isl_scheduler.c: move up some functions
[isl.git] / isl_map_simplify.c
blob8609b2100d11f797f62a0d955d2287718603b261
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
11 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
12 * B.P. 105 - 78153 Le Chesnay, France
15 #include <strings.h>
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include "isl_equalities.h"
19 #include <isl/map.h>
20 #include <isl_seq.h>
21 #include "isl_tab.h"
22 #include <isl_space_private.h>
23 #include <isl_mat_private.h>
24 #include <isl_vec_private.h>
26 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
28 isl_int *t = bmap->eq[a];
29 bmap->eq[a] = bmap->eq[b];
30 bmap->eq[b] = t;
33 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
35 if (a != b) {
36 isl_int *t = bmap->ineq[a];
37 bmap->ineq[a] = bmap->ineq[b];
38 bmap->ineq[b] = t;
42 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
44 isl_seq_cpy(c, c + n, rem);
45 isl_seq_clr(c + rem, n);
48 /* Drop n dimensions starting at first.
50 * In principle, this frees up some extra variables as the number
51 * of columns remains constant, but we would have to extend
52 * the div array too as the number of rows in this array is assumed
53 * to be equal to extra.
55 struct isl_basic_set *isl_basic_set_drop_dims(
56 struct isl_basic_set *bset, unsigned first, unsigned n)
58 int i;
60 if (!bset)
61 goto error;
63 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
65 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
66 return bset;
68 bset = isl_basic_set_cow(bset);
69 if (!bset)
70 return NULL;
72 for (i = 0; i < bset->n_eq; ++i)
73 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_ineq; ++i)
77 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 for (i = 0; i < bset->n_div; ++i)
81 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
82 (bset->dim->n_out-first-n)+bset->extra);
84 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
85 if (!bset->dim)
86 goto error;
88 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
89 bset = isl_basic_set_simplify(bset);
90 return isl_basic_set_finalize(bset);
91 error:
92 isl_basic_set_free(bset);
93 return NULL;
96 struct isl_set *isl_set_drop_dims(
97 struct isl_set *set, unsigned first, unsigned n)
99 int i;
101 if (!set)
102 goto error;
104 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
106 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
107 return set;
108 set = isl_set_cow(set);
109 if (!set)
110 goto error;
111 set->dim = isl_space_drop_outputs(set->dim, first, n);
112 if (!set->dim)
113 goto error;
115 for (i = 0; i < set->n; ++i) {
116 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
117 if (!set->p[i])
118 goto error;
121 ISL_F_CLR(set, ISL_SET_NORMALIZED);
122 return set;
123 error:
124 isl_set_free(set);
125 return NULL;
128 /* Move "n" divs starting at "first" to the end of the list of divs.
130 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
131 unsigned first, unsigned n)
133 isl_int **div;
134 int i;
136 if (first + n == bmap->n_div)
137 return bmap;
139 div = isl_alloc_array(bmap->ctx, isl_int *, n);
140 if (!div)
141 goto error;
142 for (i = 0; i < n; ++i)
143 div[i] = bmap->div[first + i];
144 for (i = 0; i < bmap->n_div - first - n; ++i)
145 bmap->div[first + i] = bmap->div[first + n + i];
146 for (i = 0; i < n; ++i)
147 bmap->div[bmap->n_div - n + i] = div[i];
148 free(div);
149 return bmap;
150 error:
151 isl_basic_map_free(bmap);
152 return NULL;
155 /* Drop "n" dimensions of type "type" starting at "first".
157 * In principle, this frees up some extra variables as the number
158 * of columns remains constant, but we would have to extend
159 * the div array too as the number of rows in this array is assumed
160 * to be equal to extra.
162 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
163 enum isl_dim_type type, unsigned first, unsigned n)
165 int i;
166 unsigned dim;
167 unsigned offset;
168 unsigned left;
170 if (!bmap)
171 goto error;
173 dim = isl_basic_map_dim(bmap, type);
174 isl_assert(bmap->ctx, first + n <= dim, goto error);
176 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
177 return bmap;
179 bmap = isl_basic_map_cow(bmap);
180 if (!bmap)
181 return NULL;
183 offset = isl_basic_map_offset(bmap, type) + first;
184 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
185 for (i = 0; i < bmap->n_eq; ++i)
186 constraint_drop_vars(bmap->eq[i]+offset, n, left);
188 for (i = 0; i < bmap->n_ineq; ++i)
189 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
191 for (i = 0; i < bmap->n_div; ++i)
192 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
194 if (type == isl_dim_div) {
195 bmap = move_divs_last(bmap, first, n);
196 if (!bmap)
197 goto error;
198 isl_basic_map_free_div(bmap, n);
199 } else
200 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
201 if (!bmap->dim)
202 goto error;
204 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
205 bmap = isl_basic_map_simplify(bmap);
206 return isl_basic_map_finalize(bmap);
207 error:
208 isl_basic_map_free(bmap);
209 return NULL;
212 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
213 enum isl_dim_type type, unsigned first, unsigned n)
215 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
216 type, first, n);
219 struct isl_basic_map *isl_basic_map_drop_inputs(
220 struct isl_basic_map *bmap, unsigned first, unsigned n)
222 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
225 struct isl_map *isl_map_drop(struct isl_map *map,
226 enum isl_dim_type type, unsigned first, unsigned n)
228 int i;
230 if (!map)
231 goto error;
233 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
235 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
236 return map;
237 map = isl_map_cow(map);
238 if (!map)
239 goto error;
240 map->dim = isl_space_drop_dims(map->dim, type, first, n);
241 if (!map->dim)
242 goto error;
244 for (i = 0; i < map->n; ++i) {
245 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
246 if (!map->p[i])
247 goto error;
249 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
251 return map;
252 error:
253 isl_map_free(map);
254 return NULL;
257 struct isl_set *isl_set_drop(struct isl_set *set,
258 enum isl_dim_type type, unsigned first, unsigned n)
260 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
263 struct isl_map *isl_map_drop_inputs(
264 struct isl_map *map, unsigned first, unsigned n)
266 return isl_map_drop(map, isl_dim_in, first, n);
270 * We don't cow, as the div is assumed to be redundant.
272 static struct isl_basic_map *isl_basic_map_drop_div(
273 struct isl_basic_map *bmap, unsigned div)
275 int i;
276 unsigned pos;
278 if (!bmap)
279 goto error;
281 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
283 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
285 for (i = 0; i < bmap->n_eq; ++i)
286 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
288 for (i = 0; i < bmap->n_ineq; ++i) {
289 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
290 isl_basic_map_drop_inequality(bmap, i);
291 --i;
292 continue;
294 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
297 for (i = 0; i < bmap->n_div; ++i)
298 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
300 if (div != bmap->n_div - 1) {
301 int j;
302 isl_int *t = bmap->div[div];
304 for (j = div; j < bmap->n_div - 1; ++j)
305 bmap->div[j] = bmap->div[j+1];
307 bmap->div[bmap->n_div - 1] = t;
309 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
310 isl_basic_map_free_div(bmap, 1);
312 return bmap;
313 error:
314 isl_basic_map_free(bmap);
315 return NULL;
318 struct isl_basic_map *isl_basic_map_normalize_constraints(
319 struct isl_basic_map *bmap)
321 int i;
322 isl_int gcd;
323 unsigned total = isl_basic_map_total_dim(bmap);
325 if (!bmap)
326 return NULL;
328 isl_int_init(gcd);
329 for (i = bmap->n_eq - 1; i >= 0; --i) {
330 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
331 if (isl_int_is_zero(gcd)) {
332 if (!isl_int_is_zero(bmap->eq[i][0])) {
333 bmap = isl_basic_map_set_to_empty(bmap);
334 break;
336 isl_basic_map_drop_equality(bmap, i);
337 continue;
339 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
340 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
341 if (isl_int_is_one(gcd))
342 continue;
343 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
344 bmap = isl_basic_map_set_to_empty(bmap);
345 break;
347 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
350 for (i = bmap->n_ineq - 1; i >= 0; --i) {
351 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
352 if (isl_int_is_zero(gcd)) {
353 if (isl_int_is_neg(bmap->ineq[i][0])) {
354 bmap = isl_basic_map_set_to_empty(bmap);
355 break;
357 isl_basic_map_drop_inequality(bmap, i);
358 continue;
360 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
361 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
362 if (isl_int_is_one(gcd))
363 continue;
364 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
365 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
367 isl_int_clear(gcd);
369 return bmap;
372 struct isl_basic_set *isl_basic_set_normalize_constraints(
373 struct isl_basic_set *bset)
375 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
376 (struct isl_basic_map *)bset);
379 /* Remove any common factor in numerator and denominator of the div expression,
380 * not taking into account the constant term.
381 * That is, if the div is of the form
383 * floor((a + m f(x))/(m d))
385 * then replace it by
387 * floor((floor(a/m) + f(x))/d)
389 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
390 * and can therefore not influence the result of the floor.
392 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
394 unsigned total = isl_basic_map_total_dim(bmap);
395 isl_ctx *ctx = bmap->ctx;
397 if (isl_int_is_zero(bmap->div[div][0]))
398 return;
399 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
400 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
401 if (isl_int_is_one(ctx->normalize_gcd))
402 return;
403 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
404 ctx->normalize_gcd);
405 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
406 ctx->normalize_gcd);
407 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
408 ctx->normalize_gcd, total);
411 /* Remove any common factor in numerator and denominator of a div expression,
412 * not taking into account the constant term.
413 * That is, look for any div of the form
415 * floor((a + m f(x))/(m d))
417 * and replace it by
419 * floor((floor(a/m) + f(x))/d)
421 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
422 * and can therefore not influence the result of the floor.
424 static __isl_give isl_basic_map *normalize_div_expressions(
425 __isl_take isl_basic_map *bmap)
427 int i;
429 if (!bmap)
430 return NULL;
431 if (bmap->n_div == 0)
432 return bmap;
434 for (i = 0; i < bmap->n_div; ++i)
435 normalize_div_expression(bmap, i);
437 return bmap;
440 /* Assumes divs have been ordered if keep_divs is set.
442 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
443 unsigned pos, isl_int *eq, int keep_divs, int *progress)
445 unsigned total;
446 unsigned space_total;
447 int k;
448 int last_div;
450 total = isl_basic_map_total_dim(bmap);
451 space_total = isl_space_dim(bmap->dim, isl_dim_all);
452 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
453 for (k = 0; k < bmap->n_eq; ++k) {
454 if (bmap->eq[k] == eq)
455 continue;
456 if (isl_int_is_zero(bmap->eq[k][1+pos]))
457 continue;
458 if (progress)
459 *progress = 1;
460 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
461 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
464 for (k = 0; k < bmap->n_ineq; ++k) {
465 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
466 continue;
467 if (progress)
468 *progress = 1;
469 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
470 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
471 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
474 for (k = 0; k < bmap->n_div; ++k) {
475 if (isl_int_is_zero(bmap->div[k][0]))
476 continue;
477 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
478 continue;
479 if (progress)
480 *progress = 1;
481 /* We need to be careful about circular definitions,
482 * so for now we just remove the definition of div k
483 * if the equality contains any divs.
