isl_map_simplify.c: normalize_divs_in_context: improve error handling
[isl.git] / isl_map_simplify.c
blob47b13c0f93f7c5c211d4e9b9f765b4127544dbad
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, K.U.Leuven, Departement
8 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12 #include <strings.h>
13 #include <isl_ctx_private.h>
14 #include <isl_map_private.h>
15 #include "isl_equalities.h"
16 #include <isl/map.h>
17 #include <isl/seq.h>
18 #include "isl_tab.h"
19 #include <isl_space_private.h>
20 #include <isl_mat_private.h>
22 static void swap_equality(struct isl_basic_map *bmap, int a, int b)
24 isl_int *t = bmap->eq[a];
25 bmap->eq[a] = bmap->eq[b];
26 bmap->eq[b] = t;
29 static void swap_inequality(struct isl_basic_map *bmap, int a, int b)
31 if (a != b) {
32 isl_int *t = bmap->ineq[a];
33 bmap->ineq[a] = bmap->ineq[b];
34 bmap->ineq[b] = t;
38 static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem)
40 isl_seq_cpy(c, c + n, rem);
41 isl_seq_clr(c + rem, n);
44 /* Drop n dimensions starting at first.
46 * In principle, this frees up some extra variables as the number
47 * of columns remains constant, but we would have to extend
48 * the div array too as the number of rows in this array is assumed
49 * to be equal to extra.
51 struct isl_basic_set *isl_basic_set_drop_dims(
52 struct isl_basic_set *bset, unsigned first, unsigned n)
54 int i;
56 if (!bset)
57 goto error;
59 isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error);
61 if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set))
62 return bset;
64 bset = isl_basic_set_cow(bset);
65 if (!bset)
66 return NULL;
68 for (i = 0; i < bset->n_eq; ++i)
69 constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n,
70 (bset->dim->n_out-first-n)+bset->extra);
72 for (i = 0; i < bset->n_ineq; ++i)
73 constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n,
74 (bset->dim->n_out-first-n)+bset->extra);
76 for (i = 0; i < bset->n_div; ++i)
77 constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n,
78 (bset->dim->n_out-first-n)+bset->extra);
80 bset->dim = isl_space_drop_outputs(bset->dim, first, n);
81 if (!bset->dim)
82 goto error;
84 ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED);
85 bset = isl_basic_set_simplify(bset);
86 return isl_basic_set_finalize(bset);
87 error:
88 isl_basic_set_free(bset);
89 return NULL;
92 struct isl_set *isl_set_drop_dims(
93 struct isl_set *set, unsigned first, unsigned n)
95 int i;
97 if (!set)
98 goto error;
100 isl_assert(set->ctx, first + n <= set->dim->n_out, goto error);
102 if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set))
103 return set;
104 set = isl_set_cow(set);
105 if (!set)
106 goto error;
107 set->dim = isl_space_drop_outputs(set->dim, first, n);
108 if (!set->dim)
109 goto error;
111 for (i = 0; i < set->n; ++i) {
112 set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n);
113 if (!set->p[i])
114 goto error;
117 ISL_F_CLR(set, ISL_SET_NORMALIZED);
118 return set;
119 error:
120 isl_set_free(set);
121 return NULL;
124 /* Move "n" divs starting at "first" to the end of the list of divs.
126 static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap,
127 unsigned first, unsigned n)
129 isl_int **div;
130 int i;
132 if (first + n == bmap->n_div)
133 return bmap;
135 div = isl_alloc_array(bmap->ctx, isl_int *, n);
136 if (!div)
137 goto error;
138 for (i = 0; i < n; ++i)
139 div[i] = bmap->div[first + i];
140 for (i = 0; i < bmap->n_div - first - n; ++i)
141 bmap->div[first + i] = bmap->div[first + n + i];
142 for (i = 0; i < n; ++i)
143 bmap->div[bmap->n_div - n + i] = div[i];
144 free(div);
145 return bmap;
146 error:
147 isl_basic_map_free(bmap);
148 return NULL;
151 /* Drop "n" dimensions of type "type" starting at "first".
153 * In principle, this frees up some extra variables as the number
154 * of columns remains constant, but we would have to extend
155 * the div array too as the number of rows in this array is assumed
156 * to be equal to extra.
158 struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap,
159 enum isl_dim_type type, unsigned first, unsigned n)
161 int i;
162 unsigned dim;
163 unsigned offset;
164 unsigned left;
166 if (!bmap)
167 goto error;
169 dim = isl_basic_map_dim(bmap, type);
170 isl_assert(bmap->ctx, first + n <= dim, goto error);
172 if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type))
173 return bmap;
175 bmap = isl_basic_map_cow(bmap);
176 if (!bmap)
177 return NULL;
179 offset = isl_basic_map_offset(bmap, type) + first;
180 left = isl_basic_map_total_dim(bmap) - (offset - 1) - n;
181 for (i = 0; i < bmap->n_eq; ++i)
182 constraint_drop_vars(bmap->eq[i]+offset, n, left);
184 for (i = 0; i < bmap->n_ineq; ++i)
185 constraint_drop_vars(bmap->ineq[i]+offset, n, left);
187 for (i = 0; i < bmap->n_div; ++i)
188 constraint_drop_vars(bmap->div[i]+1+offset, n, left);
190 if (type == isl_dim_div) {
191 bmap = move_divs_last(bmap, first, n);
192 if (!bmap)
193 goto error;
194 isl_basic_map_free_div(bmap, n);
195 } else
196 bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n);
197 if (!bmap->dim)
198 goto error;
200 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
201 bmap = isl_basic_map_simplify(bmap);
202 return isl_basic_map_finalize(bmap);
203 error:
204 isl_basic_map_free(bmap);
205 return NULL;
208 __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset,
209 enum isl_dim_type type, unsigned first, unsigned n)
211 return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset,
212 type, first, n);
215 struct isl_basic_map *isl_basic_map_drop_inputs(
216 struct isl_basic_map *bmap, unsigned first, unsigned n)
218 return isl_basic_map_drop(bmap, isl_dim_in, first, n);
221 struct isl_map *isl_map_drop(struct isl_map *map,
222 enum isl_dim_type type, unsigned first, unsigned n)
224 int i;
226 if (!map)
227 goto error;
229 isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error);
231 if (n == 0 && !isl_space_get_tuple_name(map->dim, type))
232 return map;
233 map = isl_map_cow(map);
234 if (!map)
235 goto error;
236 map->dim = isl_space_drop_dims(map->dim, type, first, n);
237 if (!map->dim)
238 goto error;
240 for (i = 0; i < map->n; ++i) {
241 map->p[i] = isl_basic_map_drop(map->p[i], type, first, n);
242 if (!map->p[i])
243 goto error;
245 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
247 return map;
248 error:
249 isl_map_free(map);
250 return NULL;
253 struct isl_set *isl_set_drop(struct isl_set *set,
254 enum isl_dim_type type, unsigned first, unsigned n)
256 return (isl_set *)isl_map_drop((isl_map *)set, type, first, n);
259 struct isl_map *isl_map_drop_inputs(
260 struct isl_map *map, unsigned first, unsigned n)
262 return isl_map_drop(map, isl_dim_in, first, n);
266 * We don't cow, as the div is assumed to be redundant.
268 static struct isl_basic_map *isl_basic_map_drop_div(
269 struct isl_basic_map *bmap, unsigned div)
271 int i;
272 unsigned pos;
274 if (!bmap)
275 goto error;
277 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
279 isl_assert(bmap->ctx, div < bmap->n_div, goto error);
281 for (i = 0; i < bmap->n_eq; ++i)
282 constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1);
284 for (i = 0; i < bmap->n_ineq; ++i) {
285 if (!isl_int_is_zero(bmap->ineq[i][pos])) {
286 isl_basic_map_drop_inequality(bmap, i);
287 --i;
288 continue;
290 constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1);
293 for (i = 0; i < bmap->n_div; ++i)
294 constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1);
296 if (div != bmap->n_div - 1) {
297 int j;
298 isl_int *t = bmap->div[div];
300 for (j = div; j < bmap->n_div - 1; ++j)
301 bmap->div[j] = bmap->div[j+1];
303 bmap->div[bmap->n_div - 1] = t;
305 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
306 isl_basic_map_free_div(bmap, 1);
308 return bmap;
309 error:
310 isl_basic_map_free(bmap);
311 return NULL;
314 struct isl_basic_map *isl_basic_map_normalize_constraints(
315 struct isl_basic_map *bmap)
317 int i;
318 isl_int gcd;
319 unsigned total = isl_basic_map_total_dim(bmap);
321 if (!bmap)
322 return NULL;
324 isl_int_init(gcd);
325 for (i = bmap->n_eq - 1; i >= 0; --i) {
326 isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
327 if (isl_int_is_zero(gcd)) {
328 if (!isl_int_is_zero(bmap->eq[i][0])) {
329 bmap = isl_basic_map_set_to_empty(bmap);
330 break;
332 isl_basic_map_drop_equality(bmap, i);
333 continue;
335 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
336 isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
337 if (isl_int_is_one(gcd))
338 continue;
339 if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
340 bmap = isl_basic_map_set_to_empty(bmap);
341 break;
343 isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
346 for (i = bmap->n_ineq - 1; i >= 0; --i) {
347 isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
348 if (isl_int_is_zero(gcd)) {
349 if (isl_int_is_neg(bmap->ineq[i][0])) {
350 bmap = isl_basic_map_set_to_empty(bmap);
351 break;
353 isl_basic_map_drop_inequality(bmap, i);
354 continue;
356 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
357 isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
358 if (isl_int_is_one(gcd))
359 continue;
360 isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
361 isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
363 isl_int_clear(gcd);
365 return bmap;
368 struct isl_basic_set *isl_basic_set_normalize_constraints(
369 struct isl_basic_set *bset)
371 return (struct isl_basic_set *)isl_basic_map_normalize_constraints(
372 (struct isl_basic_map *)bset);
375 /* Remove any common factor in numerator and denominator of the div expression,
376 * not taking into account the constant term.
377 * That is, if the div is of the form
379 * floor((a + m f(x))/(m d))
381 * then replace it by
383 * floor((floor(a/m) + f(x))/d)
385 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
386 * and can therefore not influence the result of the floor.
388 static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div)
390 unsigned total = isl_basic_map_total_dim(bmap);
391 isl_ctx *ctx = bmap->ctx;
393 if (isl_int_is_zero(bmap->div[div][0]))
394 return;
395 isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
396 isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
397 if (isl_int_is_one(ctx->normalize_gcd))
398 return;
399 isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
400 ctx->normalize_gcd);
401 isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
402 ctx->normalize_gcd);
403 isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
404 ctx->normalize_gcd, total);
407 /* Remove any common factor in numerator and denominator of a div expression,
408 * not taking into account the constant term.
409 * That is, look for any div of the form
411 * floor((a + m f(x))/(m d))
413 * and replace it by
415 * floor((floor(a/m) + f(x))/d)
417 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
418 * and can therefore not influence the result of the floor.
420 static __isl_give isl_basic_map *normalize_div_expressions(
421 __isl_take isl_basic_map *bmap)
423 int i;
425 if (!bmap)
426 return NULL;
427 if (bmap->n_div == 0)
428 return bmap;
430 for (i = 0; i < bmap->n_div; ++i)
431 normalize_div_expression(bmap, i);
433 return bmap;
436 /* Assumes divs have been ordered if keep_divs is set.
