isl_basic_map_align_divs: avoid invalid access on error path
[isl.git] / isl_ast_codegen.c
bloba0717a98b33ed8af9d32583d7c828819c0a55ffb
1 /*
2 * Copyright 2012 Ecole Normale Superieure
4 * Use of this software is governed by the MIT license
6 * Written by Sven Verdoolaege,
7 * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
8 */
10 #include <limits.h>
11 #include <isl/aff.h>
12 #include <isl/set.h>
13 #include <isl/ilp.h>
14 #include <isl/union_map.h>
15 #include <isl_sort.h>
16 #include <isl_tarjan.h>
17 #include <isl_ast_private.h>
18 #include <isl_ast_build_expr.h>
19 #include <isl_ast_build_private.h>
20 #include <isl_ast_graft_private.h>
21 #include <isl_list_private.h>
23 /* Add the constraint to the list that "user" points to, if it is not
24 * a div constraint.
26 static int collect_constraint(__isl_take isl_constraint *constraint,
27 void *user)
29 isl_constraint_list **list = user;
31 if (isl_constraint_is_div_constraint(constraint))
32 isl_constraint_free(constraint);
33 else
34 *list = isl_constraint_list_add(*list, constraint);
36 return 0;
39 /* Extract the constraints of "bset" (except the div constraints)
40 * and collect them in an isl_constraint_list.
42 static __isl_give isl_constraint_list *isl_constraint_list_from_basic_set(
43 __isl_take isl_basic_set *bset)
45 int n;
46 isl_ctx *ctx;
47 isl_constraint_list *list;
49 if (!bset)
50 return NULL;
52 ctx = isl_basic_set_get_ctx(bset);
54 n = isl_basic_set_n_constraint(bset);
55 list = isl_constraint_list_alloc(ctx, n);
56 if (isl_basic_set_foreach_constraint(bset,
57 &collect_constraint, &list) < 0)
58 list = isl_constraint_list_free(list);
60 isl_basic_set_free(bset);
61 return list;
64 /* Data used in generate_domain.
66 * "build" is the input build.
67 * "list" collects the results.
69 struct isl_generate_domain_data {
70 isl_ast_build *build;
72 isl_ast_graft_list *list;
75 static __isl_give isl_ast_graft_list *generate_next_level(
76 __isl_take isl_union_map *executed,
77 __isl_take isl_ast_build *build);
78 static __isl_give isl_ast_graft_list *generate_code(
79 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
80 int internal);
82 /* Generate an AST for a single domain based on
83 * the (non single valued) inverse schedule "executed".
85 * We extend the schedule with the iteration domain
86 * and continue generating through a call to generate_code.
88 * In particular, if executed has the form
90 * S -> D
92 * then we continue generating code on
94 * [S -> D] -> D
96 * The extended inverse schedule is clearly single valued
97 * ensuring that the nested generate_code will not reach this function,
98 * but will instead create calls to all elements of D that need
99 * to be executed from the current schedule domain.
101 static int generate_non_single_valued(__isl_take isl_map *executed,
102 struct isl_generate_domain_data *data)
104 isl_map *identity;
105 isl_ast_build *build;
106 isl_ast_graft_list *list;
108 build = isl_ast_build_copy(data->build);
110 identity = isl_set_identity(isl_map_range(isl_map_copy(executed)));
111 executed = isl_map_domain_product(executed, identity);
112 build = isl_ast_build_set_single_valued(build, 1);
114 list = generate_code(isl_union_map_from_map(executed), build, 1);
116 data->list = isl_ast_graft_list_concat(data->list, list);
118 return 0;
121 /* Call the at_each_domain callback, if requested by the user,
122 * after recording the current inverse schedule in the build.
124 static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft,
125 __isl_keep isl_map *executed, __isl_keep isl_ast_build *build)
127 if (!graft || !build)
128 return isl_ast_graft_free(graft);
129 if (!build->at_each_domain)
130 return graft;
132 build = isl_ast_build_copy(build);
133 build = isl_ast_build_set_executed(build,
134 isl_union_map_from_map(isl_map_copy(executed)));
135 if (!build)
136 return isl_ast_graft_free(graft);
138 graft->node = build->at_each_domain(graft->node,
139 build, build->at_each_domain_user);
140 isl_ast_build_free(build);
142 if (!graft->node)
143 graft = isl_ast_graft_free(graft);
145 return graft;
148 /* Generate an AST for a single domain based on
149 * the inverse schedule "executed".
151 * If there is more than one domain element associated to the current
152 * schedule "time", then we need to continue the generation process
153 * in generate_non_single_valued.
154 * Note that the inverse schedule being single-valued may depend
155 * on constraints that are only available in the original context
156 * domain specified by the user. We therefore first introduce
157 * the constraints from data->build->domain.
158 * On the other hand, we only perform the test after having taken the gist
159 * of the domain as the resulting map is the one from which the call
160 * expression is constructed. Using this map to construct the call
161 * expression usually yields simpler results.
162 * Because we perform the single-valuedness test on the gisted map,
163 * we may in rare cases fail to recognize that the inverse schedule
164 * is single-valued. This becomes problematic if this happens
165 * from the recursive call through generate_non_single_valued
166 * as we would then end up in an infinite recursion.
167 * We therefore check if we are inside a call to generate_non_single_valued
168 * and revert to the ungisted map if the gisted map turns out not to be
169 * single-valued.
171 * Otherwise, we generate a call expression for the single executed
172 * domain element and put a guard around it based on the (simplified)
173 * domain of "executed".
175 * If the user has set an at_each_domain callback, it is called
176 * on the constructed call expression node.
178 static int generate_domain(__isl_take isl_map *executed, void *user)
180 struct isl_generate_domain_data *data = user;
181 isl_ast_graft *graft;
182 isl_ast_graft_list *list;
183 isl_set *guard;
184 isl_map *map;
185 int sv;
187 executed = isl_map_intersect_domain(executed,
188 isl_set_copy(data->build->domain));
190 executed = isl_map_coalesce(executed);
191 map = isl_map_copy(executed);
192 map = isl_ast_build_compute_gist_map_domain(data->build, map);
193 sv = isl_map_is_single_valued(map);
194 if (sv < 0)
195 goto error;
196 if (!sv) {
197 isl_map_free(map);
198 if (data->build->single_valued)
199 map = isl_map_copy(executed);
200 else
201 return generate_non_single_valued(executed, data);
203 guard = isl_map_domain(isl_map_copy(map));
204 guard = isl_set_coalesce(guard);
205 guard = isl_ast_build_compute_gist(data->build, guard);
206 graft = isl_ast_graft_alloc_domain(map, data->build);
207 graft = at_each_domain(graft, executed, data->build);
209 isl_map_free(executed);
210 graft = isl_ast_graft_add_guard(graft, guard, data->build);
212 list = isl_ast_graft_list_from_ast_graft(graft);
213 data->list = isl_ast_graft_list_concat(data->list, list);
215 return 0;
216 error:
217 isl_map_free(map);
218 isl_map_free(executed);
219 return -1;
222 /* Call build->create_leaf to a create "leaf" node in the AST,
223 * encapsulate the result in an isl_ast_graft and return the result
224 * as a 1-element list.
226 * Note that the node returned by the user may be an entire tree.
228 * Before we pass control to the user, we first clear some information
229 * from the build that is (presumbably) only meaningful
230 * for the current code generation.
231 * This includes the create_leaf callback itself, so we make a copy
232 * of the build first.
234 static __isl_give isl_ast_graft_list *call_create_leaf(
235 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
237 isl_ast_node *node;
238 isl_ast_graft *graft;
239 isl_ast_build *user_build;
241 user_build = isl_ast_build_copy(build);
242 user_build = isl_ast_build_set_executed(user_build, executed);
243 user_build = isl_ast_build_clear_local_info(user_build);
244 if (!user_build)
245 node = NULL;
246 else
247 node = build->create_leaf(user_build, build->create_leaf_user);
248 graft = isl_ast_graft_alloc(node, build);
249 isl_ast_build_free(build);
250 return isl_ast_graft_list_from_ast_graft(graft);
253 /* Generate an AST after having handled the complete schedule
254 * of this call to the code generator.
256 * If the user has specified a create_leaf callback, control
257 * is passed to the user in call_create_leaf.
259 * Otherwise, we generate one or more calls for each individual
260 * domain in generate_domain.