484 * If keep_divs is set, then the divs have been ordered
485 * and we can keep the definition as long as the result
486 * is still ordered.
488 if (last_div == -1 || (keep_divs && last_div < k)) {
489 isl_seq_elim(bmap->div[k]+1, eq,
490 1+pos, 1+total, &bmap->div[k][0]);
491 normalize_div_expression(bmap, k);
492 } else
493 isl_seq_clr(bmap->div[k], 1 + total);
494 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
498 /* Assumes divs have been ordered if keep_divs is set.
500 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
501 unsigned div, int keep_divs)
503 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
505 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
507 isl_basic_map_drop_div(bmap, div);
510 /* Check if elimination of div "div" using equality "eq" would not
511 * result in a div depending on a later div.
513 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
514 unsigned div)
516 int k;
517 int last_div;
518 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
519 unsigned pos = space_total + div;
521 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
522 if (last_div < 0 || last_div <= div)
523 return 1;
525 for (k = 0; k <= last_div; ++k) {
526 if (isl_int_is_zero(bmap->div[k][0]))
527 return 1;
528 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
529 return 0;
532 return 1;
535 /* Elimininate divs based on equalities
537 static struct isl_basic_map *eliminate_divs_eq(
538 struct isl_basic_map *bmap, int *progress)
540 int d;
541 int i;
542 int modified = 0;
543 unsigned off;
545 bmap = isl_basic_map_order_divs(bmap);
547 if (!bmap)
548 return NULL;
550 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
552 for (d = bmap->n_div - 1; d >= 0 ; --d) {
553 for (i = 0; i < bmap->n_eq; ++i) {
554 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
555 !isl_int_is_negone(bmap->eq[i][off + d]))
556 continue;
557 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
558 continue;
559 modified = 1;
560 *progress = 1;
561 eliminate_div(bmap, bmap->eq[i], d, 1);
562 isl_basic_map_drop_equality(bmap, i);
563 break;
566 if (modified)
567 return eliminate_divs_eq(bmap, progress);
568 return bmap;
571 /* Elimininate divs based on inequalities
573 static struct isl_basic_map *eliminate_divs_ineq(
574 struct isl_basic_map *bmap, int *progress)
576 int d;
577 int i;
578 unsigned off;
579 struct isl_ctx *ctx;
581 if (!bmap)
582 return NULL;
584 ctx = bmap->ctx;
585 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
587 for (d = bmap->n_div - 1; d >= 0 ; --d) {
588 for (i = 0; i < bmap->n_eq; ++i)
589 if (!isl_int_is_zero(bmap->eq[i][off + d]))
590 break;
591 if (i < bmap->n_eq)
592 continue;
593 for (i = 0; i < bmap->n_ineq; ++i)
594 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
595 break;
596 if (i < bmap->n_ineq)
597 continue;
598 *progress = 1;
599 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
600 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
601 break;
602 bmap = isl_basic_map_drop_div(bmap, d);
603 if (!bmap)
604 break;
606 return bmap;
609 struct isl_basic_map *isl_basic_map_gauss(
610 struct isl_basic_map *bmap, int *progress)
612 int k;
613 int done;
614 int last_var;
615 unsigned total_var;
616 unsigned total;
618 bmap = isl_basic_map_order_divs(bmap);
620 if (!bmap)
621 return NULL;
623 total = isl_basic_map_total_dim(bmap);
624 total_var = total - bmap->n_div;
626 last_var = total - 1;
627 for (done = 0; done < bmap->n_eq; ++done) {
628 for (; last_var >= 0; --last_var) {
629 for (k = done; k < bmap->n_eq; ++k)
630 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
631 break;
632 if (k < bmap->n_eq)
633 break;
635 if (last_var < 0)
636 break;
637 if (k != done)
638 swap_equality(bmap, k, done);
639 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
640 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
642 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
643 progress);
645 if (last_var >= total_var &&
646 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
647 unsigned div = last_var - total_var;
648 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
649 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
650 isl_int_set(bmap->div[div][0],
651 bmap->eq[done][1+last_var]);
652 if (progress)
653 *progress = 1;
654 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
657 if (done == bmap->n_eq)
658 return bmap;
659 for (k = done; k < bmap->n_eq; ++k) {
660 if (isl_int_is_zero(bmap->eq[k][0]))
661 continue;
662 return isl_basic_map_set_to_empty(bmap);
664 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
665 return bmap;
668 struct isl_basic_set *isl_basic_set_gauss(
669 struct isl_basic_set *bset, int *progress)
671 return (struct isl_basic_set*)isl_basic_map_gauss(
672 (struct isl_basic_map *)bset, progress);
676 static unsigned int round_up(unsigned int v)
678 int old_v = v;
680 while (v) {
681 old_v = v;
682 v ^= v & -v;
684 return old_v << 1;
687 static int hash_index(isl_int ***index, unsigned int size, int bits,
688 struct isl_basic_map *bmap, int k)
690 int h;
691 unsigned total = isl_basic_map_total_dim(bmap);
692 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
693 for (h = hash; index[h]; h = (h+1) % size)
694 if (&bmap->ineq[k] != index[h] &&
695 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
696 break;
697 return h;
700 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
701 struct isl_basic_set *bset, int k)
703 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
706 /* If we can eliminate more than one div, then we need to make
707 * sure we do it from last div to first div, in order not to
708 * change the position of the other divs that still need to
709 * be removed.
711 static struct isl_basic_map *remove_duplicate_divs(
712 struct isl_basic_map *bmap, int *progress)
714 unsigned int size;
715 int *index;
716 int *elim_for;
717 int k, l, h;
718 int bits;
719 struct isl_blk eq;
720 unsigned total_var;
721 unsigned total;
722 struct isl_ctx *ctx;
724 bmap = isl_basic_map_order_divs(bmap);
725 if (!bmap || bmap->n_div <= 1)
726 return bmap;
728 total_var = isl_space_dim(bmap->dim, isl_dim_all);
729 total = total_var + bmap->n_div;
731 ctx = bmap->ctx;
732 for (k = bmap->n_div - 1; k >= 0; --k)
733 if (!isl_int_is_zero(bmap->div[k][0]))
734 break;
735 if (k <= 0)
736 return bmap;
738 size = round_up(4 * bmap->n_div / 3 - 1);
739 if (size == 0)
740 return bmap;
741 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
742 bits = ffs(size) - 1;
743 index = isl_calloc_array(ctx, int, size);
744 if (!elim_for || !index)
745 goto out;
746 eq = isl_blk_alloc(ctx, 1+total);
747 if (isl_blk_is_error(eq))
748 goto out;
750 isl_seq_clr(eq.data, 1+total);
751 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
752 for (--k; k >= 0; --k) {
753 uint32_t hash;
755 if (isl_int_is_zero(bmap->div[k][0]))
756 continue;
758 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
759 for (h = hash; index[h]; h = (h+1) % size)
760 if (isl_seq_eq(bmap->div[k],
761 bmap->div[index[h]-1], 2+total))
762 break;
763 if (index[h]) {
764 *progress = 1;
765 l = index[h] - 1;
766 elim_for[l] = k + 1;
768 index[h] = k+1;
770 for (l = bmap->n_div - 1; l >= 0; --l) {
771 if (!elim_for[l])
772 continue;
773 k = elim_for[l] - 1;
774 isl_int_set_si(eq.data[1+total_var+k], -1);
775 isl_int_set_si(eq.data[1+total_var+l], 1);
776 eliminate_div(bmap, eq.data, l, 1);
777 isl_int_set_si(eq.data[1+total_var+k], 0);
778 isl_int_set_si(eq.data[1+total_var+l], 0);
781 isl_blk_free(ctx, eq);
782 out:
783 free(index);
784 free(elim_for);
785 return bmap;
788 static int n_pure_div_eq(struct isl_basic_map *bmap)
790 int i, j;
791 unsigned total;
793 total = isl_space_dim(bmap->dim, isl_dim_all);
794 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
795 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
796 --j;
797 if (j < 0)
798 break;
799 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
800 return 0;
802 return i;
805 /* Normalize divs that appear in equalities.
807 * In particular, we assume that bmap contains some equalities
808 * of the form
810 * a x = m * e_i
812 * and we want to replace the set of e_i by a minimal set and
813 * such that the new e_i have a canonical representation in terms
814 * of the vector x.
815 * If any of the equalities involves more than one divs, then
816 * we currently simply bail out.
818 * Let us first additionally assume that all equalities involve
819 * a div. The equalities then express modulo constraints on the
820 * remaining variables and we can use "parameter compression"
821 * to find a minimal set of constraints. The result is a transformation
823 * x = T(x') = x_0 + G x'
825 * with G a lower-triangular matrix with all elements below the diagonal
826 * non-negative and smaller than the diagonal element on the same row.
827 * We first normalize x_0 by making the same property hold in the affine
828 * T matrix.
829 * The rows i of G with a 1 on the diagonal do not impose any modulo
830 * constraint and simply express x_i = x'_i.
831 * For each of the remaining rows i, we introduce a div and a corresponding
832 * equality. In particular
834 * g_ii e_j = x_i - g_i(x')
836 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
837 * corresponding div (if g_kk != 1).
839 * If there are any equalities not involving any div, then we
840 * first apply a variable compression on the variables x:
842 * x = C x'' x'' = C_2 x
844 * and perform the above parameter compression on A C instead of on A.
845 * The resulting compression is then of the form
847 * x'' = T(x') = x_0 + G x'
849 * and in constructing the new divs and the corresponding equalities,
850 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
851 * by the corresponding row from C_2.