438 static void eliminate_var_using_equality(struct isl_basic_map *bmap,
439 unsigned pos, isl_int *eq, int keep_divs, int *progress)
441 unsigned total;
442 unsigned space_total;
443 int k;
444 int last_div;
446 total = isl_basic_map_total_dim(bmap);
447 space_total = isl_space_dim(bmap->dim, isl_dim_all);
448 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
449 for (k = 0; k < bmap->n_eq; ++k) {
450 if (bmap->eq[k] == eq)
451 continue;
452 if (isl_int_is_zero(bmap->eq[k][1+pos]))
453 continue;
454 if (progress)
455 *progress = 1;
456 isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
457 isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
460 for (k = 0; k < bmap->n_ineq; ++k) {
461 if (isl_int_is_zero(bmap->ineq[k][1+pos]))
462 continue;
463 if (progress)
464 *progress = 1;
465 isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
466 isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
467 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
470 for (k = 0; k < bmap->n_div; ++k) {
471 if (isl_int_is_zero(bmap->div[k][0]))
472 continue;
473 if (isl_int_is_zero(bmap->div[k][1+1+pos]))
474 continue;
475 if (progress)
476 *progress = 1;
477 /* We need to be careful about circular definitions,
478 * so for now we just remove the definition of div k
479 * if the equality contains any divs.
480 * If keep_divs is set, then the divs have been ordered
481 * and we can keep the definition as long as the result
482 * is still ordered.
484 if (last_div == -1 || (keep_divs && last_div < k)) {
485 isl_seq_elim(bmap->div[k]+1, eq,
486 1+pos, 1+total, &bmap->div[k][0]);
487 normalize_div_expression(bmap, k);
488 } else
489 isl_seq_clr(bmap->div[k], 1 + total);
490 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
494 /* Assumes divs have been ordered if keep_divs is set.
496 static void eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
497 unsigned div, int keep_divs)
499 unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div;
501 eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
503 isl_basic_map_drop_div(bmap, div);
506 /* Check if elimination of div "div" using equality "eq" would not
507 * result in a div depending on a later div.
509 static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq,
510 unsigned div)
512 int k;
513 int last_div;
514 unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all);
515 unsigned pos = space_total + div;
517 last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div);
518 if (last_div < 0 || last_div <= div)
519 return 1;
521 for (k = 0; k <= last_div; ++k) {
522 if (isl_int_is_zero(bmap->div[k][0]))
523 return 1;
524 if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
525 return 0;
528 return 1;
531 /* Elimininate divs based on equalities
533 static struct isl_basic_map *eliminate_divs_eq(
534 struct isl_basic_map *bmap, int *progress)
536 int d;
537 int i;
538 int modified = 0;
539 unsigned off;
541 bmap = isl_basic_map_order_divs(bmap);
543 if (!bmap)
544 return NULL;
546 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
548 for (d = bmap->n_div - 1; d >= 0 ; --d) {
549 for (i = 0; i < bmap->n_eq; ++i) {
550 if (!isl_int_is_one(bmap->eq[i][off + d]) &&
551 !isl_int_is_negone(bmap->eq[i][off + d]))
552 continue;
553 if (!ok_to_eliminate_div(bmap, bmap->eq[i], d))
554 continue;
555 modified = 1;
556 *progress = 1;
557 eliminate_div(bmap, bmap->eq[i], d, 1);
558 isl_basic_map_drop_equality(bmap, i);
559 break;
562 if (modified)
563 return eliminate_divs_eq(bmap, progress);
564 return bmap;
567 /* Elimininate divs based on inequalities
569 static struct isl_basic_map *eliminate_divs_ineq(
570 struct isl_basic_map *bmap, int *progress)
572 int d;
573 int i;
574 unsigned off;
575 struct isl_ctx *ctx;
577 if (!bmap)
578 return NULL;
580 ctx = bmap->ctx;
581 off = 1 + isl_space_dim(bmap->dim, isl_dim_all);
583 for (d = bmap->n_div - 1; d >= 0 ; --d) {
584 for (i = 0; i < bmap->n_eq; ++i)
585 if (!isl_int_is_zero(bmap->eq[i][off + d]))
586 break;
587 if (i < bmap->n_eq)
588 continue;
589 for (i = 0; i < bmap->n_ineq; ++i)
590 if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
591 break;
592 if (i < bmap->n_ineq)
593 continue;
594 *progress = 1;
595 bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
596 if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
597 break;
598 bmap = isl_basic_map_drop_div(bmap, d);
599 if (!bmap)
600 break;
602 return bmap;
605 struct isl_basic_map *isl_basic_map_gauss(
606 struct isl_basic_map *bmap, int *progress)
608 int k;
609 int done;
610 int last_var;
611 unsigned total_var;
612 unsigned total;
614 bmap = isl_basic_map_order_divs(bmap);
616 if (!bmap)
617 return NULL;
619 total = isl_basic_map_total_dim(bmap);
620 total_var = total - bmap->n_div;
622 last_var = total - 1;
623 for (done = 0; done < bmap->n_eq; ++done) {
624 for (; last_var >= 0; --last_var) {
625 for (k = done; k < bmap->n_eq; ++k)
626 if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
627 break;
628 if (k < bmap->n_eq)
629 break;
631 if (last_var < 0)
632 break;
633 if (k != done)
634 swap_equality(bmap, k, done);
635 if (isl_int_is_neg(bmap->eq[done][1+last_var]))
636 isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
638 eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1,
639 progress);
641 if (last_var >= total_var &&
642 isl_int_is_zero(bmap->div[last_var - total_var][0])) {
643 unsigned div = last_var - total_var;
644 isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total);
645 isl_int_set_si(bmap->div[div][1+1+last_var], 0);
646 isl_int_set(bmap->div[div][0],
647 bmap->eq[done][1+last_var]);
648 if (progress)
649 *progress = 1;
650 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
653 if (done == bmap->n_eq)
654 return bmap;
655 for (k = done; k < bmap->n_eq; ++k) {
656 if (isl_int_is_zero(bmap->eq[k][0]))
657 continue;
658 return isl_basic_map_set_to_empty(bmap);
660 isl_basic_map_free_equality(bmap, bmap->n_eq-done);
661 return bmap;
664 struct isl_basic_set *isl_basic_set_gauss(
665 struct isl_basic_set *bset, int *progress)
667 return (struct isl_basic_set*)isl_basic_map_gauss(
668 (struct isl_basic_map *)bset, progress);
672 static unsigned int round_up(unsigned int v)
674 int old_v = v;
676 while (v) {
677 old_v = v;
678 v ^= v & -v;
680 return old_v << 1;
683 static int hash_index(isl_int ***index, unsigned int size, int bits,
684 struct isl_basic_map *bmap, int k)
686 int h;
687 unsigned total = isl_basic_map_total_dim(bmap);
688 uint32_t hash = isl_seq_get_hash_bits(bmap->ineq[k]+1, total, bits);
689 for (h = hash; index[h]; h = (h+1) % size)
690 if (&bmap->ineq[k] != index[h] &&
691 isl_seq_eq(bmap->ineq[k]+1, index[h][0]+1, total))
692 break;
693 return h;
696 static int set_hash_index(isl_int ***index, unsigned int size, int bits,
697 struct isl_basic_set *bset, int k)
699 return hash_index(index, size, bits, (struct isl_basic_map *)bset, k);
702 /* If we can eliminate more than one div, then we need to make
703 * sure we do it from last div to first div, in order not to
704 * change the position of the other divs that still need to
705 * be removed.
707 static struct isl_basic_map *remove_duplicate_divs(
708 struct isl_basic_map *bmap, int *progress)
710 unsigned int size;
711 int *index;
712 int *elim_for;
713 int k, l, h;
714 int bits;
715 struct isl_blk eq;
716 unsigned total_var;
717 unsigned total;
718 struct isl_ctx *ctx;
720 bmap = isl_basic_map_order_divs(bmap);
721 if (!bmap || bmap->n_div <= 1)
722 return bmap;
724 total_var = isl_space_dim(bmap->dim, isl_dim_all);
725 total = total_var + bmap->n_div;
727 ctx = bmap->ctx;
728 for (k = bmap->n_div - 1; k >= 0; --k)
729 if (!isl_int_is_zero(bmap->div[k][0]))
730 break;
731 if (k <= 0)
732 return bmap;
734 elim_for = isl_calloc_array(ctx, int, bmap->n_div);
735 size = round_up(4 * bmap->n_div / 3 - 1);
736 bits = ffs(size) - 1;
737 index = isl_calloc_array(ctx, int, size);
738 if (!index)
739 return bmap;
740 eq = isl_blk_alloc(ctx, 1+total);
741 if (isl_blk_is_error(eq))
742 goto out;
744 isl_seq_clr(eq.data, 1+total);
745 index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
746 for (--k; k >= 0; --k) {
747 uint32_t hash;
749 if (isl_int_is_zero(bmap->div[k][0]))
750 continue;
752 hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
753 for (h = hash; index[h]; h = (h+1) % size)
754 if (isl_seq_eq(bmap->div[k],
755 bmap->div[index[h]-1], 2+total))
756 break;
757 if (index[h]) {
758 *progress = 1;
759 l = index[h] - 1;
760 elim_for[l] = k + 1;
762 index[h] = k+1;
764 for (l = bmap->n_div - 1; l >= 0; --l) {
765 if (!elim_for[l])
766 continue;
767 k = elim_for[l] - 1;
768 isl_int_set_si(eq.data[1+total_var+k], -1);
769 isl_int_set_si(eq.data[1+total_var+l], 1);
770 eliminate_div(bmap, eq.data, l, 1);
771 isl_int_set_si(eq.data[1+total_var+k], 0);
772 isl_int_set_si(eq.data[1+total_var+l], 0);
775 isl_blk_free(ctx, eq);
776 out:
777 free(index);
778 free(elim_for);
779 return bmap;
782 static int n_pure_div_eq(struct isl_basic_map *bmap)
784 int i, j;
785 unsigned total;
787 total = isl_space_dim(bmap->dim, isl_dim_all);
788 for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
789 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
790 --j;
791 if (j < 0)
792 break;
793 if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1)
794 return 0;
796 return i;
799 /* Normalize divs that appear in equalities.
801 * In particular, we assume that bmap contains some equalities
802 * of the form
804 * a x = m * e_i
806 * and we want to replace the set of e_i by a minimal set and
807 * such that the new e_i have a canonical representation in terms
808 * of the vector x.
809 * If any of the equalities involves more than one divs, then
810 * we currently simply bail out.
812 * Let us first additionally assume that all equalities involve
813 * a div. The equalities then express modulo constraints on the
814 * remaining variables and we can use "parameter compression"
815 * to find a minimal set of constraints. The result is a transformation
817 * x = T(x') = x_0 + G x'
819 * with G a lower-triangular matrix with all elements below the diagonal
820 * non-negative and smaller than the diagonal element on the same row.
821 * We first normalize x_0 by making the same property hold in the affine
822 * T matrix.
823 * The rows i of G with a 1 on the diagonal do not impose any modulo
824 * constraint and simply express x_i = x'_i.
825 * For each of the remaining rows i, we introduce a div and a corresponding
826 * equality. In particular
828 * g_ii e_j = x_i - g_i(x')
830 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
831 * corresponding div (if g_kk != 1).
833 * If there are any equalities not involving any div, then we
834 * first apply a variable compression on the variables x:
836 * x = C x'' x'' = C_2 x
838 * and perform the above parameter compression on A C instead of on A.
839 * The resulting compression is then of the form
841 * x'' = T(x') = x_0 + G x'
843 * and in constructing the new divs and the corresponding equalities,
844 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
845 * by the corresponding row from C_2.