262 static __isl_give isl_ast_graft_list *generate_inner_level(
263 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
265 isl_ctx *ctx;
266 struct isl_generate_domain_data data = { build };
268 if (!build || !executed)
269 goto error;
271 if (build->create_leaf)
272 return call_create_leaf(executed, build);
274 ctx = isl_union_map_get_ctx(executed);
275 data.list = isl_ast_graft_list_alloc(ctx, 0);
276 if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0)
277 data.list = isl_ast_graft_list_free(data.list);
279 if (0)
280 error: data.list = NULL;
281 isl_ast_build_free(build);
282 isl_union_map_free(executed);
283 return data.list;
286 /* Call the before_each_for callback, if requested by the user.
288 static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node,
289 __isl_keep isl_ast_build *build)
291 isl_id *id;
293 if (!node || !build)
294 return isl_ast_node_free(node);
295 if (!build->before_each_for)
296 return node;
297 id = build->before_each_for(build, build->before_each_for_user);
298 node = isl_ast_node_set_annotation(node, id);
299 return node;
302 /* Call the after_each_for callback, if requested by the user.
304 static __isl_give isl_ast_graft *after_each_for(__isl_keep isl_ast_graft *graft,
305 __isl_keep isl_ast_build *build)
307 if (!graft || !build)
308 return isl_ast_graft_free(graft);
309 if (!build->after_each_for)
310 return graft;
311 graft->node = build->after_each_for(graft->node, build,
312 build->after_each_for_user);
313 if (!graft->node)
314 return isl_ast_graft_free(graft);
315 return graft;
318 /* Eliminate the schedule dimension "pos" from "executed" and return
319 * the result.
321 static __isl_give isl_union_map *eliminate(__isl_take isl_union_map *executed,
322 int pos, __isl_keep isl_ast_build *build)
324 isl_space *space;
325 isl_map *elim;
327 space = isl_ast_build_get_space(build, 1);
328 space = isl_space_map_from_set(space);
329 elim = isl_map_identity(space);
330 elim = isl_map_eliminate(elim, isl_dim_in, pos, 1);
332 executed = isl_union_map_apply_domain(executed,
333 isl_union_map_from_map(elim));
335 return executed;
338 /* Check if the constraint "c" is a lower bound on dimension "pos",
339 * an upper bound, or independent of dimension "pos".
341 static int constraint_type(isl_constraint *c, int pos)
343 if (isl_constraint_is_lower_bound(c, isl_dim_set, pos))
344 return 1;
345 if (isl_constraint_is_upper_bound(c, isl_dim_set, pos))
346 return 2;
347 return 0;
350 /* Compare the types of the constraints "a" and "b",
351 * resulting in constraints that are independent of "depth"
352 * to be sorted before the lower bounds on "depth", which in
353 * turn are sorted before the upper bounds on "depth".
355 static int cmp_constraint(const void *a, const void *b, void *user)
357 int *depth = user;
358 isl_constraint * const *c1 = a;
359 isl_constraint * const *c2 = b;
360 int t1 = constraint_type(*c1, *depth);
361 int t2 = constraint_type(*c2, *depth);
363 return t1 - t2;
366 /* Extract a lower bound on dimension "pos" from constraint "c".
368 * If the constraint is of the form
370 * a x + f(...) >= 0
372 * then we essentially return
374 * l = ceil(-f(...)/a)
376 * However, if the current dimension is strided, then we need to make
377 * sure that the lower bound we construct is of the form
379 * f + s a
381 * with f the offset and s the stride.
382 * We therefore compute
384 * f + s * ceil((l - f)/s)
386 static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c,
387 int pos, __isl_keep isl_ast_build *build)
389 isl_aff *aff;
391 aff = isl_constraint_get_bound(c, isl_dim_set, pos);
392 aff = isl_aff_ceil(aff);
394 if (isl_ast_build_has_stride(build, pos)) {
395 isl_aff *offset;
396 isl_int stride;
398 isl_int_init(stride);
400 offset = isl_ast_build_get_offset(build, pos);
401 isl_ast_build_get_stride(build, pos, &stride);
403 aff = isl_aff_sub(aff, isl_aff_copy(offset));
404 aff = isl_aff_scale_down(aff, stride);
405 aff = isl_aff_ceil(aff);
406 aff = isl_aff_scale(aff, stride);
407 aff = isl_aff_add(aff, offset);
409 isl_int_clear(stride);
412 aff = isl_ast_build_compute_gist_aff(build, aff);
414 return aff;
417 /* Return the exact lower bound (or upper bound if "upper" is set)
418 * of "domain" as a piecewise affine expression.
420 * If we are computing a lower bound (of a strided dimension), then
421 * we need to make sure it is of the form
423 * f + s a
425 * where f is the offset and s is the stride.
426 * We therefore need to include the stride constraint before computing
427 * the minimum.
429 static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain,
430 __isl_keep isl_ast_build *build, int upper)
432 isl_set *stride;
433 isl_map *it_map;
434 isl_pw_aff *pa;
435 isl_pw_multi_aff *pma;
437 domain = isl_set_copy(domain);
438 if (!upper) {
439 stride = isl_ast_build_get_stride_constraint(build);
440 domain = isl_set_intersect(domain, stride);
442 it_map = isl_ast_build_map_to_iterator(build, domain);
443 if (upper)
444 pma = isl_map_lexmax_pw_multi_aff(it_map);
445 else
446 pma = isl_map_lexmin_pw_multi_aff(it_map);
447 pa = isl_pw_multi_aff_get_pw_aff(pma, 0);
448 isl_pw_multi_aff_free(pma);
449 pa = isl_ast_build_compute_gist_pw_aff(build, pa);
450 pa = isl_pw_aff_coalesce(pa);
452 return pa;
455 /* Return a list of "n" lower bounds on dimension "pos"
456 * extracted from the "n" constraints starting at "constraint".
457 * If "n" is zero, then we extract a lower bound from "domain" instead.
459 static __isl_give isl_pw_aff_list *lower_bounds(
460 __isl_keep isl_constraint **constraint, int n, int pos,
461 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
463 isl_ctx *ctx;
464 isl_pw_aff_list *list;
465 int i;
467 if (!build)
468 return NULL;
470 if (n == 0) {
471 isl_pw_aff *pa;
472 pa = exact_bound(domain, build, 0);
473 return isl_pw_aff_list_from_pw_aff(pa);
476 ctx = isl_ast_build_get_ctx(build);
477 list = isl_pw_aff_list_alloc(ctx,n);
479 for (i = 0; i < n; ++i) {
480 isl_aff *aff;
482 aff = lower_bound(constraint[i], pos, build);
483 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
486 return list;
489 /* Return a list of "n" upper bounds on dimension "pos"
490 * extracted from the "n" constraints starting at "constraint".
491 * If "n" is zero, then we extract an upper bound from "domain" instead.
493 static __isl_give isl_pw_aff_list *upper_bounds(
494 __isl_keep isl_constraint **constraint, int n, int pos,
495 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
497 isl_ctx *ctx;
498 isl_pw_aff_list *list;
499 int i;
501 if (n == 0) {
502 isl_pw_aff *pa;
503 pa = exact_bound(domain, build, 1);
504 return isl_pw_aff_list_from_pw_aff(pa);
507 ctx = isl_ast_build_get_ctx(build);
508 list = isl_pw_aff_list_alloc(ctx,n);
510 for (i = 0; i < n; ++i) {
511 isl_aff *aff;
513 aff = isl_constraint_get_bound(constraint[i], isl_dim_set, pos);
514 aff = isl_aff_floor(aff);
515 list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff));
518 return list;
521 /* Return an isl_ast_expr that performs the reduction of type "type"
522 * on AST expressions corresponding to the elements in "list".
524 * The list is assumed to contain at least one element.
525 * If the list contains exactly one element, then the returned isl_ast_expr
526 * simply computes that affine expression.
528 static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type,
529 __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
531 int i, n;
532 isl_ctx *ctx;
533 isl_ast_expr *expr;
535 if (!list)
536 return NULL;
538 n = isl_pw_aff_list_n_pw_aff(list);
540 if (n == 1)
541 return isl_ast_build_expr_from_pw_aff_internal(build,
542 isl_pw_aff_list_get_pw_aff(list, 0));
544 ctx = isl_pw_aff_list_get_ctx(list);
545 expr = isl_ast_expr_alloc_op(ctx, type, n);
546 if (!expr)
547 return NULL;
549 for (i = 0; i < n; ++i) {
550 isl_ast_expr *expr_i;
552 expr_i = isl_ast_build_expr_from_pw_aff_internal(build,
553 isl_pw_aff_list_get_pw_aff(list, i));
554 if (!expr_i)
555 return isl_ast_expr_free(expr);
556 expr->u.op.args[i] = expr_i;
559 return expr;
562 /* Add a guard to "graft" based on "bound" in the case of a degenerate
563 * level (including the special case of an eliminated level).