853 static struct isl_basic_map *normalize_divs(
854 struct isl_basic_map *bmap, int *progress)
856 int i, j, k;
857 int total;
858 int div_eq;
859 struct isl_mat *B;
860 struct isl_vec *d;
861 struct isl_mat *T = NULL;
862 struct isl_mat *C = NULL;
863 struct isl_mat *C2 = NULL;
864 isl_int v;
865 int *pos;
866 int dropped, needed;
868 if (!bmap)
869 return NULL;
871 if (bmap->n_div == 0)
872 return bmap;
874 if (bmap->n_eq == 0)
875 return bmap;
877 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
878 return bmap;
880 total = isl_space_dim(bmap->dim, isl_dim_all);
881 div_eq = n_pure_div_eq(bmap);
882 if (div_eq == 0)
883 return bmap;
885 if (div_eq < bmap->n_eq) {
886 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
887 bmap->n_eq - div_eq, 0, 1 + total);
888 C = isl_mat_variable_compression(B, &C2);
889 if (!C || !C2)
890 goto error;
891 if (C->n_col == 0) {
892 bmap = isl_basic_map_set_to_empty(bmap);
893 isl_mat_free(C);
894 isl_mat_free(C2);
895 goto done;
899 d = isl_vec_alloc(bmap->ctx, div_eq);
900 if (!d)
901 goto error;
902 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
903 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
904 --j;
905 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
907 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
909 if (C) {
910 B = isl_mat_product(B, C);
911 C = NULL;
914 T = isl_mat_parameter_compression(B, d);
915 if (!T)
916 goto error;
917 if (T->n_col == 0) {
918 bmap = isl_basic_map_set_to_empty(bmap);
919 isl_mat_free(C2);
920 isl_mat_free(T);
921 goto done;
923 isl_int_init(v);
924 for (i = 0; i < T->n_row - 1; ++i) {
925 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
926 if (isl_int_is_zero(v))
927 continue;
928 isl_mat_col_submul(T, 0, v, 1 + i);
930 isl_int_clear(v);
931 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
932 if (!pos)
933 goto error;
934 /* We have to be careful because dropping equalities may reorder them */
935 dropped = 0;
936 for (j = bmap->n_div - 1; j >= 0; --j) {
937 for (i = 0; i < bmap->n_eq; ++i)
938 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
939 break;
940 if (i < bmap->n_eq) {
941 bmap = isl_basic_map_drop_div(bmap, j);
942 isl_basic_map_drop_equality(bmap, i);
943 ++dropped;
946 pos[0] = 0;
947 needed = 0;
948 for (i = 1; i < T->n_row; ++i) {
949 if (isl_int_is_one(T->row[i][i]))
950 pos[i] = i;
951 else
952 needed++;
954 if (needed > dropped) {
955 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
956 needed, needed, 0);
957 if (!bmap)
958 goto error;
960 for (i = 1; i < T->n_row; ++i) {
961 if (isl_int_is_one(T->row[i][i]))
962 continue;
963 k = isl_basic_map_alloc_div(bmap);
964 pos[i] = 1 + total + k;
965 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
966 isl_int_set(bmap->div[k][0], T->row[i][i]);
967 if (C2)
968 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
969 else
970 isl_int_set_si(bmap->div[k][1 + i], 1);
971 for (j = 0; j < i; ++j) {
972 if (isl_int_is_zero(T->row[i][j]))
973 continue;
974 if (pos[j] < T->n_row && C2)
975 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
976 C2->row[pos[j]], 1 + total);
977 else
978 isl_int_neg(bmap->div[k][1 + pos[j]],
979 T->row[i][j]);
981 j = isl_basic_map_alloc_equality(bmap);
982 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
983 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
985 free(pos);
986 isl_mat_free(C2);
987 isl_mat_free(T);
989 if (progress)
990 *progress = 1;
991 done:
992 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
994 return bmap;
995 error:
996 isl_mat_free(C);
997 isl_mat_free(C2);
998 isl_mat_free(T);
999 return bmap;
1002 static struct isl_basic_map *set_div_from_lower_bound(
1003 struct isl_basic_map *bmap, int div, int ineq)
1005 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1007 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1008 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1009 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1010 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1011 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1013 return bmap;
1016 /* Check whether it is ok to define a div based on an inequality.
1017 * To avoid the introduction of circular definitions of divs, we
1018 * do not allow such a definition if the resulting expression would refer to
1019 * any other undefined divs or if any known div is defined in
1020 * terms of the unknown div.
1022 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1023 int div, int ineq)
1025 int j;
1026 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1028 /* Not defined in terms of unknown divs */
1029 for (j = 0; j < bmap->n_div; ++j) {
1030 if (div == j)
1031 continue;
1032 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1033 continue;
1034 if (isl_int_is_zero(bmap->div[j][0]))
1035 return 0;
1038 /* No other div defined in terms of this one => avoid loops */
1039 for (j = 0; j < bmap->n_div; ++j) {
1040 if (div == j)
1041 continue;
1042 if (isl_int_is_zero(bmap->div[j][0]))
1043 continue;
1044 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1045 return 0;
1048 return 1;
1051 /* Would an expression for div "div" based on inequality "ineq" of "bmap"
1052 * be a better expression than the current one?
1054 * If we do not have any expression yet, then any expression would be better.
1055 * Otherwise we check if the last variable involved in the inequality
1056 * (disregarding the div that it would define) is in an earlier position
1057 * than the last variable involved in the current div expression.
1059 static int better_div_constraint(__isl_keep isl_basic_map *bmap,
1060 int div, int ineq)
1062 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1063 int last_div;
1064 int last_ineq;
1066 if (isl_int_is_zero(bmap->div[div][0]))
1067 return 1;
1069 if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1070 bmap->n_div - (div + 1)) >= 0)
1071 return 0;
1073 last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1074 last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1075 total + bmap->n_div);
1077 return last_ineq < last_div;
1080 /* Given two constraints "k" and "l" that are opposite to each other,
1081 * except for the constant term, check if we can use them
1082 * to obtain an expression for one of the hitherto unknown divs or
1083 * a "better" expression for a div for which we already have an expression.
1084 * "sum" is the sum of the constant terms of the constraints.
1085 * If this sum is strictly smaller than the coefficient of one
1086 * of the divs, then this pair can be used define the div.
1087 * To avoid the introduction of circular definitions of divs, we
1088 * do not use the pair if the resulting expression would refer to
1089 * any other undefined divs or if any known div is defined in
1090 * terms of the unknown div.
1092 static struct isl_basic_map *check_for_div_constraints(
1093 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1095 int i;
1096 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1098 for (i = 0; i < bmap->n_div; ++i) {
1099 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1100 continue;
1101 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1102 continue;
1103 if (!better_div_constraint(bmap, i, k))
1104 continue;
1105 if (!ok_to_set_div_from_bound(bmap, i, k))
1106 break;
1107 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1108 bmap = set_div_from_lower_bound(bmap, i, k);
1109 else
1110 bmap = set_div_from_lower_bound(bmap, i, l);
1111 if (progress)
1112 *progress = 1;
1113 break;
1115 return bmap;
1118 __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1119 __isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1121 unsigned int size;
1122 isl_int ***index;
1123 int k, l, h;
1124 int bits;
1125 unsigned total = isl_basic_map_total_dim(bmap);
1126 isl_int sum;
1127 isl_ctx *ctx;
1129 if (!bmap || bmap->n_ineq <= 1)
1130 return bmap;
1132 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1133 if (size == 0)
1134 return bmap;
1135 bits = ffs(size) - 1;
1136 ctx = isl_basic_map_get_ctx(bmap);
1137 index = isl_calloc_array(ctx, isl_int **, size);
1138 if (!index)
1139 return bmap;
1141 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1142 for (k = 1; k < bmap->n_ineq; ++k) {
1143 h = hash_index(index, size, bits, bmap, k);
1144 if (!index[h]) {
1145 index[h] = &bmap->ineq[k];
1146 continue;
1148 if (progress)
1149 *progress = 1;
1150 l = index[h] - &bmap->ineq[0];
1151 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1152 swap_inequality(bmap, k, l);
1153 isl_basic_map_drop_inequality(bmap, k);
1154 --k;
1156 isl_int_init(sum);
1157 for (k = 0; k < bmap->n_ineq-1; ++k) {
1158 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1159 h = hash_index(index, size, bits, bmap, k);
1160 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1161 if (!index[h])
1162 continue;
1163 l = index[h] - &bmap->ineq[0];
1164 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1165 if (isl_int_is_pos(sum)) {
1166 if (detect_divs)
1167 bmap = check_for_div_constraints(bmap, k, l,
1168 sum, progress);
1169 continue;
1171 if (isl_int_is_zero(sum)) {
1172 /* We need to break out of the loop after these
1173 * changes since the contents of the hash
1174 * will no longer be valid.
1175 * Plus, we probably we want to regauss first.
1177 if (progress)
1178 *progress = 1;
1179 isl_basic_map_drop_inequality(bmap, l);
1180 isl_basic_map_inequality_to_equality(bmap, k);
1181 } else
1182 bmap = isl_basic_map_set_to_empty(bmap);
1183 break;
1185 isl_int_clear(sum);
1187 free(index);
1188 return bmap;
1192 /* Eliminate knowns divs from constraints where they appear with
1193 * a (positive or negative) unit coefficient.
1195 * That is, replace
1197 * floor(e/m) + f >= 0
1199 * by
1201 * e + m f >= 0
1203 * and
1205 * -floor(e/m) + f >= 0
1207 * by
1209 * -e + m f + m - 1 >= 0
1211 * The first conversion is valid because floor(e/m) >= -f is equivalent
1212 * to e/m >= -f because -f is an integral expression.
1213 * The second conversion follows from the fact that
1215 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1218 * Note that one of the div constraints may have been eliminated
1219 * due to being redundant with respect to the constraint that is
1220 * being modified by this function. The modified constraint may
1221 * no longer imply this div constraint, so we add it back to make
1222 * sure we do not lose any information.
1224 * We skip integral divs, i.e., those with denominator 1, as we would
1225 * risk eliminating the div from the div constraints. We do not need
1226 * to handle those divs here anyway since the div constraints will turn
1227 * out to form an equality and this equality can then be use to eliminate
1228 * the div from all constraints.
1230 static __isl_give isl_basic_map *eliminate_unit_divs(
1231 __isl_take isl_basic_map *bmap, int *progress)
1233 int i, j;
1234 isl_ctx *ctx;
1235 unsigned total;
1237 if (!bmap)
1238 return NULL;
1240 ctx = isl_basic_map_get_ctx(bmap);
1241 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1243 for (i = 0; i < bmap->n_div; ++i) {
1244 if (isl_int_is_zero(bmap->div[i][0]))
1245 continue;
1246 if (isl_int_is_one(bmap->div[i][0]))
1247 continue;
1248 for (j = 0; j < bmap->n_ineq; ++j) {
1249 int s;
1251 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1252 !isl_int_is_negone(bmap->ineq[j][total + i]))
1253 continue;
1255 *progress = 1;
1257 s = isl_int_sgn(bmap->ineq[j][total + i]);
1258 isl_int_set_si(bmap->ineq[j][total + i], 0);
1259 if (s < 0)
1260 isl_seq_combine(bmap->ineq[j],
1261 ctx->negone, bmap->div[i] + 1,
1262 bmap->div[i][0], bmap->ineq[j],
1263 total + bmap->n_div);
1264 else
1265 isl_seq_combine(bmap->ineq[j],
1266 ctx->one, bmap->div[i] + 1,
1267 bmap->div[i][0], bmap->ineq[j],
1268 total + bmap->n_div);
1269 if (s < 0) {
1270 isl_int_add(bmap->ineq[j][0],
1271 bmap->ineq[j][0], bmap->div[i][0]);
1272 isl_int_sub_ui(bmap->ineq[j][0],
1273 bmap->ineq[j][0], 1);
1276 bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1277 if (isl_basic_map_add_div_constraint(bmap, i, s) < 0)
1278 return isl_basic_map_free(bmap);
1282 return bmap;
1285 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1287 int progress = 1;
1288 if (!bmap)
1289 return NULL;
1290 while (progress) {
1291 progress = 0;
1292 if (!bmap)
1293 break;
1294 if (isl_basic_map_plain_is_empty(bmap))
1295 break;
1296 bmap = isl_basic_map_normalize_constraints(bmap);
1297 bmap = normalize_div_expressions(bmap);
1298 bmap = remove_duplicate_divs(bmap, &progress);
1299 bmap = eliminate_unit_divs(bmap, &progress);
1300 bmap = eliminate_divs_eq(bmap, &progress);
1301 bmap = eliminate_divs_ineq(bmap, &progress);
1302 bmap = isl_basic_map_gauss(bmap, &progress);
1303 /* requires equalities in normal form */
1304 bmap = normalize_divs(bmap, &progress);
1305 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1306 &progress, 1);
1308 return bmap;
1311 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1313 return (struct isl_basic_set *)
1314 isl_basic_map_simplify((struct isl_basic_map *)bset);
1318 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1319 isl_int *constraint, unsigned div)
1321 unsigned pos;
1323 if (!bmap)
1324 return -1;
1326 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1328 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1329 int neg;
1330 isl_int_sub(bmap->div[div][1],
1331 bmap->div[div][1], bmap->div[div][0]);
1332 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1333 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1334 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1335 isl_int_add(bmap->div[div][1],
1336 bmap->div[div][1], bmap->div[div][0]);
1337 if (!neg)
1338 return 0;
1339 if (isl_seq_first_non_zero(constraint+pos+1,
1340 bmap->n_div-div-1) != -1)
1341 return 0;
1342 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1343 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1344 return 0;
1345 if (isl_seq_first_non_zero(constraint+pos+1,
1346 bmap->n_div-div-1) != -1)
1347 return 0;
1348 } else
1349 return 0;
1351 return 1;
1354 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1355 isl_int *constraint, unsigned div)
1357 return isl_basic_map_is_div_constraint(bset, constraint, div);
1361 /* If the only constraints a div d=floor(f/m)
1362 * appears in are its two defining constraints
1364 * f - m d >=0
1365 * -(f - (m - 1)) + m d >= 0
1367 * then it can safely be removed.
