The mapping produced by this function essentially plugs in
1565 * (c_j_0 - c_i_0, c_j_n - c_i_n,
1566 * -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-) if s = 1 and
1567 * (-c_j_0 + c_i_0, -c_j_n + c_i_n,
1568 * c_i_x^+ - c_i_x^-, -(c_j_x^+ - c_j_x^-)) if s = -1.
1569 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1571 * The caller can further extend the mapping.
1573 static __isl_give isl_dim_map *inter_dim_map(isl_ctx *ctx,
1574 struct isl_sched_graph *graph, struct isl_sched_node *src,
1575 struct isl_sched_node *dst, int offset, int s)
1577 int pos;
1578 unsigned total;
1579 isl_dim_map *dim_map;
1581 total = isl_basic_set_total_dim(graph->lp);
1582 dim_map = isl_dim_map_alloc(ctx, total);
1584 isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, s);
1585 isl_dim_map_range(dim_map, dst->start + 1, 1, 1, 1, dst->nparam, s);
1586 pos = node_var_coef_offset(dst);
1587 isl_dim_map_range(dim_map, pos, 2, offset + src->nvar, 1,
1588 dst->nvar, -s);
1589 isl_dim_map_range(dim_map, pos + 1, 2, offset + src->nvar, 1,
1590 dst->nvar, s);
1592 isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -s);
1593 isl_dim_map_range(dim_map, src->start + 1, 1, 1, 1, src->nparam, -s);
1594 pos = node_var_coef_offset(src);
1595 isl_dim_map_range(dim_map, pos, 2, offset, 1, src->nvar, s);
1596 isl_dim_map_range(dim_map, pos + 1, 2, offset, 1, src->nvar, -s);
1598 return dim_map;
1601 /* Add the constraints from "src" to "dst" using "dim_map",
1602 * after making sure there is enough room in "dst" for the extra constraints.
1604 static __isl_give isl_basic_set *add_constraints_dim_map(
1605 __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src,
1606 __isl_take isl_dim_map *dim_map)
1608 int n_eq, n_ineq;
1610 n_eq = isl_basic_set_n_equality(src);
1611 n_ineq = isl_basic_set_n_inequality(src);
1612 dst = isl_basic_set_extend_constraints(dst, n_eq, n_ineq);
1613 dst = isl_basic_set_add_constraints_dim_map(dst, src, dim_map);
1614 return dst;
1617 /* Add constraints to graph->lp that force validity for the given
1618 * dependence from a node i to itself.
1619 * That is, add constraints that enforce
1621 * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x)
1622 * = c_i_x (y - x) >= 0
1624 * for each (x,y) in R.
1625 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1626 * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-),
1627 * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative.
1628 * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart.
1630 * Actually, we do not construct constraints for the c_i_x themselves,
1631 * but for the coefficients of c_i_x written as a linear combination
1632 * of the columns in node->cmap.
1634 static isl_stat add_intra_validity_constraints(struct isl_sched_graph *graph,
1635 struct isl_sched_edge *edge)
1637 int offset;
1638 isl_map *map = isl_map_copy(edge->map);
1639 isl_ctx *ctx = isl_map_get_ctx(map);
1640 isl_dim_map *dim_map;
1641 isl_basic_set *coef;
1642 struct isl_sched_node *node = edge->src;
1644 coef = intra_coefficients(graph, node, map);
1646 offset = coef_var_offset(coef);
1648 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1649 offset, isl_mat_copy(node->cmap));
1650 if (!coef)
1651 return isl_stat_error;
1653 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
1654 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1656 return isl_stat_ok;
1659 /* Add constraints to graph->lp that force validity for the given
1660 * dependence from node i to node j.
1661 * That is, add constraints that enforce
1663 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0
1665 * for each (x,y) in R.
1666 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1667 * of valid constraints for R and then plug in
1668 * (c_j_0 - c_i_0, c_j_n - c_i_n, -(c_i_x^+ - c_i_x^-), c_j_x^+ - c_j_x^-),
1669 * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative.
1670 * In graph->lp, the c_*^- appear before their c_*^+ counterpart.
1672 * Actually, we do not construct constraints for the c_*_x themselves,
1673 * but for the coefficients of c_*_x written as a linear combination
1674 * of the columns in node->cmap.
1676 static isl_stat add_inter_validity_constraints(struct isl_sched_graph *graph,
1677 struct isl_sched_edge *edge)
1679 int offset;
1680 isl_map *map;
1681 isl_ctx *ctx;
1682 isl_dim_map *dim_map;
1683 isl_basic_set *coef;
1684 struct isl_sched_node *src = edge->src;
1685 struct isl_sched_node *dst = edge->dst;
1687 if (!graph->lp)
1688 return isl_stat_error;
1690 map = isl_map_copy(edge->map);
1691 ctx = isl_map_get_ctx(map);
1692 coef = inter_coefficients(graph, edge, map);
1694 offset = coef_var_offset(coef);
1696 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1697 offset, isl_mat_copy(src->cmap));
1698 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1699 offset + src->nvar, isl_mat_copy(dst->cmap));
1700 if (!coef)
1701 return isl_stat_error;
1703 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
1705 edge->start = graph->lp->n_ineq;
1706 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1707 if (!graph->lp)
1708 return isl_stat_error;
1709 edge->end = graph->lp->n_ineq;
1711 return isl_stat_ok;
1714 /* Add constraints to graph->lp that bound the dependence distance for the given
1715 * dependence from a node i to itself.
1716 * If s = 1, we add the constraint
1718 * c_i_x (y - x) <= m_0 + m_n n
1720 * or
1722 * -c_i_x (y - x) + m_0 + m_n n >= 0
1724 * for each (x,y) in R.
1725 * If s = -1, we add the constraint
1727 * -c_i_x (y - x) <= m_0 + m_n n
1729 * or
1731 * c_i_x (y - x) + m_0 + m_n n >= 0
1733 * for each (x,y) in R.
1734 * We obtain general constraints on coefficients (c_0, c_n, c_x)
1735 * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x),
1736 * with each coefficient (except m_0) represented as a pair of non-negative
1737 * coefficients.
1739 * Actually, we do not construct constraints for the c_i_x themselves,
1740 * but for the coefficients of c_i_x written as a linear combination
1741 * of the columns in node->cmap.
1744 * If "local" is set, then we add constraints
1746 * c_i_x (y - x) <= 0
1748 * or
1750 * -c_i_x (y - x) <= 0
1752 * instead, forcing the dependence distance to be (less than or) equal to 0.
1753 * That is, we plug in (0, 0, -s * c_i_x),
1754 * Note that dependences marked local are treated as validity constraints
1755 * by add_all_validity_constraints and therefore also have
1756 * their distances bounded by 0 from below.
1758 static isl_stat add_intra_proximity_constraints(struct isl_sched_graph *graph,
1759 struct isl_sched_edge *edge, int s, int local)
1761 int offset;
1762 unsigned nparam;
1763 isl_map *map = isl_map_copy(edge->map);
1764 isl_ctx *ctx = isl_map_get_ctx(map);
1765 isl_dim_map *dim_map;
1766 isl_basic_set *coef;
1767 struct isl_sched_node *node = edge->src;
1769 coef = intra_coefficients(graph, node, map);
1771 offset = coef_var_offset(coef);
1773 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1774 offset, isl_mat_copy(node->cmap));
1775 if (!coef)
1776 return isl_stat_error;
1778 nparam = isl_space_dim(node->space, isl_dim_param);
1779 dim_map = intra_dim_map(ctx, graph, node, offset, -s);
1781 if (!local) {
1782 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1783 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1784 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1786 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1788 return isl_stat_ok;
1791 /* Add constraints to graph->lp that bound the dependence distance for the given
1792 * dependence from node i to node j.
1793 * If s = 1, we add the constraint
1795 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)
1796 * <= m_0 + m_n n
1798 * or
1800 * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) +
1801 * m_0 + m_n n >= 0
1803 * for each (x,y) in R.
1804 * If s = -1, we add the constraint
1806 * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x))
1807 * <= m_0 + m_n n
1809 * or
1811 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) +
1812 * m_0 + m_n n >= 0
1814 * for each (x,y) in R.
1815 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
1816 * of valid constraints for R and then plug in
1817 * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n,
1818 * s*c_i_x, -s*c_j_x)
1819 * with each coefficient (except m_0, c_*_0 and c_*_n)
1820 * represented as a pair of non-negative coefficients.
1822 * Actually, we do not construct constraints for the c_*_x themselves,
1823 * but for the coefficients of c_*_x written as a linear combination
1824 * of the columns in node->cmap.
1827 * If "local" is set (and s = 1), then we add constraints
1829 * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0
1831 * or
1833 * -((c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x)) >= 0
1835 * instead, forcing the dependence distance to be (less than or) equal to 0.
1836 * That is, we plug in
1837 * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, s*c_i_x, -s*c_j_x).
1838 * Note that dependences marked local are treated as validity constraints
1839 * by add_all_validity_constraints and therefore also have
1840 * their distances bounded by 0 from below.
1842 static isl_stat add_inter_proximity_constraints(struct isl_sched_graph *graph,
1843 struct isl_sched_edge *edge, int s, int local)
1845 int offset;
1846 unsigned nparam;
1847 isl_map *map = isl_map_copy(edge->map);
1848 isl_ctx *ctx = isl_map_get_ctx(map);
1849 isl_dim_map *dim_map;
1850 isl_basic_set *coef;
1851 struct isl_sched_node *src = edge->src;
1852 struct isl_sched_node *dst = edge->dst;
1854 coef = inter_coefficients(graph, edge, map);
1856 offset = coef_var_offset(coef);
1858 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1859 offset, isl_mat_copy(src->cmap));
1860 coef = isl_basic_set_transform_dims(coef, isl_dim_set,
1861 offset + src->nvar, isl_mat_copy(dst->cmap));
1862 if (!coef)
1863 return isl_stat_error;
1865 nparam = isl_space_dim(src->space, isl_dim_param);
1866 dim_map = inter_dim_map(ctx, graph, src, dst, offset, -s);
1868 if (!local) {
1869 isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1);
1870 isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1);
1871 isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1);
1874 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
1876 return isl_stat_ok;
1879 /* Add all validity constraints to graph->lp.
1881 * An edge that is forced to be local needs to have its dependence
1882 * distances equal to zero. We take care of bounding them by 0 from below
1883 * here. add_all_proximity_constraints takes care of bounding them by 0
1884 * from above.
1886 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1887 * Otherwise, we ignore them.
1889 static int add_all_validity_constraints(struct isl_sched_graph *graph,
1890 int use_coincidence)
1892 int i;
1894 for (i = 0; i < graph->n_edge; ++i) {
1895 struct isl_sched_edge *edge = &graph->edge[i];
1896 int local;
1898 local = is_local(edge) ||
1899 (is_coincidence(edge) && use_coincidence);
1900 if (!is_validity(edge) && !local)
1901 continue;
1902 if (edge->src != edge->dst)
1903 continue;
1904 if (add_intra_validity_constraints(graph, edge) < 0)
1905 return -1;
1908 for (i = 0; i < graph->n_edge; ++i) {
1909 struct isl_sched_edge *edge = &graph->edge[i];
1910 int local;
1912 local = is_local(edge) ||
1913 (is_coincidence(edge) && use_coincidence);
1914 if (!is_validity(edge) && !local)
1915 continue;
1916 if (edge->src == edge->dst)
1917 continue;
1918 if (add_inter_validity_constraints(graph, edge) < 0)
1919 return -1;
1922 return 0;
1925 /* Add constraints to graph->lp that bound the dependence distance
1926 * for all dependence relations.
1927 * If a given proximity dependence is identical to a validity
1928 * dependence, then the dependence distance is already bounded
1929 * from below (by zero), so we only need to bound the distance
1930 * from above. (This includes the case of "local" dependences
1931 * which are treated as validity dependence by add_all_validity_constraints.)
1932 * Otherwise, we need to bound the distance both from above and from below.
1934 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
1935 * Otherwise, we ignore them.
1937 static int add_all_proximity_constraints(struct isl_sched_graph *graph,
1938 int use_coincidence)
1940 int i;
1942 for (i = 0; i < graph->n_edge; ++i) {
1943 struct isl_sched_edge *edge = &graph->edge[i];
1944 int local;
1946 local = is_local(edge) ||
1947 (is_coincidence(edge) && use_coincidence);
1948 if (!is_proximity(edge) && !local)
1949 continue;
1950 if (edge->src == edge->dst &&
1951 add_intra_proximity_constraints(graph, edge, 1, local) < 0)
1952 return -1;
1953 if (edge->src != edge->dst &&
1954 add_inter_proximity_constraints(graph, edge, 1, local) < 0)
1955 return -1;
1956 if (is_validity(edge) || local)
1957 continue;
1958 if (edge->src == edge->dst &&
1959 add_intra_proximity_constraints(graph, edge, -1, 0) < 0)
1960 return -1;
1961 if (edge->src != edge->dst &&
1962 add_inter_proximity_constraints(graph, edge, -1, 0) < 0)
1963 return -1;
1966 return 0;
1969 /* Compute a basis for the rows in the linear part of the schedule
1970 * and extend this basis to a full basis. The remaining rows
1971 * can then be used to force linear independence from the rows
1972 * in the schedule.
1974 * In particular, given the schedule rows S, we compute
1976 * S = H Q
1977 * S U = H
1979 * with H the Hermite normal form of S. That is, all but the
1980 * first rank columns of H are zero and so each row in S is
1981 * a linear combination of the first rank rows of Q.
1982 * The matrix Q is then transposed because we will write the
1983 * coefficients of the next schedule row as a column vector s
1984 * and express this s as a linear combination s = Q c of the
1985 * computed basis.
1986 * Similarly, the matrix U is transposed such that we can
1987 * compute the coefficients c = U s from a schedule row s.
1989 static int node_update_cmap(struct isl_sched_node *node)
1991 isl_mat *H, *U, *Q;
1992 int n_row = isl_mat_rows(node->sched);
1994 H = isl_mat_sub_alloc(node->sched, 0, n_row,
1995 1 + node->nparam, node->nvar);
1997 H = isl_mat_left_hermite(H, 0, &U, &Q);
1998 isl_mat_free(node->cmap);
1999 isl_mat_free(node->cinv);
2000 isl_mat_free(node->ctrans);
2001 node->ctrans = isl_mat_copy(Q);
2002 node->cmap = isl_mat_transpose(Q);
2003 node->cinv = isl_mat_transpose(U);
2004 node->rank = isl_mat_initial_non_zero_cols(H);
2005 isl_mat_free(H);
2007 if (!node->cmap || !node->cinv || !node->ctrans || node->rank < 0)
2008 return -1;
2009 return 0;
2012 /* Is "edge" marked as a validity or a conditional validity edge?
2014 static int is_any_validity(struct isl_sched_edge *edge)
2016 return is_validity(edge) || is_conditional_validity(edge);
2019 /* How many times should we count the constraints in "edge"?
2021 * If carry is set, then we are counting the number of
2022 * (validity or conditional validity) constraints that will be added
2023 * in setup_carry_lp and we count each edge exactly once.
2025 * Otherwise, we count as follows
2026 * validity -> 1 (>= 0)
2027 * validity+proximity -> 2 (>= 0 and upper bound)
2028 * proximity -> 2 (lower and upper bound)
2029 * local(+any) -> 2 (>= 0 and <= 0)
2031 * If an edge is only marked conditional_validity then it counts
2032 * as zero since it is only checked afterwards.
2034 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2035 * Otherwise, we ignore them.
2037 static int edge_multiplicity(struct isl_sched_edge *edge, int carry,
2038 int use_coincidence)
2040 if (carry)
2041 return 1;
2042 if (is_proximity(edge) || is_local(edge))
2043 return 2;
2044 if (use_coincidence && is_coincidence(edge))
2045 return 2;
2046 if (is_validity(edge))
2047 return 1;
2048 return 0;
2051 /* Count the number of equality and inequality constraints
2052 * that will be added for the given map.
2054 * "use_coincidence" is set if we should take into account coincidence edges.
2056 static isl_stat count_map_constraints(struct isl_sched_graph *graph,
2057 struct isl_sched_edge *edge, __isl_take isl_map *map,
2058 int *n_eq, int *n_ineq, int carry, int use_coincidence)
2060 isl_basic_set *coef;
2061 int f = edge_multiplicity(edge, carry, use_coincidence);
2063 if (f == 0) {
2064 isl_map_free(map);
2065 return isl_stat_ok;
2068 if (edge->src == edge->dst)
2069 coef = intra_coefficients(graph, edge->src, map);
2070 else
2071 coef = inter_coefficients(graph, edge, map);
2072 if (!coef)
2073 return isl_stat_error;
2074 *n_eq += f * isl_basic_set_n_equality(coef);
2075 *n_ineq += f * isl_basic_set_n_inequality(coef);
2076 isl_basic_set_free(coef);
2078 return isl_stat_ok;
2081 /* Count the number of equality and inequality constraints
2082 * that will be added to the main lp problem.
2083 * We count as follows
2084 * validity -> 1 (>= 0)
2085 * validity+proximity -> 2 (>= 0 and upper bound)
2086 * proximity -> 2 (lower and upper bound)
2087 * local(+any) -> 2 (>= 0 and <= 0)
2089 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2090 * Otherwise, we ignore them.
2092 static int count_constraints(struct isl_sched_graph *graph,
2093 int *n_eq, int *n_ineq, int use_coincidence)
2095 int i;
2097 *n_eq = *n_ineq = 0;
2098 for (i = 0; i < graph->n_edge; ++i) {
2099 struct isl_sched_edge *edge = &graph->edge[i];
2100 isl_map *map = isl_map_copy(edge->map);
2102 if (count_map_constraints(graph, edge, map, n_eq, n_ineq,
2103 0, use_coincidence) < 0)
2104 return -1;
2107 return 0;
2110 /* Count the number of constraints that will be added by
2111 * add_bound_constant_constraints to bound the values of the constant terms
2112 * and increment *n_eq and *n_ineq accordingly.
2114 * In practice, add_bound_constant_constraints only adds inequalities.
2116 static isl_stat count_bound_constant_constraints(isl_ctx *ctx,
2117 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2119 if (isl_options_get_schedule_max_constant_term(ctx) == -1)
2120 return isl_stat_ok;
2122 *n_ineq += graph->n;
2124 return isl_stat_ok;
2127 /* Add constraints to bound the values of the constant terms in the schedule,
2128 * if requested by the user.
2130 * The maximal value of the constant terms is defined by the option
2131 * "schedule_max_constant_term".
2133 * Within each node, the coefficients have the following order:
2134 * - c_i_0
2135 * - c_i_n (if parametric)
2136 * - positive and negative parts of c_i_x
2138 static isl_stat add_bound_constant_constraints(isl_ctx *ctx,
2139 struct isl_sched_graph *graph)
2141 int i, k;
2142 int max;
2143 int total;
2145 max = isl_options_get_schedule_max_constant_term(ctx);
2146 if (max == -1)
2147 return isl_stat_ok;
2149 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2151 for (i = 0; i < graph->n; ++i) {
2152 struct isl_sched_node *node = &graph->node[i];
2153 k = isl_basic_set_alloc_inequality(graph->lp);
2154 if (k < 0)
2155 return isl_stat_error;
2156 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2157 isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1);
2158 isl_int_set_si(graph->lp->ineq[k][0], max);
2161 return isl_stat_ok;
2164 /* Count the number of constraints that will be added by
2165 * add_bound_coefficient_constraints and increment *n_eq and *n_ineq
2166 * accordingly.
2168 * In practice, add_bound_coefficient_constraints only adds inequalities.