565 * We eliminate the current dimension, simplify the result in the current
566 * build and add the result as guards to the graft.
568 * Note that we cannot simply drop the constraints on the current dimension
569 * even in the eliminated case, because the single affine expression may
570 * not be explicitly available in "bounds". Moreover, the single affine
571 * expression may only be defined on a subset of the build domain,
572 * so we do in some cases need to insert a guard even in the eliminated case.
574 static __isl_give isl_ast_graft *add_degenerate_guard(
575 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
576 __isl_keep isl_ast_build *build)
578 int depth;
579 isl_set *dom;
581 depth = isl_ast_build_get_depth(build);
583 dom = isl_set_from_basic_set(isl_basic_set_copy(bounds));
584 if (isl_ast_build_has_stride(build, depth)) {
585 isl_set *stride;
587 stride = isl_ast_build_get_stride_constraint(build);
588 dom = isl_set_intersect(dom, stride);
590 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
591 dom = isl_ast_build_compute_gist(build, dom);
593 graft = isl_ast_graft_add_guard(graft, dom, build);
595 return graft;
598 /* Update "graft" based on "bounds" for the eliminated case.
600 * In the eliminated case, no for node is created, so we only need
601 * to check if "bounds" imply any guards that need to be inserted.
603 static __isl_give isl_ast_graft *refine_eliminated(
604 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
605 __isl_keep isl_ast_build *build)
607 return add_degenerate_guard(graft, bounds, build);
610 /* Update "graft" based on "bounds" and "sub_build" for the degenerate case.
612 * "build" is the build in which graft->node was created
613 * "sub_build" contains information about the current level itself,
614 * including the single value attained.
616 * We first set the initialization part of the for loop to the single
617 * value attained by the current dimension.
618 * The increment and condition are not strictly needed as the are known
619 * to be "1" and "iterator <= value" respectively.
620 * Then we set the size of the iterator and
621 * check if "bounds" imply any guards that need to be inserted.
623 static __isl_give isl_ast_graft *refine_degenerate(
624 __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds,
625 __isl_keep isl_ast_build *build,
626 __isl_keep isl_ast_build *sub_build)
628 isl_pw_aff *value;
630 if (!graft || !sub_build)
631 return isl_ast_graft_free(graft);
633 value = isl_pw_aff_copy(sub_build->value);
635 graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build,
636 value);
637 if (!graft->node->u.f.init)
638 return isl_ast_graft_free(graft);
640 graft = add_degenerate_guard(graft, bounds, build);
642 return graft;
645 /* Return the intersection of the "n" constraints starting at "constraint"
646 * as a set.
648 static __isl_give isl_set *intersect_constraints(isl_ctx *ctx,
649 __isl_keep isl_constraint **constraint, int n)
651 int i;
652 isl_basic_set *bset;
654 if (n < 1)
655 isl_die(ctx, isl_error_internal,
656 "expecting at least one constraint", return NULL);
658 bset = isl_basic_set_from_constraint(
659 isl_constraint_copy(constraint[0]));
660 for (i = 1; i < n; ++i) {
661 isl_basic_set *bset_i;
663 bset_i = isl_basic_set_from_constraint(
664 isl_constraint_copy(constraint[i]));
665 bset = isl_basic_set_intersect(bset, bset_i);
668 return isl_set_from_basic_set(bset);
671 /* Compute the constraints on the outer dimensions enforced by
672 * graft->node and add those constraints to graft->enforced,
673 * in case the upper bound is expressed as a set "upper".
675 * In particular, if l(...) is a lower bound in "lower", and
677 * -a i + f(...) >= 0 or a i <= f(...)
679 * is an upper bound ocnstraint on the current dimension i,
680 * then the for loop enforces the constraint
682 * -a l(...) + f(...) >= 0 or a l(...) <= f(...)
684 * We therefore simply take each lower bound in turn, plug it into
685 * the upper bounds and compute the intersection over all lower bounds.
687 * If a lower bound is a rational expression, then
688 * isl_basic_set_preimage_multi_aff will force this rational
689 * expression to have only integer values. However, the loop
690 * itself does not enforce this integrality constraint. We therefore
691 * use the ceil of the lower bounds instead of the lower bounds themselves.
692 * Other constraints will make sure that the for loop is only executed
693 * when each of the lower bounds attains an integral value.
694 * In particular, potentially rational values only occur in
695 * lower_bound if the offset is a (seemingly) rational expression,
696 * but then outer conditions will make sure that this rational expression
697 * only attains integer values.
699 static __isl_give isl_ast_graft *set_enforced_from_set(
700 __isl_take isl_ast_graft *graft,
701 __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper)
703 isl_space *space;
704 isl_basic_set *enforced;
705 isl_pw_multi_aff *pma;
706 int i, n;
708 if (!graft || !lower)
709 return isl_ast_graft_free(graft);
711 space = isl_set_get_space(upper);
712 enforced = isl_basic_set_universe(isl_space_copy(space));
714 space = isl_space_map_from_set(space);
715 pma = isl_pw_multi_aff_identity(space);
717 n = isl_pw_aff_list_n_pw_aff(lower);
718 for (i = 0; i < n; ++i) {
719 isl_pw_aff *pa;
720 isl_set *enforced_i;
721 isl_basic_set *hull;
722 isl_pw_multi_aff *pma_i;
724 pa = isl_pw_aff_list_get_pw_aff(lower, i);
725 pa = isl_pw_aff_ceil(pa);
726 pma_i = isl_pw_multi_aff_copy(pma);
727 pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa);
728 enforced_i = isl_set_copy(upper);
729 enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i);
730 hull = isl_set_simple_hull(enforced_i);
731 enforced = isl_basic_set_intersect(enforced, hull);
734 isl_pw_multi_aff_free(pma);
736 graft = isl_ast_graft_enforce(graft, enforced);
738 return graft;
741 /* Compute the constraints on the outer dimensions enforced by
742 * graft->node and add those constraints to graft->enforced,
743 * in case the upper bound is expressed as
744 * a list of affine expressions "upper".
746 * The enforced condition is that each lower bound expression is less
747 * than or equal to each upper bound expression.
749 static __isl_give isl_ast_graft *set_enforced_from_list(
750 __isl_take isl_ast_graft *graft,
751 __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper)
753 isl_set *cond;
754 isl_basic_set *enforced;
756 lower = isl_pw_aff_list_copy(lower);
757 upper = isl_pw_aff_list_copy(upper);
758 cond = isl_pw_aff_list_le_set(lower, upper);
759 enforced = isl_set_simple_hull(cond);
760 graft = isl_ast_graft_enforce(graft, enforced);
762 return graft;
765 /* Does "aff" have a negative constant term?
767 static int aff_constant_is_negative(__isl_take isl_set *set,
768 __isl_take isl_aff *aff, void *user)
770 int *neg = user;
771 isl_int v;
773 isl_int_init(v);
774 isl_aff_get_constant(aff, &v);
775 *neg = isl_int_is_neg(v);
776 isl_int_clear(v);
777 isl_set_free(set);
778 isl_aff_free(aff);
780 return *neg ? 0 : -1;
783 /* Does "pa" have a negative constant term over its entire domain?
785 static int pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user)
787 int r;
788 int *neg = user;
790 r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user);
791 isl_pw_aff_free(pa);
793 return *neg ? 0 : -1;
796 /* Does each element in "list" have a negative constant term?
798 * The callback terminates the iteration as soon an element has been
799 * found that does not have a negative constant term.
801 static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list)
803 int neg = 1;
805 if (isl_pw_aff_list_foreach(list,
806 &pw_aff_constant_is_negative, &neg) < 0 && neg)
807 return -1;
809 return neg;
812 /* Add 1 to each of the elements in "list", where each of these elements
813 * is defined over the internal schedule space of "build".