1369 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1371 int i;
1372 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1374 for (i = 0; i < bmap->n_eq; ++i)
1375 if (!isl_int_is_zero(bmap->eq[i][pos]))
1376 return 0;
1378 for (i = 0; i < bmap->n_ineq; ++i) {
1379 if (isl_int_is_zero(bmap->ineq[i][pos]))
1380 continue;
1381 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1382 return 0;
1385 for (i = 0; i < bmap->n_div; ++i) {
1386 if (isl_int_is_zero(bmap->div[i][0]))
1387 continue;
1388 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1389 return 0;
1392 return 1;
1396 * Remove divs that don't occur in any of the constraints or other divs.
1397 * These can arise when dropping constraints from a basic map or
1398 * when the divs of a basic map have been temporarily aligned
1399 * with the divs of another basic map.
1401 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1403 int i;
1405 if (!bmap)
1406 return NULL;
1408 for (i = bmap->n_div-1; i >= 0; --i) {
1409 if (!div_is_redundant(bmap, i))
1410 continue;
1411 bmap = isl_basic_map_drop_div(bmap, i);
1413 return bmap;
1416 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1418 bmap = remove_redundant_divs(bmap);
1419 if (!bmap)
1420 return NULL;
1421 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1422 return bmap;
1425 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1427 return (struct isl_basic_set *)
1428 isl_basic_map_finalize((struct isl_basic_map *)bset);
1431 struct isl_set *isl_set_finalize(struct isl_set *set)
1433 int i;
1435 if (!set)
1436 return NULL;
1437 for (i = 0; i < set->n; ++i) {
1438 set->p[i] = isl_basic_set_finalize(set->p[i]);
1439 if (!set->p[i])
1440 goto error;
1442 return set;
1443 error:
1444 isl_set_free(set);
1445 return NULL;
1448 struct isl_map *isl_map_finalize(struct isl_map *map)
1450 int i;
1452 if (!map)
1453 return NULL;
1454 for (i = 0; i < map->n; ++i) {
1455 map->p[i] = isl_basic_map_finalize(map->p[i]);
1456 if (!map->p[i])
1457 goto error;
1459 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1460 return map;
1461 error:
1462 isl_map_free(map);
1463 return NULL;
1467 /* Remove definition of any div that is defined in terms of the given variable.
1468 * The div itself is not removed. Functions such as
1469 * eliminate_divs_ineq depend on the other divs remaining in place.
1471 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1472 int pos)
1474 int i;
1476 if (!bmap)
1477 return NULL;
1479 for (i = 0; i < bmap->n_div; ++i) {
1480 if (isl_int_is_zero(bmap->div[i][0]))
1481 continue;
1482 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1483 continue;
1484 isl_int_set_si(bmap->div[i][0], 0);
1486 return bmap;
1489 /* Eliminate the specified variables from the constraints using
1490 * Fourier-Motzkin. The variables themselves are not removed.
1492 struct isl_basic_map *isl_basic_map_eliminate_vars(
1493 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1495 int d;
1496 int i, j, k;
1497 unsigned total;
1498 int need_gauss = 0;
1500 if (n == 0)
1501 return bmap;
1502 if (!bmap)
1503 return NULL;
1504 total = isl_basic_map_total_dim(bmap);
1506 bmap = isl_basic_map_cow(bmap);
1507 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1508 bmap = remove_dependent_vars(bmap, d);
1509 if (!bmap)
1510 return NULL;
1512 for (d = pos + n - 1;
1513 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1514 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1515 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1516 int n_lower, n_upper;
1517 if (!bmap)
1518 return NULL;
1519 for (i = 0; i < bmap->n_eq; ++i) {
1520 if (isl_int_is_zero(bmap->eq[i][1+d]))
1521 continue;
1522 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1523 isl_basic_map_drop_equality(bmap, i);
1524 need_gauss = 1;
1525 break;
1527 if (i < bmap->n_eq)
1528 continue;
1529 n_lower = 0;
1530 n_upper = 0;
1531 for (i = 0; i < bmap->n_ineq; ++i) {
1532 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1533 n_lower++;
1534 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1535 n_upper++;
1537 bmap = isl_basic_map_extend_constraints(bmap,
1538 0, n_lower * n_upper);
1539 if (!bmap)
1540 goto error;
1541 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1542 int last;
1543 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1544 continue;
1545 last = -1;
1546 for (j = 0; j < i; ++j) {
1547 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1548 continue;
1549 last = j;
1550 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1551 isl_int_sgn(bmap->ineq[j][1+d]))
1552 continue;
1553 k = isl_basic_map_alloc_inequality(bmap);
1554 if (k < 0)
1555 goto error;
1556 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1557 1+total);
1558 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1559 1+d, 1+total, NULL);
1561 isl_basic_map_drop_inequality(bmap, i);
1562 i = last + 1;
1564 if (n_lower > 0 && n_upper > 0) {
1565 bmap = isl_basic_map_normalize_constraints(bmap);
1566 bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1567 NULL, 0);
1568 bmap = isl_basic_map_gauss(bmap, NULL);
1569 bmap = isl_basic_map_remove_redundancies(bmap);
1570 need_gauss = 0;
1571 if (!bmap)
1572 goto error;
1573 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1574 break;
1577 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1578 if (need_gauss)
1579 bmap = isl_basic_map_gauss(bmap, NULL);
1580 return bmap;
1581 error:
1582 isl_basic_map_free(bmap);
1583 return NULL;
1586 struct isl_basic_set *isl_basic_set_eliminate_vars(
1587 struct isl_basic_set *bset, unsigned pos, unsigned n)
1589 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1590 (struct isl_basic_map *)bset, pos, n);
1593 /* Eliminate the specified n dimensions starting at first from the
1594 * constraints, without removing the dimensions from the space.
1595 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1596 * Otherwise, they are projected out and the original space is restored.
1598 __isl_give isl_basic_map *isl_basic_map_eliminate(
1599 __isl_take isl_basic_map *bmap,
1600 enum isl_dim_type type, unsigned first, unsigned n)
1602 isl_space *space;
1604 if (!bmap)
1605 return NULL;
1606 if (n == 0)
1607 return bmap;
1609 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1610 isl_die(bmap->ctx, isl_error_invalid,
1611 "index out of bounds", goto error);
1613 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1614 first += isl_basic_map_offset(bmap, type) - 1;
1615 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1616 return isl_basic_map_finalize(bmap);
1619 space = isl_basic_map_get_space(bmap);
1620 bmap = isl_basic_map_project_out(bmap, type, first, n);
1621 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1622 bmap = isl_basic_map_reset_space(bmap, space);
1623 return bmap;
1624 error:
1625 isl_basic_map_free(bmap);
1626 return NULL;
1629 __isl_give isl_basic_set *isl_basic_set_eliminate(
1630 __isl_take isl_basic_set *bset,
1631 enum isl_dim_type type, unsigned first, unsigned n)
1633 return isl_basic_map_eliminate(bset, type, first, n);
1636 /* Don't assume equalities are in order, because align_divs
1637 * may have changed the order of the divs.
1639 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1641 int d, i;
1642 unsigned total;
1644 total = isl_space_dim(bmap->dim, isl_dim_all);
1645 for (d = 0; d < total; ++d)
1646 elim[d] = -1;
1647 for (i = 0; i < bmap->n_eq; ++i) {
1648 for (d = total - 1; d >= 0; --d) {
1649 if (isl_int_is_zero(bmap->eq[i][1+d]))
1650 continue;
1651 elim[d] = i;
1652 break;
1657 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1659 compute_elimination_index((struct isl_basic_map *)bset, elim);
1662 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1663 struct isl_basic_map *bmap, int *elim)
1665 int d;
1666 int copied = 0;
1667 unsigned total;
1669 total = isl_space_dim(bmap->dim, isl_dim_all);
1670 for (d = total - 1; d >= 0; --d) {
1671 if (isl_int_is_zero(src[1+d]))
1672 continue;
1673 if (elim[d] == -1)
1674 continue;
1675 if (!copied) {
1676 isl_seq_cpy(dst, src, 1 + total);
1677 copied = 1;
1679 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1681 return copied;
1684 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1685 struct isl_basic_set *bset, int *elim)
1687 return reduced_using_equalities(dst, src,
1688 (struct isl_basic_map *)bset, elim);
1691 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1692 struct isl_basic_set *bset, struct isl_basic_set *context)
1694 int i;
1695 int *elim;
1697 if (!bset || !context)
1698 goto error;
1700 if (context->n_eq == 0) {
1701 isl_basic_set_free(context);
1702 return bset;
1705 bset = isl_basic_set_cow(bset);
1706 if (!bset)
1707 goto error;
1709 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1710 if (!elim)
1711 goto error;
1712 set_compute_elimination_index(context, elim);
1713 for (i = 0; i < bset->n_eq; ++i)
1714 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1715 context, elim);
1716 for (i = 0; i < bset->n_ineq; ++i)
1717 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1718 context, elim);
1719 isl_basic_set_free(context);
1720 free(elim);
1721 bset = isl_basic_set_simplify(bset);
1722 bset = isl_basic_set_finalize(bset);
1723 return bset;
1724 error:
1725 isl_basic_set_free(bset);
1726 isl_basic_set_free(context);
1727 return NULL;
1730 static struct isl_basic_set *remove_shifted_constraints(
1731 struct isl_basic_set *bset, struct isl_basic_set *context)
1733 unsigned int size;
1734 isl_int ***index;
1735 int bits;
1736 int k, h, l;
1737 isl_ctx *ctx;
1739 if (!bset)
1740 return NULL;
1742 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1743 if (size == 0)
1744 return bset;
1745 bits = ffs(size) - 1;
1746 ctx = isl_basic_set_get_ctx(bset);
1747 index = isl_calloc_array(ctx, isl_int **, size);
1748 if (!index)
1749 return bset;
1751 for (k = 0; k < context->n_ineq; ++k) {
1752 h = set_hash_index(index, size, bits, context, k);
1753 index[h] = &context->ineq[k];
1755 for (k = 0; k < bset->n_ineq; ++k) {
1756 h = set_hash_index(index, size, bits, bset, k);
1757 if (!index[h])
1758 continue;
1759 l = index[h] - &context->ineq[0];
1760 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1761 continue;
1762 bset = isl_basic_set_cow(bset);
1763 if (!bset)
1764 goto error;
1765 isl_basic_set_drop_inequality(bset, k);
1766 --k;
1768 free(index);
1769 return bset;
1770 error:
1771 free(index);
1772 return bset;
1775 /* Remove constraints from "bmap" that are identical to constraints
1776 * in "context" or that are more relaxed (greater constant term).