2170 static int count_bound_coefficient_constraints(isl_ctx *ctx,
2171 struct isl_sched_graph *graph, int *n_eq, int *n_ineq)
2173 int i;
2175 if (isl_options_get_schedule_max_coefficient(ctx) == -1 &&
2176 !isl_options_get_schedule_treat_coalescing(ctx))
2177 return 0;
2179 for (i = 0; i < graph->n; ++i)
2180 *n_ineq += graph->node[i].nparam + 2 * graph->node[i].nvar;
2182 return 0;
2185 /* Add constraints to graph->lp that bound the values of
2186 * the parameter schedule coefficients of "node" to "max" and
2187 * the variable schedule coefficients to the corresponding entry
2188 * in node->max.
2189 * In either case, a negative value means that no bound needs to be imposed.
2191 * For parameter coefficients, this amounts to adding a constraint
2193 * c_n <= max
2195 * i.e.,
2197 * -c_n + max >= 0
2199 * The variables coefficients are, however, not represented directly.
2200 * Instead, the variables coefficients c_x are written as a linear
2201 * combination c_x = cmap c_z of some other coefficients c_z,
2202 * which are in turn encoded as c_z = c_z^+ - c_z^-.
2203 * Let a_j be the elements of row i of node->cmap, then
2205 * -max_i <= c_x_i <= max_i
2207 * is encoded as
2209 * -max_i <= \sum_j a_j (c_z_j^+ - c_z_j^-) <= max_i
2211 * or
2213 * -\sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2214 * \sum_j a_j (c_z_j^+ - c_z_j^-) + max_i >= 0
2216 static isl_stat node_add_coefficient_constraints(isl_ctx *ctx,
2217 struct isl_sched_graph *graph, struct isl_sched_node *node, int max)
2219 int i, j, k;
2220 int total;
2221 isl_vec *ineq;
2223 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2225 for (j = 0; j < node->nparam; ++j) {
2226 int dim;
2228 if (max < 0)
2229 continue;
2231 k = isl_basic_set_alloc_inequality(graph->lp);
2232 if (k < 0)
2233 return isl_stat_error;
2234 dim = 1 + node->start + 1 + j;
2235 isl_seq_clr(graph->lp->ineq[k], 1 + total);
2236 isl_int_set_si(graph->lp->ineq[k][dim], -1);
2237 isl_int_set_si(graph->lp->ineq[k][0], max);
2240 ineq = isl_vec_alloc(ctx, 1 + total);
2241 ineq = isl_vec_clr(ineq);
2242 if (!ineq)
2243 return isl_stat_error;
2244 for (i = 0; i < node->nvar; ++i) {
2245 int pos = 1 + node_var_coef_offset(node);
2247 if (isl_int_is_neg(node->max->el[i]))
2248 continue;
2250 for (j = 0; j < node->nvar; ++j) {
2251 isl_int_set(ineq->el[pos + 2 * j],
2252 node->cmap->row[i][j]);
2253 isl_int_neg(ineq->el[pos + 2 * j + 1],
2254 node->cmap->row[i][j]);
2256 isl_int_set(ineq->el[0], node->max->el[i]);
2258 k = isl_basic_set_alloc_inequality(graph->lp);
2259 if (k < 0)
2260 goto error;
2261 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2263 isl_seq_neg(ineq->el + pos, ineq->el + pos, 2 * node->nvar);
2264 k = isl_basic_set_alloc_inequality(graph->lp);
2265 if (k < 0)
2266 goto error;
2267 isl_seq_cpy(graph->lp->ineq[k], ineq->el, 1 + total);
2269 isl_vec_free(ineq);
2271 return isl_stat_ok;
2272 error:
2273 isl_vec_free(ineq);
2274 return isl_stat_error;
2277 /* Add constraints that bound the values of the variable and parameter
2278 * coefficients of the schedule.
2280 * The maximal value of the coefficients is defined by the option
2281 * 'schedule_max_coefficient' and the entries in node->max.
2282 * These latter entries are only set if either the schedule_max_coefficient
2283 * option or the schedule_treat_coalescing option is set.
2285 static isl_stat add_bound_coefficient_constraints(isl_ctx *ctx,
2286 struct isl_sched_graph *graph)
2288 int i;
2289 int max;
2291 max = isl_options_get_schedule_max_coefficient(ctx);
2293 if (max == -1 && !isl_options_get_schedule_treat_coalescing(ctx))
2294 return isl_stat_ok;
2296 for (i = 0; i < graph->n; ++i) {
2297 struct isl_sched_node *node = &graph->node[i];
2299 if (node_add_coefficient_constraints(ctx, graph, node, max) < 0)
2300 return isl_stat_error;
2303 return isl_stat_ok;
2306 /* Add a constraint to graph->lp that equates the value at position
2307 * "sum_pos" to the sum of the "n" values starting at "first".
2309 static isl_stat add_sum_constraint(struct isl_sched_graph *graph,
2310 int sum_pos, int first, int n)
2312 int i, k;
2313 int total;
2315 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2317 k = isl_basic_set_alloc_equality(graph->lp);
2318 if (k < 0)
2319 return isl_stat_error;
2320 isl_seq_clr(graph->lp->eq[k], 1 + total);
2321 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2322 for (i = 0; i < n; ++i)
2323 isl_int_set_si(graph->lp->eq[k][1 + first + i], 1);
2325 return isl_stat_ok;
2328 /* Add a constraint to graph->lp that equates the value at position
2329 * "sum_pos" to the sum of the parameter coefficients of all nodes.
2331 * Within each node, the coefficients have the following order:
2332 * - c_i_0
2333 * - c_i_n (if parametric)
2334 * - positive and negative parts of c_i_x
2336 static isl_stat add_param_sum_constraint(struct isl_sched_graph *graph,
2337 int sum_pos)
2339 int i, j, k;
2340 int total;
2342 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2344 k = isl_basic_set_alloc_equality(graph->lp);
2345 if (k < 0)
2346 return isl_stat_error;
2347 isl_seq_clr(graph->lp->eq[k], 1 + total);
2348 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2349 for (i = 0; i < graph->n; ++i) {
2350 int pos = 1 + graph->node[i].start + 1;
2352 for (j = 0; j < graph->node[i].nparam; ++j)
2353 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2356 return isl_stat_ok;
2359 /* Add a constraint to graph->lp that equates the value at position
2360 * "sum_pos" to the sum of the variable coefficients of all nodes.
2362 * Within each node, the coefficients have the following order:
2363 * - c_i_0
2364 * - c_i_n (if parametric)
2365 * - positive and negative parts of c_i_x
2367 static isl_stat add_var_sum_constraint(struct isl_sched_graph *graph,
2368 int sum_pos)
2370 int i, j, k;
2371 int total;
2373 total = isl_basic_set_dim(graph->lp, isl_dim_set);
2375 k = isl_basic_set_alloc_equality(graph->lp);
2376 if (k < 0)
2377 return isl_stat_error;
2378 isl_seq_clr(graph->lp->eq[k], 1 + total);
2379 isl_int_set_si(graph->lp->eq[k][1 + sum_pos], -1);
2380 for (i = 0; i < graph->n; ++i) {
2381 struct isl_sched_node *node = &graph->node[i];
2382 int pos = 1 + node_var_coef_offset(node);
2384 for (j = 0; j < 2 * node->nvar; ++j)
2385 isl_int_set_si(graph->lp->eq[k][pos + j], 1);
2388 return isl_stat_ok;
2391 /* Construct an ILP problem for finding schedule coefficients
2392 * that result in non-negative, but small dependence distances
2393 * over all dependences.
2394 * In particular, the dependence distances over proximity edges
2395 * are bounded by m_0 + m_n n and we compute schedule coefficients
2396 * with small values (preferably zero) of m_n and m_0.
2398 * All variables of the ILP are non-negative. The actual coefficients
2399 * may be negative, so each coefficient is represented as the difference
2400 * of two non-negative variables. The negative part always appears
2401 * immediately before the positive part.
2402 * Other than that, the variables have the following order
2404 * - sum of positive and negative parts of m_n coefficients
2405 * - m_0
2406 * - sum of all c_n coefficients
2407 * (unconstrained when computing non-parametric schedules)
2408 * - sum of positive and negative parts of all c_x coefficients
2409 * - positive and negative parts of m_n coefficients
2410 * - for each node
2411 * - c_i_0
2412 * - c_i_n (if parametric)
2413 * - positive and negative parts of c_i_x
2415 * The c_i_x are not represented directly, but through the columns of
2416 * node->cmap. That is, the computed values are for variable t_i_x
2417 * such that c_i_x = Q t_i_x with Q equal to node->cmap.
2419 * The constraints are those from the edges plus two or three equalities
2420 * to express the sums.
2422 * If "use_coincidence" is set, then we treat coincidence edges as local edges.
2423 * Otherwise, we ignore them.
2425 static isl_stat setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
2426 int use_coincidence)
2428 int i;
2429 unsigned nparam;
2430 unsigned total;
2431 isl_space *space;
2432 int parametric;
2433 int param_pos;
2434 int n_eq, n_ineq;
2436 parametric = ctx->opt->schedule_parametric;
2437 nparam = isl_space_dim(graph->node[0].space, isl_dim_param);
2438 param_pos = 4;
2439 total = param_pos + 2 * nparam;
2440 for (i = 0; i < graph->n; ++i) {
2441 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
2442 if (node_update_cmap(node) < 0)
2443 return isl_stat_error;
2444 node->start = total;
2445 total += 1 + node->nparam + 2 * node->nvar;
2448 if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0)
2449 return isl_stat_error;
2450 if (count_bound_constant_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2451 return isl_stat_error;
2452 if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0)
2453 return isl_stat_error;
2455 space = isl_space_set_alloc(ctx, 0, total);
2456 isl_basic_set_free(graph->lp);
2457 n_eq += 2 + parametric;
2459 graph->lp = isl_basic_set_alloc_space(space, 0, n_eq, n_ineq);
2461 if (add_sum_constraint(graph, 0, param_pos, 2 * nparam) < 0)
2462 return isl_stat_error;
2463 if (parametric && add_param_sum_constraint(graph, 2) < 0)
2464 return isl_stat_error;
2465 if (add_var_sum_constraint(graph, 3) < 0)
2466 return isl_stat_error;
2467 if (add_bound_constant_constraints(ctx, graph) < 0)
2468 return isl_stat_error;
2469 if (add_bound_coefficient_constraints(ctx, graph) < 0)
2470 return isl_stat_error;
2471 if (add_all_validity_constraints(graph, use_coincidence) < 0)
2472 return isl_stat_error;
2473 if (add_all_proximity_constraints(graph, use_coincidence) < 0)
2474 return isl_stat_error;
2476 return isl_stat_ok;
2479 /* Analyze the conflicting constraint found by
2480 * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity
2481 * constraint of one of the edges between distinct nodes, living, moreover
2482 * in distinct SCCs, then record the source and sink SCC as this may
2483 * be a good place to cut between SCCs.
2485 static int check_conflict(int con, void *user)
2487 int i;
2488 struct isl_sched_graph *graph = user;
2490 if (graph->src_scc >= 0)
2491 return 0;
2493 con -= graph->lp->n_eq;
2495 if (con >= graph->lp->n_ineq)
2496 return 0;
2498 for (i = 0; i < graph->n_edge; ++i) {
2499 if (!is_validity(&graph->edge[i]))
2500 continue;
2501 if (graph->edge[i].src == graph->edge[i].dst)
2502 continue;
2503 if (graph->edge[i].src->scc == graph->edge[i].dst->scc)
2504 continue;
2505 if (graph->edge[i].start > con)
2506 continue;
2507 if (graph->edge[i].end <= con)
2508 continue;
2509 graph->src_scc = graph->edge[i].src->scc;
2510 graph->dst_scc = graph->edge[i].dst->scc;
2513 return 0;
2516 /* Check whether the next schedule row of the given node needs to be
2517 * non-trivial. Lower-dimensional domains may have some trivial rows,
2518 * but as soon as the number of remaining required non-trivial rows
2519 * is as large as the number or remaining rows to be computed,
2520 * all remaining rows need to be non-trivial.
2522 static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node)
2524 return node->nvar - node->rank >= graph->maxvar - graph->n_row;
2527 /* Solve the ILP problem constructed in setup_lp.
2528 * For each node such that all the remaining rows of its schedule
2529 * need to be non-trivial, we construct a non-triviality region.
2530 * This region imposes that the next row is independent of previous rows.
2531 * In particular the coefficients c_i_x are represented by t_i_x
2532 * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that
2533 * its first columns span the rows of the previously computed part
2534 * of the schedule. The non-triviality region enforces that at least
2535 * one of the remaining components of t_i_x is non-zero, i.e.,
2536 * that the new schedule row depends on at least one of the remaining
2537 * columns of Q.
2539 static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph)
2541 int i;
2542 isl_vec *sol;
2543 isl_basic_set *lp;
2545 for (i = 0; i < graph->n; ++i) {
2546 struct isl_sched_node *node = &graph->node[i];
2547 int skip = node->rank;
2548 graph->region[i].pos = node_var_coef_offset(node) + 2 * skip;
2549 if (needs_row(graph, node))
2550 graph->region[i].len = 2 * (node->nvar - skip);
2551 else
2552 graph->region[i].len = 0;
2554 lp = isl_basic_set_copy(graph->lp);
2555 sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n,
2556 graph->region, &check_conflict, graph);
2557 return sol;
2560 /* Extract the coefficients for the variables of "node" from "sol".
2562 * Within each node, the coefficients have the following order:
2563 * - c_i_0
2564 * - c_i_n (if parametric)
2565 * - positive and negative parts of c_i_x
2567 * The c_i_x^- appear before their c_i_x^+ counterpart.
2569 * Return c_i_x = c_i_x^+ - c_i_x^-
2571 static __isl_give isl_vec *extract_var_coef(struct isl_sched_node *node,
2572 __isl_keep isl_vec *sol)
2574 int i;
2575 int pos;
2576 isl_vec *csol;
2578 if (!sol)
2579 return NULL;
2580 csol = isl_vec_alloc(isl_vec_get_ctx(sol), node->nvar);
2581 if (!csol)
2582 return NULL;
2584 pos = 1 + node_var_coef_offset(node);
2585 for (i = 0; i < node->nvar; ++i)
2586 isl_int_sub(csol->el[i],
2587 sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]);
2589 return csol;
2592 /* Update the schedules of all nodes based on the given solution
2593 * of the LP problem.
2594 * The new row is added to the current band.
2595 * All possibly negative coefficients are encoded as a difference
2596 * of two non-negative variables, so we need to perform the subtraction
2597 * here. Moreover, if use_cmap is set, then the solution does
2598 * not refer to the actual coefficients c_i_x, but instead to variables
2599 * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap.
2600 * In this case, we then also need to perform this multiplication
2601 * to obtain the values of c_i_x.
2603 * If coincident is set, then the caller guarantees that the new
2604 * row satisfies the coincidence constraints.
2606 static int update_schedule(struct isl_sched_graph *graph,
2607 __isl_take isl_vec *sol, int use_cmap, int coincident)
2609 int i, j;
2610 isl_vec *csol = NULL;
2612 if (!sol)
2613 goto error;
2614 if (sol->size == 0)
2615 isl_die(sol->ctx, isl_error_internal,
2616 "no solution found", goto error);
2617 if (graph->n_total_row >= graph->max_row)
2618 isl_die(sol->ctx, isl_error_internal,
2619 "too many schedule rows", goto error);
2621 for (i = 0; i < graph->n; ++i) {
2622 struct isl_sched_node *node = &graph->node[i];
2623 int pos = node->start;
2624 int row = isl_mat_rows(node->sched);
2626 isl_vec_free(csol);
2627 csol = extract_var_coef(node, sol);
2628 if (!csol)
2629 goto error;
2631 isl_map_free(node->sched_map);
2632 node->sched_map = NULL;
2633 node->sched = isl_mat_add_rows(node->sched, 1);
2634 if (!node->sched)
2635 goto error;
2636 for (j = 0; j < 1 + node->nparam; ++j)
2637 node->sched = isl_mat_set_element(node->sched,
2638 row, j, sol->el[1 + pos + j]);
2639 if (use_cmap)
2640 csol = isl_mat_vec_product(isl_mat_copy(node->cmap),
2641 csol);
2642 if (!csol)
2643 goto error;
2644 for (j = 0; j < node->nvar; ++j)
2645 node->sched = isl_mat_set_element(node->sched,
2646 row, 1 + node->nparam + j, csol->el[j]);
2647 node->coincident[graph->n_total_row] = coincident;
2649 isl_vec_free(sol);
2650 isl_vec_free(csol);
2652 graph->n_row++;
2653 graph->n_total_row++;
2655 return 0;
2656 error:
2657 isl_vec_free(sol);
2658 isl_vec_free(csol);
2659 return -1;
2662 /* Convert row "row" of node->sched into an isl_aff living in "ls"
2663 * and return this isl_aff.
2665 static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls,
2666 struct isl_sched_node *node, int row)
2668 int j;
2669 isl_int v;
2670 isl_aff *aff;
2672 isl_int_init(v);
2674 aff = isl_aff_zero_on_domain(ls);
2675 isl_mat_get_element(node->sched, row, 0, &v);
2676 aff = isl_aff_set_constant(aff, v);
2677 for (j = 0; j < node->nparam; ++j) {
2678 isl_mat_get_element(node->sched, row, 1 + j, &v);
2679 aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v);
2681 for (j = 0; j < node->nvar; ++j) {
2682 isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v);
2683 aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v);
2686 isl_int_clear(v);
2688 return aff;
2691 /* Convert the "n" rows starting at "first" of node->sched into a multi_aff
2692 * and return this multi_aff.
2694 * The result is defined over the uncompressed node domain.
2696 static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff(
2697 struct isl_sched_node *node, int first, int n)
2699 int i;
2700 isl_space *space;
2701 isl_local_space *ls;
2702 isl_aff *aff;
2703 isl_multi_aff *ma;
2704 int nrow;
2706 if (!node)
2707 return NULL;
2708 nrow = isl_mat_rows(node->sched);
2709 if (node->compressed)
2710 space = isl_multi_aff_get_domain_space(node->decompress);
2711 else
2712 space = isl_space_copy(node->space);
2713 ls = isl_local_space_from_space(isl_space_copy(space));
2714 space = isl_space_from_domain(space);
2715 space = isl_space_add_dims(space, isl_dim_out, n);
2716 ma = isl_multi_aff_zero(space);
2718 for (i = first; i < first + n; ++i) {
2719 aff = extract_schedule_row(isl_local_space_copy(ls), node, i);
2720 ma = isl_multi_aff_set_aff(ma, i - first, aff);
2723 isl_local_space_free(ls);
2725 if (node->compressed)
2726 ma = isl_multi_aff_pullback_multi_aff(ma,
2727 isl_multi_aff_copy(node->compress));
2729 return ma;
2732 /* Convert node->sched into a multi_aff and return this multi_aff.
2734 * The result is defined over the uncompressed node domain.
2736 static __isl_give isl_multi_aff *node_extract_schedule_multi_aff(
2737 struct isl_sched_node *node)
2739 int nrow;
2741 nrow = isl_mat_rows(node->sched);
2742 return node_extract_partial_schedule_multi_aff(node, 0, nrow);
2745 /* Convert node->sched into a map and return this map.
2747 * The result is cached in node->sched_map, which needs to be released
2748 * whenever node->sched is updated.
2749 * It is defined over the uncompressed node domain.
2751 static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node)
2753 if (!node->sched_map) {
2754 isl_multi_aff *ma;
2756 ma = node_extract_schedule_multi_aff(node);
2757 node->sched_map = isl_map_from_multi_aff(ma);
2760 return isl_map_copy(node->sched_map);
2763 /* Construct a map that can be used to update a dependence relation
2764 * based on the current schedule.