815 static __isl_give isl_pw_aff_list *list_add_one(
816 __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build)
818 int i, n;
819 isl_space *space;
820 isl_aff *aff;
821 isl_pw_aff *one;
823 space = isl_ast_build_get_space(build, 1);
824 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
825 aff = isl_aff_add_constant_si(aff, 1);
826 one = isl_pw_aff_from_aff(aff);
828 n = isl_pw_aff_list_n_pw_aff(list);
829 for (i = 0; i < n; ++i) {
830 isl_pw_aff *pa;
831 pa = isl_pw_aff_list_get_pw_aff(list, i);
832 pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one));
833 list = isl_pw_aff_list_set_pw_aff(list, i, pa);
836 isl_pw_aff_free(one);
838 return list;
841 /* Set the condition part of the for node graft->node in case
842 * the upper bound is represented as a list of piecewise affine expressions.
844 * In particular, set the condition to
846 * iterator <= min(list of upper bounds)
848 * If each of the upper bounds has a negative constant term, then
849 * set the condition to
851 * iterator < min(list of (upper bound + 1)s)
854 static __isl_give isl_ast_graft *set_for_cond_from_list(
855 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list,
856 __isl_keep isl_ast_build *build)
858 int neg;
859 isl_ast_expr *bound, *iterator, *cond;
860 enum isl_ast_op_type type = isl_ast_op_le;
862 if (!graft || !list)
863 return isl_ast_graft_free(graft);
865 neg = list_constant_is_negative(list);
866 if (neg < 0)
867 return isl_ast_graft_free(graft);
868 list = isl_pw_aff_list_copy(list);
869 if (neg) {
870 list = list_add_one(list, build);
871 type = isl_ast_op_lt;
874 bound = reduce_list(isl_ast_op_min, list, build);
875 iterator = isl_ast_expr_copy(graft->node->u.f.iterator);
876 cond = isl_ast_expr_alloc_binary(type, iterator, bound);
877 graft->node->u.f.cond = cond;
879 isl_pw_aff_list_free(list);
880 if (!graft->node->u.f.cond)
881 return isl_ast_graft_free(graft);
882 return graft;
885 /* Set the condition part of the for node graft->node in case
886 * the upper bound is represented as a set.
888 static __isl_give isl_ast_graft *set_for_cond_from_set(
889 __isl_take isl_ast_graft *graft, __isl_keep isl_set *set,
890 __isl_keep isl_ast_build *build)
892 isl_ast_expr *cond;
894 if (!graft)
895 return NULL;
897 cond = isl_ast_build_expr_from_set(build, isl_set_copy(set));
898 graft->node->u.f.cond = cond;
899 if (!graft->node->u.f.cond)
900 return isl_ast_graft_free(graft);
901 return graft;
904 /* Construct an isl_ast_expr for the increment (i.e., stride) of
905 * the current dimension.
907 static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build)
909 int depth;
910 isl_int v;
911 isl_ctx *ctx;
912 isl_ast_expr *inc;
914 if (!build)
915 return NULL;
916 ctx = isl_ast_build_get_ctx(build);
917 depth = isl_ast_build_get_depth(build);
919 if (!isl_ast_build_has_stride(build, depth))
920 return isl_ast_expr_alloc_int_si(ctx, 1);
922 isl_int_init(v);
923 isl_ast_build_get_stride(build, depth, &v);
924 inc = isl_ast_expr_alloc_int(ctx, v);
925 isl_int_clear(v);
927 return inc;
930 /* Should we express the loop condition as
932 * iterator <= min(list of upper bounds)
934 * or as a conjunction of constraints?
936 * The first is constructed from a list of upper bounds.
937 * The second is constructed from a set.
939 * If there are no upper bounds in "constraints", then this could mean
940 * that "domain" simply doesn't have an upper bound or that we didn't
941 * pick any upper bound. In the first case, we want to generate the
942 * loop condition as a(n empty) conjunction of constraints
943 * In the second case, we will compute
944 * a single upper bound from "domain" and so we use the list form.
946 * If there are upper bounds in "constraints",
947 * then we use the list form iff the atomic_upper_bound option is set.
949 static int use_upper_bound_list(isl_ctx *ctx, int n_upper,
950 __isl_keep isl_set *domain, int depth)
952 if (n_upper > 0)
953 return isl_options_get_ast_build_atomic_upper_bound(ctx);
954 else
955 return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth);
958 /* Fill in the expressions of the for node in graft->node.
960 * In particular,
961 * - set the initialization part of the loop to the maximum of the lower bounds
962 * - set the size of the iterator based on the values attained by the iterator
963 * - extract the increment from the stride of the current dimension
964 * - construct the for condition either based on a list of upper bounds
965 * or on a set of upper bound constraints.
967 static __isl_give isl_ast_graft *set_for_node_expressions(
968 __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower,
969 int use_list, __isl_keep isl_pw_aff_list *upper_list,
970 __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build)
972 isl_ast_node *node;
974 if (!graft)
975 return NULL;
977 build = isl_ast_build_copy(build);
978 build = isl_ast_build_set_enforced(build,
979 isl_ast_graft_get_enforced(graft));
981 node = graft->node;
982 node->u.f.init = reduce_list(isl_ast_op_max, lower, build);
983 node->u.f.inc = for_inc(build);
985 if (use_list)
986 graft = set_for_cond_from_list(graft, upper_list, build);
987 else
988 graft = set_for_cond_from_set(graft, upper_set, build);
990 isl_ast_build_free(build);
992 if (!node->u.f.iterator || !node->u.f.init ||
993 !node->u.f.cond || !node->u.f.inc)
994 return isl_ast_graft_free(graft);
996 return graft;
999 /* Update "graft" based on "bounds" and "domain" for the generic,
1000 * non-degenerate, case.
1002 * "constraints" contains the "n_lower" lower and "n_upper" upper bounds
1003 * that the loop node should express.
1004 * "domain" is the subset of the intersection of the constraints
1005 * for which some code is executed.
1007 * There may be zero lower bounds or zero upper bounds in "constraints"
1008 * in case the list of constraints was created
1009 * based on the atomic option or based on separation with explicit bounds.
1010 * In that case, we use "domain" to derive lower and/or upper bounds.
1012 * We first compute a list of one or more lower bounds.
1014 * Then we decide if we want to express the condition as
1016 * iterator <= min(list of upper bounds)
1018 * or as a conjunction of constraints.
1020 * The set of enforced constraints is then computed either based on
1021 * a list of upper bounds or on a set of upper bound constraints.
1022 * We do not compute any enforced constraints if we were forced
1023 * to compute a lower or upper bound using exact_bound. The domains
1024 * of the resulting expressions may imply some bounds on outer dimensions
1025 * that we do not want to appear in the enforced constraints since
1026 * they are not actually enforced by the corresponding code.
1028 * Finally, we fill in the expressions of the for node.
1030 static __isl_give isl_ast_graft *refine_generic_bounds(
1031 __isl_take isl_ast_graft *graft,
1032 __isl_keep isl_constraint **constraint, int n_lower, int n_upper,
1033 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1035 int depth;
1036 isl_ctx *ctx;
1037 isl_pw_aff_list *lower;
1038 int use_list;
1039 isl_set *upper_set = NULL;
1040 isl_pw_aff_list *upper_list = NULL;
1042 if (!graft || !build)
1043 return isl_ast_graft_free(graft);
1045 depth = isl_ast_build_get_depth(build);
1046 ctx = isl_ast_graft_get_ctx(graft);
1048 use_list = use_upper_bound_list(ctx, n_upper, domain, depth);
1050 lower = lower_bounds(constraint, n_lower, depth, domain, build);
1052 if (use_list)
1053 upper_list = upper_bounds(constraint + n_lower, n_upper, depth,
1054 domain, build);
1055 else if (n_upper > 0)
1056 upper_set = intersect_constraints(ctx, constraint + n_lower,
1057 n_upper);
1058 else
1059 upper_set = isl_set_universe(isl_set_get_space(domain));
1061 if (n_lower == 0 || n_upper == 0)
1063 else if (use_list)
1064 graft = set_enforced_from_list(graft, lower, upper_list);
1065 else
1066 graft = set_enforced_from_set(graft, lower, depth, upper_set);
1068 graft = set_for_node_expressions(graft, lower, use_list, upper_list,
1069 upper_set, build);
1071 isl_pw_aff_list_free(lower);
1072 isl_pw_aff_list_free(upper_list);
1073 isl_set_free(upper_set);
1075 return graft;
1078 /* How many constraints in the "constraint" array, starting at position "first"
1079 * are of the give type? "n" represents the total number of elements
1080 * in the array.