1778 * We perform the test for shifted copies on the pure constraints
1779 * in remove_shifted_constraints.
1781 static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
1782 __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
1784 isl_basic_set *bset, *bset_context;
1786 if (!bmap || !context)
1787 goto error;
1789 if (bmap->n_ineq == 0 || context->n_ineq == 0) {
1790 isl_basic_map_free(context);
1791 return bmap;
1794 context = isl_basic_map_align_divs(context, bmap);
1795 bmap = isl_basic_map_align_divs(bmap, context);
1797 bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
1798 bset_context = isl_basic_map_underlying_set(context);
1799 bset = remove_shifted_constraints(bset, bset_context);
1800 isl_basic_set_free(bset_context);
1802 bmap = isl_basic_map_overlying_set(bset, bmap);
1804 return bmap;
1805 error:
1806 isl_basic_map_free(bmap);
1807 isl_basic_map_free(context);
1808 return NULL;
1811 /* Does the (linear part of a) constraint "c" involve any of the "len"
1812 * "relevant" dimensions?
1814 static int is_related(isl_int *c, int len, int *relevant)
1816 int i;
1818 for (i = 0; i < len; ++i) {
1819 if (!relevant[i])
1820 continue;
1821 if (!isl_int_is_zero(c[i]))
1822 return 1;
1825 return 0;
1828 /* Drop constraints from "bset" that do not involve any of
1829 * the dimensions marked "relevant".
1831 static __isl_give isl_basic_set *drop_unrelated_constraints(
1832 __isl_take isl_basic_set *bset, int *relevant)
1834 int i, dim;
1836 dim = isl_basic_set_dim(bset, isl_dim_set);
1837 for (i = 0; i < dim; ++i)
1838 if (!relevant[i])
1839 break;
1840 if (i >= dim)
1841 return bset;
1843 for (i = bset->n_eq - 1; i >= 0; --i)
1844 if (!is_related(bset->eq[i] + 1, dim, relevant))
1845 isl_basic_set_drop_equality(bset, i);
1847 for (i = bset->n_ineq - 1; i >= 0; --i)
1848 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1849 isl_basic_set_drop_inequality(bset, i);
1851 return bset;
1854 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1856 * In particular, for any variable involved in the constraint,
1857 * find the actual group id from before and replace the group
1858 * of the corresponding variable by the minimal group of all
1859 * the variables involved in the constraint considered so far
1860 * (if this minimum is smaller) or replace the minimum by this group
1861 * (if the minimum is larger).
1863 * At the end, all the variables in "c" will (indirectly) point
1864 * to the minimal of the groups that they referred to originally.
1866 static void update_groups(int dim, int *group, isl_int *c)
1868 int j;
1869 int min = dim;
1871 for (j = 0; j < dim; ++j) {
1872 if (isl_int_is_zero(c[j]))
1873 continue;
1874 while (group[j] >= 0 && group[group[j]] != group[j])
1875 group[j] = group[group[j]];
1876 if (group[j] == min)
1877 continue;
1878 if (group[j] < min) {
1879 if (min >= 0 && min < dim)
1880 group[min] = group[j];
1881 min = group[j];
1882 } else
1883 group[group[j]] = min;
1887 /* Drop constraints from "context" that are irrelevant for computing
1888 * the gist of "bset".
1890 * In particular, drop constraints in variables that are not related
1891 * to any of the variables involved in the constraints of "bset"
1892 * in the sense that there is no sequence of constraints that connects them.
1894 * We construct groups of variables that collect variables that
1895 * (indirectly) appear in some common constraint of "context".
1896 * Each group is identified by the first variable in the group,
1897 * except for the special group of variables that appear in "bset"
1898 * (or are related to those variables), which is identified by -1.
1899 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1900 * otherwise the group of i is the group of group[i].
1902 * We first initialize the -1 group with the variables that appear in "bset".
1903 * Then we initialize groups for the remaining variables.
1904 * Then we iterate over the constraints of "context" and update the
1905 * group of the variables in the constraint by the smallest group.
1906 * Finally, we resolve indirect references to groups by running over
1907 * the variables.
1909 * After computing the groups, we drop constraints that do not involve
1910 * any variables in the -1 group.
1912 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1913 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1915 isl_ctx *ctx;
1916 int *group;
1917 int dim;
1918 int i, j;
1919 int last;
1921 if (!context || !bset)
1922 return isl_basic_set_free(context);
1924 dim = isl_basic_set_dim(bset, isl_dim_set);
1925 ctx = isl_basic_set_get_ctx(bset);
1926 group = isl_calloc_array(ctx, int, dim);
1928 if (!group)
1929 goto error;
1931 for (i = 0; i < dim; ++i) {
1932 for (j = 0; j < bset->n_eq; ++j)
1933 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1934 break;
1935 if (j < bset->n_eq) {
1936 group[i] = -1;
1937 continue;
1939 for (j = 0; j < bset->n_ineq; ++j)
1940 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1941 break;
1942 if (j < bset->n_ineq)
1943 group[i] = -1;
1946 last = -1;
1947 for (i = 0; i < dim; ++i)
1948 if (group[i] >= 0)
1949 last = group[i] = i;
1950 if (last < 0) {
1951 free(group);
1952 return context;
1955 for (i = 0; i < context->n_eq; ++i)
1956 update_groups(dim, group, context->eq[i] + 1);
1957 for (i = 0; i < context->n_ineq; ++i)
1958 update_groups(dim, group, context->ineq[i] + 1);
1960 for (i = 0; i < dim; ++i)
1961 if (group[i] >= 0)
1962 group[i] = group[group[i]];
1964 for (i = 0; i < dim; ++i)
1965 group[i] = group[i] == -1;
1967 context = drop_unrelated_constraints(context, group);
1969 free(group);
1970 return context;
1971 error:
1972 free(group);
1973 return isl_basic_set_free(context);
1976 /* Remove all information from bset that is redundant in the context
1977 * of context. Both bset and context are assumed to be full-dimensional.
1979 * We first remove the inequalities from "bset"
1980 * that are obviously redundant with respect to some inequality in "context".
1981 * Then we remove those constraints from "context" that have become
1982 * irrelevant for computing the gist of "bset".
1983 * Note that this removal of constraints cannot be replaced by
1984 * a factorization because factors in "bset" may still be connected
1985 * to each other through constraints in "context".
1987 * If there are any inequalities left, we construct a tableau for
1988 * the context and then add the inequalities of "bset".
1989 * Before adding these inequalities, we freeze all constraints such that
1990 * they won't be considered redundant in terms of the constraints of "bset".
1991 * Then we detect all redundant constraints (among the
1992 * constraints that weren't frozen), first by checking for redundancy in the
1993 * the tableau and then by checking if replacing a constraint by its negation
1994 * would lead to an empty set. This last step is fairly expensive
1995 * and could be optimized by more reuse of the tableau.
1996 * Finally, we update bset according to the results.
1998 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1999 __isl_take isl_basic_set *context)
2001 int i, k;
2002 isl_basic_set *combined = NULL;
2003 struct isl_tab *tab = NULL;
2004 unsigned context_ineq;
2005 unsigned total;
2007 if (!bset || !context)
2008 goto error;
2010 if (isl_basic_set_is_universe(bset)) {
2011 isl_basic_set_free(context);
2012 return bset;
2015 if (isl_basic_set_is_universe(context)) {
2016 isl_basic_set_free(context);
2017 return bset;
2020 bset = remove_shifted_constraints(bset, context);
2021 if (!bset)
2022 goto error;
2023 if (bset->n_ineq == 0)
2024 goto done;
2026 context = drop_irrelevant_constraints(context, bset);
2027 if (!context)
2028 goto error;
2029 if (isl_basic_set_is_universe(context)) {
2030 isl_basic_set_free(context);
2031 return bset;
2034 context_ineq = context->n_ineq;
2035 combined = isl_basic_set_cow(isl_basic_set_copy(context));
2036 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2037 tab = isl_tab_from_basic_set(combined, 0);
2038 for (i = 0; i < context_ineq; ++i)
2039 if (isl_tab_freeze_constraint(tab, i) < 0)
2040 goto error;
2041 if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2042 goto error;
2043 for (i = 0; i < bset->n_ineq; ++i)
2044 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
2045 goto error;
2046 bset = isl_basic_set_add_constraints(combined, bset, 0);
2047 combined = NULL;
2048 if (!bset)
2049 goto error;
2050 if (isl_tab_detect_redundant(tab) < 0)
2051 goto error;
2052 total = isl_basic_set_total_dim(bset);
2053 for (i = context_ineq; i < bset->n_ineq; ++i) {
2054 int is_empty;
2055 if (tab->con[i].is_redundant)
2056 continue;
2057 tab->con[i].is_redundant = 1;
2058 combined = isl_basic_set_dup(bset);
2059 combined = isl_basic_set_update_from_tab(combined, tab);
2060 combined = isl_basic_set_extend_constraints(combined, 0, 1);
2061 k = isl_basic_set_alloc_inequality(combined);
2062 if (k < 0)
2063 goto error;
2064 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
2065 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
2066 is_empty = isl_basic_set_is_empty(combined);
2067 if (is_empty < 0)
2068 goto error;
2069 isl_basic_set_free(combined);
2070 combined = NULL;
2071 if (!is_empty)
2072 tab->con[i].is_redundant = 0;
2074 for (i = 0; i < context_ineq; ++i)
2075 tab->con[i].is_redundant = 1;
2076 bset = isl_basic_set_update_from_tab(bset, tab);
2077 if (bset) {
2078 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2079 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2082 isl_tab_free(tab);
2083 done:
2084 bset = isl_basic_set_simplify(bset);
2085 bset = isl_basic_set_finalize(bset);
2086 isl_basic_set_free(context);
2087 return bset;
2088 error:
2089 isl_tab_free(tab);
2090 isl_basic_set_free(combined);
2091 isl_basic_set_free(context);
2092 isl_basic_set_free(bset);
2093 return NULL;
2096 /* Remove all information from bset that is redundant in the context
2097 * of context. In particular, equalities that are linear combinations
2098 * of those in context are removed. Then the inequalities that are
2099 * redundant in the context of the equalities and inequalities of
2100 * context are removed.
2102 * First of all, we drop those constraints from "context"
2103 * that are irrelevant for computing the gist of "bset".
2104 * Alternatively, we could factorize the intersection of "context" and "bset".
2106 * We first compute the integer affine hull of the intersection,
2107 * compute the gist inside this affine hull and then add back
2108 * those equalities that are not implied by the context.