847 static struct isl_basic_map *normalize_divs(
848 struct isl_basic_map *bmap, int *progress)
850 int i, j, k;
851 int total;
852 int div_eq;
853 struct isl_mat *B;
854 struct isl_vec *d;
855 struct isl_mat *T = NULL;
856 struct isl_mat *C = NULL;
857 struct isl_mat *C2 = NULL;
858 isl_int v;
859 int *pos;
860 int dropped, needed;
862 if (!bmap)
863 return NULL;
865 if (bmap->n_div == 0)
866 return bmap;
868 if (bmap->n_eq == 0)
869 return bmap;
871 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
872 return bmap;
874 total = isl_space_dim(bmap->dim, isl_dim_all);
875 div_eq = n_pure_div_eq(bmap);
876 if (div_eq == 0)
877 return bmap;
879 if (div_eq < bmap->n_eq) {
880 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
881 bmap->n_eq - div_eq, 0, 1 + total);
882 C = isl_mat_variable_compression(B, &C2);
883 if (!C || !C2)
884 goto error;
885 if (C->n_col == 0) {
886 bmap = isl_basic_map_set_to_empty(bmap);
887 isl_mat_free(C);
888 isl_mat_free(C2);
889 goto done;
893 d = isl_vec_alloc(bmap->ctx, div_eq);
894 if (!d)
895 goto error;
896 for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
897 while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j]))
898 --j;
899 isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]);
901 B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total);
903 if (C) {
904 B = isl_mat_product(B, C);
905 C = NULL;
908 T = isl_mat_parameter_compression(B, d);
909 if (!T)
910 goto error;
911 if (T->n_col == 0) {
912 bmap = isl_basic_map_set_to_empty(bmap);
913 isl_mat_free(C2);
914 isl_mat_free(T);
915 goto done;
917 isl_int_init(v);
918 for (i = 0; i < T->n_row - 1; ++i) {
919 isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
920 if (isl_int_is_zero(v))
921 continue;
922 isl_mat_col_submul(T, 0, v, 1 + i);
924 isl_int_clear(v);
925 pos = isl_alloc_array(bmap->ctx, int, T->n_row);
926 if (!pos)
927 goto error;
928 /* We have to be careful because dropping equalities may reorder them */
929 dropped = 0;
930 for (j = bmap->n_div - 1; j >= 0; --j) {
931 for (i = 0; i < bmap->n_eq; ++i)
932 if (!isl_int_is_zero(bmap->eq[i][1 + total + j]))
933 break;
934 if (i < bmap->n_eq) {
935 bmap = isl_basic_map_drop_div(bmap, j);
936 isl_basic_map_drop_equality(bmap, i);
937 ++dropped;
940 pos[0] = 0;
941 needed = 0;
942 for (i = 1; i < T->n_row; ++i) {
943 if (isl_int_is_one(T->row[i][i]))
944 pos[i] = i;
945 else
946 needed++;
948 if (needed > dropped) {
949 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim),
950 needed, needed, 0);
951 if (!bmap)
952 goto error;
954 for (i = 1; i < T->n_row; ++i) {
955 if (isl_int_is_one(T->row[i][i]))
956 continue;
957 k = isl_basic_map_alloc_div(bmap);
958 pos[i] = 1 + total + k;
959 isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div);
960 isl_int_set(bmap->div[k][0], T->row[i][i]);
961 if (C2)
962 isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total);
963 else
964 isl_int_set_si(bmap->div[k][1 + i], 1);
965 for (j = 0; j < i; ++j) {
966 if (isl_int_is_zero(T->row[i][j]))
967 continue;
968 if (pos[j] < T->n_row && C2)
969 isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
970 C2->row[pos[j]], 1 + total);
971 else
972 isl_int_neg(bmap->div[k][1 + pos[j]],
973 T->row[i][j]);
975 j = isl_basic_map_alloc_equality(bmap);
976 isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div);
977 isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
979 free(pos);
980 isl_mat_free(C2);
981 isl_mat_free(T);
983 if (progress)
984 *progress = 1;
985 done:
986 ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
988 return bmap;
989 error:
990 isl_mat_free(C);
991 isl_mat_free(C2);
992 isl_mat_free(T);
993 return bmap;
996 static struct isl_basic_map *set_div_from_lower_bound(
997 struct isl_basic_map *bmap, int div, int ineq)
999 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1001 isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1002 isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1003 isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1004 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1005 isl_int_set_si(bmap->div[div][1 + total + div], 0);
1007 return bmap;
1010 /* Check whether it is ok to define a div based on an inequality.
1011 * To avoid the introduction of circular definitions of divs, we
1012 * do not allow such a definition if the resulting expression would refer to
1013 * any other undefined divs or if any known div is defined in
1014 * terms of the unknown div.
1016 static int ok_to_set_div_from_bound(struct isl_basic_map *bmap,
1017 int div, int ineq)
1019 int j;
1020 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1022 /* Not defined in terms of unknown divs */
1023 for (j = 0; j < bmap->n_div; ++j) {
1024 if (div == j)
1025 continue;
1026 if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1027 continue;
1028 if (isl_int_is_zero(bmap->div[j][0]))
1029 return 0;
1032 /* No other div defined in terms of this one => avoid loops */
1033 for (j = 0; j < bmap->n_div; ++j) {
1034 if (div == j)
1035 continue;
1036 if (isl_int_is_zero(bmap->div[j][0]))
1037 continue;
1038 if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1039 return 0;
1042 return 1;
1045 /* Given two constraints "k" and "l" that are opposite to each other,
1046 * except for the constant term, check if we can use them
1047 * to obtain an expression for one of the hitherto unknown divs.
1048 * "sum" is the sum of the constant terms of the constraints.
1049 * If this sum is strictly smaller than the coefficient of one
1050 * of the divs, then this pair can be used define the div.
1051 * To avoid the introduction of circular definitions of divs, we
1052 * do not use the pair if the resulting expression would refer to
1053 * any other undefined divs or if any known div is defined in
1054 * terms of the unknown div.
1056 static struct isl_basic_map *check_for_div_constraints(
1057 struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress)
1059 int i;
1060 unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1062 for (i = 0; i < bmap->n_div; ++i) {
1063 if (!isl_int_is_zero(bmap->div[i][0]))
1064 continue;
1065 if (isl_int_is_zero(bmap->ineq[k][total + i]))
1066 continue;
1067 if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1068 continue;
1069 if (!ok_to_set_div_from_bound(bmap, i, k))
1070 break;
1071 if (isl_int_is_pos(bmap->ineq[k][total + i]))
1072 bmap = set_div_from_lower_bound(bmap, i, k);
1073 else
1074 bmap = set_div_from_lower_bound(bmap, i, l);
1075 if (progress)
1076 *progress = 1;
1077 break;
1079 return bmap;
1082 static struct isl_basic_map *remove_duplicate_constraints(
1083 struct isl_basic_map *bmap, int *progress, int detect_divs)
1085 unsigned int size;
1086 isl_int ***index;
1087 int k, l, h;
1088 int bits;
1089 unsigned total = isl_basic_map_total_dim(bmap);
1090 isl_int sum;
1091 isl_ctx *ctx;
1093 if (!bmap || bmap->n_ineq <= 1)
1094 return bmap;
1096 size = round_up(4 * (bmap->n_ineq+1) / 3 - 1);
1097 bits = ffs(size) - 1;
1098 ctx = isl_basic_map_get_ctx(bmap);
1099 index = isl_calloc_array(ctx, isl_int **, size);
1100 if (!index)
1101 return bmap;
1103 index[isl_seq_get_hash_bits(bmap->ineq[0]+1, total, bits)] = &bmap->ineq[0];
1104 for (k = 1; k < bmap->n_ineq; ++k) {
1105 h = hash_index(index, size, bits, bmap, k);
1106 if (!index[h]) {
1107 index[h] = &bmap->ineq[k];
1108 continue;
1110 if (progress)
1111 *progress = 1;
1112 l = index[h] - &bmap->ineq[0];
1113 if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1114 swap_inequality(bmap, k, l);
1115 isl_basic_map_drop_inequality(bmap, k);
1116 --k;
1118 isl_int_init(sum);
1119 for (k = 0; k < bmap->n_ineq-1; ++k) {
1120 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1121 h = hash_index(index, size, bits, bmap, k);
1122 isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1123 if (!index[h])
1124 continue;
1125 l = index[h] - &bmap->ineq[0];
1126 isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1127 if (isl_int_is_pos(sum)) {
1128 if (detect_divs)
1129 bmap = check_for_div_constraints(bmap, k, l,
1130 sum, progress);
1131 continue;
1133 if (isl_int_is_zero(sum)) {
1134 /* We need to break out of the loop after these
1135 * changes since the contents of the hash
1136 * will no longer be valid.
1137 * Plus, we probably we want to regauss first.
1139 if (progress)
1140 *progress = 1;
1141 isl_basic_map_drop_inequality(bmap, l);
1142 isl_basic_map_inequality_to_equality(bmap, k);
1143 } else
1144 bmap = isl_basic_map_set_to_empty(bmap);
1145 break;
1147 isl_int_clear(sum);
1149 free(index);
1150 return bmap;
1154 /* Eliminate knowns divs from constraints where they appear with
1155 * a (positive or negative) unit coefficient.
1157 * That is, replace
1159 * floor(e/m) + f >= 0
1161 * by
1163 * e + m f >= 0
1165 * and
1167 * -floor(e/m) + f >= 0
1169 * by
1171 * -e + m f + m - 1 >= 0
1173 * The first conversion is valid because floor(e/m) >= -f is equivalent
1174 * to e/m >= -f because -f is an integral expression.
1175 * The second conversion follows from the fact that
1177 * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1180 * We skip integral divs, i.e., those with denominator 1, as we would
1181 * risk eliminating the div from the div constraints. We do not need
1182 * to handle those divs here anyway since the div constraints will turn
1183 * out to form an equality and this equality can then be use to eliminate
1184 * the div from all constraints.