2765 * That is, construct a map expressing that source and sink
2766 * are executed within the same iteration of the current schedule.
2767 * This map can then be intersected with the dependence relation.
2768 * This is not the most efficient way, but this shouldn't be a critical
2769 * operation.
2771 static __isl_give isl_map *specializer(struct isl_sched_node *src,
2772 struct isl_sched_node *dst)
2774 isl_map *src_sched, *dst_sched;
2776 src_sched = node_extract_schedule(src);
2777 dst_sched = node_extract_schedule(dst);
2778 return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched));
2781 /* Intersect the domains of the nested relations in domain and range
2782 * of "umap" with "map".
2784 static __isl_give isl_union_map *intersect_domains(
2785 __isl_take isl_union_map *umap, __isl_keep isl_map *map)
2787 isl_union_set *uset;
2789 umap = isl_union_map_zip(umap);
2790 uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map)));
2791 umap = isl_union_map_intersect_domain(umap, uset);
2792 umap = isl_union_map_zip(umap);
2793 return umap;
2796 /* Update the dependence relation of the given edge based
2797 * on the current schedule.
2798 * If the dependence is carried completely by the current schedule, then
2799 * it is removed from the edge_tables. It is kept in the list of edges
2800 * as otherwise all edge_tables would have to be recomputed.
2802 static int update_edge(struct isl_sched_graph *graph,
2803 struct isl_sched_edge *edge)
2805 int empty;
2806 isl_map *id;
2808 id = specializer(edge->src, edge->dst);
2809 edge->map = isl_map_intersect(edge->map, isl_map_copy(id));
2810 if (!edge->map)
2811 goto error;
2813 if (edge->tagged_condition) {
2814 edge->tagged_condition =
2815 intersect_domains(edge->tagged_condition, id);
2816 if (!edge->tagged_condition)
2817 goto error;
2819 if (edge->tagged_validity) {
2820 edge->tagged_validity =
2821 intersect_domains(edge->tagged_validity, id);
2822 if (!edge->tagged_validity)
2823 goto error;
2826 empty = isl_map_plain_is_empty(edge->map);
2827 if (empty < 0)
2828 goto error;
2829 if (empty)
2830 graph_remove_edge(graph, edge);
2832 isl_map_free(id);
2833 return 0;
2834 error:
2835 isl_map_free(id);
2836 return -1;
2839 /* Does the domain of "umap" intersect "uset"?
2841 static int domain_intersects(__isl_keep isl_union_map *umap,
2842 __isl_keep isl_union_set *uset)
2844 int empty;
2846 umap = isl_union_map_copy(umap);
2847 umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset));
2848 empty = isl_union_map_is_empty(umap);
2849 isl_union_map_free(umap);
2851 return empty < 0 ? -1 : !empty;
2854 /* Does the range of "umap" intersect "uset"?
2856 static int range_intersects(__isl_keep isl_union_map *umap,
2857 __isl_keep isl_union_set *uset)
2859 int empty;
2861 umap = isl_union_map_copy(umap);
2862 umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset));
2863 empty = isl_union_map_is_empty(umap);
2864 isl_union_map_free(umap);
2866 return empty < 0 ? -1 : !empty;
2869 /* Are the condition dependences of "edge" local with respect to
2870 * the current schedule?
2872 * That is, are domain and range of the condition dependences mapped
2873 * to the same point?
2875 * In other words, is the condition false?
2877 static int is_condition_false(struct isl_sched_edge *edge)
2879 isl_union_map *umap;
2880 isl_map *map, *sched, *test;
2881 int empty, local;
2883 empty = isl_union_map_is_empty(edge->tagged_condition);
2884 if (empty < 0 || empty)
2885 return empty;
2887 umap = isl_union_map_copy(edge->tagged_condition);
2888 umap = isl_union_map_zip(umap);
2889 umap = isl_union_set_unwrap(isl_union_map_domain(umap));
2890 map = isl_map_from_union_map(umap);
2892 sched = node_extract_schedule(edge->src);
2893 map = isl_map_apply_domain(map, sched);
2894 sched = node_extract_schedule(edge->dst);
2895 map = isl_map_apply_range(map, sched);
2897 test = isl_map_identity(isl_map_get_space(map));
2898 local = isl_map_is_subset(map, test);
2899 isl_map_free(map);
2900 isl_map_free(test);
2902 return local;
2905 /* For each conditional validity constraint that is adjacent
2906 * to a condition with domain in condition_source or range in condition_sink,
2907 * turn it into an unconditional validity constraint.
2909 static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph,
2910 __isl_take isl_union_set *condition_source,
2911 __isl_take isl_union_set *condition_sink)
2913 int i;
2915 condition_source = isl_union_set_coalesce(condition_source);
2916 condition_sink = isl_union_set_coalesce(condition_sink);
2918 for (i = 0; i < graph->n_edge; ++i) {
2919 int adjacent;
2920 isl_union_map *validity;
2922 if (!is_conditional_validity(&graph->edge[i]))
2923 continue;
2924 if (is_validity(&graph->edge[i]))
2925 continue;
2927 validity = graph->edge[i].tagged_validity;
2928 adjacent = domain_intersects(validity, condition_sink);
2929 if (adjacent >= 0 && !adjacent)
2930 adjacent = range_intersects(validity, condition_source);
2931 if (adjacent < 0)
2932 goto error;
2933 if (!adjacent)
2934 continue;
2936 set_validity(&graph->edge[i]);
2939 isl_union_set_free(condition_source);
2940 isl_union_set_free(condition_sink);
2941 return 0;
2942 error:
2943 isl_union_set_free(condition_source);
2944 isl_union_set_free(condition_sink);
2945 return -1;
2948 /* Update the dependence relations of all edges based on the current schedule
2949 * and enforce conditional validity constraints that are adjacent
2950 * to satisfied condition constraints.
2952 * First check if any of the condition constraints are satisfied
2953 * (i.e., not local to the outer schedule) and keep track of
2954 * their domain and range.
2955 * Then update all dependence relations (which removes the non-local
2956 * constraints).
2957 * Finally, if any condition constraints turned out to be satisfied,
2958 * then turn all adjacent conditional validity constraints into
2959 * unconditional validity constraints.
2961 static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph)
2963 int i;
2964 int any = 0;
2965 isl_union_set *source, *sink;
2967 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2968 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
2969 for (i = 0; i < graph->n_edge; ++i) {
2970 int local;
2971 isl_union_set *uset;
2972 isl_union_map *umap;
2974 if (!is_condition(&graph->edge[i]))
2975 continue;
2976 if (is_local(&graph->edge[i]))
2977 continue;
2978 local = is_condition_false(&graph->edge[i]);
2979 if (local < 0)
2980 goto error;
2981 if (local)
2982 continue;
2984 any = 1;
2986 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2987 uset = isl_union_map_domain(umap);
2988 source = isl_union_set_union(source, uset);
2990 umap = isl_union_map_copy(graph->edge[i].tagged_condition);
2991 uset = isl_union_map_range(umap);
2992 sink = isl_union_set_union(sink, uset);
2995 for (i = graph->n_edge - 1; i >= 0; --i) {
2996 if (update_edge(graph, &graph->edge[i]) < 0)
2997 goto error;
3000 if (any)
3001 return unconditionalize_adjacent_validity(graph, source, sink);
3003 isl_union_set_free(source);
3004 isl_union_set_free(sink);
3005 return 0;
3006 error:
3007 isl_union_set_free(source);
3008 isl_union_set_free(sink);
3009 return -1;
3012 static void next_band(struct isl_sched_graph *graph)
3014 graph->band_start = graph->n_total_row;
3017 /* Return the union of the universe domains of the nodes in "graph"
3018 * that satisfy "pred".
3020 static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx,
3021 struct isl_sched_graph *graph,
3022 int (*pred)(struct isl_sched_node *node, int data), int data)
3024 int i;
3025 isl_set *set;
3026 isl_union_set *dom;
3028 for (i = 0; i < graph->n; ++i)
3029 if (pred(&graph->node[i], data))
3030 break;
3032 if (i >= graph->n)
3033 isl_die(ctx, isl_error_internal,
3034 "empty component", return NULL);
3036 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3037 dom = isl_union_set_from_set(set);
3039 for (i = i + 1; i < graph->n; ++i) {
3040 if (!pred(&graph->node[i], data))
3041 continue;
3042 set = isl_set_universe(isl_space_copy(graph->node[i].space));
3043 dom = isl_union_set_union(dom, isl_union_set_from_set(set));
3046 return dom;
3049 /* Return a list of unions of universe domains, where each element
3050 * in the list corresponds to an SCC (or WCC) indexed by node->scc.
3052 static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx,
3053 struct isl_sched_graph *graph)
3055 int i;
3056 isl_union_set_list *filters;
3058 filters = isl_union_set_list_alloc(ctx, graph->scc);
3059 for (i = 0; i < graph->scc; ++i) {
3060 isl_union_set *dom;
3062 dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i);
3063 filters = isl_union_set_list_add(filters, dom);
3066 return filters;
3069 /* Return a list of two unions of universe domains, one for the SCCs up
3070 * to and including graph->src_scc and another for the other SCCs.
3072 static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx,
3073 struct isl_sched_graph *graph)
3075 isl_union_set *dom;
3076 isl_union_set_list *filters;
3078 filters = isl_union_set_list_alloc(ctx, 2);
3079 dom = isl_sched_graph_domain(ctx, graph,
3080 &node_scc_at_most, graph->src_scc);
3081 filters = isl_union_set_list_add(filters, dom);
3082 dom = isl_sched_graph_domain(ctx, graph,
3083 &node_scc_at_least, graph->src_scc + 1);
3084 filters = isl_union_set_list_add(filters, dom);
3086 return filters;
3089 /* Copy nodes that satisfy node_pred from the src dependence graph
3090 * to the dst dependence graph.
3092 static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src,
3093 int (*node_pred)(struct isl_sched_node *node, int data), int data)
3095 int i;
3097 dst->n = 0;
3098 for (i = 0; i < src->n; ++i) {
3099 int j;
3101 if (!node_pred(&src->node[i], data))
3102 continue;
3104 j = dst->n;
3105 dst->node[j].space = isl_space_copy(src->node[i].space);
3106 dst->node[j].compressed = src->node[i].compressed;
3107 dst->node[j].hull = isl_set_copy(src->node[i].hull);
3108 dst->node[j].compress =
3109 isl_multi_aff_copy(src->node[i].compress);
3110 dst->node[j].decompress =
3111 isl_multi_aff_copy(src->node[i].decompress);
3112 dst->node[j].nvar = src->node[i].nvar;
3113 dst->node[j].nparam = src->node[i].nparam;
3114 dst->node[j].sched = isl_mat_copy(src->node[i].sched);
3115 dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map);
3116 dst->node[j].coincident = src->node[i].coincident;
3117 dst->node[j].sizes = isl_multi_val_copy(src->node[i].sizes);
3118 dst->node[j].max = isl_vec_copy(src->node[i].max);
3119 dst->n++;
3121 if (!dst->node[j].space || !dst->node[j].sched)
3122 return -1;
3123 if (dst->node[j].compressed &&
3124 (!dst->node[j].hull || !dst->node[j].compress ||
3125 !dst->node[j].decompress))
3126 return -1;
3129 return 0;
3132 /* Copy non-empty edges that satisfy edge_pred from the src dependence graph
3133 * to the dst dependence graph.
3134 * If the source or destination node of the edge is not in the destination
3135 * graph, then it must be a backward proximity edge and it should simply
3136 * be ignored.
3138 static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst,
3139 struct isl_sched_graph *src,
3140 int (*edge_pred)(struct isl_sched_edge *edge, int data), int data)
3142 int i;
3143 enum isl_edge_type t;
3145 dst->n_edge = 0;
3146 for (i = 0; i < src->n_edge; ++i) {
3147 struct isl_sched_edge *edge = &src->edge[i];
3148 isl_map *map;
3149 isl_union_map *tagged_condition;
3150 isl_union_map *tagged_validity;
3151 struct isl_sched_node *dst_src, *dst_dst;
3153 if (!edge_pred(edge, data))
3154 continue;
3156 if (isl_map_plain_is_empty(edge->map))
3157 continue;
3159 dst_src = graph_find_node(ctx, dst, edge->src->space);
3160 dst_dst = graph_find_node(ctx, dst, edge->dst->space);
3161 if (!dst_src || !dst_dst) {
3162 if (is_validity(edge) || is_conditional_validity(edge))
3163 isl_die(ctx, isl_error_internal,
3164 "backward (conditional) validity edge",
3165 return -1);
3166 continue;
3169 map = isl_map_copy(edge->map);
3170 tagged_condition = isl_union_map_copy(edge->tagged_condition);
3171 tagged_validity = isl_union_map_copy(edge->tagged_validity);
3173 dst->edge[dst->n_edge].src = dst_src;
3174 dst->edge[dst->n_edge].dst = dst_dst;
3175 dst->edge[dst->n_edge].map = map;
3176 dst->edge[dst->n_edge].tagged_condition = tagged_condition;
3177 dst->edge[dst->n_edge].tagged_validity = tagged_validity;
3178 dst->edge[dst->n_edge].types = edge->types;
3179 dst->n_edge++;
3181 if (edge->tagged_condition && !tagged_condition)
3182 return -1;
3183 if (edge->tagged_validity && !tagged_validity)
3184 return -1;
3186 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
3187 if (edge !=
3188 graph_find_edge(src, t, edge->src, edge->dst))
3189 continue;
3190 if (graph_edge_table_add(ctx, dst, t,
3191 &dst->edge[dst->n_edge - 1]) < 0)
3192 return -1;
3196 return 0;
3199 /* Compute the maximal number of variables over all nodes.
3200 * This is the maximal number of linearly independent schedule
3201 * rows that we need to compute.
3202 * Just in case we end up in a part of the dependence graph
3203 * with only lower-dimensional domains, we make sure we will
3204 * compute the required amount of extra linearly independent rows.
3206 static int compute_maxvar(struct isl_sched_graph *graph)
3208 int i;
3210 graph->maxvar = 0;
3211 for (i = 0; i < graph->n; ++i) {
3212 struct isl_sched_node *node = &graph->node[i];
3213 int nvar;
3215 if (node_update_cmap(node) < 0)
3216 return -1;
3217 nvar = node->nvar + graph->n_row - node->rank;
3218 if (nvar > graph->maxvar)
3219 graph->maxvar = nvar;
3222 return 0;
3225 /* Extract the subgraph of "graph" that consists of the node satisfying
3226 * "node_pred" and the edges satisfying "edge_pred" and store
3227 * the result in "sub".
3229 static int extract_sub_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
3230 int (*node_pred)(struct isl_sched_node *node, int data),
3231 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3232 int data, struct isl_sched_graph *sub)
3234 int i, n = 0, n_edge = 0;
3235 int t;
3237 for (i = 0; i < graph->n; ++i)
3238 if (node_pred(&graph->node[i], data))
3239 ++n;
3240 for (i = 0; i < graph->n_edge; ++i)
3241 if (edge_pred(&graph->edge[i], data))
3242 ++n_edge;
3243 if (graph_alloc(ctx, sub, n, n_edge) < 0)
3244 return -1;
3245 if (copy_nodes(sub, graph, node_pred, data) < 0)
3246 return -1;
3247 if (graph_init_table(ctx, sub) < 0)
3248 return -1;
3249 for (t = 0; t <= isl_edge_last; ++t)
3250 sub->max_edge[t] = graph->max_edge[t];
3251 if (graph_init_edge_tables(ctx, sub) < 0)
3252 return -1;
3253 if (copy_edges(ctx, sub, graph, edge_pred, data) < 0)
3254 return -1;
3255 sub->n_row = graph->n_row;
3256 sub->max_row = graph->max_row;
3257 sub->n_total_row = graph->n_total_row;
3258 sub->band_start = graph->band_start;
3260 return 0;
3263 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
3264 struct isl_sched_graph *graph);
3265 static __isl_give isl_schedule_node *compute_schedule_wcc(
3266 isl_schedule_node *node, struct isl_sched_graph *graph);
3268 /* Compute a schedule for a subgraph of "graph". In particular, for
3269 * the graph composed of nodes that satisfy node_pred and edges that
3270 * that satisfy edge_pred.
3271 * If the subgraph is known to consist of a single component, then wcc should
3272 * be set and then we call compute_schedule_wcc on the constructed subgraph.
3273 * Otherwise, we call compute_schedule, which will check whether the subgraph
3274 * is connected.
3276 * The schedule is inserted at "node" and the updated schedule node
3277 * is returned.
3279 static __isl_give isl_schedule_node *compute_sub_schedule(
3280 __isl_take isl_schedule_node *node, isl_ctx *ctx,
3281 struct isl_sched_graph *graph,
3282 int (*node_pred)(struct isl_sched_node *node, int data),
3283 int (*edge_pred)(struct isl_sched_edge *edge, int data),
3284 int data, int wcc)
3286 struct isl_sched_graph split = { 0 };
3288 if (extract_sub_graph(ctx, graph, node_pred, edge_pred, data,
3289 &split) < 0)
3290 goto error;
3292 if (wcc)
3293 node = compute_schedule_wcc(node, &split);
3294 else
3295 node = compute_schedule(node, &split);
3297 graph_free(ctx, &split);
3298 return node;
3299 error:
3300 graph_free(ctx, &split);
3301 return isl_schedule_node_free(node);
3304 static int edge_scc_exactly(struct isl_sched_edge *edge, int scc)
3306 return edge->src->scc == scc && edge->dst->scc == scc;
3309 static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc)
3311 return edge->dst->scc <= scc;
3314 static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc)
3316 return edge->src->scc >= scc;
3319 /* Reset the current band by dropping all its schedule rows.
3321 static int reset_band(struct isl_sched_graph *graph)
3323 int i;
3324 int drop;
3326 drop = graph->n_total_row - graph->band_start;
3327 graph->n_total_row -= drop;
3328 graph->n_row -= drop;
3330 for (i = 0; i < graph->n; ++i) {
3331 struct isl_sched_node *node = &graph->node[i];
3333 isl_map_free(node->sched_map);
3334 node->sched_map = NULL;
3336 node->sched = isl_mat_drop_rows(node->sched,
3337 graph->band_start, drop);
3339 if (!node->sched)
3340 return -1;
3343 return 0;
3346 /* Split the current graph into two parts and compute a schedule for each
3347 * part individually. In particular, one part consists of all SCCs up
3348 * to and including graph->src_scc, while the other part contains the other
3349 * SCCs. The split is enforced by a sequence node inserted at position "node"
3350 * in the schedule tree. Return the updated schedule node.
3351 * If either of these two parts consists of a sequence, then it is spliced
3352 * into the sequence containing the two parts.
3354 * The current band is reset. It would be possible to reuse
3355 * the previously computed rows as the first rows in the next
3356 * band, but recomputing them may result in better rows as we are looking
3357 * at a smaller part of the dependence graph.