2110 * If two constraints are mutually redundant, then uset_gist_full
2111 * will remove the second of those constraints. We therefore first
2112 * sort the constraints so that constraints not involving existentially
2113 * quantified variables are given precedence over those that do.
2114 * We have to perform this sorting before the variable compression,
2115 * because that may effect the order of the variables.
2117 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2118 __isl_take isl_basic_set *context)
2120 isl_mat *eq;
2121 isl_mat *T, *T2;
2122 isl_basic_set *aff;
2123 isl_basic_set *aff_context;
2124 unsigned total;
2126 if (!bset || !context)
2127 goto error;
2129 context = drop_irrelevant_constraints(context, bset);
2131 aff = isl_basic_set_copy(bset);
2132 aff = isl_basic_set_intersect(aff, isl_basic_set_copy(context));
2133 aff = isl_basic_set_affine_hull(aff);
2134 if (!aff)
2135 goto error;
2136 if (isl_basic_set_plain_is_empty(aff)) {
2137 isl_basic_set_free(bset);
2138 isl_basic_set_free(context);
2139 return aff;
2141 bset = isl_basic_set_sort_constraints(bset);
2142 if (aff->n_eq == 0) {
2143 isl_basic_set_free(aff);
2144 return uset_gist_full(bset, context);
2146 total = isl_basic_set_total_dim(bset);
2147 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2148 eq = isl_mat_cow(eq);
2149 T = isl_mat_variable_compression(eq, &T2);
2150 if (T && T->n_col == 0) {
2151 isl_mat_free(T);
2152 isl_mat_free(T2);
2153 isl_basic_set_free(context);
2154 isl_basic_set_free(aff);
2155 return isl_basic_set_set_to_empty(bset);
2158 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2160 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2161 context = isl_basic_set_preimage(context, T);
2163 bset = uset_gist_full(bset, context);
2164 bset = isl_basic_set_preimage(bset, T2);
2165 bset = isl_basic_set_intersect(bset, aff);
2166 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2168 if (bset) {
2169 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2170 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2173 return bset;
2174 error:
2175 isl_basic_set_free(bset);
2176 isl_basic_set_free(context);
2177 return NULL;
2180 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2181 * We simply add the equalities in context to bmap and then do a regular
2182 * div normalizations. Better results can be obtained by normalizing
2183 * only the divs in bmap than do not also appear in context.
2184 * We need to be careful to reduce the divs using the equalities
2185 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2186 * spurious constraints.
2188 static struct isl_basic_map *normalize_divs_in_context(
2189 struct isl_basic_map *bmap, struct isl_basic_map *context)
2191 int i;
2192 unsigned total_context;
2193 int div_eq;
2195 div_eq = n_pure_div_eq(bmap);
2196 if (div_eq == 0)
2197 return bmap;
2199 bmap = isl_basic_map_cow(bmap);
2200 if (context->n_div > 0)
2201 bmap = isl_basic_map_align_divs(bmap, context);
2203 total_context = isl_basic_map_total_dim(context);
2204 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2205 for (i = 0; i < context->n_eq; ++i) {
2206 int k;
2207 k = isl_basic_map_alloc_equality(bmap);
2208 if (k < 0)
2209 return isl_basic_map_free(bmap);
2210 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2211 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2212 isl_basic_map_total_dim(bmap) - total_context);
2214 bmap = isl_basic_map_gauss(bmap, NULL);
2215 bmap = normalize_divs(bmap, NULL);
2216 bmap = isl_basic_map_gauss(bmap, NULL);
2217 return bmap;
2220 /* Return a basic map that has the same intersection with "context" as "bmap"
2221 * and that is as "simple" as possible.
2223 * The core computation is performed on the pure constraints.
2224 * When we add back the meaning of the integer divisions, we need
2225 * to (re)introduce the div constraints. If we happen to have
2226 * discovered that some of these integer divisions are equal to
2227 * some affine combination of other variables, then these div
2228 * constraints may end up getting simplified in terms of the equalities,
2229 * resulting in extra inequalities on the other variables that
2230 * may have been removed already or that may not even have been
2231 * part of the input. We try and remove those constraints of
2232 * this form that are most obviously redundant with respect to
2233 * the context. We also remove those div constraints that are
2234 * redundant with respect to the other constraints in the result.
2236 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2237 struct isl_basic_map *context)
2239 isl_basic_set *bset, *eq;
2240 isl_basic_map *eq_bmap;
2241 unsigned n_div, n_eq, n_ineq;
2243 if (!bmap || !context)
2244 goto error;
2246 if (isl_basic_map_is_universe(bmap)) {
2247 isl_basic_map_free(context);
2248 return bmap;
2250 if (isl_basic_map_plain_is_empty(context)) {
2251 isl_space *space = isl_basic_map_get_space(bmap);
2252 isl_basic_map_free(bmap);
2253 isl_basic_map_free(context);
2254 return isl_basic_map_universe(space);
2256 if (isl_basic_map_plain_is_empty(bmap)) {
2257 isl_basic_map_free(context);
2258 return bmap;
2261 bmap = isl_basic_map_remove_redundancies(bmap);
2262 context = isl_basic_map_remove_redundancies(context);
2263 if (!context)
2264 goto error;
2266 if (context->n_eq)
2267 bmap = normalize_divs_in_context(bmap, context);
2269 context = isl_basic_map_align_divs(context, bmap);
2270 bmap = isl_basic_map_align_divs(bmap, context);
2271 n_div = isl_basic_map_dim(bmap, isl_dim_div);
2273 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2274 isl_basic_map_underlying_set(isl_basic_map_copy(context)));
2276 if (!bset || bset->n_eq == 0 || n_div == 0 ||
2277 isl_basic_set_plain_is_empty(bset)) {
2278 isl_basic_map_free(context);
2279 return isl_basic_map_overlying_set(bset, bmap);
2282 n_eq = bset->n_eq;
2283 n_ineq = bset->n_ineq;
2284 eq = isl_basic_set_copy(bset);
2285 eq = isl_basic_set_cow(eq);
2286 if (isl_basic_set_free_inequality(eq, n_ineq) < 0)
2287 eq = isl_basic_set_free(eq);
2288 if (isl_basic_set_free_equality(bset, n_eq) < 0)
2289 bset = isl_basic_set_free(bset);
2291 eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
2292 eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
2293 bmap = isl_basic_map_overlying_set(bset, bmap);
2294 bmap = isl_basic_map_intersect(bmap, eq_bmap);
2295 bmap = isl_basic_map_remove_redundancies(bmap);
2297 return bmap;
2298 error:
2299 isl_basic_map_free(bmap);
2300 isl_basic_map_free(context);
2301 return NULL;
2305 * Assumes context has no implicit divs.
2307 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2308 __isl_take isl_basic_map *context)
2310 int i;
2312 if (!map || !context)
2313 goto error;
2315 if (isl_basic_map_plain_is_empty(context)) {
2316 isl_space *space = isl_map_get_space(map);
2317 isl_map_free(map);
2318 isl_basic_map_free(context);
2319 return isl_map_universe(space);
2322 context = isl_basic_map_remove_redundancies(context);
2323 map = isl_map_cow(map);
2324 if (!map || !context)
2325 goto error;
2326 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2327 map = isl_map_compute_divs(map);
2328 if (!map)
2329 goto error;
2330 for (i = map->n - 1; i >= 0; --i) {
2331 map->p[i] = isl_basic_map_gist(map->p[i],
2332 isl_basic_map_copy(context));
2333 if (!map->p[i])
2334 goto error;
2335 if (isl_basic_map_plain_is_empty(map->p[i])) {
2336 isl_basic_map_free(map->p[i]);
2337 if (i != map->n - 1)
2338 map->p[i] = map->p[map->n - 1];
2339 map->n--;
2342 isl_basic_map_free(context);
2343 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2344 return map;
2345 error:
2346 isl_map_free(map);
2347 isl_basic_map_free(context);
2348 return NULL;
2351 /* Return a map that has the same intersection with "context" as "map"
2352 * and that is as "simple" as possible.
2354 * If "map" is already the universe, then we cannot make it any simpler.
2355 * Similarly, if "context" is the universe, then we cannot exploit it
2356 * to simplify "map"
2357 * If "map" and "context" are identical to each other, then we can
2358 * return the corresponding universe.
2360 * If none of these cases apply, we have to work a bit harder.
2362 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2363 __isl_take isl_map *context)
2365 int equal;
2366 int is_universe;
2368 is_universe = isl_map_plain_is_universe(map);
2369 if (is_universe >= 0 && !is_universe)
2370 is_universe = isl_map_plain_is_universe(context);
2371 if (is_universe < 0)
2372 goto error;
2373 if (is_universe) {
2374 isl_map_free(context);
2375 return map;
2378 equal = isl_map_plain_is_equal(map, context);
2379 if (equal < 0)
2380 goto error;
2381 if (equal) {
2382 isl_map *res = isl_map_universe(isl_map_get_space(map));
2383 isl_map_free(map);
2384 isl_map_free(context);
2385 return res;
2388 context = isl_map_compute_divs(context);
2389 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2390 error:
2391 isl_map_free(map);
2392 isl_map_free(context);
2393 return NULL;
2396 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2397 __isl_take isl_map *context)
2399 return isl_map_align_params_map_map_and(map, context, &map_gist);
2402 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2403 struct isl_basic_set *context)
2405 return (struct isl_basic_set *)isl_basic_map_gist(
2406 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2409 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2410 __isl_take isl_basic_set *context)
2412 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2413 (struct isl_basic_map *)context);
2416 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2417 __isl_take isl_basic_set *context)
2419 isl_space *space = isl_set_get_space(set);
2420 isl_basic_set *dom_context = isl_basic_set_universe(space);
2421 dom_context = isl_basic_set_intersect_params(dom_context, context);
2422 return isl_set_gist_basic_set(set, dom_context);
2425 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2426 __isl_take isl_set *context)
2428 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2429 (struct isl_map *)context);
2432 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2433 __isl_take isl_set *context)
2435 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2436 map_context = isl_map_intersect_domain(map_context, context);
2437 return isl_map_gist(map, map_context);
2440 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2441 __isl_take isl_set *context)
2443 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2444 map_context = isl_map_intersect_range(map_context, context);
2445 return isl_map_gist(map, map_context);
2448 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2449 __isl_take isl_set *context)
2451 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2452 map_context = isl_map_intersect_params(map_context, context);
2453 return isl_map_gist(map, map_context);
2456 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2457 __isl_take isl_set *context)
2459 return isl_map_gist_params(set, context);
2462 /* Quick check to see if two basic maps are disjoint.
2463 * In particular, we reduce the equalities and inequalities of
2464 * one basic map in the context of the equalities of the other
2465 * basic map and check if we get a contradiction.