1082 static int count_constraints(isl_constraint **constraint, int n, int first,
1083 int pos, int type)
1085 int i;
1087 constraint += first;
1089 for (i = 0; first + i < n; i++)
1090 if (constraint_type(constraint[i], pos) != type)
1091 break;
1093 return i;
1096 /* Update "graft" based on "bounds" and "domain" for the generic,
1097 * non-degenerate, case.
1099 * "list" respresent the list of bounds that need to be encoded by
1100 * the for loop (or a guard around the for loop).
1101 * "domain" is the subset of the intersection of the constraints
1102 * for which some code is executed.
1103 * "build" is the build in which graft->node was created.
1105 * We separate lower bounds, upper bounds and constraints that
1106 * are independent of the loop iterator.
1108 * The actual for loop bounds are generated in refine_generic_bounds.
1109 * If there are any constraints that are independent of the loop iterator,
1110 * we need to put a guard around the for loop (which may get hoisted up
1111 * to higher levels) and we call refine_generic_bounds in a build
1112 * where this guard is enforced.
1114 static __isl_give isl_ast_graft *refine_generic_split(
1115 __isl_take isl_ast_graft *graft, __isl_keep isl_constraint_list *list,
1116 __isl_keep isl_set *domain, __isl_keep isl_ast_build *build)
1118 isl_ctx *ctx;
1119 isl_ast_build *for_build;
1120 isl_set *guard;
1121 int n_indep, n_lower, n_upper;
1122 int pos;
1123 int n;
1125 if (!list)
1126 return isl_ast_graft_free(graft);
1128 pos = isl_ast_build_get_depth(build);
1130 if (isl_sort(list->p, list->n, sizeof(isl_constraint *),
1131 &cmp_constraint, &pos) < 0)
1132 return isl_ast_graft_free(graft);
1134 n = list->n;
1135 n_indep = count_constraints(list->p, n, 0, pos, 0);
1136 n_lower = count_constraints(list->p, n, n_indep, pos, 1);
1137 n_upper = count_constraints(list->p, n, n_indep + n_lower, pos, 2);
1139 if (n_indep == 0)
1140 return refine_generic_bounds(graft,
1141 list->p + n_indep, n_lower, n_upper, domain, build);
1143 ctx = isl_ast_graft_get_ctx(graft);
1144 guard = intersect_constraints(ctx, list->p, n_indep);
1146 for_build = isl_ast_build_copy(build);
1147 for_build = isl_ast_build_restrict_pending(for_build,
1148 isl_set_copy(guard));
1149 graft = refine_generic_bounds(graft,
1150 list->p + n_indep, n_lower, n_upper, domain, for_build);
1151 isl_ast_build_free(for_build);
1153 graft = isl_ast_graft_add_guard(graft, guard, build);
1155 return graft;
1158 /* Add the guard implied by the current stride constraint (if any),
1159 * but not (necessarily) enforced by the generated AST to "graft".
1161 static __isl_give isl_ast_graft *add_stride_guard(
1162 __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build)
1164 int depth;
1165 isl_set *dom;
1167 depth = isl_ast_build_get_depth(build);
1168 if (!isl_ast_build_has_stride(build, depth))
1169 return graft;
1171 dom = isl_ast_build_get_stride_constraint(build);
1172 dom = isl_set_eliminate(dom, isl_dim_set, depth, 1);
1173 dom = isl_ast_build_compute_gist(build, dom);
1175 graft = isl_ast_graft_add_guard(graft, dom, build);
1177 return graft;
1180 /* Update "graft" based on "bounds" and "domain" for the generic,
1181 * non-degenerate, case.
1183 * "bounds" respresent the bounds that need to be encoded by
1184 * the for loop (or a guard around the for loop).
1185 * "domain" is the subset of "bounds" for which some code is executed.
1186 * "build" is the build in which graft->node was created.
1188 * We break up "bounds" into a list of constraints and continue with
1189 * refine_generic_split.
1191 static __isl_give isl_ast_graft *refine_generic(
1192 __isl_take isl_ast_graft *graft,
1193 __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain,
1194 __isl_keep isl_ast_build *build)
1196 isl_constraint_list *list;
1198 if (!build || !graft)
1199 return isl_ast_graft_free(graft);
1201 bounds = isl_basic_set_copy(bounds);
1202 bounds = isl_ast_build_compute_gist_basic_set(build, bounds);
1203 list = isl_constraint_list_from_basic_set(bounds);
1205 graft = refine_generic_split(graft, list, domain, build);
1206 graft = add_stride_guard(graft, build);
1208 isl_constraint_list_free(list);
1209 return graft;
1212 /* Create a for node for the current level.
1214 * Mark the for node degenerate if "degenerate" is set.
1216 static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build,
1217 int degenerate)
1219 int depth;
1220 isl_id *id;
1221 isl_ast_node *node;
1223 if (!build)
1224 return NULL;
1226 depth = isl_ast_build_get_depth(build);
1227 id = isl_ast_build_get_iterator_id(build, depth);
1228 node = isl_ast_node_alloc_for(id);
1229 if (degenerate)
1230 node = isl_ast_node_for_mark_degenerate(node);
1232 return node;
1235 /* Create an AST node for the current dimension based on
1236 * the schedule domain "bounds" and return the node encapsulated
1237 * in an isl_ast_graft.
1239 * "executed" is the current inverse schedule, taking into account
1240 * the bounds in "bounds"
1241 * "domain" is the domain of "executed", with inner dimensions projected out.
1242 * It may be a strict subset of "bounds" in case "bounds" was created
1243 * based on the atomic option or based on separation with explicit bounds.
1245 * "domain" may satisfy additional equalities that result
1246 * from intersecting "executed" with "bounds" in add_node.
1247 * It may also satisfy some global constraints that were dropped out because
1248 * we performed separation with explicit bounds.
1249 * The very first step is then to copy these constraints to "bounds".
1251 * Since we may be calling before_each_for and after_each_for
1252 * callbacks, we record the current inverse schedule in the build.
1254 * We consider three builds,
1255 * "build" is the one in which the current level is created,
1256 * "body_build" is the build in which the next level is created,
1257 * "sub_build" is essentially the same as "body_build", except that
1258 * the depth has not been increased yet.
1260 * "build" already contains information (in strides and offsets)
1261 * about the strides at the current level, but this information is not
1262 * reflected in the build->domain.
1263 * We first add this information and the "bounds" to the sub_build->domain.
1264 * isl_ast_build_set_loop_bounds checks whether the current dimension attains
1265 * only a single value and whether this single value can be represented using
1266 * a single affine expression.
1267 * In the first case, the current level is considered "degenerate".
1268 * In the second, sub-case, the current level is considered "eliminated".
1269 * Eliminated level don't need to be reflected in the AST since we can
1270 * simply plug in the affine expression. For degenerate, but non-eliminated,
1271 * levels, we do introduce a for node, but mark is as degenerate so that
1272 * it can be printed as an assignment of the single value to the loop
1273 * "iterator".
1275 * If the current level is eliminated, we eliminate the current dimension
1276 * from the inverse schedule to make sure no inner dimensions depend
1277 * on the current dimension. Otherwise, we create a for node, marking
1278 * it degenerate if appropriate. The initial for node is still incomplete
1279 * and will be completed in either refine_degenerate or refine_generic.
1281 * We then generate a sequence of grafts for the next level,
1282 * create a surrounding graft for the current level and insert
1283 * the for node we created (if the current level is not eliminated).
1285 * Finally, we set the bounds of the for loop and insert guards
1286 * (either in the AST or in the graft) in one of
1287 * refine_eliminated, refine_degenerate or refine_generic.