3359 static __isl_give isl_schedule_node *compute_split_schedule(
3360 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3362 int is_seq;
3363 isl_ctx *ctx;
3364 isl_union_set_list *filters;
3366 if (!node)
3367 return NULL;
3369 if (reset_band(graph) < 0)
3370 return isl_schedule_node_free(node);
3372 next_band(graph);
3374 ctx = isl_schedule_node_get_ctx(node);
3375 filters = extract_split(ctx, graph);
3376 node = isl_schedule_node_insert_sequence(node, filters);
3377 node = isl_schedule_node_child(node, 1);
3378 node = isl_schedule_node_child(node, 0);
3380 node = compute_sub_schedule(node, ctx, graph,
3381 &node_scc_at_least, &edge_src_scc_at_least,
3382 graph->src_scc + 1, 0);
3383 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3384 node = isl_schedule_node_parent(node);
3385 node = isl_schedule_node_parent(node);
3386 if (is_seq)
3387 node = isl_schedule_node_sequence_splice_child(node, 1);
3388 node = isl_schedule_node_child(node, 0);
3389 node = isl_schedule_node_child(node, 0);
3390 node = compute_sub_schedule(node, ctx, graph,
3391 &node_scc_at_most, &edge_dst_scc_at_most,
3392 graph->src_scc, 0);
3393 is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence;
3394 node = isl_schedule_node_parent(node);
3395 node = isl_schedule_node_parent(node);
3396 if (is_seq)
3397 node = isl_schedule_node_sequence_splice_child(node, 0);
3399 return node;
3402 /* Insert a band node at position "node" in the schedule tree corresponding
3403 * to the current band in "graph". Mark the band node permutable
3404 * if "permutable" is set.
3405 * The partial schedules and the coincidence property are extracted
3406 * from the graph nodes.
3407 * Return the updated schedule node.
3409 static __isl_give isl_schedule_node *insert_current_band(
3410 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3411 int permutable)
3413 int i;
3414 int start, end, n;
3415 isl_multi_aff *ma;
3416 isl_multi_pw_aff *mpa;
3417 isl_multi_union_pw_aff *mupa;
3419 if (!node)
3420 return NULL;
3422 if (graph->n < 1)
3423 isl_die(isl_schedule_node_get_ctx(node), isl_error_internal,
3424 "graph should have at least one node",
3425 return isl_schedule_node_free(node));
3427 start = graph->band_start;
3428 end = graph->n_total_row;
3429 n = end - start;
3431 ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n);
3432 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3433 mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3435 for (i = 1; i < graph->n; ++i) {
3436 isl_multi_union_pw_aff *mupa_i;
3438 ma = node_extract_partial_schedule_multi_aff(&graph->node[i],
3439 start, n);
3440 mpa = isl_multi_pw_aff_from_multi_aff(ma);
3441 mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3442 mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i);
3444 node = isl_schedule_node_insert_partial_schedule(node, mupa);
3446 for (i = 0; i < n; ++i)
3447 node = isl_schedule_node_band_member_set_coincident(node, i,
3448 graph->node[0].coincident[start + i]);
3449 node = isl_schedule_node_band_set_permutable(node, permutable);
3451 return node;
3454 /* Update the dependence relations based on the current schedule,
3455 * add the current band to "node" and then continue with the computation
3456 * of the next band.
3457 * Return the updated schedule node.
3459 static __isl_give isl_schedule_node *compute_next_band(
3460 __isl_take isl_schedule_node *node,
3461 struct isl_sched_graph *graph, int permutable)
3463 isl_ctx *ctx;
3465 if (!node)
3466 return NULL;
3468 ctx = isl_schedule_node_get_ctx(node);
3469 if (update_edges(ctx, graph) < 0)
3470 return isl_schedule_node_free(node);
3471 node = insert_current_band(node, graph, permutable);
3472 next_band(graph);
3474 node = isl_schedule_node_child(node, 0);
3475 node = compute_schedule(node, graph);
3476 node = isl_schedule_node_parent(node);
3478 return node;
3481 /* Add constraints to graph->lp that force the dependence "map" (which
3482 * is part of the dependence relation of "edge")
3483 * to be respected and attempt to carry it, where the edge is one from
3484 * a node j to itself. "pos" is the sequence number of the given map.
3485 * That is, add constraints that enforce
3487 * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x)
3488 * = c_j_x (y - x) >= e_i
3490 * for each (x,y) in R.
3491 * We obtain general constraints on coefficients (c_0, c_n, c_x)
3492 * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x),
3493 * with each coefficient in c_j_x represented as a pair of non-negative
3494 * coefficients.
3496 static int add_intra_constraints(struct isl_sched_graph *graph,
3497 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3499 int offset;
3500 isl_ctx *ctx = isl_map_get_ctx(map);
3501 isl_dim_map *dim_map;
3502 isl_basic_set *coef;
3503 struct isl_sched_node *node = edge->src;
3505 coef = intra_coefficients(graph, node, map);
3506 if (!coef)
3507 return -1;
3509 offset = coef_var_offset(coef);
3510 dim_map = intra_dim_map(ctx, graph, node, offset, 1);
3511 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3512 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3514 return 0;
3517 /* Add constraints to graph->lp that force the dependence "map" (which
3518 * is part of the dependence relation of "edge")
3519 * to be respected and attempt to carry it, where the edge is one from
3520 * node j to node k. "pos" is the sequence number of the given map.
3521 * That is, add constraints that enforce
3523 * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i
3525 * for each (x,y) in R.
3526 * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y)
3527 * of valid constraints for R and then plug in
3528 * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, -c_j_x, c_k_x)
3529 * with each coefficient (except e_i, c_*_0 and c_*_n)
3530 * represented as a pair of non-negative coefficients.
3532 static int add_inter_constraints(struct isl_sched_graph *graph,
3533 struct isl_sched_edge *edge, __isl_take isl_map *map, int pos)
3535 int offset;
3536 isl_ctx *ctx = isl_map_get_ctx(map);
3537 isl_dim_map *dim_map;
3538 isl_basic_set *coef;
3539 struct isl_sched_node *src = edge->src;
3540 struct isl_sched_node *dst = edge->dst;
3542 coef = inter_coefficients(graph, edge, map);
3543 if (!coef)
3544 return -1;
3546 offset = coef_var_offset(coef);
3547 dim_map = inter_dim_map(ctx, graph, src, dst, offset, 1);
3548 isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1);
3549 graph->lp = add_constraints_dim_map(graph->lp, coef, dim_map);
3551 return 0;
3554 /* Add constraints to graph->lp that force all (conditional) validity
3555 * dependences to be respected and attempt to carry them.
3557 static isl_stat add_all_constraints(struct isl_sched_graph *graph)
3559 int i, j;
3560 int pos;
3562 pos = 0;
3563 for (i = 0; i < graph->n_edge; ++i) {
3564 struct isl_sched_edge *edge = &graph->edge[i];
3566 if (!is_any_validity(edge))
3567 continue;
3569 for (j = 0; j < edge->map->n; ++j) {
3570 isl_basic_map *bmap;
3571 isl_map *map;
3573 bmap = isl_basic_map_copy(edge->map->p[j]);
3574 map = isl_map_from_basic_map(bmap);
3576 if (edge->src == edge->dst &&
3577 add_intra_constraints(graph, edge, map, pos) < 0)
3578 return isl_stat_error;
3579 if (edge->src != edge->dst &&
3580 add_inter_constraints(graph, edge, map, pos) < 0)
3581 return isl_stat_error;
3582 ++pos;
3586 return isl_stat_ok;
3589 /* Count the number of equality and inequality constraints
3590 * that will be added to the carry_lp problem.
3591 * We count each edge exactly once.
3593 static isl_stat count_all_constraints(struct isl_sched_graph *graph,
3594 int *n_eq, int *n_ineq)
3596 int i, j;
3598 *n_eq = *n_ineq = 0;
3599 for (i = 0; i < graph->n_edge; ++i) {
3600 struct isl_sched_edge *edge = &graph->edge[i];
3602 if (!is_any_validity(edge))
3603 continue;
3605 for (j = 0; j < edge->map->n; ++j) {
3606 isl_basic_map *bmap;
3607 isl_map *map;
3609 bmap = isl_basic_map_copy(edge->map->p[j]);
3610 map = isl_map_from_basic_map(bmap);
3612 if (count_map_constraints(graph, edge, map,
3613 n_eq, n_ineq, 1, 0) < 0)
3614 return isl_stat_error;
3618 return isl_stat_ok;
3621 /* Return the total number of (validity) edges that carry_dependences will
3622 * attempt to carry.
3624 static int count_carry_edges(struct isl_sched_graph *graph)
3626 int i;
3627 int n_edge;
3629 n_edge = 0;
3630 for (i = 0; i < graph->n_edge; ++i) {
3631 struct isl_sched_edge *edge = &graph->edge[i];
3633 if (!is_any_validity(edge))
3634 continue;
3636 n_edge += isl_map_n_basic_map(edge->map);
3639 return n_edge;
3642 /* Construct an LP problem for finding schedule coefficients
3643 * such that the schedule carries as many validity dependences as possible.
3644 * In particular, for each dependence i, we bound the dependence distance
3645 * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum
3646 * of all e_i's. Dependences with e_i = 0 in the solution are simply
3647 * respected, while those with e_i > 0 (in practice e_i = 1) are carried.
3648 * Note that if the dependence relation is a union of basic maps,
3649 * then we have to consider each basic map individually as it may only
3650 * be possible to carry the dependences expressed by some of those
3651 * basic maps and not all of them.
3652 * Below, we consider each of those basic maps as a separate "edge".
3653 * "n_edge" is the number of these edges.
3655 * All variables of the LP are non-negative. The actual coefficients
3656 * may be negative, so each coefficient is represented as the difference
3657 * of two non-negative variables. The negative part always appears
3658 * immediately before the positive part.
3659 * Other than that, the variables have the following order
3661 * - sum of (1 - e_i) over all edges
3662 * - sum of all c_n coefficients
3663 * (unconstrained when computing non-parametric schedules)
3664 * - sum of positive and negative parts of all c_x coefficients
3665 * - for each edge
3666 * - e_i
3667 * - for each node
3668 * - c_i_0
3669 * - c_i_n (if parametric)
3670 * - positive and negative parts of c_i_x
3672 * The constraints are those from the (validity) edges plus three equalities
3673 * to express the sums and n_edge inequalities to express e_i <= 1.
3675 static isl_stat setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph,
3676 int n_edge)
3678 int i;
3679 int k;
3680 isl_space *dim;
3681 unsigned total;
3682 int n_eq, n_ineq;
3684 total = 3 + n_edge;
3685 for (i = 0; i < graph->n; ++i) {
3686 struct isl_sched_node *node = &graph->node[graph->sorted[i]];
3687 node->start = total;
3688 total += 1 + node->nparam + 2 * node->nvar;
3691 if (count_all_constraints(graph, &n_eq, &n_ineq) < 0)
3692 return isl_stat_error;
3694 dim = isl_space_set_alloc(ctx, 0, total);
3695 isl_basic_set_free(graph->lp);
3696 n_eq += 3;
3697 n_ineq += n_edge;
3698 graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq);
3699 graph->lp = isl_basic_set_set_rational(graph->lp);
3701 k = isl_basic_set_alloc_equality(graph->lp);
3702 if (k < 0)
3703 return isl_stat_error;
3704 isl_seq_clr(graph->lp->eq[k], 1 + total);
3705 isl_int_set_si(graph->lp->eq[k][0], -n_edge);
3706 isl_int_set_si(graph->lp->eq[k][1], 1);
3707 for (i = 0; i < n_edge; ++i)
3708 isl_int_set_si(graph->lp->eq[k][4 + i], 1);
3710 if (add_param_sum_constraint(graph, 1) < 0)
3711 return isl_stat_error;
3712 if (add_var_sum_constraint(graph, 2) < 0)
3713 return isl_stat_error;
3715 for (i = 0; i < n_edge; ++i) {
3716 k = isl_basic_set_alloc_inequality(graph->lp);
3717 if (k < 0)
3718 return isl_stat_error;
3719 isl_seq_clr(graph->lp->ineq[k], 1 + total);
3720 isl_int_set_si(graph->lp->ineq[k][4 + i], -1);
3721 isl_int_set_si(graph->lp->ineq[k][0], 1);
3724 if (add_all_constraints(graph) < 0)
3725 return isl_stat_error;
3727 return isl_stat_ok;
3730 static __isl_give isl_schedule_node *compute_component_schedule(
3731 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
3732 int wcc);
3734 /* Comparison function for sorting the statements based on
3735 * the corresponding value in "r".
3737 static int smaller_value(const void *a, const void *b, void *data)
3739 isl_vec *r = data;
3740 const int *i1 = a;
3741 const int *i2 = b;
3743 return isl_int_cmp(r->el[*i1], r->el[*i2]);
3746 /* If the schedule_split_scaled option is set and if the linear
3747 * parts of the scheduling rows for all nodes in the graphs have
3748 * a non-trivial common divisor, then split off the remainder of the
3749 * constant term modulo this common divisor from the linear part.
3750 * Otherwise, insert a band node directly and continue with
3751 * the construction of the schedule.
3753 * If a non-trivial common divisor is found, then
3754 * the linear part is reduced and the remainder is enforced
3755 * by a sequence node with the children placed in the order
3756 * of this remainder.
3757 * In particular, we assign an scc index based on the remainder and
3758 * then rely on compute_component_schedule to insert the sequence and
3759 * to continue the schedule construction on each part.
3761 static __isl_give isl_schedule_node *split_scaled(
3762 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
3764 int i;
3765 int row;
3766 int scc;
3767 isl_ctx *ctx;
3768 isl_int gcd, gcd_i;
3769 isl_vec *r;
3770 int *order;
3772 if (!node)
3773 return NULL;
3775 ctx = isl_schedule_node_get_ctx(node);
3776 if (!ctx->opt->schedule_split_scaled)
3777 return compute_next_band(node, graph, 0);
3778 if (graph->n <= 1)
3779 return compute_next_band(node, graph, 0);
3781 isl_int_init(gcd);
3782 isl_int_init(gcd_i);
3784 isl_int_set_si(gcd, 0);
3786 row = isl_mat_rows(graph->node[0].sched) - 1;
3788 for (i = 0; i < graph->n; ++i) {
3789 struct isl_sched_node *node = &graph->node[i];
3790 int cols = isl_mat_cols(node->sched);
3792 isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i);
3793 isl_int_gcd(gcd, gcd, gcd_i);
3796 isl_int_clear(gcd_i);
3798 if (isl_int_cmp_si(gcd, 1) <= 0) {
3799 isl_int_clear(gcd);
3800 return compute_next_band(node, graph, 0);
3803 r = isl_vec_alloc(ctx, graph->n);
3804 order = isl_calloc_array(ctx, int, graph->n);
3805 if (!r || !order)
3806 goto error;
3808 for (i = 0; i < graph->n; ++i) {
3809 struct isl_sched_node *node = &graph->node[i];
3811 order[i] = i;
3812 isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd);
3813 isl_int_fdiv_q(node->sched->row[row][0],
3814 node->sched->row[row][0], gcd);
3815 isl_int_mul(node->sched->row[row][0],
3816 node->sched->row[row][0], gcd);
3817 node->sched = isl_mat_scale_down_row(node->sched, row, gcd);
3818 if (!node->sched)
3819 goto error;
3822 if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0)
3823 goto error;
3825 scc = 0;
3826 for (i = 0; i < graph->n; ++i) {
3827 if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]]))
3828 ++scc;
3829 graph->node[order[i]].scc = scc;
3831 graph->scc = ++scc;
3832 graph->weak = 0;
3834 isl_int_clear(gcd);
3835 isl_vec_free(r);
3836 free(order);
3838 if (update_edges(ctx, graph) < 0)
3839 return isl_schedule_node_free(node);
3840 node = insert_current_band(node, graph, 0);
3841 next_band(graph);
3843 node = isl_schedule_node_child(node, 0);
3844 node = compute_component_schedule(node, graph, 0);
3845 node = isl_schedule_node_parent(node);
3847 return node;
3848 error:
3849 isl_vec_free(r);
3850 free(order);
3851 isl_int_clear(gcd);
3852 return isl_schedule_node_free(node);
3855 /* Is the schedule row "sol" trivial on node "node"?
3856 * That is, is the solution zero on the dimensions linearly independent of
3857 * the previously found solutions?
3858 * Return 1 if the solution is trivial, 0 if it is not and -1 on error.
3860 * Each coefficient is represented as the difference between
3861 * two non-negative values in "sol". "sol" has been computed
3862 * in terms of the original iterators (i.e., without use of cmap).
3863 * We construct the schedule row s and write it as a linear
3864 * combination of (linear combinations of) previously computed schedule rows.
3865 * s = Q c or c = U s.
3866 * If the final entries of c are all zero, then the solution is trivial.
3868 static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol)
3870 int trivial;
3871 isl_vec *node_sol;
3873 if (!sol)
3874 return -1;
3875 if (node->nvar == node->rank)
3876 return 0;
3878 node_sol = extract_var_coef(node, sol);
3879 node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol);
3880 if (!node_sol)
3881 return -1;
3883 trivial = isl_seq_first_non_zero(node_sol->el + node->rank,
3884 node->nvar - node->rank) == -1;
3886 isl_vec_free(node_sol);
3888 return trivial;
3891 /* Is the schedule row "sol" trivial on any node where it should
3892 * not be trivial?
3893 * "sol" has been computed in terms of the original iterators
3894 * (i.e., without use of cmap).
3895 * Return 1 if any solution is trivial, 0 if they are not and -1 on error.
3897 static int is_any_trivial(struct isl_sched_graph *graph,
3898 __isl_keep isl_vec *sol)
3900 int i;
3902 for (i = 0; i < graph->n; ++i) {
3903 struct isl_sched_node *node = &graph->node[i];
3904 int trivial;
3906 if (!needs_row(graph, node))
3907 continue;
3908 trivial = is_trivial(node, sol);
3909 if (trivial < 0 || trivial)
3910 return trivial;
3913 return 0;
3916 /* Does the schedule represented by "sol" perform loop coalescing on "node"?
3917 * If so, return the position of the coalesced dimension.
3918 * Otherwise, return node->nvar or -1 on error.
3920 * In particular, look for pairs of coefficients c_i and c_j such that
3921 * |c_j/c_i| >= size_i, i.e., |c_j| >= |c_i * size_i|.
3922 * If any such pair is found, then return i.
3923 * If size_i is infinity, then no check on c_i needs to be performed.
3925 static int find_node_coalescing(struct isl_sched_node *node,
3926 __isl_keep isl_vec *sol)
3928 int i, j;
3929 isl_int max;
3930 isl_vec *csol;
3932 if (node->nvar <= 1)
3933 return node->nvar;
3935 csol = extract_var_coef(node, sol);
3936 if (!csol)
3937 return -1;
3938 isl_int_init(max);
3939 for (i = 0; i < node->nvar; ++i) {
3940 isl_val *v;
3942 if (isl_int_is_zero(csol->el[i]))
3943 continue;
3944 v = isl_multi_val_get_val(node->sizes, i);
3945 if (!v)
3946 goto error;
3947 if (!isl_val_is_int(v)) {
3948 isl_val_free(v);
3949 continue;
3951 isl_int_mul(max, v->n, csol->el[i]);
3952 isl_val_free(v);
3954 for (j = 0; j < node->nvar; ++j) {
3955 if (j == i)
3956 continue;
3957 if (isl_int_abs_ge(csol->el[j], max))
3958 break;
3960 if (j < node->nvar)
3961 break;
3964 isl_int_clear(max);
3965 isl_vec_free(csol);
3966 return i;
3967 error:
3968 isl_int_clear(max);
3969 isl_vec_free(csol);
3970 return -1;
3973 /* Force the schedule coefficient at position "pos" of "node" to be zero
3974 * in "tl".
3975 * The coefficient is encoded as the difference between two non-negative
3976 * variables. Force these two variables to have the same value.