1186 static __isl_give isl_basic_map *eliminate_unit_divs(
1187 __isl_take isl_basic_map *bmap, int *progress)
1189 int i, j;
1190 isl_ctx *ctx;
1191 unsigned total;
1193 if (!bmap)
1194 return NULL;
1196 ctx = isl_basic_map_get_ctx(bmap);
1197 total = 1 + isl_space_dim(bmap->dim, isl_dim_all);
1199 for (i = 0; i < bmap->n_div; ++i) {
1200 if (isl_int_is_zero(bmap->div[i][0]))
1201 continue;
1202 if (isl_int_is_one(bmap->div[i][0]))
1203 continue;
1204 for (j = 0; j < bmap->n_ineq; ++j) {
1205 int s;
1207 if (!isl_int_is_one(bmap->ineq[j][total + i]) &&
1208 !isl_int_is_negone(bmap->ineq[j][total + i]))
1209 continue;
1211 *progress = 1;
1213 s = isl_int_sgn(bmap->ineq[j][total + i]);
1214 isl_int_set_si(bmap->ineq[j][total + i], 0);
1215 if (s < 0)
1216 isl_seq_combine(bmap->ineq[j],
1217 ctx->negone, bmap->div[i] + 1,
1218 bmap->div[i][0], bmap->ineq[j],
1219 total + bmap->n_div);
1220 else
1221 isl_seq_combine(bmap->ineq[j],
1222 ctx->one, bmap->div[i] + 1,
1223 bmap->div[i][0], bmap->ineq[j],
1224 total + bmap->n_div);
1225 if (s < 0) {
1226 isl_int_add(bmap->ineq[j][0],
1227 bmap->ineq[j][0], bmap->div[i][0]);
1228 isl_int_sub_ui(bmap->ineq[j][0],
1229 bmap->ineq[j][0], 1);
1234 return bmap;
1237 struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap)
1239 int progress = 1;
1240 if (!bmap)
1241 return NULL;
1242 while (progress) {
1243 progress = 0;
1244 if (!bmap)
1245 break;
1246 if (isl_basic_map_plain_is_empty(bmap))
1247 break;
1248 bmap = isl_basic_map_normalize_constraints(bmap);
1249 bmap = normalize_div_expressions(bmap);
1250 bmap = remove_duplicate_divs(bmap, &progress);
1251 bmap = eliminate_unit_divs(bmap, &progress);
1252 bmap = eliminate_divs_eq(bmap, &progress);
1253 bmap = eliminate_divs_ineq(bmap, &progress);
1254 bmap = isl_basic_map_gauss(bmap, &progress);
1255 /* requires equalities in normal form */
1256 bmap = normalize_divs(bmap, &progress);
1257 bmap = remove_duplicate_constraints(bmap, &progress, 1);
1259 return bmap;
1262 struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset)
1264 return (struct isl_basic_set *)
1265 isl_basic_map_simplify((struct isl_basic_map *)bset);
1269 int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1270 isl_int *constraint, unsigned div)
1272 unsigned pos;
1274 if (!bmap)
1275 return -1;
1277 pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1279 if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1280 int neg;
1281 isl_int_sub(bmap->div[div][1],
1282 bmap->div[div][1], bmap->div[div][0]);
1283 isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1284 neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1285 isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1286 isl_int_add(bmap->div[div][1],
1287 bmap->div[div][1], bmap->div[div][0]);
1288 if (!neg)
1289 return 0;
1290 if (isl_seq_first_non_zero(constraint+pos+1,
1291 bmap->n_div-div-1) != -1)
1292 return 0;
1293 } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1294 if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1295 return 0;
1296 if (isl_seq_first_non_zero(constraint+pos+1,
1297 bmap->n_div-div-1) != -1)
1298 return 0;
1299 } else
1300 return 0;
1302 return 1;
1305 int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset,
1306 isl_int *constraint, unsigned div)
1308 return isl_basic_map_is_div_constraint(bset, constraint, div);
1312 /* If the only constraints a div d=floor(f/m)
1313 * appears in are its two defining constraints
1315 * f - m d >=0
1316 * -(f - (m - 1)) + m d >= 0
1318 * then it can safely be removed.
1320 static int div_is_redundant(struct isl_basic_map *bmap, int div)
1322 int i;
1323 unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div;
1325 for (i = 0; i < bmap->n_eq; ++i)
1326 if (!isl_int_is_zero(bmap->eq[i][pos]))
1327 return 0;
1329 for (i = 0; i < bmap->n_ineq; ++i) {
1330 if (isl_int_is_zero(bmap->ineq[i][pos]))
1331 continue;
1332 if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div))
1333 return 0;
1336 for (i = 0; i < bmap->n_div; ++i) {
1337 if (isl_int_is_zero(bmap->div[i][0]))
1338 continue;
1339 if (!isl_int_is_zero(bmap->div[i][1+pos]))
1340 return 0;
1343 return 1;
1347 * Remove divs that don't occur in any of the constraints or other divs.
1348 * These can arise when dropping some of the variables in a quast
1349 * returned by piplib.
1351 static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap)
1353 int i;
1355 if (!bmap)
1356 return NULL;
1358 for (i = bmap->n_div-1; i >= 0; --i) {
1359 if (!div_is_redundant(bmap, i))
1360 continue;
1361 bmap = isl_basic_map_drop_div(bmap, i);
1363 return bmap;
1366 struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap)
1368 bmap = remove_redundant_divs(bmap);
1369 if (!bmap)
1370 return NULL;
1371 ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1372 return bmap;
1375 struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset)
1377 return (struct isl_basic_set *)
1378 isl_basic_map_finalize((struct isl_basic_map *)bset);
1381 struct isl_set *isl_set_finalize(struct isl_set *set)
1383 int i;
1385 if (!set)
1386 return NULL;
1387 for (i = 0; i < set->n; ++i) {
1388 set->p[i] = isl_basic_set_finalize(set->p[i]);
1389 if (!set->p[i])
1390 goto error;
1392 return set;
1393 error:
1394 isl_set_free(set);
1395 return NULL;
1398 struct isl_map *isl_map_finalize(struct isl_map *map)
1400 int i;
1402 if (!map)
1403 return NULL;
1404 for (i = 0; i < map->n; ++i) {
1405 map->p[i] = isl_basic_map_finalize(map->p[i]);
1406 if (!map->p[i])
1407 goto error;
1409 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
1410 return map;
1411 error:
1412 isl_map_free(map);
1413 return NULL;
1417 /* Remove definition of any div that is defined in terms of the given variable.
1418 * The div itself is not removed. Functions such as
1419 * eliminate_divs_ineq depend on the other divs remaining in place.
1421 static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap,
1422 int pos)
1424 int i;
1426 if (!bmap)
1427 return NULL;
1429 for (i = 0; i < bmap->n_div; ++i) {
1430 if (isl_int_is_zero(bmap->div[i][0]))
1431 continue;
1432 if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1433 continue;
1434 isl_int_set_si(bmap->div[i][0], 0);
1436 return bmap;
1439 /* Eliminate the specified variables from the constraints using
1440 * Fourier-Motzkin. The variables themselves are not removed.
1442 struct isl_basic_map *isl_basic_map_eliminate_vars(
1443 struct isl_basic_map *bmap, unsigned pos, unsigned n)
1445 int d;
1446 int i, j, k;
1447 unsigned total;
1448 int need_gauss = 0;
1450 if (n == 0)
1451 return bmap;
1452 if (!bmap)
1453 return NULL;
1454 total = isl_basic_map_total_dim(bmap);
1456 bmap = isl_basic_map_cow(bmap);
1457 for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1458 bmap = remove_dependent_vars(bmap, d);
1459 if (!bmap)
1460 return NULL;
1462 for (d = pos + n - 1;
1463 d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1464 isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1465 for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1466 int n_lower, n_upper;
1467 if (!bmap)
1468 return NULL;
1469 for (i = 0; i < bmap->n_eq; ++i) {
1470 if (isl_int_is_zero(bmap->eq[i][1+d]))
1471 continue;
1472 eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL);
1473 isl_basic_map_drop_equality(bmap, i);
1474 need_gauss = 1;
1475 break;
1477 if (i < bmap->n_eq)
1478 continue;
1479 n_lower = 0;
1480 n_upper = 0;
1481 for (i = 0; i < bmap->n_ineq; ++i) {
1482 if (isl_int_is_pos(bmap->ineq[i][1+d]))
1483 n_lower++;
1484 else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1485 n_upper++;
1487 bmap = isl_basic_map_extend_constraints(bmap,
1488 0, n_lower * n_upper);
1489 if (!bmap)
1490 goto error;
1491 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1492 int last;
1493 if (isl_int_is_zero(bmap->ineq[i][1+d]))
1494 continue;
1495 last = -1;
1496 for (j = 0; j < i; ++j) {
1497 if (isl_int_is_zero(bmap->ineq[j][1+d]))
1498 continue;
1499 last = j;
1500 if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1501 isl_int_sgn(bmap->ineq[j][1+d]))
1502 continue;
1503 k = isl_basic_map_alloc_inequality(bmap);
1504 if (k < 0)
1505 goto error;
1506 isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1507 1+total);
1508 isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1509 1+d, 1+total, NULL);
1511 isl_basic_map_drop_inequality(bmap, i);
1512 i = last + 1;
1514 if (n_lower > 0 && n_upper > 0) {
1515 bmap = isl_basic_map_normalize_constraints(bmap);
1516 bmap = remove_duplicate_constraints(bmap, NULL, 0);
1517 bmap = isl_basic_map_gauss(bmap, NULL);
1518 bmap = isl_basic_map_remove_redundancies(bmap);
1519 need_gauss = 0;
1520 if (!bmap)
1521 goto error;
1522 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1523 break;
1526 ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED);
1527 if (need_gauss)
1528 bmap = isl_basic_map_gauss(bmap, NULL);
1529 return bmap;
1530 error:
1531 isl_basic_map_free(bmap);
1532 return NULL;
1535 struct isl_basic_set *isl_basic_set_eliminate_vars(
1536 struct isl_basic_set *bset, unsigned pos, unsigned n)
1538 return (struct isl_basic_set *)isl_basic_map_eliminate_vars(
1539 (struct isl_basic_map *)bset, pos, n);
1542 /* Eliminate the specified n dimensions starting at first from the
1543 * constraints, without removing the dimensions from the space.
1544 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1545 * Otherwise, they are projected out and the original space is restored.
1547 __isl_give isl_basic_map *isl_basic_map_eliminate(
1548 __isl_take isl_basic_map *bmap,
1549 enum isl_dim_type type, unsigned first, unsigned n)
1551 isl_space *space;
1553 if (!bmap)
1554 return NULL;
1555 if (n == 0)
1556 return bmap;
1558 if (first + n > isl_basic_map_dim(bmap, type) || first + n < first)
1559 isl_die(bmap->ctx, isl_error_invalid,
1560 "index out of bounds", goto error);
1562 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1563 first += isl_basic_map_offset(bmap, type) - 1;
1564 bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1565 return isl_basic_map_finalize(bmap);
1568 space = isl_basic_map_get_space(bmap);
1569 bmap = isl_basic_map_project_out(bmap, type, first, n);
1570 bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1571 bmap = isl_basic_map_reset_space(bmap, space);
1572 return bmap;
1573 error:
1574 isl_basic_map_free(bmap);
1575 return NULL;
1578 __isl_give isl_basic_set *isl_basic_set_eliminate(
1579 __isl_take isl_basic_set *bset,
1580 enum isl_dim_type type, unsigned first, unsigned n)
1582 return isl_basic_map_eliminate(bset, type, first, n);
1585 /* Don't assume equalities are in order, because align_divs
1586 * may have changed the order of the divs.