1289 static __isl_give isl_ast_graft *create_node_scaled(
1290 __isl_take isl_union_map *executed,
1291 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1292 __isl_take isl_ast_build *build)
1294 int depth;
1295 int degenerate, eliminated;
1296 isl_basic_set *hull;
1297 isl_ast_node *node = NULL;
1298 isl_ast_graft *graft;
1299 isl_ast_graft_list *children;
1300 isl_ast_build *sub_build;
1301 isl_ast_build *body_build;
1303 domain = isl_ast_build_eliminate_divs(build, domain);
1304 domain = isl_set_detect_equalities(domain);
1305 hull = isl_set_unshifted_simple_hull(isl_set_copy(domain));
1306 bounds = isl_basic_set_intersect(bounds, hull);
1307 build = isl_ast_build_set_executed(build, isl_union_map_copy(executed));
1309 depth = isl_ast_build_get_depth(build);
1310 sub_build = isl_ast_build_copy(build);
1311 sub_build = isl_ast_build_include_stride(sub_build);
1312 sub_build = isl_ast_build_set_loop_bounds(sub_build,
1313 isl_basic_set_copy(bounds));
1314 degenerate = isl_ast_build_has_value(sub_build);
1315 eliminated = isl_ast_build_has_affine_value(sub_build, depth);
1316 if (degenerate < 0 || eliminated < 0)
1317 executed = isl_union_map_free(executed);
1318 if (eliminated)
1319 executed = eliminate(executed, depth, build);
1320 else
1321 node = create_for(build, degenerate);
1323 body_build = isl_ast_build_copy(sub_build);
1324 body_build = isl_ast_build_increase_depth(body_build);
1325 if (!eliminated)
1326 node = before_each_for(node, body_build);
1327 children = generate_next_level(executed,
1328 isl_ast_build_copy(body_build));
1330 graft = isl_ast_graft_alloc_level(children, build, sub_build);
1331 if (!eliminated)
1332 graft = isl_ast_graft_insert_for(graft, node);
1333 if (eliminated)
1334 graft = refine_eliminated(graft, bounds, build);
1335 else if (degenerate)
1336 graft = refine_degenerate(graft, bounds, build, sub_build);
1337 else
1338 graft = refine_generic(graft, bounds, domain, build);
1339 if (!eliminated)
1340 graft = after_each_for(graft, body_build);
1342 isl_ast_build_free(body_build);
1343 isl_ast_build_free(sub_build);
1344 isl_ast_build_free(build);
1345 isl_basic_set_free(bounds);
1346 isl_set_free(domain);
1348 return graft;
1351 /* Internal data structure for checking if all constraints involving
1352 * the input dimension "depth" are such that the other coefficients
1353 * are multiples of "m", reducing "m" if they are not.
1354 * If "m" is reduced all the way down to "1", then the check has failed
1355 * and we break out of the iteration.
1356 * "d" is an initialized isl_int that can be used internally.
1358 struct isl_check_scaled_data {
1359 int depth;
1360 isl_int m, d;
1363 /* If constraint "c" involves the input dimension data->depth,
1364 * then make sure that all the other coefficients are multiples of data->m,
1365 * reducing data->m if needed.
1366 * Break out of the iteration if data->m has become equal to "1".
1368 static int constraint_check_scaled(__isl_take isl_constraint *c, void *user)
1370 struct isl_check_scaled_data *data = user;
1371 int i, j, n;
1372 enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out,
1373 isl_dim_div };
1375 if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) {
1376 isl_constraint_free(c);
1377 return 0;
1380 for (i = 0; i < 4; ++i) {
1381 n = isl_constraint_dim(c, t[i]);
1382 for (j = 0; j < n; ++j) {
1383 if (t[i] == isl_dim_in && j == data->depth)
1384 continue;
1385 if (!isl_constraint_involves_dims(c, t[i], j, 1))
1386 continue;
1387 isl_constraint_get_coefficient(c, t[i], j, &data->d);
1388 isl_int_gcd(data->m, data->m, data->d);
1389 if (isl_int_is_one(data->m))
1390 break;
1392 if (j < n)
1393 break;
1396 isl_constraint_free(c);
1398 return i < 4 ? -1 : 0;
1401 /* For each constraint of "bmap" that involves the input dimension data->depth,
1402 * make sure that all the other coefficients are multiples of data->m,
1403 * reducing data->m if needed.
1404 * Break out of the iteration if data->m has become equal to "1".
1406 static int basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user)
1408 int r;
1410 r = isl_basic_map_foreach_constraint(bmap,
1411 &constraint_check_scaled, user);
1412 isl_basic_map_free(bmap);
1414 return r;
1417 /* For each constraint of "map" that involves the input dimension data->depth,
1418 * make sure that all the other coefficients are multiples of data->m,
1419 * reducing data->m if needed.
1420 * Break out of the iteration if data->m has become equal to "1".
1422 static int map_check_scaled(__isl_take isl_map *map, void *user)
1424 int r;
1426 r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user);
1427 isl_map_free(map);
1429 return r;
1432 /* Create an AST node for the current dimension based on
1433 * the schedule domain "bounds" and return the node encapsulated
1434 * in an isl_ast_graft.
1436 * "executed" is the current inverse schedule, taking into account
1437 * the bounds in "bounds"
1438 * "domain" is the domain of "executed", with inner dimensions projected out.
1441 * Before moving on to the actual AST node construction in create_node_scaled,
1442 * we first check if the current dimension is strided and if we can scale
1443 * down this stride. Note that we only do this if the ast_build_scale_strides
1444 * option is set.
1446 * In particular, let the current dimension take on values
1448 * f + s a
1450 * with a an integer. We check if we can find an integer m that (obviouly)
1451 * divides both f and s.
1453 * If so, we check if the current dimension only appears in constraints
1454 * where the coefficients of the other variables are multiples of m.
1455 * We perform this extra check to avoid the risk of introducing
1456 * divisions by scaling down the current dimension.
1458 * If so, we scale the current dimension down by a factor of m.
1459 * That is, we plug in
1461 * i = m i' (1)
1463 * Note that in principle we could always scale down strided loops
1464 * by plugging in
1466 * i = f + s i'
1468 * but this may result in i' taking on larger values than the original i,
1469 * due to the shift by "f".
1470 * By constrast, the scaling in (1) can only reduce the (absolute) value "i".
1472 static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed,
1473 __isl_take isl_basic_set *bounds, __isl_take isl_set *domain,
1474 __isl_take isl_ast_build *build)
1476 struct isl_check_scaled_data data;
1477 isl_ctx *ctx;
1478 isl_aff *offset;
1480 ctx = isl_ast_build_get_ctx(build);
1481 if (!isl_options_get_ast_build_scale_strides(ctx))
1482 return create_node_scaled(executed, bounds, domain, build);
1484 data.depth = isl_ast_build_get_depth(build);
1485 if (!isl_ast_build_has_stride(build, data.depth))
1486 return create_node_scaled(executed, bounds, domain, build);
1488 isl_int_init(data.m);
1489 isl_int_init(data.d);
1491 offset = isl_ast_build_get_offset(build, data.depth);
1492 if (isl_ast_build_get_stride(build, data.depth, &data.m) < 0)
1493 offset = isl_aff_free(offset);
1494 offset = isl_aff_scale_down(offset, data.m);
1495 if (isl_aff_get_denominator(offset, &data.d) < 0)
1496 executed = isl_union_map_free(executed);
1498 if (executed && isl_int_is_divisible_by(data.m, data.d))
1499 isl_int_divexact(data.m, data.m, data.d);
1500 else
1501 isl_int_set_si(data.m, 1);
1503 if (!isl_int_is_one(data.m)) {
1504 if (isl_union_map_foreach_map(executed, &map_check_scaled,
1505 &data) < 0 &&
1506 !isl_int_is_one(data.m))
1507 executed = isl_union_map_free(executed);
1510 if (!isl_int_is_one(data.m)) {
1511 isl_space *space;
1512 isl_multi_aff *ma;
1513 isl_aff *aff;
1514 isl_map *map;
1515 isl_union_map *umap;
1517 space = isl_ast_build_get_space(build, 1);
1518 space = isl_space_map_from_set(space);
1519 ma = isl_multi_aff_identity(space);
1520 aff = isl_multi_aff_get_aff(ma, data.depth);
1521 aff = isl_aff_scale(aff, data.m);
1522 ma = isl_multi_aff_set_aff(ma, data.depth, aff);
1524 bounds = isl_basic_set_preimage_multi_aff(bounds,
1525 isl_multi_aff_copy(ma));
1526 domain = isl_set_preimage_multi_aff(domain,
1527 isl_multi_aff_copy(ma));
1528 map = isl_map_reverse(isl_map_from_multi_aff(ma));
1529 umap = isl_union_map_from_map(map);
1530 executed = isl_union_map_apply_domain(executed,
1531 isl_union_map_copy(umap));
1532 build = isl_ast_build_scale_down(build, data.m, umap);
1534 isl_aff_free(offset);
1536 isl_int_clear(data.d);
1537 isl_int_clear(data.m);
1539 return create_node_scaled(executed, bounds, domain, build);
1542 /* Add the basic set to the list that "user" points to.