3978 static __isl_give isl_tab_lexmin *zero_out_node_coef(
3979 __isl_take isl_tab_lexmin *tl, struct isl_sched_node *node, int pos)
3981 int dim;
3982 isl_ctx *ctx;
3983 isl_vec *eq;
3985 ctx = isl_space_get_ctx(node->space);
3986 dim = isl_tab_lexmin_dim(tl);
3987 if (dim < 0)
3988 return isl_tab_lexmin_free(tl);
3989 eq = isl_vec_alloc(ctx, 1 + dim);
3990 eq = isl_vec_clr(eq);
3991 if (!eq)
3992 return isl_tab_lexmin_free(tl);
3994 pos = 1 + node_var_coef_offset(node) + 2 * pos;
3995 isl_int_set_si(eq->el[pos], 1);
3996 isl_int_set_si(eq->el[pos + 1], -1);
3997 tl = isl_tab_lexmin_add_eq(tl, eq->el);
3998 isl_vec_free(eq);
4000 return tl;
4003 /* Return the lexicographically smallest rational point in the basic set
4004 * from which "tl" was constructed, double checking that this input set
4005 * was not empty.
4007 static __isl_give isl_vec *non_empty_solution(__isl_keep isl_tab_lexmin *tl)
4009 isl_vec *sol;
4011 sol = isl_tab_lexmin_get_solution(tl);
4012 if (!sol)
4013 return NULL;
4014 if (sol->size == 0)
4015 isl_die(isl_vec_get_ctx(sol), isl_error_internal,
4016 "error in schedule construction",
4017 return isl_vec_free(sol));
4018 return sol;
4021 /* Does the solution "sol" of the LP problem constructed by setup_carry_lp
4022 * carry any of the "n_edge" groups of dependences?
4023 * The value in the first position is the sum of (1 - e_i) over all "n_edge"
4024 * edges, with 0 <= e_i <= 1 equal to 1 when the dependences represented
4025 * by the edge are carried by the solution.
4026 * If the sum of the (1 - e_i) is smaller than "n_edge" then at least
4027 * one of those is carried.
4029 * Note that despite the fact that the problem is solved using a rational
4030 * solver, the solution is guaranteed to be integral.
4031 * Specifically, the dependence distance lower bounds e_i (and therefore
4032 * also their sum) are integers. See Lemma 5 of [1].
4034 * Any potential denominator of the sum is cleared by this function.
4035 * The denominator is not relevant for any of the other elements
4036 * in the solution.
4038 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4039 * Problem, Part II: Multi-Dimensional Time.
4040 * In Intl. Journal of Parallel Programming, 1992.
4042 static int carries_dependences(__isl_keep isl_vec *sol, int n_edge)
4044 isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]);
4045 isl_int_set_si(sol->el[0], 1);
4046 return isl_int_cmp_si(sol->el[1], n_edge) < 0;
4049 /* Return the lexicographically smallest rational point in "lp",
4050 * assuming that all variables are non-negative and performing some
4051 * additional sanity checks.
4052 * In particular, "lp" should not be empty by construction.
4053 * Double check that this is the case.
4054 * Also, check that dependences are carried for at least one of
4055 * the "n_edge" edges.
4057 * If the schedule_treat_coalescing option is set and
4058 * if the computed schedule performs loop coalescing on a given node,
4059 * i.e., if it is of the form
4061 * c_i i + c_j j + ...
4063 * with |c_j/c_i| >= size_i, then force the coefficient c_i to be zero
4064 * to cut out this solution. Repeat this process until no more loop
4065 * coalescing occurs or until no more dependences can be carried.
4066 * In the latter case, revert to the previously computed solution.
4068 static __isl_give isl_vec *non_neg_lexmin(struct isl_sched_graph *graph,
4069 __isl_take isl_basic_set *lp, int n_edge)
4071 int i, pos;
4072 isl_ctx *ctx;
4073 isl_tab_lexmin *tl;
4074 isl_vec *sol, *prev = NULL;
4075 int treat_coalescing;
4077 if (!lp)
4078 return NULL;
4079 ctx = isl_basic_set_get_ctx(lp);
4080 treat_coalescing = isl_options_get_schedule_treat_coalescing(ctx);
4081 tl = isl_tab_lexmin_from_basic_set(lp);
4083 do {
4084 sol = non_empty_solution(tl);
4085 if (!sol)
4086 goto error;
4088 if (!carries_dependences(sol, n_edge)) {
4089 if (!prev)
4090 isl_die(ctx, isl_error_unknown,
4091 "unable to carry dependences",
4092 goto error);
4093 isl_vec_free(sol);
4094 sol = prev;
4095 break;
4097 prev = isl_vec_free(prev);
4098 if (!treat_coalescing)
4099 break;
4100 for (i = 0; i < graph->n; ++i) {
4101 struct isl_sched_node *node = &graph->node[i];
4103 pos = find_node_coalescing(node, sol);
4104 if (pos < 0)
4105 goto error;
4106 if (pos < node->nvar)
4107 break;
4109 if (i < graph->n) {
4110 prev = sol;
4111 tl = zero_out_node_coef(tl, &graph->node[i], pos);
4113 } while (i < graph->n);
4115 isl_tab_lexmin_free(tl);
4117 return sol;
4118 error:
4119 isl_tab_lexmin_free(tl);
4120 isl_vec_free(prev);
4121 isl_vec_free(sol);
4122 return NULL;
4125 /* Construct a schedule row for each node such that as many validity dependences
4126 * as possible are carried and then continue with the next band.
4128 * If there are no validity dependences, then no dependence can be carried and
4129 * the procedure is guaranteed to fail. If there is more than one component,
4130 * then try computing a schedule on each component separately
4131 * to prevent or at least postpone this failure.
4133 * If the computed schedule row turns out to be trivial on one or
4134 * more nodes where it should not be trivial, then we throw it away
4135 * and try again on each component separately.
4137 * If there is only one component, then we accept the schedule row anyway,
4138 * but we do not consider it as a complete row and therefore do not
4139 * increment graph->n_row. Note that the ranks of the nodes that
4140 * do get a non-trivial schedule part will get updated regardless and
4141 * graph->maxvar is computed based on these ranks. The test for
4142 * whether more schedule rows are required in compute_schedule_wcc
4143 * is therefore not affected.
4145 * Insert a band corresponding to the schedule row at position "node"
4146 * of the schedule tree and continue with the construction of the schedule.
4147 * This insertion and the continued construction is performed by split_scaled
4148 * after optionally checking for non-trivial common divisors.
4150 static __isl_give isl_schedule_node *carry_dependences(
4151 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4153 int n_edge;
4154 int trivial;
4155 isl_ctx *ctx;
4156 isl_vec *sol;
4157 isl_basic_set *lp;
4159 if (!node)
4160 return NULL;
4162 n_edge = count_carry_edges(graph);
4163 if (n_edge == 0 && graph->scc > 1)
4164 return compute_component_schedule(node, graph, 1);
4166 ctx = isl_schedule_node_get_ctx(node);
4167 if (setup_carry_lp(ctx, graph, n_edge) < 0)
4168 return isl_schedule_node_free(node);
4170 lp = isl_basic_set_copy(graph->lp);
4171 sol = non_neg_lexmin(graph, lp, n_edge);
4172 if (!sol)
4173 return isl_schedule_node_free(node);
4175 trivial = is_any_trivial(graph, sol);
4176 if (trivial < 0) {
4177 sol = isl_vec_free(sol);
4178 } else if (trivial && graph->scc > 1) {
4179 isl_vec_free(sol);
4180 return compute_component_schedule(node, graph, 1);
4183 if (update_schedule(graph, sol, 0, 0) < 0)
4184 return isl_schedule_node_free(node);
4185 if (trivial)
4186 graph->n_row--;
4188 return split_scaled(node, graph);
4191 /* Topologically sort statements mapped to the same schedule iteration
4192 * and add insert a sequence node in front of "node"
4193 * corresponding to this order.
4194 * If "initialized" is set, then it may be assumed that compute_maxvar
4195 * has been called on the current band. Otherwise, call
4196 * compute_maxvar if and before carry_dependences gets called.
4198 * If it turns out to be impossible to sort the statements apart,
4199 * because different dependences impose different orderings
4200 * on the statements, then we extend the schedule such that
4201 * it carries at least one more dependence.
4203 static __isl_give isl_schedule_node *sort_statements(
4204 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4205 int initialized)
4207 isl_ctx *ctx;
4208 isl_union_set_list *filters;
4210 if (!node)
4211 return NULL;
4213 ctx = isl_schedule_node_get_ctx(node);
4214 if (graph->n < 1)
4215 isl_die(ctx, isl_error_internal,
4216 "graph should have at least one node",
4217 return isl_schedule_node_free(node));
4219 if (graph->n == 1)
4220 return node;
4222 if (update_edges(ctx, graph) < 0)
4223 return isl_schedule_node_free(node);
4225 if (graph->n_edge == 0)
4226 return node;
4228 if (detect_sccs(ctx, graph) < 0)
4229 return isl_schedule_node_free(node);
4231 next_band(graph);
4232 if (graph->scc < graph->n) {
4233 if (!initialized && compute_maxvar(graph) < 0)
4234 return isl_schedule_node_free(node);
4235 return carry_dependences(node, graph);
4238 filters = extract_sccs(ctx, graph);
4239 node = isl_schedule_node_insert_sequence(node, filters);
4241 return node;
4244 /* Are there any (non-empty) (conditional) validity edges in the graph?
4246 static int has_validity_edges(struct isl_sched_graph *graph)
4248 int i;
4250 for (i = 0; i < graph->n_edge; ++i) {
4251 int empty;
4253 empty = isl_map_plain_is_empty(graph->edge[i].map);
4254 if (empty < 0)
4255 return -1;
4256 if (empty)
4257 continue;
4258 if (is_any_validity(&graph->edge[i]))
4259 return 1;
4262 return 0;
4265 /* Should we apply a Feautrier step?
4266 * That is, did the user request the Feautrier algorithm and are
4267 * there any validity dependences (left)?
4269 static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph)
4271 if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER)
4272 return 0;
4274 return has_validity_edges(graph);
4277 /* Compute a schedule for a connected dependence graph using Feautrier's
4278 * multi-dimensional scheduling algorithm and return the updated schedule node.
4280 * The original algorithm is described in [1].
4281 * The main idea is to minimize the number of scheduling dimensions, by
4282 * trying to satisfy as many dependences as possible per scheduling dimension.
4284 * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling
4285 * Problem, Part II: Multi-Dimensional Time.
4286 * In Intl. Journal of Parallel Programming, 1992.
4288 static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier(
4289 isl_schedule_node *node, struct isl_sched_graph *graph)
4291 return carry_dependences(node, graph);
4294 /* Turn off the "local" bit on all (condition) edges.
4296 static void clear_local_edges(struct isl_sched_graph *graph)
4298 int i;
4300 for (i = 0; i < graph->n_edge; ++i)
4301 if (is_condition(&graph->edge[i]))
4302 clear_local(&graph->edge[i]);
4305 /* Does "graph" have both condition and conditional validity edges?
4307 static int need_condition_check(struct isl_sched_graph *graph)
4309 int i;
4310 int any_condition = 0;
4311 int any_conditional_validity = 0;
4313 for (i = 0; i < graph->n_edge; ++i) {
4314 if (is_condition(&graph->edge[i]))
4315 any_condition = 1;
4316 if (is_conditional_validity(&graph->edge[i]))
4317 any_conditional_validity = 1;
4320 return any_condition && any_conditional_validity;
4323 /* Does "graph" contain any coincidence edge?
4325 static int has_any_coincidence(struct isl_sched_graph *graph)
4327 int i;
4329 for (i = 0; i < graph->n_edge; ++i)
4330 if (is_coincidence(&graph->edge[i]))
4331 return 1;
4333 return 0;
4336 /* Extract the final schedule row as a map with the iteration domain
4337 * of "node" as domain.
4339 static __isl_give isl_map *final_row(struct isl_sched_node *node)
4341 isl_multi_aff *ma;
4342 int row;
4344 row = isl_mat_rows(node->sched) - 1;
4345 ma = node_extract_partial_schedule_multi_aff(node, row, 1);
4346 return isl_map_from_multi_aff(ma);
4349 /* Is the conditional validity dependence in the edge with index "edge_index"
4350 * violated by the latest (i.e., final) row of the schedule?
4351 * That is, is i scheduled after j
4352 * for any conditional validity dependence i -> j?
4354 static int is_violated(struct isl_sched_graph *graph, int edge_index)
4356 isl_map *src_sched, *dst_sched, *map;
4357 struct isl_sched_edge *edge = &graph->edge[edge_index];
4358 int empty;
4360 src_sched = final_row(edge->src);
4361 dst_sched = final_row(edge->dst);
4362 map = isl_map_copy(edge->map);
4363 map = isl_map_apply_domain(map, src_sched);
4364 map = isl_map_apply_range(map, dst_sched);
4365 map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0);
4366 empty = isl_map_is_empty(map);
4367 isl_map_free(map);
4369 if (empty < 0)
4370 return -1;
4372 return !empty;
4375 /* Does "graph" have any satisfied condition edges that
4376 * are adjacent to the conditional validity constraint with
4377 * domain "conditional_source" and range "conditional_sink"?
4379 * A satisfied condition is one that is not local.
4380 * If a condition was forced to be local already (i.e., marked as local)
4381 * then there is no need to check if it is in fact local.
4383 * Additionally, mark all adjacent condition edges found as local.
4385 static int has_adjacent_true_conditions(struct isl_sched_graph *graph,
4386 __isl_keep isl_union_set *conditional_source,
4387 __isl_keep isl_union_set *conditional_sink)
4389 int i;
4390 int any = 0;
4392 for (i = 0; i < graph->n_edge; ++i) {
4393 int adjacent, local;
4394 isl_union_map *condition;
4396 if (!is_condition(&graph->edge[i]))
4397 continue;
4398 if (is_local(&graph->edge[i]))
4399 continue;
4401 condition = graph->edge[i].tagged_condition;
4402 adjacent = domain_intersects(condition, conditional_sink);
4403 if (adjacent >= 0 && !adjacent)
4404 adjacent = range_intersects(condition,
4405 conditional_source);
4406 if (adjacent < 0)
4407 return -1;
4408 if (!adjacent)
4409 continue;
4411 set_local(&graph->edge[i]);
4413 local = is_condition_false(&graph->edge[i]);
4414 if (local < 0)
4415 return -1;
4416 if (!local)
4417 any = 1;
4420 return any;
4423 /* Are there any violated conditional validity dependences with
4424 * adjacent condition dependences that are not local with respect
4425 * to the current schedule?
4426 * That is, is the conditional validity constraint violated?
4428 * Additionally, mark all those adjacent condition dependences as local.
4429 * We also mark those adjacent condition dependences that were not marked
4430 * as local before, but just happened to be local already. This ensures
4431 * that they remain local if the schedule is recomputed.
4433 * We first collect domain and range of all violated conditional validity
4434 * dependences and then check if there are any adjacent non-local
4435 * condition dependences.
4437 static int has_violated_conditional_constraint(isl_ctx *ctx,
4438 struct isl_sched_graph *graph)
4440 int i;
4441 int any = 0;
4442 isl_union_set *source, *sink;
4444 source = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4445 sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0));
4446 for (i = 0; i < graph->n_edge; ++i) {
4447 isl_union_set *uset;
4448 isl_union_map *umap;
4449 int violated;
4451 if (!is_conditional_validity(&graph->edge[i]))
4452 continue;
4454 violated = is_violated(graph, i);
4455 if (violated < 0)
4456 goto error;
4457 if (!violated)
4458 continue;
4460 any = 1;
4462 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4463 uset = isl_union_map_domain(umap);
4464 source = isl_union_set_union(source, uset);
4465 source = isl_union_set_coalesce(source);
4467 umap = isl_union_map_copy(graph->edge[i].tagged_validity);
4468 uset = isl_union_map_range(umap);
4469 sink = isl_union_set_union(sink, uset);
4470 sink = isl_union_set_coalesce(sink);
4473 if (any)
4474 any = has_adjacent_true_conditions(graph, source, sink);
4476 isl_union_set_free(source);
4477 isl_union_set_free(sink);
4478 return any;
4479 error:
4480 isl_union_set_free(source);
4481 isl_union_set_free(sink);
4482 return -1;
4485 /* Examine the current band (the rows between graph->band_start and
4486 * graph->n_total_row), deciding whether to drop it or add it to "node"
4487 * and then continue with the computation of the next band, if any.
4488 * If "initialized" is set, then it may be assumed that compute_maxvar
4489 * has been called on the current band. Otherwise, call
4490 * compute_maxvar if and before carry_dependences gets called.
4492 * The caller keeps looking for a new row as long as
4493 * graph->n_row < graph->maxvar. If the latest attempt to find
4494 * such a row failed (i.e., we still have graph->n_row < graph->maxvar),
4495 * then we either
4496 * - split between SCCs and start over (assuming we found an interesting
4497 * pair of SCCs between which to split)
4498 * - continue with the next band (assuming the current band has at least
4499 * one row)
4500 * - try to carry as many dependences as possible and continue with the next
4501 * band
4502 * In each case, we first insert a band node in the schedule tree
4503 * if any rows have been computed.
4505 * If the caller managed to complete the schedule, we insert a band node
4506 * (if any schedule rows were computed) and we finish off by topologically
4507 * sorting the statements based on the remaining dependences.
4509 static __isl_give isl_schedule_node *compute_schedule_finish_band(
4510 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
4511 int initialized)
4513 int insert;
4515 if (!node)
4516 return NULL;
4518 if (graph->n_row < graph->maxvar) {
4519 isl_ctx *ctx;
4520 int empty = graph->n_total_row == graph->band_start;
4522 ctx = isl_schedule_node_get_ctx(node);
4523 if (!ctx->opt->schedule_maximize_band_depth && !empty)
4524 return compute_next_band(node, graph, 1);
4525 if (graph->src_scc >= 0)
4526 return compute_split_schedule(node, graph);
4527 if (!empty)
4528 return compute_next_band(node, graph, 1);
4529 if (!initialized && compute_maxvar(graph) < 0)
4530 return isl_schedule_node_free(node);
4531 return carry_dependences(node, graph);
4534 insert = graph->n_total_row > graph->band_start;
4535 if (insert) {
4536 node = insert_current_band(node, graph, 1);
4537 node = isl_schedule_node_child(node, 0);
4539 node = sort_statements(node, graph, initialized);
4540 if (insert)
4541 node = isl_schedule_node_parent(node);
4543 return node;
4546 /* Construct a band of schedule rows for a connected dependence graph.
4547 * The caller is responsible for determining the strongly connected
4548 * components and calling compute_maxvar first.
4550 * We try to find a sequence of as many schedule rows as possible that result
4551 * in non-negative dependence distances (independent of the previous rows
4552 * in the sequence, i.e., such that the sequence is tilable), with as
4553 * many of the initial rows as possible satisfying the coincidence constraints.
4554 * The computation stops if we can't find any more rows or if we have found
4555 * all the rows we wanted to find.
4557 * If ctx->opt->schedule_outer_coincidence is set, then we force the
4558 * outermost dimension to satisfy the coincidence constraints. If this
4559 * turns out to be impossible, we fall back on the general scheme above
4560 * and try to carry as many dependences as possible.
4562 * If "graph" contains both condition and conditional validity dependences,
4563 * then we need to check that that the conditional schedule constraint
4564 * is satisfied, i.e., there are no violated conditional validity dependences
4565 * that are adjacent to any non-local condition dependences.
4566 * If there are, then we mark all those adjacent condition dependences
4567 * as local and recompute the current band. Those dependences that
4568 * are marked local will then be forced to be local.
4569 * The initial computation is performed with no dependences marked as local.
4570 * If we are lucky, then there will be no violated conditional validity
4571 * dependences adjacent to any non-local condition dependences.
4572 * Otherwise, we mark some additional condition dependences as local and
4573 * recompute. We continue this process until there are no violations left or
4574 * until we are no longer able to compute a schedule.
4575 * Since there are only a finite number of dependences,
4576 * there will only be a finite number of iterations.