1588 static void compute_elimination_index(struct isl_basic_map *bmap, int *elim)
1590 int d, i;
1591 unsigned total;
1593 total = isl_space_dim(bmap->dim, isl_dim_all);
1594 for (d = 0; d < total; ++d)
1595 elim[d] = -1;
1596 for (i = 0; i < bmap->n_eq; ++i) {
1597 for (d = total - 1; d >= 0; --d) {
1598 if (isl_int_is_zero(bmap->eq[i][1+d]))
1599 continue;
1600 elim[d] = i;
1601 break;
1606 static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim)
1608 compute_elimination_index((struct isl_basic_map *)bset, elim);
1611 static int reduced_using_equalities(isl_int *dst, isl_int *src,
1612 struct isl_basic_map *bmap, int *elim)
1614 int d;
1615 int copied = 0;
1616 unsigned total;
1618 total = isl_space_dim(bmap->dim, isl_dim_all);
1619 for (d = total - 1; d >= 0; --d) {
1620 if (isl_int_is_zero(src[1+d]))
1621 continue;
1622 if (elim[d] == -1)
1623 continue;
1624 if (!copied) {
1625 isl_seq_cpy(dst, src, 1 + total);
1626 copied = 1;
1628 isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1630 return copied;
1633 static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
1634 struct isl_basic_set *bset, int *elim)
1636 return reduced_using_equalities(dst, src,
1637 (struct isl_basic_map *)bset, elim);
1640 static struct isl_basic_set *isl_basic_set_reduce_using_equalities(
1641 struct isl_basic_set *bset, struct isl_basic_set *context)
1643 int i;
1644 int *elim;
1646 if (!bset || !context)
1647 goto error;
1649 if (context->n_eq == 0) {
1650 isl_basic_set_free(context);
1651 return bset;
1654 bset = isl_basic_set_cow(bset);
1655 if (!bset)
1656 goto error;
1658 elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset));
1659 if (!elim)
1660 goto error;
1661 set_compute_elimination_index(context, elim);
1662 for (i = 0; i < bset->n_eq; ++i)
1663 set_reduced_using_equalities(bset->eq[i], bset->eq[i],
1664 context, elim);
1665 for (i = 0; i < bset->n_ineq; ++i)
1666 set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
1667 context, elim);
1668 isl_basic_set_free(context);
1669 free(elim);
1670 bset = isl_basic_set_simplify(bset);
1671 bset = isl_basic_set_finalize(bset);
1672 return bset;
1673 error:
1674 isl_basic_set_free(bset);
1675 isl_basic_set_free(context);
1676 return NULL;
1679 static struct isl_basic_set *remove_shifted_constraints(
1680 struct isl_basic_set *bset, struct isl_basic_set *context)
1682 unsigned int size;
1683 isl_int ***index;
1684 int bits;
1685 int k, h, l;
1686 isl_ctx *ctx;
1688 if (!bset)
1689 return NULL;
1691 size = round_up(4 * (context->n_ineq+1) / 3 - 1);
1692 bits = ffs(size) - 1;
1693 ctx = isl_basic_set_get_ctx(bset);
1694 index = isl_calloc_array(ctx, isl_int **, size);
1695 if (!index)
1696 return bset;
1698 for (k = 0; k < context->n_ineq; ++k) {
1699 h = set_hash_index(index, size, bits, context, k);
1700 index[h] = &context->ineq[k];
1702 for (k = 0; k < bset->n_ineq; ++k) {
1703 h = set_hash_index(index, size, bits, bset, k);
1704 if (!index[h])
1705 continue;
1706 l = index[h] - &context->ineq[0];
1707 if (isl_int_lt(bset->ineq[k][0], context->ineq[l][0]))
1708 continue;
1709 bset = isl_basic_set_cow(bset);
1710 if (!bset)
1711 goto error;
1712 isl_basic_set_drop_inequality(bset, k);
1713 --k;
1715 free(index);
1716 return bset;
1717 error:
1718 free(index);
1719 return bset;
1722 /* Does the (linear part of a) constraint "c" involve any of the "len"
1723 * "relevant" dimensions?
1725 static int is_related(isl_int *c, int len, int *relevant)
1727 int i;
1729 for (i = 0; i < len; ++i) {
1730 if (!relevant[i])
1731 continue;
1732 if (!isl_int_is_zero(c[i]))
1733 return 1;
1736 return 0;
1739 /* Drop constraints from "bset" that do not involve any of
1740 * the dimensions marked "relevant".
1742 static __isl_give isl_basic_set *drop_unrelated_constraints(
1743 __isl_take isl_basic_set *bset, int *relevant)
1745 int i, dim;
1747 dim = isl_basic_set_dim(bset, isl_dim_set);
1748 for (i = 0; i < dim; ++i)
1749 if (!relevant[i])
1750 break;
1751 if (i >= dim)
1752 return bset;
1754 for (i = bset->n_eq - 1; i >= 0; --i)
1755 if (!is_related(bset->eq[i] + 1, dim, relevant))
1756 isl_basic_set_drop_equality(bset, i);
1758 for (i = bset->n_ineq - 1; i >= 0; --i)
1759 if (!is_related(bset->ineq[i] + 1, dim, relevant))
1760 isl_basic_set_drop_inequality(bset, i);
1762 return bset;
1765 /* Update the groups in "group" based on the (linear part of a) constraint "c".
1767 * In particular, for any variable involved in the constraint,
1768 * find the actual group id from before and replace the group
1769 * of the corresponding variable by the minimal group of all
1770 * the variables involved in the constraint considered so far
1771 * (if this minimum is smaller) or replace the minimum by this group
1772 * (if the minimum is larger).
1774 * At the end, all the variables in "c" will (indirectly) point
1775 * to the minimal of the groups that they referred to originally.
1777 static void update_groups(int dim, int *group, isl_int *c)
1779 int j;
1780 int min = dim;
1782 for (j = 0; j < dim; ++j) {
1783 if (isl_int_is_zero(c[j]))
1784 continue;
1785 while (group[j] >= 0 && group[group[j]] != group[j])
1786 group[j] = group[group[j]];
1787 if (group[j] == min)
1788 continue;
1789 if (group[j] < min) {
1790 if (min >= 0 && min < dim)
1791 group[min] = group[j];
1792 min = group[j];
1793 } else
1794 group[group[j]] = min;
1798 /* Drop constraints from "context" that are irrelevant for computing
1799 * the gist of "bset".
1801 * In particular, drop constraints in variables that are not related
1802 * to any of the variables involved in the constraints of "bset"
1803 * in the sense that there is no sequence of constraints that connects them.
1805 * We construct groups of variables that collect variables that
1806 * (indirectly) appear in some common constraint of "context".
1807 * Each group is identified by the first variable in the group,
1808 * except for the special group of variables that appear in "bset"
1809 * (or are related to those variables), which is identified by -1.
1810 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
1811 * otherwise the group of i is the group of group[i].
1813 * We first initialize the -1 group with the variables that appear in "bset".
1814 * Then we initialize groups for the remaining variables.
1815 * Then we iterate over the constraints of "context" and update the
1816 * group of the variables in the constraint by the smallest group.
1817 * Finally, we resolve indirect references to groups by running over
1818 * the variables.
1820 * After computing the groups, we drop constraints that do not involve
1821 * any variables in the -1 group.
1823 static __isl_give isl_basic_set *drop_irrelevant_constraints(
1824 __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
1826 isl_ctx *ctx;
1827 int *group;
1828 int dim;
1829 int i, j;
1830 int last;
1832 if (!context || !bset)
1833 return isl_basic_set_free(context);
1835 dim = isl_basic_set_dim(bset, isl_dim_set);
1836 ctx = isl_basic_set_get_ctx(bset);
1837 group = isl_calloc_array(ctx, int, dim);
1839 if (!group)
1840 goto error;
1842 for (i = 0; i < dim; ++i) {
1843 for (j = 0; j < bset->n_eq; ++j)
1844 if (!isl_int_is_zero(bset->eq[j][1 + i]))
1845 break;
1846 if (j < bset->n_eq) {
1847 group[i] = -1;
1848 continue;
1850 for (j = 0; j < bset->n_ineq; ++j)
1851 if (!isl_int_is_zero(bset->ineq[j][1 + i]))
1852 break;
1853 if (j < bset->n_ineq)
1854 group[i] = -1;
1857 last = -1;
1858 for (i = 0; i < dim; ++i)
1859 if (group[i] >= 0)
1860 last = group[i] = i;
1861 if (last < 0) {
1862 free(group);
1863 return context;
1866 for (i = 0; i < context->n_eq; ++i)
1867 update_groups(dim, group, context->eq[i] + 1);
1868 for (i = 0; i < context->n_ineq; ++i)
1869 update_groups(dim, group, context->ineq[i] + 1);
1871 for (i = 0; i < dim; ++i)
1872 if (group[i] >= 0)
1873 group[i] = group[group[i]];
1875 for (i = 0; i < dim; ++i)
1876 group[i] = group[i] == -1;
1878 context = drop_unrelated_constraints(context, group);
1880 free(group);
1881 return context;
1882 error:
1883 free(group);
1884 return isl_basic_set_free(context);
1887 /* Remove all information from bset that is redundant in the context
1888 * of context. Both bset and context are assumed to be full-dimensional.
1890 * We first remove the inequalities from "bset"
1891 * that are obviously redundant with respect to some inequality in "context".
1892 * Then we remove those constraints from "context" that have become
1893 * irrelevant for computing the gist of "bset".
1894 * Note that this removal of constraints cannot be replaced by
1895 * a factorization because factors in "bset" may still be connected
1896 * to each other through constraints in "context".
1898 * If there are any inequalities left, we construct a tableau for
1899 * the context and then add the inequalities of "bset".
1900 * Before adding these inequalities, we freeze all constraints such that
1901 * they won't be considered redundant in terms of the constraints of "bset".
1902 * Then we detect all redundant constraints (among the
1903 * constraints that weren't frozen), first by checking for redundancy in the
1904 * the tableau and then by checking if replacing a constraint by its negation
1905 * would lead to an empty set. This last step is fairly expensive
1906 * and could be optimized by more reuse of the tableau.
1907 * Finally, we update bset according to the results.
1909 static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
1910 __isl_take isl_basic_set *context)
1912 int i, k;
1913 isl_basic_set *combined = NULL;
1914 struct isl_tab *tab = NULL;
1915 unsigned context_ineq;
1916 unsigned total;
1918 if (!bset || !context)
1919 goto error;
1921 if (isl_basic_set_is_universe(bset)) {
1922 isl_basic_set_free(context);
1923 return bset;
1926 if (isl_basic_set_is_universe(context)) {
1927 isl_basic_set_free(context);
1928 return bset;
1931 bset = remove_shifted_constraints(bset, context);
1932 if (!bset)
1933 goto error;
1934 if (bset->n_ineq == 0)
1935 goto done;
1937 context = drop_irrelevant_constraints(context, bset);
1938 if (!context)
1939 goto error;
1940 if (isl_basic_set_is_universe(context)) {
1941 isl_basic_set_free(context);
1942 return bset;
1945 context_ineq = context->n_ineq;
1946 combined = isl_basic_set_cow(isl_basic_set_copy(context));
1947 combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
1948 tab = isl_tab_from_basic_set(combined, 0);
1949 for (i = 0; i < context_ineq; ++i)
1950 if (isl_tab_freeze_constraint(tab, i) < 0)
1951 goto error;
1952 tab = isl_tab_extend(tab, bset->n_ineq);
1953 for (i = 0; i < bset->n_ineq; ++i)
1954 if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0)
1955 goto error;
1956 bset = isl_basic_set_add_constraints(combined, bset, 0);
1957 combined = NULL;
1958 if (!bset)
1959 goto error;
1960 if (isl_tab_detect_redundant(tab) < 0)
1961 goto error;
1962 total = isl_basic_set_total_dim(bset);
1963 for (i = context_ineq; i < bset->n_ineq; ++i) {
1964 int is_empty;
1965 if (tab->con[i].is_redundant)
1966 continue;
1967 tab->con[i].is_redundant = 1;
1968 combined = isl_basic_set_dup(bset);
1969 combined = isl_basic_set_update_from_tab(combined, tab);
1970 combined = isl_basic_set_extend_constraints(combined, 0, 1);
1971 k = isl_basic_set_alloc_inequality(combined);
1972 if (k < 0)
1973 goto error;
1974 isl_seq_neg(combined->ineq[k], bset->ineq[i], 1 + total);
1975 isl_int_sub_ui(combined->ineq[k][0], combined->ineq[k][0], 1);
1976 is_empty = isl_basic_set_is_empty(combined);
1977 if (is_empty < 0)
1978 goto error;
1979 isl_basic_set_free(combined);
1980 combined = NULL;
1981 if (!is_empty)
1982 tab->con[i].is_redundant = 0;
1984 for (i = 0; i < context_ineq; ++i)
1985 tab->con[i].is_redundant = 1;
1986 bset = isl_basic_set_update_from_tab(bset, tab);
1987 if (bset) {
1988 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
1989 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
1992 isl_tab_free(tab);
1993 done:
1994 bset = isl_basic_set_simplify(bset);
1995 bset = isl_basic_set_finalize(bset);
1996 isl_basic_set_free(context);
1997 return bset;
1998 error:
1999 isl_tab_free(tab);
2000 isl_basic_set_free(combined);
2001 isl_basic_set_free(context);
2002 isl_basic_set_free(bset);
2003 return NULL;
2006 /* Remove all information from bset that is redundant in the context
2007 * of context. In particular, equalities that are linear combinations
2008 * of those in context are removed. Then the inequalities that are
2009 * redundant in the context of the equalities and inequalities of
2010 * context are removed.