1544 static int collect_basic_set(__isl_take isl_basic_set *bset, void *user)
1546 isl_basic_set_list **list = user;
1548 *list = isl_basic_set_list_add(*list, bset);
1550 return 0;
1553 /* Extract the basic sets of "set" and collect them in an isl_basic_set_list.
1555 static __isl_give isl_basic_set_list *isl_basic_set_list_from_set(
1556 __isl_take isl_set *set)
1558 int n;
1559 isl_ctx *ctx;
1560 isl_basic_set_list *list;
1562 if (!set)
1563 return NULL;
1565 ctx = isl_set_get_ctx(set);
1567 n = isl_set_n_basic_set(set);
1568 list = isl_basic_set_list_alloc(ctx, n);
1569 if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0)
1570 list = isl_basic_set_list_free(list);
1572 isl_set_free(set);
1573 return list;
1576 /* Generate code for the schedule domain "bounds"
1577 * and add the result to "list".
1579 * We mainly detect strides and additional equalities here
1580 * and then pass over control to create_node.
1582 * "bounds" reflects the bounds on the current dimension and possibly
1583 * some extra conditions on outer dimensions.
1584 * It does not, however, include any divs involving the current dimension,
1585 * so it does not capture any stride constraints.
1586 * We therefore need to compute that part of the schedule domain that
1587 * intersects with "bounds" and derive the strides from the result.
1589 static __isl_give isl_ast_graft_list *add_node(
1590 __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed,
1591 __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build)
1593 isl_ast_graft *graft;
1594 isl_set *domain = NULL;
1595 isl_union_set *uset;
1596 int empty;
1598 uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds));
1599 executed = isl_union_map_intersect_domain(executed, uset);
1600 empty = isl_union_map_is_empty(executed);
1601 if (empty < 0)
1602 goto error;
1603 if (empty)
1604 goto done;
1606 uset = isl_union_map_domain(isl_union_map_copy(executed));
1607 domain = isl_set_from_union_set(uset);
1608 domain = isl_ast_build_compute_gist(build, domain);
1609 empty = isl_set_is_empty(domain);
1610 if (empty < 0)
1611 goto error;
1612 if (empty)
1613 goto done;
1615 domain = isl_ast_build_eliminate_inner(build, domain);
1616 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
1618 graft = create_node(executed, bounds, domain,
1619 isl_ast_build_copy(build));
1620 list = isl_ast_graft_list_add(list, graft);
1621 isl_ast_build_free(build);
1622 return list;
1623 error:
1624 list = isl_ast_graft_list_free(list);
1625 done:
1626 isl_set_free(domain);
1627 isl_basic_set_free(bounds);
1628 isl_union_map_free(executed);
1629 isl_ast_build_free(build);
1630 return list;
1633 struct isl_domain_follows_at_depth_data {
1634 int depth;
1635 isl_basic_set **piece;
1638 /* Does any element of i follow or coincide with any element of j
1639 * at the current depth (data->depth) for equal values of the outer
1640 * dimensions?
1642 static int domain_follows_at_depth(int i, int j, void *user)
1644 struct isl_domain_follows_at_depth_data *data = user;
1645 isl_basic_map *test;
1646 int empty;
1647 int l;
1649 test = isl_basic_map_from_domain_and_range(
1650 isl_basic_set_copy(data->piece[i]),
1651 isl_basic_set_copy(data->piece[j]));
1652 for (l = 0; l < data->depth; ++l)
1653 test = isl_basic_map_equate(test, isl_dim_in, l,
1654 isl_dim_out, l);
1655 test = isl_basic_map_order_ge(test, isl_dim_in, data->depth,
1656 isl_dim_out, data->depth);
1657 empty = isl_basic_map_is_empty(test);
1658 isl_basic_map_free(test);
1660 return empty < 0 ? -1 : !empty;
1663 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1664 __isl_keep isl_basic_set_list *domain_list,
1665 __isl_keep isl_union_map *executed,
1666 __isl_keep isl_ast_build *build);
1668 /* Generate code for the "n" schedule domains in "domain_list"
1669 * with positions specified by the entries of the "pos" array
1670 * and add the results to "list".
1672 * The "n" domains form a strongly connected component in the ordering.
1673 * If n is larger than 1, then this means that we cannot determine a valid
1674 * ordering for the n domains in the component. This should be fairly
1675 * rare because the individual domains have been made disjoint first.
1676 * The problem is that the domains may be integrally disjoint but not
1677 * rationally disjoint. For example, we may have domains
1679 * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 }
1681 * These two domains have an empty intersection, but their rational
1682 * relaxations do intersect. It is impossible to order these domains
1683 * in the second dimension because the first should be ordered before
1684 * the second for outer dimension equal to 0, while it should be ordered
1685 * after for outer dimension equal to 1.
1687 * This may happen in particular in case of unrolling since the domain
1688 * of each slice is replaced by its simple hull.
1690 * We collect the basic sets in the component, call isl_set_make_disjoint
1691 * and try again. Note that we rely here on isl_set_make_disjoint also
1692 * making the basic sets rationally disjoint. If the basic sets
1693 * are rationally disjoint, then the ordering problem does not occur.
1694 * To see this, there can only be a problem if there are points
1695 * (i,a) and (j,b) in one set and (i,c) and (j,d) in the other with
1696 * a < c and b > d. This means that either the interval spanned
1697 * by a en b lies inside that spanned by c and or the other way around.
1698 * In either case, there is a point inside both intervals with the
1699 * convex combination in terms of a and b and in terms of c and d.
1700 * Taking the same combination of i and j gives a point in the intersection.
1702 static __isl_give isl_ast_graft_list *add_nodes(
1703 __isl_take isl_ast_graft_list *list, int *pos, int n,
1704 __isl_keep isl_basic_set_list *domain_list,
1705 __isl_keep isl_union_map *executed,
1706 __isl_keep isl_ast_build *build)
1708 int i;
1709 isl_basic_set *bset;
1710 isl_set *set;
1712 bset = isl_basic_set_list_get_basic_set(domain_list, pos[0]);
1713 if (n == 1)
1714 return add_node(list, isl_union_map_copy(executed), bset,
1715 isl_ast_build_copy(build));
1717 set = isl_set_from_basic_set(bset);
1718 for (i = 1; i < n; ++i) {
1719 bset = isl_basic_set_list_get_basic_set(domain_list, pos[i]);
1720 set = isl_set_union(set, isl_set_from_basic_set(bset));
1723 set = isl_set_make_disjoint(set);
1724 if (isl_set_n_basic_set(set) == n)
1725 isl_die(isl_ast_graft_list_get_ctx(list), isl_error_internal,
1726 "unable to separate loop parts", goto error);
1727 domain_list = isl_basic_set_list_from_set(set);
1728 list = isl_ast_graft_list_concat(list,
1729 generate_sorted_domains(domain_list, executed, build));
1730 isl_basic_set_list_free(domain_list);
1732 return list;
1733 error:
1734 isl_set_free(set);
1735 return isl_ast_graft_list_free(list);
1738 /* Sort the domains in "domain_list" according to the execution order
1739 * at the current depth (for equal values of the outer dimensions),
1740 * generate code for each of them, collecting the results in a list.
1741 * If no code is generated (because the intersection of the inverse schedule
1742 * with the domains turns out to be empty), then an empty list is returned.
1744 * The caller is responsible for ensuring that the basic sets in "domain_list"
1745 * are pair-wise disjoint. It can, however, in principle happen that
1746 * two basic sets should be ordered one way for one value of the outer
1747 * dimensions and the other way for some other value of the outer dimensions.
1748 * We therefore play safe and look for strongly connected components.
1749 * The function add_nodes takes care of handling non-trivial components.