4578 static isl_stat compute_schedule_wcc_band(isl_ctx *ctx,
4579 struct isl_sched_graph *graph)
4581 int has_coincidence;
4582 int use_coincidence;
4583 int force_coincidence = 0;
4584 int check_conditional;
4586 if (sort_sccs(graph) < 0)
4587 return isl_stat_error;
4589 clear_local_edges(graph);
4590 check_conditional = need_condition_check(graph);
4591 has_coincidence = has_any_coincidence(graph);
4593 if (ctx->opt->schedule_outer_coincidence)
4594 force_coincidence = 1;
4596 use_coincidence = has_coincidence;
4597 while (graph->n_row < graph->maxvar) {
4598 isl_vec *sol;
4599 int violated;
4600 int coincident;
4602 graph->src_scc = -1;
4603 graph->dst_scc = -1;
4605 if (setup_lp(ctx, graph, use_coincidence) < 0)
4606 return isl_stat_error;
4607 sol = solve_lp(graph);
4608 if (!sol)
4609 return isl_stat_error;
4610 if (sol->size == 0) {
4611 int empty = graph->n_total_row == graph->band_start;
4613 isl_vec_free(sol);
4614 if (use_coincidence && (!force_coincidence || !empty)) {
4615 use_coincidence = 0;
4616 continue;
4618 return isl_stat_ok;
4620 coincident = !has_coincidence || use_coincidence;
4621 if (update_schedule(graph, sol, 1, coincident) < 0)
4622 return isl_stat_error;
4624 if (!check_conditional)
4625 continue;
4626 violated = has_violated_conditional_constraint(ctx, graph);
4627 if (violated < 0)
4628 return isl_stat_error;
4629 if (!violated)
4630 continue;
4631 if (reset_band(graph) < 0)
4632 return isl_stat_error;
4633 use_coincidence = has_coincidence;
4636 return isl_stat_ok;
4639 /* Compute a schedule for a connected dependence graph by considering
4640 * the graph as a whole and return the updated schedule node.
4642 * The actual schedule rows of the current band are computed by
4643 * compute_schedule_wcc_band. compute_schedule_finish_band takes
4644 * care of integrating the band into "node" and continuing
4645 * the computation.
4647 static __isl_give isl_schedule_node *compute_schedule_wcc_whole(
4648 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
4650 isl_ctx *ctx;
4652 if (!node)
4653 return NULL;
4655 ctx = isl_schedule_node_get_ctx(node);
4656 if (compute_schedule_wcc_band(ctx, graph) < 0)
4657 return isl_schedule_node_free(node);
4659 return compute_schedule_finish_band(node, graph, 1);
4662 /* Clustering information used by compute_schedule_wcc_clustering.
4664 * "n" is the number of SCCs in the original dependence graph
4665 * "scc" is an array of "n" elements, each representing an SCC
4666 * of the original dependence graph. All entries in the same cluster
4667 * have the same number of schedule rows.
4668 * "scc_cluster" maps each SCC index to the cluster to which it belongs,
4669 * where each cluster is represented by the index of the first SCC
4670 * in the cluster. Initially, each SCC belongs to a cluster containing
4671 * only that SCC.
4673 * "scc_in_merge" is used by merge_clusters_along_edge to keep
4674 * track of which SCCs need to be merged.
4676 * "cluster" contains the merged clusters of SCCs after the clustering
4677 * has completed.
4679 * "scc_node" is a temporary data structure used inside copy_partial.
4680 * For each SCC, it keeps track of the number of nodes in the SCC
4681 * that have already been copied.
4683 struct isl_clustering {
4684 int n;
4685 struct isl_sched_graph *scc;
4686 struct isl_sched_graph *cluster;
4687 int *scc_cluster;
4688 int *scc_node;
4689 int *scc_in_merge;
4692 /* Initialize the clustering data structure "c" from "graph".
4694 * In particular, allocate memory, extract the SCCs from "graph"
4695 * into c->scc, initialize scc_cluster and construct
4696 * a band of schedule rows for each SCC.
4697 * Within each SCC, there is only one SCC by definition.
4698 * Each SCC initially belongs to a cluster containing only that SCC.
4700 static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
4701 struct isl_sched_graph *graph)
4703 int i;
4705 c->n = graph->scc;
4706 c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4707 c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
4708 c->scc_cluster = isl_calloc_array(ctx, int, c->n);
4709 c->scc_node = isl_calloc_array(ctx, int, c->n);
4710 c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
4711 if (!c->scc || !c->cluster ||
4712 !c->scc_cluster || !c->scc_node || !c->scc_in_merge)
4713 return isl_stat_error;
4715 for (i = 0; i < c->n; ++i) {
4716 if (extract_sub_graph(ctx, graph, &node_scc_exactly,
4717 &edge_scc_exactly, i, &c->scc[i]) < 0)
4718 return isl_stat_error;
4719 c->scc[i].scc = 1;
4720 if (compute_maxvar(&c->scc[i]) < 0)
4721 return isl_stat_error;
4722 if (compute_schedule_wcc_band(ctx, &c->scc[i]) < 0)
4723 return isl_stat_error;
4724 c->scc_cluster[i] = i;
4727 return isl_stat_ok;
4730 /* Free all memory allocated for "c".
4732 static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
4734 int i;
4736 if (c->scc)
4737 for (i = 0; i < c->n; ++i)
4738 graph_free(ctx, &c->scc[i]);
4739 free(c->scc);
4740 if (c->cluster)
4741 for (i = 0; i < c->n; ++i)
4742 graph_free(ctx, &c->cluster[i]);
4743 free(c->cluster);
4744 free(c->scc_cluster);
4745 free(c->scc_node);
4746 free(c->scc_in_merge);
4749 /* Should we refrain from merging the cluster in "graph" with
4750 * any other cluster?
4751 * In particular, is its current schedule band empty and incomplete.
4753 static int bad_cluster(struct isl_sched_graph *graph)
4755 return graph->n_row < graph->maxvar &&
4756 graph->n_total_row == graph->band_start;
4759 /* Is "edge" a proximity edge with a non-empty dependence relation?
4761 static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
4763 if (!is_proximity(edge))
4764 return isl_bool_false;
4765 return isl_bool_not(isl_map_plain_is_empty(edge->map));
4768 /* Return the index of an edge in "graph" that can be used to merge
4769 * two clusters in "c".
4770 * Return graph->n_edge if no such edge can be found.
4771 * Return -1 on error.
4773 * In particular, return a proximity edge between two clusters
4774 * that is not marked "no_merge" and such that neither of the
4775 * two clusters has an incomplete, empty band.
4777 * If there are multiple such edges, then try and find the most
4778 * appropriate edge to use for merging. In particular, pick the edge
4779 * with the greatest weight. If there are multiple of those,
4780 * then pick one with the shortest distance between
4781 * the two cluster representatives.
4783 static int find_proximity(struct isl_sched_graph *graph,
4784 struct isl_clustering *c)
4786 int i, best = graph->n_edge, best_dist, best_weight;
4788 for (i = 0; i < graph->n_edge; ++i) {
4789 struct isl_sched_edge *edge = &graph->edge[i];
4790 int dist, weight;
4791 isl_bool prox;
4793 prox = is_non_empty_proximity(edge);
4794 if (prox < 0)
4795 return -1;
4796 if (!prox)
4797 continue;
4798 if (edge->no_merge)
4799 continue;
4800 if (bad_cluster(&c->scc[edge->src->scc]) ||
4801 bad_cluster(&c->scc[edge->dst->scc]))
4802 continue;
4803 dist = c->scc_cluster[edge->dst->scc] -
4804 c->scc_cluster[edge->src->scc];
4805 if (dist == 0)
4806 continue;
4807 weight = edge->weight;
4808 if (best < graph->n_edge) {
4809 if (best_weight > weight)
4810 continue;
4811 if (best_weight == weight && best_dist <= dist)
4812 continue;
4814 best = i;
4815 best_dist = dist;
4816 best_weight = weight;
4819 return best;
4822 /* Internal data structure used in mark_merge_sccs.
4824 * "graph" is the dependence graph in which a strongly connected
4825 * component is constructed.
4826 * "scc_cluster" maps each SCC index to the cluster to which it belongs.
4827 * "src" and "dst" are the indices of the nodes that are being merged.
4829 struct isl_mark_merge_sccs_data {
4830 struct isl_sched_graph *graph;
4831 int *scc_cluster;
4832 int src;
4833 int dst;
4836 /* Check whether the cluster containing node "i" depends on the cluster
4837 * containing node "j". If "i" and "j" belong to the same cluster,
4838 * then they are taken to depend on each other to ensure that
4839 * the resulting strongly connected component consists of complete
4840 * clusters. Furthermore, if "i" and "j" are the two nodes that
4841 * are being merged, then they are taken to depend on each other as well.
4842 * Otherwise, check if there is a (conditional) validity dependence
4843 * from node[j] to node[i], forcing node[i] to follow node[j].
4845 static isl_bool cluster_follows(int i, int j, void *user)
4847 struct isl_mark_merge_sccs_data *data = user;
4848 struct isl_sched_graph *graph = data->graph;
4849 int *scc_cluster = data->scc_cluster;
4851 if (data->src == i && data->dst == j)
4852 return isl_bool_true;
4853 if (data->src == j && data->dst == i)
4854 return isl_bool_true;
4855 if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
4856 return isl_bool_true;
4858 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
4861 /* Mark all SCCs that belong to either of the two clusters in "c"
4862 * connected by the edge in "graph" with index "edge", or to any
4863 * of the intermediate clusters.
4864 * The marking is recorded in c->scc_in_merge.
4866 * The given edge has been selected for merging two clusters,
4867 * meaning that there is at least a proximity edge between the two nodes.
4868 * However, there may also be (indirect) validity dependences
4869 * between the two nodes. When merging the two clusters, all clusters
4870 * containing one or more of the intermediate nodes along the
4871 * indirect validity dependences need to be merged in as well.
4873 * First collect all such nodes by computing the strongly connected
4874 * component (SCC) containing the two nodes connected by the edge, where
4875 * the two nodes are considered to depend on each other to make
4876 * sure they end up in the same SCC. Similarly, each node is considered
4877 * to depend on every other node in the same cluster to ensure
4878 * that the SCC consists of complete clusters.
4880 * Then the original SCCs that contain any of these nodes are marked
4881 * in c->scc_in_merge.
4883 static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
4884 int edge, struct isl_clustering *c)
4886 struct isl_mark_merge_sccs_data data;
4887 struct isl_tarjan_graph *g;
4888 int i;
4890 for (i = 0; i < c->n; ++i)
4891 c->scc_in_merge[i] = 0;
4893 data.graph = graph;
4894 data.scc_cluster = c->scc_cluster;
4895 data.src = graph->edge[edge].src - graph->node;
4896 data.dst = graph->edge[edge].dst - graph->node;
4898 g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
4899 &cluster_follows, &data);
4900 if (!g)
4901 goto error;
4903 i = g->op;
4904 if (i < 3)
4905 isl_die(ctx, isl_error_internal,
4906 "expecting at least two nodes in component",
4907 goto error);
4908 if (g->order[--i] != -1)
4909 isl_die(ctx, isl_error_internal,
4910 "expecting end of component marker", goto error);
4912 for (--i; i >= 0 && g->order[i] != -1; --i) {
4913 int scc = graph->node[g->order[i]].scc;
4914 c->scc_in_merge[scc] = 1;
4917 isl_tarjan_graph_free(g);
4918 return isl_stat_ok;
4919 error:
4920 isl_tarjan_graph_free(g);
4921 return isl_stat_error;
4924 /* Construct the identifier "cluster_i".
4926 static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
4928 char name[40];
4930 snprintf(name, sizeof(name), "cluster_%d", i);
4931 return isl_id_alloc(ctx, name, NULL);
4934 /* Construct the space of the cluster with index "i" containing
4935 * the strongly connected component "scc".
4937 * In particular, construct a space called cluster_i with dimension equal
4938 * to the number of schedule rows in the current band of "scc".
4940 static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
4942 int nvar;
4943 isl_space *space;
4944 isl_id *id;
4946 nvar = scc->n_total_row - scc->band_start;
4947 space = isl_space_copy(scc->node[0].space);
4948 space = isl_space_params(space);
4949 space = isl_space_set_from_params(space);
4950 space = isl_space_add_dims(space, isl_dim_set, nvar);
4951 id = cluster_id(isl_space_get_ctx(space), i);
4952 space = isl_space_set_tuple_id(space, isl_dim_set, id);
4954 return space;
4957 /* Collect the domain of the graph for merging clusters.
4959 * In particular, for each cluster with first SCC "i", construct
4960 * a set in the space called cluster_i with dimension equal
4961 * to the number of schedule rows in the current band of the cluster.
4963 static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
4964 struct isl_sched_graph *graph, struct isl_clustering *c)
4966 int i;
4967 isl_space *space;
4968 isl_union_set *domain;
4970 space = isl_space_params_alloc(ctx, 0);
4971 domain = isl_union_set_empty(space);
4973 for (i = 0; i < graph->scc; ++i) {
4974 isl_space *space;
4976 if (!c->scc_in_merge[i])
4977 continue;
4978 if (c->scc_cluster[i] != i)
4979 continue;
4980 space = cluster_space(&c->scc[i], i);
4981 domain = isl_union_set_add_set(domain, isl_set_universe(space));
4984 return domain;
4987 /* Construct a map from the original instances to the corresponding
4988 * cluster instance in the current bands of the clusters in "c".
4990 static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
4991 struct isl_sched_graph *graph, struct isl_clustering *c)
4993 int i, j;
4994 isl_space *space;
4995 isl_union_map *cluster_map;
4997 space = isl_space_params_alloc(ctx, 0);
4998 cluster_map = isl_union_map_empty(space);
4999 for (i = 0; i < graph->scc; ++i) {
5000 int start, n;
5001 isl_id *id;
5003 if (!c->scc_in_merge[i])
5004 continue;
5006 id = cluster_id(ctx, c->scc_cluster[i]);
5007 start = c->scc[i].band_start;
5008 n = c->scc[i].n_total_row - start;
5009 for (j = 0; j < c->scc[i].n; ++j) {
5010 isl_multi_aff *ma;
5011 isl_map *map;
5012 struct isl_sched_node *node = &c->scc[i].node[j];
5014 ma = node_extract_partial_schedule_multi_aff(node,
5015 start, n);
5016 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
5017 isl_id_copy(id));
5018 map = isl_map_from_multi_aff(ma);
5019 cluster_map = isl_union_map_add_map(cluster_map, map);
5021 isl_id_free(id);
5024 return cluster_map;
5027 /* Add "umap" to the schedule constraints "sc" of all types of "edge"
5028 * that are not isl_edge_condition or isl_edge_conditional_validity.
5030 static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
5031 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5032 __isl_take isl_schedule_constraints *sc)
5034 enum isl_edge_type t;
5036 if (!sc)
5037 return NULL;
5039 for (t = isl_edge_first; t <= isl_edge_last; ++t) {
5040 if (t == isl_edge_condition ||
5041 t == isl_edge_conditional_validity)
5042 continue;
5043 if (!is_type(edge, t))
5044 continue;
5045 sc = isl_schedule_constraints_add(sc, t,
5046 isl_union_map_copy(umap));
5049 return sc;
5052 /* Add schedule constraints of types isl_edge_condition and
5053 * isl_edge_conditional_validity to "sc" by applying "umap" to
5054 * the domains of the wrapped relations in domain and range
5055 * of the corresponding tagged constraints of "edge".
5057 static __isl_give isl_schedule_constraints *add_conditional_constraints(
5058 struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
5059 __isl_take isl_schedule_constraints *sc)
5061 enum isl_edge_type t;
5062 isl_union_map *tagged;
5064 for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
5065 if (!is_type(edge, t))
5066 continue;
5067 if (t == isl_edge_condition)
5068 tagged = isl_union_map_copy(edge->tagged_condition);
5069 else
5070 tagged = isl_union_map_copy(edge->tagged_validity);
5071 tagged = isl_union_map_zip(tagged);
5072 tagged = isl_union_map_apply_domain(tagged,
5073 isl_union_map_copy(umap));
5074 tagged = isl_union_map_zip(tagged);
5075 sc = isl_schedule_constraints_add(sc, t, tagged);
5076 if (!sc)
5077 return NULL;
5080 return sc;
5083 /* Given a mapping "cluster_map" from the original instances to
5084 * the cluster instances, add schedule constraints on the clusters
5085 * to "sc" corresponding to the original constraints represented by "edge".
5087 * For non-tagged dependence constraints, the cluster constraints
5088 * are obtained by applying "cluster_map" to the edge->map.
5090 * For tagged dependence constraints, "cluster_map" needs to be applied
5091 * to the domains of the wrapped relations in domain and range
5092 * of the tagged dependence constraints. Pick out the mappings
5093 * from these domains from "cluster_map" and construct their product.
5094 * This mapping can then be applied to the pair of domains.
5096 static __isl_give isl_schedule_constraints *collect_edge_constraints(
5097 struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
5098 __isl_take isl_schedule_constraints *sc)
5100 isl_union_map *umap;
5101 isl_space *space;
5102 isl_union_set *uset;
5103 isl_union_map *umap1, *umap2;
5105 if (!sc)
5106 return NULL;
5108 umap = isl_union_map_from_map(isl_map_copy(edge->map));
5109 umap = isl_union_map_apply_domain(umap,
5110 isl_union_map_copy(cluster_map));
5111 umap = isl_union_map_apply_range(umap,
5112 isl_union_map_copy(cluster_map));
5113 sc = add_non_conditional_constraints(edge, umap, sc);
5114 isl_union_map_free(umap);
5116 if (!sc || (!is_condition(edge) && !is_conditional_validity(edge)))
5117 return sc;
5119 space = isl_space_domain(isl_map_get_space(edge->map));
5120 uset = isl_union_set_from_set(isl_set_universe(space));
5121 umap1 = isl_union_map_copy(cluster_map);
5122 umap1 = isl_union_map_intersect_domain(umap1, uset);
5123 space = isl_space_range(isl_map_get_space(edge->map));
5124 uset = isl_union_set_from_set(isl_set_universe(space));
5125 umap2 = isl_union_map_copy(cluster_map);
5126 umap2 = isl_union_map_intersect_domain(umap2, uset);
5127 umap = isl_union_map_product(umap1, umap2);
5129 sc = add_conditional_constraints(edge, umap, sc);
5131 isl_union_map_free(umap);
5132 return sc;
5135 /* Given a mapping "cluster_map" from the original instances to
5136 * the cluster instances, add schedule constraints on the clusters
5137 * to "sc" corresponding to all edges in "graph" between nodes that
5138 * belong to SCCs that are marked for merging in "scc_in_merge".
5140 static __isl_give isl_schedule_constraints *collect_constraints(
5141 struct isl_sched_graph *graph, int *scc_in_merge,
5142 __isl_keep isl_union_map *cluster_map,
5143 __isl_take isl_schedule_constraints *sc)
5145 int i;
5147 for (i = 0; i < graph->n_edge; ++i) {
5148 struct isl_sched_edge *edge = &graph->edge[i];
5150 if (!scc_in_merge[edge->src->scc])
5151 continue;
5152 if (!scc_in_merge[edge->dst->scc])
5153 continue;
5154 sc = collect_edge_constraints(edge, cluster_map, sc);
5157 return sc;
5160 /* Construct a dependence graph for scheduling clusters with respect
5161 * to each other and store the result in "merge_graph".
5162 * In particular, the nodes of the graph correspond to the schedule
5163 * dimensions of the current bands of those clusters that have been
5164 * marked for merging in "c".
5166 * First construct an isl_schedule_constraints object for this domain
5167 * by transforming the edges in "graph" to the domain.
5168 * Then initialize a dependence graph for scheduling from these
5169 * constraints.