2012 * First of all, we drop those constraints from "context"
2013 * that are irrelevant for computing the gist of "bset".
2014 * Alternatively, we could factorize the intersection of "context" and "bset".
2016 * We first compute the integer affine hull of the intersection,
2017 * compute the gist inside this affine hull and then add back
2018 * those equalities that are not implied by the context.
2020 * If two constraints are mutually redundant, then uset_gist_full
2021 * will remove the second of those constraints. We therefore first
2022 * sort the constraints so that constraints not involving existentially
2023 * quantified variables are given precedence over those that do.
2024 * We have to perform this sorting before the variable compression,
2025 * because that may effect the order of the variables.
2027 static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2028 __isl_take isl_basic_set *context)
2030 isl_mat *eq;
2031 isl_mat *T, *T2;
2032 isl_basic_set *aff;
2033 isl_basic_set *aff_context;
2034 unsigned total;
2036 if (!bset || !context)
2037 goto error;
2039 context = drop_irrelevant_constraints(context, bset);
2041 bset = isl_basic_set_intersect(bset, isl_basic_set_copy(context));
2042 if (isl_basic_set_plain_is_empty(bset)) {
2043 isl_basic_set_free(context);
2044 return bset;
2046 bset = isl_basic_set_sort_constraints(bset);
2047 aff = isl_basic_set_affine_hull(isl_basic_set_copy(bset));
2048 if (!aff)
2049 goto error;
2050 if (isl_basic_set_plain_is_empty(aff)) {
2051 isl_basic_set_free(aff);
2052 isl_basic_set_free(context);
2053 return bset;
2055 if (aff->n_eq == 0) {
2056 isl_basic_set_free(aff);
2057 return uset_gist_full(bset, context);
2059 total = isl_basic_set_total_dim(bset);
2060 eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2061 eq = isl_mat_cow(eq);
2062 T = isl_mat_variable_compression(eq, &T2);
2063 if (T && T->n_col == 0) {
2064 isl_mat_free(T);
2065 isl_mat_free(T2);
2066 isl_basic_set_free(context);
2067 isl_basic_set_free(aff);
2068 return isl_basic_set_set_to_empty(bset);
2071 aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2073 bset = isl_basic_set_preimage(bset, isl_mat_copy(T));
2074 context = isl_basic_set_preimage(context, T);
2076 bset = uset_gist_full(bset, context);
2077 bset = isl_basic_set_preimage(bset, T2);
2078 bset = isl_basic_set_intersect(bset, aff);
2079 bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2081 if (bset) {
2082 ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2083 ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2086 return bset;
2087 error:
2088 isl_basic_set_free(bset);
2089 isl_basic_set_free(context);
2090 return NULL;
2093 /* Normalize the divs in "bmap" in the context of the equalities in "context".
2094 * We simply add the equalities in context to bmap and then do a regular
2095 * div normalizations. Better results can be obtained by normalizing
2096 * only the divs in bmap than do not also appear in context.
2097 * We need to be careful to reduce the divs using the equalities
2098 * so that later calls to isl_basic_map_overlying_set wouldn't introduce
2099 * spurious constraints.
2101 static struct isl_basic_map *normalize_divs_in_context(
2102 struct isl_basic_map *bmap, struct isl_basic_map *context)
2104 int i;
2105 unsigned total_context;
2106 int div_eq;
2108 div_eq = n_pure_div_eq(bmap);
2109 if (div_eq == 0)
2110 return bmap;
2112 if (context->n_div > 0)
2113 bmap = isl_basic_map_align_divs(bmap, context);
2115 total_context = isl_basic_map_total_dim(context);
2116 bmap = isl_basic_map_extend_constraints(bmap, context->n_eq, 0);
2117 for (i = 0; i < context->n_eq; ++i) {
2118 int k;
2119 k = isl_basic_map_alloc_equality(bmap);
2120 if (k < 0)
2121 return isl_basic_map_free(bmap);
2122 isl_seq_cpy(bmap->eq[k], context->eq[i], 1 + total_context);
2123 isl_seq_clr(bmap->eq[k] + 1 + total_context,
2124 isl_basic_map_total_dim(bmap) - total_context);
2126 bmap = isl_basic_map_gauss(bmap, NULL);
2127 bmap = normalize_divs(bmap, NULL);
2128 bmap = isl_basic_map_gauss(bmap, NULL);
2129 return bmap;
2132 struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap,
2133 struct isl_basic_map *context)
2135 struct isl_basic_set *bset;
2137 if (!bmap || !context)
2138 goto error;
2140 if (isl_basic_map_is_universe(bmap)) {
2141 isl_basic_map_free(context);
2142 return bmap;
2144 if (isl_basic_map_plain_is_empty(context)) {
2145 isl_basic_map_free(bmap);
2146 return context;
2148 if (isl_basic_map_plain_is_empty(bmap)) {
2149 isl_basic_map_free(context);
2150 return bmap;
2153 bmap = isl_basic_map_remove_redundancies(bmap);
2154 context = isl_basic_map_remove_redundancies(context);
2156 if (context->n_eq)
2157 bmap = normalize_divs_in_context(bmap, context);
2159 context = isl_basic_map_align_divs(context, bmap);
2160 bmap = isl_basic_map_align_divs(bmap, context);
2162 bset = uset_gist(isl_basic_map_underlying_set(isl_basic_map_copy(bmap)),
2163 isl_basic_map_underlying_set(context));
2165 return isl_basic_map_overlying_set(bset, bmap);
2166 error:
2167 isl_basic_map_free(bmap);
2168 isl_basic_map_free(context);
2169 return NULL;
2173 * Assumes context has no implicit divs.
2175 __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
2176 __isl_take isl_basic_map *context)
2178 int i;
2180 if (!map || !context)
2181 goto error;;
2183 if (isl_basic_map_plain_is_empty(context)) {
2184 isl_map_free(map);
2185 return isl_map_from_basic_map(context);
2188 context = isl_basic_map_remove_redundancies(context);
2189 map = isl_map_cow(map);
2190 if (!map || !context)
2191 goto error;;
2192 isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error);
2193 map = isl_map_compute_divs(map);
2194 if (!map)
2195 goto error;
2196 for (i = 0; i < map->n; ++i)
2197 context = isl_basic_map_align_divs(context, map->p[i]);
2198 for (i = map->n - 1; i >= 0; --i) {
2199 map->p[i] = isl_basic_map_gist(map->p[i],
2200 isl_basic_map_copy(context));
2201 if (!map->p[i])
2202 goto error;
2203 if (isl_basic_map_plain_is_empty(map->p[i])) {
2204 isl_basic_map_free(map->p[i]);
2205 if (i != map->n - 1)
2206 map->p[i] = map->p[map->n - 1];
2207 map->n--;
2210 isl_basic_map_free(context);
2211 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
2212 return map;
2213 error:
2214 isl_map_free(map);
2215 isl_basic_map_free(context);
2216 return NULL;
2219 /* Return a map that has the same intersection with "context" as "map"
2220 * and that as "simple" as possible.
2222 * If "map" is already the universe, then we cannot make it any simpler.
2223 * Similarly, if "context" is the universe, then we cannot exploit it
2224 * to simplify "map"
2225 * If "map" and "context" are identical to each other, then we can
2226 * return the corresponding universe.
2228 * If none of these cases apply, we have to work a bit harder.
2230 static __isl_give isl_map *map_gist(__isl_take isl_map *map,
2231 __isl_take isl_map *context)
2233 int equal;
2234 int is_universe;
2236 is_universe = isl_map_plain_is_universe(map);
2237 if (is_universe >= 0 && !is_universe)
2238 is_universe = isl_map_plain_is_universe(context);
2239 if (is_universe < 0)
2240 goto error;
2241 if (is_universe) {
2242 isl_map_free(context);
2243 return map;
2246 equal = isl_map_plain_is_equal(map, context);
2247 if (equal < 0)
2248 goto error;
2249 if (equal) {
2250 isl_map *res = isl_map_universe(isl_map_get_space(map));
2251 isl_map_free(map);
2252 isl_map_free(context);
2253 return res;
2256 context = isl_map_compute_divs(context);
2257 return isl_map_gist_basic_map(map, isl_map_simple_hull(context));
2258 error:
2259 isl_map_free(map);
2260 isl_map_free(context);
2261 return NULL;
2264 __isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
2265 __isl_take isl_map *context)
2267 return isl_map_align_params_map_map_and(map, context, &map_gist);
2270 struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset,
2271 struct isl_basic_set *context)
2273 return (struct isl_basic_set *)isl_basic_map_gist(
2274 (struct isl_basic_map *)bset, (struct isl_basic_map *)context);
2277 __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
2278 __isl_take isl_basic_set *context)
2280 return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set,
2281 (struct isl_basic_map *)context);
2284 __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
2285 __isl_take isl_basic_set *context)
2287 isl_space *space = isl_set_get_space(set);
2288 isl_basic_set *dom_context = isl_basic_set_universe(space);
2289 dom_context = isl_basic_set_intersect_params(dom_context, context);
2290 return isl_set_gist_basic_set(set, dom_context);
2293 __isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
2294 __isl_take isl_set *context)
2296 return (struct isl_set *)isl_map_gist((struct isl_map *)set,
2297 (struct isl_map *)context);
2300 __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
2301 __isl_take isl_set *context)
2303 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2304 map_context = isl_map_intersect_domain(map_context, context);
2305 return isl_map_gist(map, map_context);
2308 __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
2309 __isl_take isl_set *context)
2311 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2312 map_context = isl_map_intersect_range(map_context, context);
2313 return isl_map_gist(map, map_context);
2316 __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
2317 __isl_take isl_set *context)
2319 isl_map *map_context = isl_map_universe(isl_map_get_space(map));
2320 map_context = isl_map_intersect_params(map_context, context);
2321 return isl_map_gist(map, map_context);
2324 __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
2325 __isl_take isl_set *context)
2327 return isl_map_gist_params(set, context);
2330 /* Quick check to see if two basic maps are disjoint.
2331 * In particular, we reduce the equalities and inequalities of
2332 * one basic map in the context of the equalities of the other
2333 * basic map and check if we get a contradiction.