2467 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2468 __isl_keep isl_basic_map *bmap2)
2470 struct isl_vec *v = NULL;
2471 int *elim = NULL;
2472 unsigned total;
2473 int i;
2475 if (!bmap1 || !bmap2)
2476 return -1;
2477 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2478 return -1);
2479 if (bmap1->n_div || bmap2->n_div)
2480 return 0;
2481 if (!bmap1->n_eq && !bmap2->n_eq)
2482 return 0;
2484 total = isl_space_dim(bmap1->dim, isl_dim_all);
2485 if (total == 0)
2486 return 0;
2487 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2488 if (!v)
2489 goto error;
2490 elim = isl_alloc_array(bmap1->ctx, int, total);
2491 if (!elim)
2492 goto error;
2493 compute_elimination_index(bmap1, elim);
2494 for (i = 0; i < bmap2->n_eq; ++i) {
2495 int reduced;
2496 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2497 bmap1, elim);
2498 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2499 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2500 goto disjoint;
2502 for (i = 0; i < bmap2->n_ineq; ++i) {
2503 int reduced;
2504 reduced = reduced_using_equalities(v->block.data,
2505 bmap2->ineq[i], bmap1, elim);
2506 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2507 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2508 goto disjoint;
2510 compute_elimination_index(bmap2, elim);
2511 for (i = 0; i < bmap1->n_ineq; ++i) {
2512 int reduced;
2513 reduced = reduced_using_equalities(v->block.data,
2514 bmap1->ineq[i], bmap2, elim);
2515 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2516 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2517 goto disjoint;
2519 isl_vec_free(v);
2520 free(elim);
2521 return 0;
2522 disjoint:
2523 isl_vec_free(v);
2524 free(elim);
2525 return 1;
2526 error:
2527 isl_vec_free(v);
2528 free(elim);
2529 return -1;
2532 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2533 __isl_keep isl_basic_set *bset2)
2535 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2536 (struct isl_basic_map *)bset2);
2539 /* Are "map1" and "map2" obviously disjoint?
2541 * If one of them is empty or if they live in different spaces (ignoring
2542 * parameters), then they are clearly disjoint.
2544 * If they have different parameters, then we skip any further tests.
2546 * If they are obviously equal, but not obviously empty, then we will
2547 * not be able to detect if they are disjoint.
2549 * Otherwise we check if each basic map in "map1" is obviously disjoint
2550 * from each basic map in "map2".
2552 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2553 __isl_keep isl_map *map2)
2555 int i, j;
2556 int disjoint;
2557 int intersect;
2558 int match;
2560 if (!map1 || !map2)
2561 return -1;
2563 disjoint = isl_map_plain_is_empty(map1);
2564 if (disjoint < 0 || disjoint)
2565 return disjoint;
2567 disjoint = isl_map_plain_is_empty(map2);
2568 if (disjoint < 0 || disjoint)
2569 return disjoint;
2571 match = isl_space_tuple_is_equal(map1->dim, isl_dim_in,
2572 map2->dim, isl_dim_in);
2573 if (match < 0 || !match)
2574 return match < 0 ? -1 : 1;
2576 match = isl_space_tuple_is_equal(map1->dim, isl_dim_out,
2577 map2->dim, isl_dim_out);
2578 if (match < 0 || !match)
2579 return match < 0 ? -1 : 1;
2581 match = isl_space_match(map1->dim, isl_dim_param,
2582 map2->dim, isl_dim_param);
2583 if (match < 0 || !match)
2584 return match < 0 ? -1 : 0;
2586 intersect = isl_map_plain_is_equal(map1, map2);
2587 if (intersect < 0 || intersect)
2588 return intersect < 0 ? -1 : 0;
2590 for (i = 0; i < map1->n; ++i) {
2591 for (j = 0; j < map2->n; ++j) {
2592 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2593 map2->p[j]);
2594 if (d != 1)
2595 return d;
2598 return 1;
2601 /* Are "map1" and "map2" disjoint?
2603 * They are disjoint if they are "obviously disjoint" or if one of them
2604 * is empty. Otherwise, they are not disjoint if one of them is universal.
2605 * If none of these cases apply, we compute the intersection and see if
2606 * the result is empty.
2608 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2610 int disjoint;
2611 int intersect;
2612 isl_map *test;
2614 disjoint = isl_map_plain_is_disjoint(map1, map2);
2615 if (disjoint < 0 || disjoint)
2616 return disjoint;
2618 disjoint = isl_map_is_empty(map1);
2619 if (disjoint < 0 || disjoint)
2620 return disjoint;
2622 disjoint = isl_map_is_empty(map2);
2623 if (disjoint < 0 || disjoint)
2624 return disjoint;
2626 intersect = isl_map_plain_is_universe(map1);
2627 if (intersect < 0 || intersect)
2628 return intersect < 0 ? -1 : 0;
2630 intersect = isl_map_plain_is_universe(map2);
2631 if (intersect < 0 || intersect)
2632 return intersect < 0 ? -1 : 0;
2634 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2635 disjoint = isl_map_is_empty(test);
2636 isl_map_free(test);
2638 return disjoint;
2641 /* Are "bmap1" and "bmap2" disjoint?
2643 * They are disjoint if they are "obviously disjoint" or if one of them
2644 * is empty. Otherwise, they are not disjoint if one of them is universal.
2645 * If none of these cases apply, we compute the intersection and see if
2646 * the result is empty.
2648 int isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
2649 __isl_keep isl_basic_map *bmap2)
2651 int disjoint;
2652 int intersect;
2653 isl_basic_map *test;
2655 disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
2656 if (disjoint < 0 || disjoint)
2657 return disjoint;
2659 disjoint = isl_basic_map_is_empty(bmap1);
2660 if (disjoint < 0 || disjoint)
2661 return disjoint;
2663 disjoint = isl_basic_map_is_empty(bmap2);
2664 if (disjoint < 0 || disjoint)
2665 return disjoint;
2667 intersect = isl_basic_map_is_universe(bmap1);
2668 if (intersect < 0 || intersect)
2669 return intersect < 0 ? -1 : 0;
2671 intersect = isl_basic_map_is_universe(bmap2);
2672 if (intersect < 0 || intersect)
2673 return intersect < 0 ? -1 : 0;
2675 test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
2676 isl_basic_map_copy(bmap2));
2677 disjoint = isl_basic_map_is_empty(test);
2678 isl_basic_map_free(test);
2680 return disjoint;
2683 /* Are "bset1" and "bset2" disjoint?
2685 int isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
2686 __isl_keep isl_basic_set *bset2)
2688 return isl_basic_map_is_disjoint(bset1, bset2);
2691 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2692 __isl_keep isl_set *set2)
2694 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2695 (struct isl_map *)set2);
2698 /* Are "set1" and "set2" disjoint?
2700 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2702 return isl_map_is_disjoint(set1, set2);
2705 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2707 return isl_set_plain_is_disjoint(set1, set2);
2710 /* Check if we can combine a given div with lower bound l and upper
2711 * bound u with some other div and if so return that other div.
2712 * Otherwise return -1.
2714 * We first check that
2715 * - the bounds are opposites of each other (except for the constant
2716 * term)
2717 * - the bounds do not reference any other div
2718 * - no div is defined in terms of this div
2720 * Let m be the size of the range allowed on the div by the bounds.
2721 * That is, the bounds are of the form
2723 * e <= a <= e + m - 1
2725 * with e some expression in the other variables.
2726 * We look for another div b such that no third div is defined in terms
2727 * of this second div b and such that in any constraint that contains
2728 * a (except for the given lower and upper bound), also contains b
2729 * with a coefficient that is m times that of b.
2730 * That is, all constraints (execpt for the lower and upper bound)
2731 * are of the form
2733 * e + f (a + m b) >= 0
2735 * If so, we return b so that "a + m b" can be replaced by
2736 * a single div "c = a + m b".
2738 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2739 unsigned div, unsigned l, unsigned u)
2741 int i, j;
2742 unsigned dim;
2743 int coalesce = -1;
2745 if (bmap->n_div <= 1)
2746 return -1;
2747 dim = isl_space_dim(bmap->dim, isl_dim_all);
2748 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2749 return -1;
2750 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2751 bmap->n_div - div - 1) != -1)
2752 return -1;
2753 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2754 dim + bmap->n_div))
2755 return -1;
2757 for (i = 0; i < bmap->n_div; ++i) {
2758 if (isl_int_is_zero(bmap->div[i][0]))
2759 continue;
2760 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2761 return -1;
2764 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2765 if (isl_int_is_neg(bmap->ineq[l][0])) {
2766 isl_int_sub(bmap->ineq[l][0],
2767 bmap->ineq[l][0], bmap->ineq[u][0]);
2768 bmap = isl_basic_map_copy(bmap);
2769 bmap = isl_basic_map_set_to_empty(bmap);
2770 isl_basic_map_free(bmap);
2771 return -1;
2773 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2774 for (i = 0; i < bmap->n_div; ++i) {
2775 if (i == div)
2776 continue;
2777 if (!pairs[i])
2778 continue;
2779 for (j = 0; j < bmap->n_div; ++j) {
2780 if (isl_int_is_zero(bmap->div[j][0]))
2781 continue;
2782 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2783 break;
2785 if (j < bmap->n_div)
2786 continue;
2787 for (j = 0; j < bmap->n_ineq; ++j) {
2788 int valid;
2789 if (j == l || j == u)
2790 continue;
2791 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2792 continue;
2793 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2794 break;
2795 isl_int_mul(bmap->ineq[j][1 + dim + div],
2796 bmap->ineq[j][1 + dim + div],
2797 bmap->ineq[l][0]);
2798 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2799 bmap->ineq[j][1 + dim + i]);
2800 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2801 bmap->ineq[j][1 + dim + div],
2802 bmap->ineq[l][0]);
2803 if (!valid)
2804 break;
2806 if (j < bmap->n_ineq)
2807 continue;
2808 coalesce = i;
2809 break;
2811 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2812 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2813 return coalesce;
2816 /* Given a lower and an upper bound on div i, construct an inequality
2817 * that when nonnegative ensures that this pair of bounds always allows
2818 * for an integer value of the given div.
2819 * The lower bound is inequality l, while the upper bound is inequality u.
2820 * The constructed inequality is stored in ineq.
2821 * g, fl, fu are temporary scalars.
2823 * Let the upper bound be
2825 * -n_u a + e_u >= 0
2827 * and the lower bound
2829 * n_l a + e_l >= 0
2831 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2832 * We have
2834 * - f_u e_l <= f_u f_l g a <= f_l e_u
2836 * Since all variables are integer valued, this is equivalent to
2838 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2840 * If this interval is at least f_u f_l g, then it contains at least
2841 * one integer value for a.
2842 * That is, the test constraint is
2844 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2846 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2847 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2849 unsigned dim;
2850 dim = isl_space_dim(bmap->dim, isl_dim_all);
2852 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2853 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2854 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2855 isl_int_neg(fu, fu);
2856 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2857 1 + dim + bmap->n_div);
2858 isl_int_add(ineq[0], ineq[0], fl);
2859 isl_int_add(ineq[0], ineq[0], fu);
2860 isl_int_sub_ui(ineq[0], ineq[0], 1);
2861 isl_int_mul(g, g, fl);
2862 isl_int_mul(g, g, fu);
2863 isl_int_sub(ineq[0], ineq[0], g);
2866 /* Remove more kinds of divs that are not strictly needed.
2867 * In particular, if all pairs of lower and upper bounds on a div
2868 * are such that they allow at least one integer value of the div,
2869 * the we can eliminate the div using Fourier-Motzkin without
2870 * introducing any spurious solutions.