5171 static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
5172 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5174 isl_union_set *domain;
5175 isl_union_map *cluster_map;
5176 isl_schedule_constraints *sc;
5177 isl_stat r;
5179 domain = collect_domain(ctx, graph, c);
5180 sc = isl_schedule_constraints_on_domain(domain);
5181 if (!sc)
5182 return isl_stat_error;
5183 cluster_map = collect_cluster_map(ctx, graph, c);
5184 sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
5185 isl_union_map_free(cluster_map);
5187 r = graph_init(merge_graph, sc);
5189 isl_schedule_constraints_free(sc);
5191 return r;
5194 /* Compute the maximal number of remaining schedule rows that still need
5195 * to be computed for the nodes that belong to clusters with the maximal
5196 * dimension for the current band (i.e., the band that is to be merged).
5197 * Only clusters that are about to be merged are considered.
5198 * "maxvar" is the maximal dimension for the current band.
5199 * "c" contains information about the clusters.
5201 * Return the maximal number of remaining schedule rows or -1 on error.
5203 static int compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
5205 int i, j;
5206 int max_slack;
5208 max_slack = 0;
5209 for (i = 0; i < c->n; ++i) {
5210 int nvar;
5211 struct isl_sched_graph *scc;
5213 if (!c->scc_in_merge[i])
5214 continue;
5215 scc = &c->scc[i];
5216 nvar = scc->n_total_row - scc->band_start;
5217 if (nvar != maxvar)
5218 continue;
5219 for (j = 0; j < scc->n; ++j) {
5220 struct isl_sched_node *node = &scc->node[j];
5221 int slack;
5223 if (node_update_cmap(node) < 0)
5224 return -1;
5225 slack = node->nvar - node->rank;
5226 if (slack > max_slack)
5227 max_slack = slack;
5231 return max_slack;
5234 /* If there are any clusters where the dimension of the current band
5235 * (i.e., the band that is to be merged) is smaller than "maxvar" and
5236 * if there are any nodes in such a cluster where the number
5237 * of remaining schedule rows that still need to be computed
5238 * is greater than "max_slack", then return the smallest current band
5239 * dimension of all these clusters. Otherwise return the original value
5240 * of "maxvar". Return -1 in case of any error.
5241 * Only clusters that are about to be merged are considered.
5242 * "c" contains information about the clusters.
5244 static int limit_maxvar_to_slack(int maxvar, int max_slack,
5245 struct isl_clustering *c)
5247 int i, j;
5249 for (i = 0; i < c->n; ++i) {
5250 int nvar;
5251 struct isl_sched_graph *scc;
5253 if (!c->scc_in_merge[i])
5254 continue;
5255 scc = &c->scc[i];
5256 nvar = scc->n_total_row - scc->band_start;
5257 if (nvar >= maxvar)
5258 continue;
5259 for (j = 0; j < scc->n; ++j) {
5260 struct isl_sched_node *node = &scc->node[j];
5261 int slack;
5263 if (node_update_cmap(node) < 0)
5264 return -1;
5265 slack = node->nvar - node->rank;
5266 if (slack > max_slack) {
5267 maxvar = nvar;
5268 break;
5273 return maxvar;
5276 /* Adjust merge_graph->maxvar based on the number of remaining schedule rows
5277 * that still need to be computed. In particular, if there is a node
5278 * in a cluster where the dimension of the current band is smaller
5279 * than merge_graph->maxvar, but the number of remaining schedule rows
5280 * is greater than that of any node in a cluster with the maximal
5281 * dimension for the current band (i.e., merge_graph->maxvar),
5282 * then adjust merge_graph->maxvar to the (smallest) current band dimension
5283 * of those clusters. Without this adjustment, the total number of
5284 * schedule dimensions would be increased, resulting in a skewed view
5285 * of the number of coincident dimensions.
5286 * "c" contains information about the clusters.
5288 * If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
5289 * then there is no point in attempting any merge since it will be rejected
5290 * anyway. Set merge_graph->maxvar to zero in such cases.
5292 static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
5293 struct isl_sched_graph *merge_graph, struct isl_clustering *c)
5295 int max_slack, maxvar;
5297 max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
5298 if (max_slack < 0)
5299 return isl_stat_error;
5300 maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
5301 if (maxvar < 0)
5302 return isl_stat_error;
5304 if (maxvar < merge_graph->maxvar) {
5305 if (isl_options_get_schedule_maximize_band_depth(ctx))
5306 merge_graph->maxvar = 0;
5307 else
5308 merge_graph->maxvar = maxvar;
5311 return isl_stat_ok;
5314 /* Return the number of coincident dimensions in the current band of "graph",
5315 * where the nodes of "graph" are assumed to be scheduled by a single band.
5317 static int get_n_coincident(struct isl_sched_graph *graph)
5319 int i;
5321 for (i = graph->band_start; i < graph->n_total_row; ++i)
5322 if (!graph->node[0].coincident[i])
5323 break;
5325 return i - graph->band_start;
5328 /* Should the clusters be merged based on the cluster schedule
5329 * in the current (and only) band of "merge_graph", given that
5330 * coincidence should be maximized?
5332 * If the number of coincident schedule dimensions in the merged band
5333 * would be less than the maximal number of coincident schedule dimensions
5334 * in any of the merged clusters, then the clusters should not be merged.
5336 static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
5337 struct isl_sched_graph *merge_graph)
5339 int i;
5340 int n_coincident;
5341 int max_coincident;
5343 max_coincident = 0;
5344 for (i = 0; i < c->n; ++i) {
5345 if (!c->scc_in_merge[i])
5346 continue;
5347 n_coincident = get_n_coincident(&c->scc[i]);
5348 if (n_coincident > max_coincident)
5349 max_coincident = n_coincident;
5352 n_coincident = get_n_coincident(merge_graph);
5354 return n_coincident >= max_coincident;
5357 /* Return the transformation on "node" expressed by the current (and only)
5358 * band of "merge_graph" applied to the clusters in "c".
5360 * First find the representation of "node" in its SCC in "c" and
5361 * extract the transformation expressed by the current band.
5362 * Then extract the transformation applied by "merge_graph"
5363 * to the cluster to which this SCC belongs.
5364 * Combine the two to obtain the complete transformation on the node.
5366 * Note that the range of the first transformation is an anonymous space,
5367 * while the domain of the second is named "cluster_X". The range
5368 * of the former therefore needs to be adjusted before the two
5369 * can be combined.
5371 static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
5372 struct isl_sched_node *node, struct isl_clustering *c,
5373 struct isl_sched_graph *merge_graph)
5375 struct isl_sched_node *scc_node, *cluster_node;
5376 int start, n;
5377 isl_id *id;
5378 isl_space *space;
5379 isl_multi_aff *ma, *ma2;
5381 scc_node = graph_find_node(ctx, &c->scc[node->scc], node->space);
5382 start = c->scc[node->scc].band_start;
5383 n = c->scc[node->scc].n_total_row - start;
5384 ma = node_extract_partial_schedule_multi_aff(scc_node, start, n);
5385 space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
5386 cluster_node = graph_find_node(ctx, merge_graph, space);
5387 if (space && !cluster_node)
5388 isl_die(ctx, isl_error_internal, "unable to find cluster",
5389 space = isl_space_free(space));
5390 id = isl_space_get_tuple_id(space, isl_dim_set);
5391 ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
5392 isl_space_free(space);
5393 n = merge_graph->n_total_row;
5394 ma2 = node_extract_partial_schedule_multi_aff(cluster_node, 0, n);
5395 ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
5397 return isl_map_from_multi_aff(ma);
5400 /* Give a set of distances "set", are they bounded by a small constant
5401 * in direction "pos"?
5402 * In practice, check if they are bounded by 2 by checking that there
5403 * are no elements with a value greater than or equal to 3 or
5404 * smaller than or equal to -3.
5406 static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
5408 isl_bool bounded;
5409 isl_set *test;
5411 if (!set)
5412 return isl_bool_error;
5414 test = isl_set_copy(set);
5415 test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
5416 bounded = isl_set_is_empty(test);
5417 isl_set_free(test);
5419 if (bounded < 0 || !bounded)
5420 return bounded;
5422 test = isl_set_copy(set);
5423 test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
5424 bounded = isl_set_is_empty(test);
5425 isl_set_free(test);
5427 return bounded;
5430 /* Does the set "set" have a fixed (but possible parametric) value
5431 * at dimension "pos"?
5433 static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
5435 int n;
5436 isl_bool single;
5438 if (!set)
5439 return isl_bool_error;
5440 set = isl_set_copy(set);
5441 n = isl_set_dim(set, isl_dim_set);
5442 set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
5443 set = isl_set_project_out(set, isl_dim_set, 0, pos);
5444 single = isl_set_is_singleton(set);
5445 isl_set_free(set);
5447 return single;
5450 /* Does "map" have a fixed (but possible parametric) value
5451 * at dimension "pos" of either its domain or its range?
5453 static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
5455 isl_set *set;
5456 isl_bool single;
5458 set = isl_map_domain(isl_map_copy(map));
5459 single = has_single_value(set, pos);
5460 isl_set_free(set);
5462 if (single < 0 || single)
5463 return single;
5465 set = isl_map_range(isl_map_copy(map));
5466 single = has_single_value(set, pos);
5467 isl_set_free(set);
5469 return single;
5472 /* Does the edge "edge" from "graph" have bounded dependence distances
5473 * in the merged graph "merge_graph" of a selection of clusters in "c"?
5475 * Extract the complete transformations of the source and destination
5476 * nodes of the edge, apply them to the edge constraints and
5477 * compute the differences. Finally, check if these differences are bounded
5478 * in each direction.
5480 * If the dimension of the band is greater than the number of
5481 * dimensions that can be expected to be optimized by the edge
5482 * (based on its weight), then also allow the differences to be unbounded
5483 * in the remaining dimensions, but only if either the source or
5484 * the destination has a fixed value in that direction.
5485 * This allows a statement that produces values that are used by
5486 * several instances of another statement to be merged with that
5487 * other statement.
5488 * However, merging such clusters will introduce an inherently
5489 * large proximity distance inside the merged cluster, meaning
5490 * that proximity distances will no longer be optimized in
5491 * subsequent merges. These merges are therefore only allowed
5492 * after all other possible merges have been tried.
5493 * The first time such a merge is encountered, the weight of the edge
5494 * is replaced by a negative weight. The second time (i.e., after
5495 * all merges over edges with a non-negative weight have been tried),
5496 * the merge is allowed.
5498 static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
5499 struct isl_sched_graph *graph, struct isl_clustering *c,
5500 struct isl_sched_graph *merge_graph)
5502 int i, n, n_slack;
5503 isl_bool bounded;
5504 isl_map *map, *t;
5505 isl_set *dist;
5507 map = isl_map_copy(edge->map);
5508 t = extract_node_transformation(ctx, edge->src, c, merge_graph);
5509 map = isl_map_apply_domain(map, t);
5510 t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
5511 map = isl_map_apply_range(map, t);
5512 dist = isl_map_deltas(isl_map_copy(map));
5514 bounded = isl_bool_true;
5515 n = isl_set_dim(dist, isl_dim_set);
5516 n_slack = n - edge->weight;
5517 if (edge->weight < 0)
5518 n_slack -= graph->max_weight + 1;
5519 for (i = 0; i < n; ++i) {
5520 isl_bool bounded_i, singular_i;
5522 bounded_i = distance_is_bounded(dist, i);
5523 if (bounded_i < 0)
5524 goto error;
5525 if (bounded_i)
5526 continue;
5527 if (edge->weight >= 0)
5528 bounded = isl_bool_false;
5529 n_slack--;
5530 if (n_slack < 0)
5531 break;
5532 singular_i = has_singular_src_or_dst(map, i);
5533 if (singular_i < 0)
5534 goto error;
5535 if (singular_i)
5536 continue;
5537 bounded = isl_bool_false;
5538 break;
5540 if (!bounded && i >= n && edge->weight >= 0)
5541 edge->weight -= graph->max_weight + 1;
5542 isl_map_free(map);
5543 isl_set_free(dist);
5545 return bounded;
5546 error:
5547 isl_map_free(map);
5548 isl_set_free(dist);
5549 return isl_bool_error;
5552 /* Should the clusters be merged based on the cluster schedule
5553 * in the current (and only) band of "merge_graph"?
5554 * "graph" is the original dependence graph, while "c" records
5555 * which SCCs are involved in the latest merge.
5557 * In particular, is there at least one proximity constraint
5558 * that is optimized by the merge?
5560 * A proximity constraint is considered to be optimized
5561 * if the dependence distances are small.
5563 static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
5564 struct isl_sched_graph *graph, struct isl_clustering *c,
5565 struct isl_sched_graph *merge_graph)
5567 int i;
5569 for (i = 0; i < graph->n_edge; ++i) {
5570 struct isl_sched_edge *edge = &graph->edge[i];
5571 isl_bool bounded;
5573 if (!is_proximity(edge))
5574 continue;
5575 if (!c->scc_in_merge[edge->src->scc])
5576 continue;
5577 if (!c->scc_in_merge[edge->dst->scc])
5578 continue;
5579 if (c->scc_cluster[edge->dst->scc] ==
5580 c->scc_cluster[edge->src->scc])
5581 continue;
5582 bounded = has_bounded_distances(ctx, edge, graph, c,
5583 merge_graph);
5584 if (bounded < 0 || bounded)
5585 return bounded;
5588 return isl_bool_false;
5591 /* Should the clusters be merged based on the cluster schedule
5592 * in the current (and only) band of "merge_graph"?
5593 * "graph" is the original dependence graph, while "c" records
5594 * which SCCs are involved in the latest merge.
5596 * If the current band is empty, then the clusters should not be merged.
5598 * If the band depth should be maximized and the merge schedule
5599 * is incomplete (meaning that the dimension of some of the schedule
5600 * bands in the original schedule will be reduced), then the clusters
5601 * should not be merged.
5603 * If the schedule_maximize_coincidence option is set, then check that
5604 * the number of coincident schedule dimensions is not reduced.
5606 * Finally, only allow the merge if at least one proximity
5607 * constraint is optimized.
5609 static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5610 struct isl_clustering *c, struct isl_sched_graph *merge_graph)
5612 if (merge_graph->n_total_row == merge_graph->band_start)
5613 return isl_bool_false;
5615 if (isl_options_get_schedule_maximize_band_depth(ctx) &&
5616 merge_graph->n_total_row < merge_graph->maxvar)
5617 return isl_bool_false;
5619 if (isl_options_get_schedule_maximize_coincidence(ctx)) {
5620 isl_bool ok;
5622 ok = ok_to_merge_coincident(c, merge_graph);
5623 if (ok < 0 || !ok)
5624 return ok;
5627 return ok_to_merge_proximity(ctx, graph, c, merge_graph);
5630 /* Apply the schedule in "t_node" to the "n" rows starting at "first"
5631 * of the schedule in "node" and return the result.
5633 * That is, essentially compute
5635 * T * N(first:first+n-1)
5637 * taking into account the constant term and the parameter coefficients
5638 * in "t_node".
5640 static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
5641 struct isl_sched_node *t_node, struct isl_sched_node *node,
5642 int first, int n)
5644 int i, j;
5645 isl_mat *t;
5646 int n_row, n_col, n_param, n_var;
5648 n_param = node->nparam;
5649 n_var = node->nvar;
5650 n_row = isl_mat_rows(t_node->sched);
5651 n_col = isl_mat_cols(node->sched);
5652 t = isl_mat_alloc(ctx, n_row, n_col);
5653 if (!t)
5654 return NULL;
5655 for (i = 0; i < n_row; ++i) {
5656 isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
5657 isl_seq_clr(t->row[i] + 1 + n_param, n_var);
5658 for (j = 0; j < n; ++j)
5659 isl_seq_addmul(t->row[i],
5660 t_node->sched->row[i][1 + n_param + j],
5661 node->sched->row[first + j],
5662 1 + n_param + n_var);
5664 return t;
5667 /* Apply the cluster schedule in "t_node" to the current band
5668 * schedule of the nodes in "graph".
5670 * In particular, replace the rows starting at band_start
5671 * by the result of applying the cluster schedule in "t_node"
5672 * to the original rows.
5674 * The coincidence of the schedule is determined by the coincidence
5675 * of the cluster schedule.
5677 static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
5678 struct isl_sched_node *t_node)
5680 int i, j;
5681 int n_new;
5682 int start, n;
5684 start = graph->band_start;
5685 n = graph->n_total_row - start;
5687 n_new = isl_mat_rows(t_node->sched);
5688 for (i = 0; i < graph->n; ++i) {
5689 struct isl_sched_node *node = &graph->node[i];
5690 isl_mat *t;
5692 t = node_transformation(ctx, t_node, node, start, n);
5693 node->sched = isl_mat_drop_rows(node->sched, start, n);
5694 node->sched = isl_mat_concat(node->sched, t);
5695 node->sched_map = isl_map_free(node->sched_map);
5696 if (!node->sched)
5697 return isl_stat_error;
5698 for (j = 0; j < n_new; ++j)
5699 node->coincident[start + j] = t_node->coincident[j];
5701 graph->n_total_row -= n;
5702 graph->n_row -= n;
5703 graph->n_total_row += n_new;
5704 graph->n_row += n_new;
5706 return isl_stat_ok;
5709 /* Merge the clusters marked for merging in "c" into a single
5710 * cluster using the cluster schedule in the current band of "merge_graph".
5711 * The representative SCC for the new cluster is the SCC with
5712 * the smallest index.
5714 * The current band schedule of each SCC in the new cluster is obtained
5715 * by applying the schedule of the corresponding original cluster
5716 * to the original band schedule.
5717 * All SCCs in the new cluster have the same number of schedule rows.
5719 static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
5720 struct isl_sched_graph *merge_graph)
5722 int i;
5723 int cluster = -1;
5724 isl_space *space;
5726 for (i = 0; i < c->n; ++i) {
5727 struct isl_sched_node *node;
5729 if (!c->scc_in_merge[i])
5730 continue;
5731 if (cluster < 0)
5732 cluster = i;
5733 space = cluster_space(&c->scc[i], c->scc_cluster[i]);
5734 if (!space)
5735 return isl_stat_error;
5736 node = graph_find_node(ctx, merge_graph, space);
5737 isl_space_free(space);
5738 if (!node)
5739 isl_die(ctx, isl_error_internal,
5740 "unable to find cluster",
5741 return isl_stat_error);
5742 if (transform(ctx, &c->scc[i], node) < 0)
5743 return isl_stat_error;
5744 c->scc_cluster[i] = cluster;
5747 return isl_stat_ok;
5750 /* Try and merge the clusters of SCCs marked in c->scc_in_merge
5751 * by scheduling the current cluster bands with respect to each other.
5753 * Construct a dependence graph with a space for each cluster and
5754 * with the coordinates of each space corresponding to the schedule
5755 * dimensions of the current band of that cluster.
5756 * Construct a cluster schedule in this cluster dependence graph and
5757 * apply it to the current cluster bands if it is applicable
5758 * according to ok_to_merge.
5760 * If the number of remaining schedule dimensions in a cluster
5761 * with a non-maximal current schedule dimension is greater than
5762 * the number of remaining schedule dimensions in clusters
5763 * with a maximal current schedule dimension, then restrict
5764 * the number of rows to be computed in the cluster schedule
5765 * to the minimal such non-maximal current schedule dimension.
5766 * Do this by adjusting merge_graph.maxvar.
5768 * Return isl_bool_true if the clusters have effectively been merged
5769 * into a single cluster.
5771 * Note that since the standard scheduling algorithm minimizes the maximal
5772 * distance over proximity constraints, the proximity constraints between
5773 * the merged clusters may not be optimized any further than what is
5774 * sufficient to bring the distances within the limits of the internal
5775 * proximity constraints inside the individual clusters.