2335 int isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
2336 __isl_keep isl_basic_map *bmap2)
2338 struct isl_vec *v = NULL;
2339 int *elim = NULL;
2340 unsigned total;
2341 int i;
2343 if (!bmap1 || !bmap2)
2344 return -1;
2345 isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim),
2346 return -1);
2347 if (bmap1->n_div || bmap2->n_div)
2348 return 0;
2349 if (!bmap1->n_eq && !bmap2->n_eq)
2350 return 0;
2352 total = isl_space_dim(bmap1->dim, isl_dim_all);
2353 if (total == 0)
2354 return 0;
2355 v = isl_vec_alloc(bmap1->ctx, 1 + total);
2356 if (!v)
2357 goto error;
2358 elim = isl_alloc_array(bmap1->ctx, int, total);
2359 if (!elim)
2360 goto error;
2361 compute_elimination_index(bmap1, elim);
2362 for (i = 0; i < bmap2->n_eq; ++i) {
2363 int reduced;
2364 reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
2365 bmap1, elim);
2366 if (reduced && !isl_int_is_zero(v->block.data[0]) &&
2367 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2368 goto disjoint;
2370 for (i = 0; i < bmap2->n_ineq; ++i) {
2371 int reduced;
2372 reduced = reduced_using_equalities(v->block.data,
2373 bmap2->ineq[i], bmap1, elim);
2374 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2375 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2376 goto disjoint;
2378 compute_elimination_index(bmap2, elim);
2379 for (i = 0; i < bmap1->n_ineq; ++i) {
2380 int reduced;
2381 reduced = reduced_using_equalities(v->block.data,
2382 bmap1->ineq[i], bmap2, elim);
2383 if (reduced && isl_int_is_neg(v->block.data[0]) &&
2384 isl_seq_first_non_zero(v->block.data + 1, total) == -1)
2385 goto disjoint;
2387 isl_vec_free(v);
2388 free(elim);
2389 return 0;
2390 disjoint:
2391 isl_vec_free(v);
2392 free(elim);
2393 return 1;
2394 error:
2395 isl_vec_free(v);
2396 free(elim);
2397 return -1;
2400 int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
2401 __isl_keep isl_basic_set *bset2)
2403 return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1,
2404 (struct isl_basic_map *)bset2);
2407 /* Are "map1" and "map2" obviously disjoint?
2409 * If one of them is empty or if they live in different spaces (ignoring
2410 * parameters), then they are clearly disjoint.
2412 * If they have different parameters, then we skip any further tests.
2414 * If they are obviously equal, but not obviously empty, then we will
2415 * not be able to detect if they are disjoint.
2417 * Otherwise we check if each basic map in "map1" is obviously disjoint
2418 * from each basic map in "map2".
2420 int isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
2421 __isl_keep isl_map *map2)
2423 int i, j;
2424 int disjoint;
2425 int intersect;
2426 int match;
2428 if (!map1 || !map2)
2429 return -1;
2431 disjoint = isl_map_plain_is_empty(map1);
2432 if (disjoint < 0 || disjoint)
2433 return disjoint;
2435 disjoint = isl_map_plain_is_empty(map2);
2436 if (disjoint < 0 || disjoint)
2437 return disjoint;
2439 match = isl_space_tuple_match(map1->dim, isl_dim_in,
2440 map2->dim, isl_dim_in);
2441 if (match < 0 || !match)
2442 return match < 0 ? -1 : 1;
2444 match = isl_space_tuple_match(map1->dim, isl_dim_out,
2445 map2->dim, isl_dim_out);
2446 if (match < 0 || !match)
2447 return match < 0 ? -1 : 1;
2449 match = isl_space_match(map1->dim, isl_dim_param,
2450 map2->dim, isl_dim_param);
2451 if (match < 0 || !match)
2452 return match < 0 ? -1 : 0;
2454 intersect = isl_map_plain_is_equal(map1, map2);
2455 if (intersect < 0 || intersect)
2456 return intersect < 0 ? -1 : 0;
2458 for (i = 0; i < map1->n; ++i) {
2459 for (j = 0; j < map2->n; ++j) {
2460 int d = isl_basic_map_plain_is_disjoint(map1->p[i],
2461 map2->p[j]);
2462 if (d != 1)
2463 return d;
2466 return 1;
2469 /* Are "map1" and "map2" disjoint?
2471 * They are disjoint if they are "obviously disjoint" or if one of them
2472 * is empty. Otherwise, they are not disjoint if one of them is universal.
2473 * If none of these cases apply, we compute the intersection and see if
2474 * the result is empty.
2476 int isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
2478 int disjoint;
2479 int intersect;
2480 isl_map *test;
2482 disjoint = isl_map_plain_is_disjoint(map1, map2);
2483 if (disjoint < 0 || disjoint)
2484 return disjoint;
2486 disjoint = isl_map_is_empty(map1);
2487 if (disjoint < 0 || disjoint)
2488 return disjoint;
2490 disjoint = isl_map_is_empty(map2);
2491 if (disjoint < 0 || disjoint)
2492 return disjoint;
2494 intersect = isl_map_plain_is_universe(map1);
2495 if (intersect < 0 || intersect)
2496 return intersect < 0 ? -1 : 0;
2498 intersect = isl_map_plain_is_universe(map2);
2499 if (intersect < 0 || intersect)
2500 return intersect < 0 ? -1 : 0;
2502 test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2));
2503 disjoint = isl_map_is_empty(test);
2504 isl_map_free(test);
2506 return disjoint;
2509 int isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
2510 __isl_keep isl_set *set2)
2512 return isl_map_plain_is_disjoint((struct isl_map *)set1,
2513 (struct isl_map *)set2);
2516 /* Are "set1" and "set2" disjoint?
2518 int isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2520 return isl_map_is_disjoint(set1, set2);
2523 int isl_set_fast_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
2525 return isl_set_plain_is_disjoint(set1, set2);
2528 /* Check if we can combine a given div with lower bound l and upper
2529 * bound u with some other div and if so return that other div.
2530 * Otherwise return -1.
2532 * We first check that
2533 * - the bounds are opposites of each other (except for the constant
2534 * term)
2535 * - the bounds do not reference any other div
2536 * - no div is defined in terms of this div
2538 * Let m be the size of the range allowed on the div by the bounds.
2539 * That is, the bounds are of the form
2541 * e <= a <= e + m - 1
2543 * with e some expression in the other variables.
2544 * We look for another div b such that no third div is defined in terms
2545 * of this second div b and such that in any constraint that contains
2546 * a (except for the given lower and upper bound), also contains b
2547 * with a coefficient that is m times that of b.
2548 * That is, all constraints (execpt for the lower and upper bound)
2549 * are of the form
2551 * e + f (a + m b) >= 0
2553 * If so, we return b so that "a + m b" can be replaced by
2554 * a single div "c = a + m b".
2556 static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs,
2557 unsigned div, unsigned l, unsigned u)
2559 int i, j;
2560 unsigned dim;
2561 int coalesce = -1;
2563 if (bmap->n_div <= 1)
2564 return -1;
2565 dim = isl_space_dim(bmap->dim, isl_dim_all);
2566 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1)
2567 return -1;
2568 if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1,
2569 bmap->n_div - div - 1) != -1)
2570 return -1;
2571 if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1,
2572 dim + bmap->n_div))
2573 return -1;
2575 for (i = 0; i < bmap->n_div; ++i) {
2576 if (isl_int_is_zero(bmap->div[i][0]))
2577 continue;
2578 if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div]))
2579 return -1;
2582 isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2583 if (isl_int_is_neg(bmap->ineq[l][0])) {
2584 isl_int_sub(bmap->ineq[l][0],
2585 bmap->ineq[l][0], bmap->ineq[u][0]);
2586 bmap = isl_basic_map_copy(bmap);
2587 bmap = isl_basic_map_set_to_empty(bmap);
2588 isl_basic_map_free(bmap);
2589 return -1;
2591 isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2592 for (i = 0; i < bmap->n_div; ++i) {
2593 if (i == div)
2594 continue;
2595 if (!pairs[i])
2596 continue;
2597 for (j = 0; j < bmap->n_div; ++j) {
2598 if (isl_int_is_zero(bmap->div[j][0]))
2599 continue;
2600 if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i]))
2601 break;
2603 if (j < bmap->n_div)
2604 continue;
2605 for (j = 0; j < bmap->n_ineq; ++j) {
2606 int valid;
2607 if (j == l || j == u)
2608 continue;
2609 if (isl_int_is_zero(bmap->ineq[j][1 + dim + div]))
2610 continue;
2611 if (isl_int_is_zero(bmap->ineq[j][1 + dim + i]))
2612 break;
2613 isl_int_mul(bmap->ineq[j][1 + dim + div],
2614 bmap->ineq[j][1 + dim + div],
2615 bmap->ineq[l][0]);
2616 valid = isl_int_eq(bmap->ineq[j][1 + dim + div],
2617 bmap->ineq[j][1 + dim + i]);
2618 isl_int_divexact(bmap->ineq[j][1 + dim + div],
2619 bmap->ineq[j][1 + dim + div],
2620 bmap->ineq[l][0]);
2621 if (!valid)
2622 break;
2624 if (j < bmap->n_ineq)
2625 continue;
2626 coalesce = i;
2627 break;
2629 isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
2630 isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
2631 return coalesce;
2634 /* Given a lower and an upper bound on div i, construct an inequality
2635 * that when nonnegative ensures that this pair of bounds always allows
2636 * for an integer value of the given div.
2637 * The lower bound is inequality l, while the upper bound is inequality u.
2638 * The constructed inequality is stored in ineq.
2639 * g, fl, fu are temporary scalars.
2641 * Let the upper bound be
2643 * -n_u a + e_u >= 0
2645 * and the lower bound
2647 * n_l a + e_l >= 0
2649 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
2650 * We have
2652 * - f_u e_l <= f_u f_l g a <= f_l e_u
2654 * Since all variables are integer valued, this is equivalent to
2656 * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
2658 * If this interval is at least f_u f_l g, then it contains at least
2659 * one integer value for a.
2660 * That is, the test constraint is
2662 * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
2664 static void construct_test_ineq(struct isl_basic_map *bmap, int i,
2665 int l, int u, isl_int *ineq, isl_int g, isl_int fl, isl_int fu)
2667 unsigned dim;
2668 dim = isl_space_dim(bmap->dim, isl_dim_all);
2670 isl_int_gcd(g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]);
2671 isl_int_divexact(fl, bmap->ineq[l][1 + dim + i], g);
2672 isl_int_divexact(fu, bmap->ineq[u][1 + dim + i], g);
2673 isl_int_neg(fu, fu);
2674 isl_seq_combine(ineq, fl, bmap->ineq[u], fu, bmap->ineq[l],
2675 1 + dim + bmap->n_div);
2676 isl_int_add(ineq[0], ineq[0], fl);
2677 isl_int_add(ineq[0], ineq[0], fu);
2678 isl_int_sub_ui(ineq[0], ineq[0], 1);
2679 isl_int_mul(g, g, fl);
2680 isl_int_mul(g, g, fu);
2681 isl_int_sub(ineq[0], ineq[0], g);
2684 /* Remove more kinds of divs that are not strictly needed.
2685 * In particular, if all pairs of lower and upper bounds on a div
2686 * are such that they allow at least one integer value of the div,
2687 * the we can eliminate the div using Fourier-Motzkin without
2688 * introducing any spurious solutions.