2872 static struct isl_basic_map *drop_more_redundant_divs(
2873 struct isl_basic_map *bmap, int *pairs, int n)
2875 struct isl_tab *tab = NULL;
2876 struct isl_vec *vec = NULL;
2877 unsigned dim;
2878 int remove = -1;
2879 isl_int g, fl, fu;
2881 isl_int_init(g);
2882 isl_int_init(fl);
2883 isl_int_init(fu);
2885 if (!bmap)
2886 goto error;
2888 dim = isl_space_dim(bmap->dim, isl_dim_all);
2889 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2890 if (!vec)
2891 goto error;
2893 tab = isl_tab_from_basic_map(bmap, 0);
2895 while (n > 0) {
2896 int i, l, u;
2897 int best = -1;
2898 enum isl_lp_result res;
2900 for (i = 0; i < bmap->n_div; ++i) {
2901 if (!pairs[i])
2902 continue;
2903 if (best >= 0 && pairs[best] <= pairs[i])
2904 continue;
2905 best = i;
2908 i = best;
2909 for (l = 0; l < bmap->n_ineq; ++l) {
2910 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2911 continue;
2912 for (u = 0; u < bmap->n_ineq; ++u) {
2913 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2914 continue;
2915 construct_test_ineq(bmap, i, l, u,
2916 vec->el, g, fl, fu);
2917 res = isl_tab_min(tab, vec->el,
2918 bmap->ctx->one, &g, NULL, 0);
2919 if (res == isl_lp_error)
2920 goto error;
2921 if (res == isl_lp_empty) {
2922 bmap = isl_basic_map_set_to_empty(bmap);
2923 break;
2925 if (res != isl_lp_ok || isl_int_is_neg(g))
2926 break;
2928 if (u < bmap->n_ineq)
2929 break;
2931 if (l == bmap->n_ineq) {
2932 remove = i;
2933 break;
2935 pairs[i] = 0;
2936 --n;
2939 isl_tab_free(tab);
2940 isl_vec_free(vec);
2942 isl_int_clear(g);
2943 isl_int_clear(fl);
2944 isl_int_clear(fu);
2946 free(pairs);
2948 if (remove < 0)
2949 return bmap;
2951 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2952 return isl_basic_map_drop_redundant_divs(bmap);
2953 error:
2954 free(pairs);
2955 isl_basic_map_free(bmap);
2956 isl_tab_free(tab);
2957 isl_vec_free(vec);
2958 isl_int_clear(g);
2959 isl_int_clear(fl);
2960 isl_int_clear(fu);
2961 return NULL;
2964 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2965 * and the upper bound u, div1 always occurs together with div2 in the form
2966 * (div1 + m div2), where m is the constant range on the variable div1
2967 * allowed by l and u, replace the pair div1 and div2 by a single
2968 * div that is equal to div1 + m div2.
2970 * The new div will appear in the location that contains div2.
2971 * We need to modify all constraints that contain
2972 * div2 = (div - div1) / m
2973 * (If a constraint does not contain div2, it will also not contain div1.)
2974 * If the constraint also contains div1, then we know they appear
2975 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2976 * i.e., the coefficient of div is f.
2978 * Otherwise, we first need to introduce div1 into the constraint.
2979 * Let the l be
2981 * div1 + f >=0
2983 * and u
2985 * -div1 + f' >= 0
2987 * A lower bound on div2
2989 * n div2 + t >= 0
2991 * can be replaced by
2993 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2995 * with g = gcd(m,n).
2996 * An upper bound
2998 * -n div2 + t >= 0
3000 * can be replaced by
3002 * (-n * (m div2 + div1) + m t + n f')/g >= 0
3004 * These constraint are those that we would obtain from eliminating
3005 * div1 using Fourier-Motzkin.
3007 * After all constraints have been modified, we drop the lower and upper
3008 * bound and then drop div1.
3010 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
3011 unsigned div1, unsigned div2, unsigned l, unsigned u)
3013 isl_int a;
3014 isl_int b;
3015 isl_int m;
3016 unsigned dim, total;
3017 int i;
3019 dim = isl_space_dim(bmap->dim, isl_dim_all);
3020 total = 1 + dim + bmap->n_div;
3022 isl_int_init(a);
3023 isl_int_init(b);
3024 isl_int_init(m);
3025 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
3026 isl_int_add_ui(m, m, 1);
3028 for (i = 0; i < bmap->n_ineq; ++i) {
3029 if (i == l || i == u)
3030 continue;
3031 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
3032 continue;
3033 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
3034 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
3035 isl_int_divexact(a, m, b);
3036 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
3037 if (isl_int_is_pos(b)) {
3038 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3039 b, bmap->ineq[l], total);
3040 } else {
3041 isl_int_neg(b, b);
3042 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
3043 b, bmap->ineq[u], total);
3046 isl_int_set(bmap->ineq[i][1 + dim + div2],
3047 bmap->ineq[i][1 + dim + div1]);
3048 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
3051 isl_int_clear(a);
3052 isl_int_clear(b);
3053 isl_int_clear(m);
3054 if (l > u) {
3055 isl_basic_map_drop_inequality(bmap, l);
3056 isl_basic_map_drop_inequality(bmap, u);
3057 } else {
3058 isl_basic_map_drop_inequality(bmap, u);
3059 isl_basic_map_drop_inequality(bmap, l);
3061 bmap = isl_basic_map_drop_div(bmap, div1);
3062 return bmap;
3065 /* First check if we can coalesce any pair of divs and
3066 * then continue with dropping more redundant divs.
3068 * We loop over all pairs of lower and upper bounds on a div
3069 * with coefficient 1 and -1, respectively, check if there
3070 * is any other div "c" with which we can coalesce the div
3071 * and if so, perform the coalescing.
3073 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
3074 struct isl_basic_map *bmap, int *pairs, int n)
3076 int i, l, u;
3077 unsigned dim;
3079 dim = isl_space_dim(bmap->dim, isl_dim_all);
3081 for (i = 0; i < bmap->n_div; ++i) {
3082 if (!pairs[i])
3083 continue;
3084 for (l = 0; l < bmap->n_ineq; ++l) {
3085 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
3086 continue;
3087 for (u = 0; u < bmap->n_ineq; ++u) {
3088 int c;
3090 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
3091 continue;
3092 c = div_find_coalesce(bmap, pairs, i, l, u);
3093 if (c < 0)
3094 continue;
3095 free(pairs);
3096 bmap = coalesce_divs(bmap, i, c, l, u);
3097 return isl_basic_map_drop_redundant_divs(bmap);
3102 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
3103 return bmap;
3105 return drop_more_redundant_divs(bmap, pairs, n);
3108 /* Remove divs that are not strictly needed.
3109 * In particular, if a div only occurs positively (or negatively)
3110 * in constraints, then it can simply be dropped.
3111 * Also, if a div occurs in only two constraints and if moreover
3112 * those two constraints are opposite to each other, except for the constant
3113 * term and if the sum of the constant terms is such that for any value
3114 * of the other values, there is always at least one integer value of the
3115 * div, i.e., if one plus this sum is greater than or equal to
3116 * the (absolute value) of the coefficent of the div in the constraints,
3117 * then we can also simply drop the div.
3119 * We skip divs that appear in equalities or in the definition of other divs.
3120 * Divs that appear in the definition of other divs usually occur in at least
3121 * 4 constraints, but the constraints may have been simplified.
3123 * If any divs are left after these simple checks then we move on
3124 * to more complicated cases in drop_more_redundant_divs.
3126 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
3127 struct isl_basic_map *bmap)
3129 int i, j;
3130 unsigned off;
3131 int *pairs = NULL;
3132 int n = 0;
3134 if (!bmap)
3135 goto error;
3136 if (bmap->n_div == 0)
3137 return bmap;
3139 off = isl_space_dim(bmap->dim, isl_dim_all);
3140 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
3141 if (!pairs)
3142 goto error;
3144 for (i = 0; i < bmap->n_div; ++i) {
3145 int pos, neg;
3146 int last_pos, last_neg;
3147 int redundant;
3148 int defined;
3150 defined = !isl_int_is_zero(bmap->div[i][0]);
3151 for (j = i; j < bmap->n_div; ++j)
3152 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
3153 break;
3154 if (j < bmap->n_div)
3155 continue;
3156 for (j = 0; j < bmap->n_eq; ++j)
3157 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
3158 break;
3159 if (j < bmap->n_eq)
3160 continue;
3161 ++n;
3162 pos = neg = 0;
3163 for (j = 0; j < bmap->n_ineq; ++j) {
3164 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
3165 last_pos = j;
3166 ++pos;
3168 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
3169 last_neg = j;
3170 ++neg;
3173 pairs[i] = pos * neg;
3174 if (pairs[i] == 0) {
3175 for (j = bmap->n_ineq - 1; j >= 0; --j)
3176 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
3177 isl_basic_map_drop_inequality(bmap, j);
3178 bmap = isl_basic_map_drop_div(bmap, i);
3179 free(pairs);
3180 return isl_basic_map_drop_redundant_divs(bmap);
3182 if (pairs[i] != 1)
3183 continue;
3184 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3185 bmap->ineq[last_neg] + 1,
3186 off + bmap->n_div))
3187 continue;
3189 isl_int_add(bmap->ineq[last_pos][0],
3190 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3191 isl_int_add_ui(bmap->ineq[last_pos][0],
3192 bmap->ineq[last_pos][0], 1);
3193 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3194 bmap->ineq[last_pos][1+off+i]);
3195 isl_int_sub_ui(bmap->ineq[last_pos][0],
3196 bmap->ineq[last_pos][0], 1);
3197 isl_int_sub(bmap->ineq[last_pos][0],
3198 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3199 if (!redundant) {
3200 if (defined ||
3201 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3202 pairs[i] = 0;
3203 --n;
3204 continue;
3206 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3207 bmap = isl_basic_map_simplify(bmap);
3208 free(pairs);
3209 return isl_basic_map_drop_redundant_divs(bmap);
3211 if (last_pos > last_neg) {
3212 isl_basic_map_drop_inequality(bmap, last_pos);
3213 isl_basic_map_drop_inequality(bmap, last_neg);
3214 } else {
3215 isl_basic_map_drop_inequality(bmap, last_neg);
3216 isl_basic_map_drop_inequality(bmap, last_pos);
3218 bmap = isl_basic_map_drop_div(bmap, i);
3219 free(pairs);
3220 return isl_basic_map_drop_redundant_divs(bmap);
3223 if (n > 0)
3224 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3226 free(pairs);
3227 return bmap;
3228 error:
3229 free(pairs);
3230 isl_basic_map_free(bmap);
3231 return NULL;
3234 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3235 struct isl_basic_set *bset)
3237 return (struct isl_basic_set *)
3238 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3241 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3243 int i;
3245 if (!map)
3246 return NULL;
3247 for (i = 0; i < map->n; ++i) {
3248 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3249 if (!map->p[i])
3250 goto error;
3252 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3253 return map;
3254 error:
3255 isl_map_free(map);
3256 return NULL;
3259 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3261 return (struct isl_set *)
3262 isl_map_drop_redundant_divs((struct isl_map *)set);