5776 * It may therefore make sense to perform an additional translation step
5777 * to bring the clusters closer to each other, while maintaining
5778 * the linear part of the merging schedule found using the standard
5779 * scheduling algorithm.
5781 static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
5782 struct isl_clustering *c)
5784 struct isl_sched_graph merge_graph = { 0 };
5785 isl_bool merged;
5787 if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
5788 goto error;
5790 if (compute_maxvar(&merge_graph) < 0)
5791 goto error;
5792 if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
5793 goto error;
5794 if (compute_schedule_wcc_band(ctx, &merge_graph) < 0)
5795 goto error;
5796 merged = ok_to_merge(ctx, graph, c, &merge_graph);
5797 if (merged && merge(ctx, c, &merge_graph) < 0)
5798 goto error;
5800 graph_free(ctx, &merge_graph);
5801 return merged;
5802 error:
5803 graph_free(ctx, &merge_graph);
5804 return isl_bool_error;
5807 /* Is there any edge marked "no_merge" between two SCCs that are
5808 * about to be merged (i.e., that are set in "scc_in_merge")?
5809 * "merge_edge" is the proximity edge along which the clusters of SCCs
5810 * are going to be merged.
5812 * If there is any edge between two SCCs with a negative weight,
5813 * while the weight of "merge_edge" is non-negative, then this
5814 * means that the edge was postponed. "merge_edge" should then
5815 * also be postponed since merging along the edge with negative weight should
5816 * be postponed until all edges with non-negative weight have been tried.
5817 * Replace the weight of "merge_edge" by a negative weight as well and
5818 * tell the caller not to attempt a merge.
5820 static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
5821 struct isl_sched_edge *merge_edge)
5823 int i;
5825 for (i = 0; i < graph->n_edge; ++i) {
5826 struct isl_sched_edge *edge = &graph->edge[i];
5828 if (!scc_in_merge[edge->src->scc])
5829 continue;
5830 if (!scc_in_merge[edge->dst->scc])
5831 continue;
5832 if (edge->no_merge)
5833 return 1;
5834 if (merge_edge->weight >= 0 && edge->weight < 0) {
5835 merge_edge->weight -= graph->max_weight + 1;
5836 return 1;
5840 return 0;
5843 /* Merge the two clusters in "c" connected by the edge in "graph"
5844 * with index "edge" into a single cluster.
5845 * If it turns out to be impossible to merge these two clusters,
5846 * then mark the edge as "no_merge" such that it will not be
5847 * considered again.
5849 * First mark all SCCs that need to be merged. This includes the SCCs
5850 * in the two clusters, but it may also include the SCCs
5851 * of intermediate clusters.
5852 * If there is already a no_merge edge between any pair of such SCCs,
5853 * then simply mark the current edge as no_merge as well.
5854 * Likewise, if any of those edges was postponed by has_bounded_distances,
5855 * then postpone the current edge as well.
5856 * Otherwise, try and merge the clusters and mark "edge" as "no_merge"
5857 * if the clusters did not end up getting merged, unless the non-merge
5858 * is due to the fact that the edge was postponed. This postponement
5859 * can be recognized by a change in weight (from non-negative to negative).
5861 static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
5862 struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
5864 isl_bool merged;
5865 int edge_weight = graph->edge[edge].weight;
5867 if (mark_merge_sccs(ctx, graph, edge, c) < 0)
5868 return isl_stat_error;
5870 if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
5871 merged = isl_bool_false;
5872 else
5873 merged = try_merge(ctx, graph, c);
5874 if (merged < 0)
5875 return isl_stat_error;
5876 if (!merged && edge_weight == graph->edge[edge].weight)
5877 graph->edge[edge].no_merge = 1;
5879 return isl_stat_ok;
5882 /* Does "node" belong to the cluster identified by "cluster"?
5884 static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
5886 return node->cluster == cluster;
5889 /* Does "edge" connect two nodes belonging to the cluster
5890 * identified by "cluster"?
5892 static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
5894 return edge->src->cluster == cluster && edge->dst->cluster == cluster;
5897 /* Swap the schedule of "node1" and "node2".
5898 * Both nodes have been derived from the same node in a common parent graph.
5899 * Since the "coincident" field is shared with that node
5900 * in the parent graph, there is no need to also swap this field.
5902 static void swap_sched(struct isl_sched_node *node1,
5903 struct isl_sched_node *node2)
5905 isl_mat *sched;
5906 isl_map *sched_map;
5908 sched = node1->sched;
5909 node1->sched = node2->sched;
5910 node2->sched = sched;
5912 sched_map = node1->sched_map;
5913 node1->sched_map = node2->sched_map;
5914 node2->sched_map = sched_map;
5917 /* Copy the current band schedule from the SCCs that form the cluster
5918 * with index "pos" to the actual cluster at position "pos".
5919 * By construction, the index of the first SCC that belongs to the cluster
5920 * is also "pos".
5922 * The order of the nodes inside both the SCCs and the cluster
5923 * is assumed to be same as the order in the original "graph".
5925 * Since the SCC graphs will no longer be used after this function,
5926 * the schedules are actually swapped rather than copied.
5928 static isl_stat copy_partial(struct isl_sched_graph *graph,
5929 struct isl_clustering *c, int pos)
5931 int i, j;
5933 c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
5934 c->cluster[pos].n_row = c->scc[pos].n_row;
5935 c->cluster[pos].maxvar = c->scc[pos].maxvar;
5936 j = 0;
5937 for (i = 0; i < graph->n; ++i) {
5938 int k;
5939 int s;
5941 if (graph->node[i].cluster != pos)
5942 continue;
5943 s = graph->node[i].scc;
5944 k = c->scc_node[s]++;
5945 swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
5946 if (c->scc[s].maxvar > c->cluster[pos].maxvar)
5947 c->cluster[pos].maxvar = c->scc[s].maxvar;
5948 ++j;
5951 return isl_stat_ok;
5954 /* Is there a (conditional) validity dependence from node[j] to node[i],
5955 * forcing node[i] to follow node[j] or do the nodes belong to the same
5956 * cluster?
5958 static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
5960 struct isl_sched_graph *graph = user;
5962 if (graph->node[i].cluster == graph->node[j].cluster)
5963 return isl_bool_true;
5964 return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]);
5967 /* Extract the merged clusters of SCCs in "graph", sort them, and
5968 * store them in c->clusters. Update c->scc_cluster accordingly.
5970 * First keep track of the cluster containing the SCC to which a node
5971 * belongs in the node itself.
5972 * Then extract the clusters into c->clusters, copying the current
5973 * band schedule from the SCCs that belong to the cluster.
5974 * Do this only once per cluster.
5976 * Finally, topologically sort the clusters and update c->scc_cluster
5977 * to match the new scc numbering. While the SCCs were originally
5978 * sorted already, some SCCs that depend on some other SCCs may
5979 * have been merged with SCCs that appear before these other SCCs.
5980 * A reordering may therefore be required.
5982 static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
5983 struct isl_clustering *c)
5985 int i;
5987 for (i = 0; i < graph->n; ++i)
5988 graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
5990 for (i = 0; i < graph->scc; ++i) {
5991 if (c->scc_cluster[i] != i)
5992 continue;
5993 if (extract_sub_graph(ctx, graph, &node_cluster_exactly,
5994 &edge_cluster_exactly, i, &c->cluster[i]) < 0)
5995 return isl_stat_error;
5996 c->cluster[i].src_scc = -1;
5997 c->cluster[i].dst_scc = -1;
5998 if (copy_partial(graph, c, i) < 0)
5999 return isl_stat_error;
6002 if (detect_ccs(ctx, graph, &node_follows_strong_or_same_cluster) < 0)
6003 return isl_stat_error;
6004 for (i = 0; i < graph->n; ++i)
6005 c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
6007 return isl_stat_ok;
6010 /* Compute weights on the proximity edges of "graph" that can
6011 * be used by find_proximity to find the most appropriate
6012 * proximity edge to use to merge two clusters in "c".
6013 * The weights are also used by has_bounded_distances to determine
6014 * whether the merge should be allowed.
6015 * Store the maximum of the computed weights in graph->max_weight.
6017 * The computed weight is a measure for the number of remaining schedule
6018 * dimensions that can still be completely aligned.
6019 * In particular, compute the number of equalities between
6020 * input dimensions and output dimensions in the proximity constraints.
6021 * The directions that are already handled by outer schedule bands
6022 * are projected out prior to determining this number.
6024 * Edges that will never be considered by find_proximity are ignored.
6026 static isl_stat compute_weights(struct isl_sched_graph *graph,
6027 struct isl_clustering *c)
6029 int i;
6031 graph->max_weight = 0;
6033 for (i = 0; i < graph->n_edge; ++i) {
6034 struct isl_sched_edge *edge = &graph->edge[i];
6035 struct isl_sched_node *src = edge->src;
6036 struct isl_sched_node *dst = edge->dst;
6037 isl_basic_map *hull;
6038 isl_bool prox;
6039 int n_in, n_out;
6041 prox = is_non_empty_proximity(edge);
6042 if (prox < 0)
6043 return isl_stat_error;
6044 if (!prox)
6045 continue;
6046 if (bad_cluster(&c->scc[edge->src->scc]) ||
6047 bad_cluster(&c->scc[edge->dst->scc]))
6048 continue;
6049 if (c->scc_cluster[edge->dst->scc] ==
6050 c->scc_cluster[edge->src->scc])
6051 continue;
6053 hull = isl_map_affine_hull(isl_map_copy(edge->map));
6054 hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
6055 isl_mat_copy(src->ctrans));
6056 hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
6057 isl_mat_copy(dst->ctrans));
6058 hull = isl_basic_map_project_out(hull,
6059 isl_dim_in, 0, src->rank);
6060 hull = isl_basic_map_project_out(hull,
6061 isl_dim_out, 0, dst->rank);
6062 hull = isl_basic_map_remove_divs(hull);
6063 n_in = isl_basic_map_dim(hull, isl_dim_in);
6064 n_out = isl_basic_map_dim(hull, isl_dim_out);
6065 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6066 isl_dim_in, 0, n_in);
6067 hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
6068 isl_dim_out, 0, n_out);
6069 if (!hull)
6070 return isl_stat_error;
6071 edge->weight = isl_basic_map_n_equality(hull);
6072 isl_basic_map_free(hull);
6074 if (edge->weight > graph->max_weight)
6075 graph->max_weight = edge->weight;
6078 return isl_stat_ok;
6081 /* Call compute_schedule_finish_band on each of the clusters in "c"
6082 * in their topological order. This order is determined by the scc
6083 * fields of the nodes in "graph".
6084 * Combine the results in a sequence expressing the topological order.
6086 * If there is only one cluster left, then there is no need to introduce
6087 * a sequence node. Also, in this case, the cluster necessarily contains
6088 * the SCC at position 0 in the original graph and is therefore also
6089 * stored in the first cluster of "c".
6091 static __isl_give isl_schedule_node *finish_bands_clustering(
6092 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6093 struct isl_clustering *c)
6095 int i;
6096 isl_ctx *ctx;
6097 isl_union_set_list *filters;
6099 if (graph->scc == 1)
6100 return compute_schedule_finish_band(node, &c->cluster[0], 0);
6102 ctx = isl_schedule_node_get_ctx(node);
6104 filters = extract_sccs(ctx, graph);
6105 node = isl_schedule_node_insert_sequence(node, filters);
6107 for (i = 0; i < graph->scc; ++i) {
6108 int j = c->scc_cluster[i];
6109 node = isl_schedule_node_child(node, i);
6110 node = isl_schedule_node_child(node, 0);
6111 node = compute_schedule_finish_band(node, &c->cluster[j], 0);
6112 node = isl_schedule_node_parent(node);
6113 node = isl_schedule_node_parent(node);
6116 return node;
6119 /* Compute a schedule for a connected dependence graph by first considering
6120 * each strongly connected component (SCC) in the graph separately and then
6121 * incrementally combining them into clusters.
6122 * Return the updated schedule node.
6124 * Initially, each cluster consists of a single SCC, each with its
6125 * own band schedule. The algorithm then tries to merge pairs
6126 * of clusters along a proximity edge until no more suitable
6127 * proximity edges can be found. During this merging, the schedule
6128 * is maintained in the individual SCCs.
6129 * After the merging is completed, the full resulting clusters
6130 * are extracted and in finish_bands_clustering,
6131 * compute_schedule_finish_band is called on each of them to integrate
6132 * the band into "node" and to continue the computation.
6134 * compute_weights initializes the weights that are used by find_proximity.
6136 static __isl_give isl_schedule_node *compute_schedule_wcc_clustering(
6137 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6139 isl_ctx *ctx;
6140 struct isl_clustering c;
6141 int i;
6143 ctx = isl_schedule_node_get_ctx(node);
6145 if (clustering_init(ctx, &c, graph) < 0)
6146 goto error;
6148 if (compute_weights(graph, &c) < 0)
6149 goto error;
6151 for (;;) {
6152 i = find_proximity(graph, &c);
6153 if (i < 0)
6154 goto error;
6155 if (i >= graph->n_edge)
6156 break;
6157 if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
6158 goto error;
6161 if (extract_clusters(ctx, graph, &c) < 0)
6162 goto error;
6164 node = finish_bands_clustering(node, graph, &c);
6166 clustering_free(ctx, &c);
6167 return node;
6168 error:
6169 clustering_free(ctx, &c);
6170 return isl_schedule_node_free(node);
6173 /* Compute a schedule for a connected dependence graph and return
6174 * the updated schedule node.
6176 * If Feautrier's algorithm is selected, we first recursively try to satisfy
6177 * as many validity dependences as possible. When all validity dependences
6178 * are satisfied we extend the schedule to a full-dimensional schedule.
6180 * Call compute_schedule_wcc_whole or compute_schedule_wcc_clustering
6181 * depending on whether the user has selected the option to try and
6182 * compute a schedule for the entire (weakly connected) component first.
6183 * If there is only a single strongly connected component (SCC), then
6184 * there is no point in trying to combine SCCs
6185 * in compute_schedule_wcc_clustering, so compute_schedule_wcc_whole
6186 * is called instead.
6188 static __isl_give isl_schedule_node *compute_schedule_wcc(
6189 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
6191 isl_ctx *ctx;
6193 if (!node)
6194 return NULL;
6196 ctx = isl_schedule_node_get_ctx(node);
6197 if (detect_sccs(ctx, graph) < 0)
6198 return isl_schedule_node_free(node);
6200 if (compute_maxvar(graph) < 0)
6201 return isl_schedule_node_free(node);
6203 if (need_feautrier_step(ctx, graph))
6204 return compute_schedule_wcc_feautrier(node, graph);
6206 if (graph->scc <= 1 || isl_options_get_schedule_whole_component(ctx))
6207 return compute_schedule_wcc_whole(node, graph);
6208 else
6209 return compute_schedule_wcc_clustering(node, graph);
6212 /* Compute a schedule for each group of nodes identified by node->scc
6213 * separately and then combine them in a sequence node (or as set node
6214 * if graph->weak is set) inserted at position "node" of the schedule tree.
6215 * Return the updated schedule node.
6217 * If "wcc" is set then each of the groups belongs to a single
6218 * weakly connected component in the dependence graph so that
6219 * there is no need for compute_sub_schedule to look for weakly
6220 * connected components.
6222 static __isl_give isl_schedule_node *compute_component_schedule(
6223 __isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
6224 int wcc)
6226 int component;
6227 isl_ctx *ctx;
6228 isl_union_set_list *filters;
6230 if (!node)
6231 return NULL;
6232 ctx = isl_schedule_node_get_ctx(node);
6234 filters = extract_sccs(ctx, graph);
6235 if (graph->weak)
6236 node = isl_schedule_node_insert_set(node, filters);
6237 else
6238 node = isl_schedule_node_insert_sequence(node, filters);
6240 for (component = 0; component < graph->scc; ++component) {
6241 node = isl_schedule_node_child(node, component);
6242 node = isl_schedule_node_child(node, 0);
6243 node = compute_sub_schedule(node, ctx, graph,
6244 &node_scc_exactly,
6245 &edge_scc_exactly, component, wcc);
6246 node = isl_schedule_node_parent(node);
6247 node = isl_schedule_node_parent(node);
6250 return node;
6253 /* Compute a schedule for the given dependence graph and insert it at "node".
6254 * Return the updated schedule node.
6256 * We first check if the graph is connected (through validity and conditional
6257 * validity dependences) and, if not, compute a schedule
6258 * for each component separately.
6259 * If the schedule_serialize_sccs option is set, then we check for strongly
6260 * connected components instead and compute a separate schedule for
6261 * each such strongly connected component.
6263 static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node,
6264 struct isl_sched_graph *graph)
6266 isl_ctx *ctx;
6268 if (!node)
6269 return NULL;
6271 ctx = isl_schedule_node_get_ctx(node);
6272 if (isl_options_get_schedule_serialize_sccs(ctx)) {
6273 if (detect_sccs(ctx, graph) < 0)
6274 return isl_schedule_node_free(node);
6275 } else {
6276 if (detect_wccs(ctx, graph) < 0)
6277 return isl_schedule_node_free(node);
6280 if (graph->scc > 1)
6281 return compute_component_schedule(node, graph, 1);
6283 return compute_schedule_wcc(node, graph);
6286 /* Compute a schedule on sc->domain that respects the given schedule
6287 * constraints.
6289 * In particular, the schedule respects all the validity dependences.
6290 * If the default isl scheduling algorithm is used, it tries to minimize
6291 * the dependence distances over the proximity dependences.
6292 * If Feautrier's scheduling algorithm is used, the proximity dependence
6293 * distances are only minimized during the extension to a full-dimensional
6294 * schedule.
6296 * If there are any condition and conditional validity dependences,
6297 * then the conditional validity dependences may be violated inside
6298 * a tilable band, provided they have no adjacent non-local
6299 * condition dependences.
6301 __isl_give isl_schedule *isl_schedule_constraints_compute_schedule(
6302 __isl_take isl_schedule_constraints *sc)
6304 isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc);
6305 struct isl_sched_graph graph = { 0 };
6306 isl_schedule *sched;
6307 isl_schedule_node *node;
6308 isl_union_set *domain;
6310 sc = isl_schedule_constraints_align_params(sc);
6312 domain = isl_schedule_constraints_get_domain(sc);
6313 if (isl_union_set_n_set(domain) == 0) {
6314 isl_schedule_constraints_free(sc);
6315 return isl_schedule_from_domain(domain);
6318 if (graph_init(&graph, sc) < 0)
6319 domain = isl_union_set_free(domain);
6321 node = isl_schedule_node_from_domain(domain);
6322 node = isl_schedule_node_child(node, 0);
6323 if (graph.n > 0)
6324 node = compute_schedule(node, &graph);
6325 sched = isl_schedule_node_get_schedule(node);
6326 isl_schedule_node_free(node);
6328 graph_free(ctx, &graph);
6329 isl_schedule_constraints_free(sc);
6331 return sched;
6334 /* Compute a schedule for the given union of domains that respects
6335 * all the validity dependences and minimizes
6336 * the dependence distances over the proximity dependences.
6338 * This function is kept for backward compatibility.
6340 __isl_give isl_schedule *isl_union_set_compute_schedule(
6341 __isl_take isl_union_set *domain,
6342 __isl_take isl_union_map *validity,
6343 __isl_take isl_union_map *proximity)
6345 isl_schedule_constraints *sc;
6347 sc = isl_schedule_constraints_on_domain(domain);
6348 sc = isl_schedule_constraints_set_validity(sc, validity);
6349 sc = isl_schedule_constraints_set_proximity(sc, proximity);
6351 return isl_schedule_constraints_compute_schedule(sc);