2690 static struct isl_basic_map *drop_more_redundant_divs(
2691 struct isl_basic_map *bmap, int *pairs, int n)
2693 struct isl_tab *tab = NULL;
2694 struct isl_vec *vec = NULL;
2695 unsigned dim;
2696 int remove = -1;
2697 isl_int g, fl, fu;
2699 isl_int_init(g);
2700 isl_int_init(fl);
2701 isl_int_init(fu);
2703 if (!bmap)
2704 goto error;
2706 dim = isl_space_dim(bmap->dim, isl_dim_all);
2707 vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div);
2708 if (!vec)
2709 goto error;
2711 tab = isl_tab_from_basic_map(bmap, 0);
2713 while (n > 0) {
2714 int i, l, u;
2715 int best = -1;
2716 enum isl_lp_result res;
2718 for (i = 0; i < bmap->n_div; ++i) {
2719 if (!pairs[i])
2720 continue;
2721 if (best >= 0 && pairs[best] <= pairs[i])
2722 continue;
2723 best = i;
2726 i = best;
2727 for (l = 0; l < bmap->n_ineq; ++l) {
2728 if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i]))
2729 continue;
2730 for (u = 0; u < bmap->n_ineq; ++u) {
2731 if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i]))
2732 continue;
2733 construct_test_ineq(bmap, i, l, u,
2734 vec->el, g, fl, fu);
2735 res = isl_tab_min(tab, vec->el,
2736 bmap->ctx->one, &g, NULL, 0);
2737 if (res == isl_lp_error)
2738 goto error;
2739 if (res == isl_lp_empty) {
2740 bmap = isl_basic_map_set_to_empty(bmap);
2741 break;
2743 if (res != isl_lp_ok || isl_int_is_neg(g))
2744 break;
2746 if (u < bmap->n_ineq)
2747 break;
2749 if (l == bmap->n_ineq) {
2750 remove = i;
2751 break;
2753 pairs[i] = 0;
2754 --n;
2757 isl_tab_free(tab);
2758 isl_vec_free(vec);
2760 isl_int_clear(g);
2761 isl_int_clear(fl);
2762 isl_int_clear(fu);
2764 free(pairs);
2766 if (remove < 0)
2767 return bmap;
2769 bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
2770 return isl_basic_map_drop_redundant_divs(bmap);
2771 error:
2772 free(pairs);
2773 isl_basic_map_free(bmap);
2774 isl_tab_free(tab);
2775 isl_vec_free(vec);
2776 isl_int_clear(g);
2777 isl_int_clear(fl);
2778 isl_int_clear(fu);
2779 return NULL;
2782 /* Given a pair of divs div1 and div2 such that, expect for the lower bound l
2783 * and the upper bound u, div1 always occurs together with div2 in the form
2784 * (div1 + m div2), where m is the constant range on the variable div1
2785 * allowed by l and u, replace the pair div1 and div2 by a single
2786 * div that is equal to div1 + m div2.
2788 * The new div will appear in the location that contains div2.
2789 * We need to modify all constraints that contain
2790 * div2 = (div - div1) / m
2791 * (If a constraint does not contain div2, it will also not contain div1.)
2792 * If the constraint also contains div1, then we know they appear
2793 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
2794 * i.e., the coefficient of div is f.
2796 * Otherwise, we first need to introduce div1 into the constraint.
2797 * Let the l be
2799 * div1 + f >=0
2801 * and u
2803 * -div1 + f' >= 0
2805 * A lower bound on div2
2807 * n div2 + t >= 0
2809 * can be replaced by
2811 * (n * (m div 2 + div1) + m t + n f)/g >= 0
2813 * with g = gcd(m,n).
2814 * An upper bound
2816 * -n div2 + t >= 0
2818 * can be replaced by
2820 * (-n * (m div2 + div1) + m t + n f')/g >= 0
2822 * These constraint are those that we would obtain from eliminating
2823 * div1 using Fourier-Motzkin.
2825 * After all constraints have been modified, we drop the lower and upper
2826 * bound and then drop div1.
2828 static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap,
2829 unsigned div1, unsigned div2, unsigned l, unsigned u)
2831 isl_int a;
2832 isl_int b;
2833 isl_int m;
2834 unsigned dim, total;
2835 int i;
2837 dim = isl_space_dim(bmap->dim, isl_dim_all);
2838 total = 1 + dim + bmap->n_div;
2840 isl_int_init(a);
2841 isl_int_init(b);
2842 isl_int_init(m);
2843 isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
2844 isl_int_add_ui(m, m, 1);
2846 for (i = 0; i < bmap->n_ineq; ++i) {
2847 if (i == l || i == u)
2848 continue;
2849 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2]))
2850 continue;
2851 if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) {
2852 isl_int_gcd(b, m, bmap->ineq[i][1 + dim + div2]);
2853 isl_int_divexact(a, m, b);
2854 isl_int_divexact(b, bmap->ineq[i][1 + dim + div2], b);
2855 if (isl_int_is_pos(b)) {
2856 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2857 b, bmap->ineq[l], total);
2858 } else {
2859 isl_int_neg(b, b);
2860 isl_seq_combine(bmap->ineq[i], a, bmap->ineq[i],
2861 b, bmap->ineq[u], total);
2864 isl_int_set(bmap->ineq[i][1 + dim + div2],
2865 bmap->ineq[i][1 + dim + div1]);
2866 isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0);
2869 isl_int_clear(a);
2870 isl_int_clear(b);
2871 isl_int_clear(m);
2872 if (l > u) {
2873 isl_basic_map_drop_inequality(bmap, l);
2874 isl_basic_map_drop_inequality(bmap, u);
2875 } else {
2876 isl_basic_map_drop_inequality(bmap, u);
2877 isl_basic_map_drop_inequality(bmap, l);
2879 bmap = isl_basic_map_drop_div(bmap, div1);
2880 return bmap;
2883 /* First check if we can coalesce any pair of divs and
2884 * then continue with dropping more redundant divs.
2886 * We loop over all pairs of lower and upper bounds on a div
2887 * with coefficient 1 and -1, respectively, check if there
2888 * is any other div "c" with which we can coalesce the div
2889 * and if so, perform the coalescing.
2891 static struct isl_basic_map *coalesce_or_drop_more_redundant_divs(
2892 struct isl_basic_map *bmap, int *pairs, int n)
2894 int i, l, u;
2895 unsigned dim;
2897 dim = isl_space_dim(bmap->dim, isl_dim_all);
2899 for (i = 0; i < bmap->n_div; ++i) {
2900 if (!pairs[i])
2901 continue;
2902 for (l = 0; l < bmap->n_ineq; ++l) {
2903 if (!isl_int_is_one(bmap->ineq[l][1 + dim + i]))
2904 continue;
2905 for (u = 0; u < bmap->n_ineq; ++u) {
2906 int c;
2908 if (!isl_int_is_negone(bmap->ineq[u][1+dim+i]))
2909 continue;
2910 c = div_find_coalesce(bmap, pairs, i, l, u);
2911 if (c < 0)
2912 continue;
2913 free(pairs);
2914 bmap = coalesce_divs(bmap, i, c, l, u);
2915 return isl_basic_map_drop_redundant_divs(bmap);
2920 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
2921 return bmap;
2923 return drop_more_redundant_divs(bmap, pairs, n);
2926 /* Remove divs that are not strictly needed.
2927 * In particular, if a div only occurs positively (or negatively)
2928 * in constraints, then it can simply be dropped.
2929 * Also, if a div occurs in only two constraints and if moreover
2930 * those two constraints are opposite to each other, except for the constant
2931 * term and if the sum of the constant terms is such that for any value
2932 * of the other values, there is always at least one integer value of the
2933 * div, i.e., if one plus this sum is greater than or equal to
2934 * the (absolute value) of the coefficent of the div in the constraints,
2935 * then we can also simply drop the div.
2937 * We skip divs that appear in equalities or in the definition of other divs.
2938 * Divs that appear in the definition of other divs usually occur in at least
2939 * 4 constraints, but the constraints may have been simplified.
2941 * If any divs are left after these simple checks then we move on
2942 * to more complicated cases in drop_more_redundant_divs.
2944 struct isl_basic_map *isl_basic_map_drop_redundant_divs(
2945 struct isl_basic_map *bmap)
2947 int i, j;
2948 unsigned off;
2949 int *pairs = NULL;
2950 int n = 0;
2952 if (!bmap)
2953 goto error;
2955 off = isl_space_dim(bmap->dim, isl_dim_all);
2956 pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
2957 if (!pairs)
2958 goto error;
2960 for (i = 0; i < bmap->n_div; ++i) {
2961 int pos, neg;
2962 int last_pos, last_neg;
2963 int redundant;
2964 int defined;
2966 defined = !isl_int_is_zero(bmap->div[i][0]);
2967 for (j = i; j < bmap->n_div; ++j)
2968 if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i]))
2969 break;
2970 if (j < bmap->n_div)
2971 continue;
2972 for (j = 0; j < bmap->n_eq; ++j)
2973 if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
2974 break;
2975 if (j < bmap->n_eq)
2976 continue;
2977 ++n;
2978 pos = neg = 0;
2979 for (j = 0; j < bmap->n_ineq; ++j) {
2980 if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
2981 last_pos = j;
2982 ++pos;
2984 if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
2985 last_neg = j;
2986 ++neg;
2989 pairs[i] = pos * neg;
2990 if (pairs[i] == 0) {
2991 for (j = bmap->n_ineq - 1; j >= 0; --j)
2992 if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
2993 isl_basic_map_drop_inequality(bmap, j);
2994 bmap = isl_basic_map_drop_div(bmap, i);
2995 free(pairs);
2996 return isl_basic_map_drop_redundant_divs(bmap);
2998 if (pairs[i] != 1)
2999 continue;
3000 if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1,
3001 bmap->ineq[last_neg] + 1,
3002 off + bmap->n_div))
3003 continue;
3005 isl_int_add(bmap->ineq[last_pos][0],
3006 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3007 isl_int_add_ui(bmap->ineq[last_pos][0],
3008 bmap->ineq[last_pos][0], 1);
3009 redundant = isl_int_ge(bmap->ineq[last_pos][0],
3010 bmap->ineq[last_pos][1+off+i]);
3011 isl_int_sub_ui(bmap->ineq[last_pos][0],
3012 bmap->ineq[last_pos][0], 1);
3013 isl_int_sub(bmap->ineq[last_pos][0],
3014 bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
3015 if (!redundant) {
3016 if (defined ||
3017 !ok_to_set_div_from_bound(bmap, i, last_pos)) {
3018 pairs[i] = 0;
3019 --n;
3020 continue;
3022 bmap = set_div_from_lower_bound(bmap, i, last_pos);
3023 bmap = isl_basic_map_simplify(bmap);
3024 free(pairs);
3025 return isl_basic_map_drop_redundant_divs(bmap);
3027 if (last_pos > last_neg) {
3028 isl_basic_map_drop_inequality(bmap, last_pos);
3029 isl_basic_map_drop_inequality(bmap, last_neg);
3030 } else {
3031 isl_basic_map_drop_inequality(bmap, last_neg);
3032 isl_basic_map_drop_inequality(bmap, last_pos);
3034 bmap = isl_basic_map_drop_div(bmap, i);
3035 free(pairs);
3036 return isl_basic_map_drop_redundant_divs(bmap);
3039 if (n > 0)
3040 return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
3042 free(pairs);
3043 return bmap;
3044 error:
3045 free(pairs);
3046 isl_basic_map_free(bmap);
3047 return NULL;
3050 struct isl_basic_set *isl_basic_set_drop_redundant_divs(
3051 struct isl_basic_set *bset)
3053 return (struct isl_basic_set *)
3054 isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset);
3057 struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map)
3059 int i;
3061 if (!map)
3062 return NULL;
3063 for (i = 0; i < map->n; ++i) {
3064 map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]);
3065 if (!map->p[i])
3066 goto error;
3068 ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3069 return map;
3070 error:
3071 isl_map_free(map);
3072 return NULL;
3075 struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set)
3077 return (struct isl_set *)
3078 isl_map_drop_redundant_divs((struct isl_map *)set);