1751 static __isl_give isl_ast_graft_list *generate_sorted_domains(
1752 __isl_keep isl_basic_set_list *domain_list,
1753 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1755 isl_ctx *ctx;
1756 isl_ast_graft_list *list;
1757 struct isl_domain_follows_at_depth_data data;
1758 struct isl_tarjan_graph *g;
1759 int i, n;
1761 if (!domain_list)
1762 return NULL;
1764 ctx = isl_basic_set_list_get_ctx(domain_list);
1765 n = isl_basic_set_list_n_basic_set(domain_list);
1766 list = isl_ast_graft_list_alloc(ctx, n);
1767 if (n == 0)
1768 return list;
1769 if (n == 1)
1770 return add_node(list, isl_union_map_copy(executed),
1771 isl_basic_set_list_get_basic_set(domain_list, 0),
1772 isl_ast_build_copy(build));
1774 data.depth = isl_ast_build_get_depth(build);
1775 data.piece = domain_list->p;
1776 g = isl_tarjan_graph_init(ctx, n, &domain_follows_at_depth, &data);
1777 if (!g)
1778 goto error;
1780 i = 0;
1781 while (list && n) {
1782 int first;
1784 if (g->order[i] == -1)
1785 isl_die(ctx, isl_error_internal, "cannot happen",
1786 goto error);
1787 first = i;
1788 while (g->order[i] != -1) {
1789 ++i; --n;
1791 list = add_nodes(list, g->order + first, i - first,
1792 domain_list, executed, build);
1793 ++i;
1796 if (0)
1797 error: list = isl_ast_graft_list_free(list);
1798 isl_tarjan_graph_free(g);
1800 return list;
1803 struct isl_shared_outer_data {
1804 int depth;
1805 isl_basic_set **piece;
1808 /* Do elements i and j share any values for the outer dimensions?
1810 static int shared_outer(int i, int j, void *user)
1812 struct isl_shared_outer_data *data = user;
1813 isl_basic_map *test;
1814 int empty;
1815 int l;
1817 test = isl_basic_map_from_domain_and_range(
1818 isl_basic_set_copy(data->piece[i]),
1819 isl_basic_set_copy(data->piece[j]));
1820 for (l = 0; l < data->depth; ++l)
1821 test = isl_basic_map_equate(test, isl_dim_in, l,
1822 isl_dim_out, l);
1823 empty = isl_basic_map_is_empty(test);
1824 isl_basic_map_free(test);
1826 return empty < 0 ? -1 : !empty;
1829 /* Call generate_sorted_domains on a list containing the elements
1830 * of "domain_list indexed by the first "n" elements of "pos".
1832 static __isl_give isl_ast_graft_list *generate_sorted_domains_part(
1833 __isl_keep isl_basic_set_list *domain_list, int *pos, int n,
1834 __isl_keep isl_union_map *executed,
1835 __isl_keep isl_ast_build *build)
1837 int i;
1838 isl_ctx *ctx;
1839 isl_basic_set_list *slice;
1840 isl_ast_graft_list *list;
1842 ctx = isl_ast_build_get_ctx(build);
1843 slice = isl_basic_set_list_alloc(ctx, n);
1844 for (i = 0; i < n; ++i) {
1845 isl_basic_set *bset;
1847 bset = isl_basic_set_copy(domain_list->p[pos[i]]);
1848 slice = isl_basic_set_list_add(slice, bset);
1851 list = generate_sorted_domains(slice, executed, build);
1852 isl_basic_set_list_free(slice);
1854 return list;
1857 /* Look for any (weakly connected) components in the "domain_list"
1858 * of domains that share some values of the outer dimensions.
1859 * That is, domains in different components do not share any values
1860 * of the outer dimensions. This means that these components
1861 * can be freely reorderd.
1862 * Within each of the components, we sort the domains according
1863 * to the execution order at the current depth.
1865 * We fuse the result of each call to generate_sorted_domains_part
1866 * into a list with either zero or one graft and collect these (at most)
1867 * single element lists into a bigger list. This means that the elements of the
1868 * final list can be freely reordered. In particular, we sort them
1869 * according to an arbitrary but fixed ordering to ease merging of
1870 * graft lists from different components.
1872 static __isl_give isl_ast_graft_list *generate_parallel_domains(
1873 __isl_keep isl_basic_set_list *domain_list,
1874 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
1876 int i, n;
1877 isl_ctx *ctx;
1878 isl_ast_graft_list *list;
1879 struct isl_shared_outer_data data;
1880 struct isl_tarjan_graph *g;
1882 if (!domain_list)
1883 return NULL;
1885 n = isl_basic_set_list_n_basic_set(domain_list);
1886 if (n <= 1)
1887 return generate_sorted_domains(domain_list, executed, build);
1889 ctx = isl_basic_set_list_get_ctx(domain_list);
1891 data.depth = isl_ast_build_get_depth(build);
1892 data.piece = domain_list->p;
1893 g = isl_tarjan_graph_init(ctx, n, &shared_outer, &data);
1894 if (!g)
1895 return NULL;
1897 i = 0;
1898 do {
1899 int first;
1900 isl_ast_graft_list *list_c;
1902 if (g->order[i] == -1)
1903 isl_die(ctx, isl_error_internal, "cannot happen",
1904 break);
1905 first = i;
1906 while (g->order[i] != -1) {
1907 ++i; --n;
1909 if (first == 0 && n == 0) {
1910 isl_tarjan_graph_free(g);
1911 return generate_sorted_domains(domain_list,
1912 executed, build);
1914 list_c = generate_sorted_domains_part(domain_list,
1915 g->order + first, i - first, executed, build);
1916 list_c = isl_ast_graft_list_fuse(list_c, build);
1917 if (first == 0)
1918 list = list_c;
1919 else
1920 list = isl_ast_graft_list_concat(list, list_c);
1921 ++i;
1922 } while (list && n);
1924 if (n > 0)
1925 list = isl_ast_graft_list_free(list);
1927 list = isl_ast_graft_list_sort(list);
1929 isl_tarjan_graph_free(g);
1931 return list;
1934 /* Internal data for separate_domain.
1936 * "explicit" is set if we only want to use explicit bounds.
1938 * "domain" collects the separated domains.
1940 struct isl_separate_domain_data {
1941 isl_ast_build *build;
1942 int explicit;
1943 isl_set *domain;
1946 /* Extract implicit bounds on the current dimension for the executed "map".
1948 * The domain of "map" may involve inner dimensions, so we
1949 * need to eliminate them.
1951 static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map,
1952 __isl_keep isl_ast_build *build)
1954 isl_set *domain;
1956 domain = isl_map_domain(map);
1957 domain = isl_ast_build_eliminate(build, domain);
1959 return domain;
1962 /* Extract explicit bounds on the current dimension for the executed "map".
1964 * Rather than eliminating the inner dimensions as in implicit_bounds,
1965 * we simply drop any constraints involving those inner dimensions.
1966 * The idea is that most bounds that are implied by constraints on the
1967 * inner dimensions will be enforced by for loops and not by explicit guards.
1968 * There is then no need to separate along those bounds.
1970 static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map,
1971 __isl_keep isl_ast_build *build)
1973 isl_set *domain;
1974 int depth, dim;
1976 dim = isl_map_dim(map, isl_dim_out);
1977 map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim);
1979 domain = isl_map_domain(map);
1980 depth = isl_ast_build_get_depth(build);
1981 dim = isl_set_dim(domain, isl_dim_set);
1982 domain = isl_set_detect_equalities(domain);
1983 domain = isl_set_drop_constraints_involving_dims(domain,
1984 isl_dim_set, depth + 1, dim - (depth + 1));
1985 domain = isl_set_remove_divs_involving_dims(domain,
1986 isl_dim_set, depth, 1);
1987 domain = isl_set_remove_unknown_divs(domain);
1989 return domain;
1992 /* Split data->domain into pieces that intersect with the range of "map"
1993 * and pieces that do not intersect with the range of "map"
1994 * and then add that part of the range of "map" that does not intersect
1995 * with data->domain.
1997 static int separate_domain(__isl_take isl_map *map, void *user)
1999 struct isl_separate_domain_data *data = user;
2000 isl_set *domain;
2001 isl_set *d1, *d2;
2003 if (data->explicit)
2004 domain = explicit_bounds(map, data->build);
2005 else
2006 domain = implicit_bounds(map, data->build);
2008 domain = isl_set_coalesce(domain);
2009 domain = isl_set_make_disjoint(domain);
2010 d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain));
2011 d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain));
2012 data->domain = isl_set_intersect(data->domain, domain);
2013 data->domain = isl_set_union(data->domain, d1);
2014 data->domain = isl_set_union(data->domain, d2);
2016 return 0;
2019 /* Separate the schedule domains of "executed".
2021 * That is, break up the domain of "executed" into basic sets,
2022 * such that for each basic set S, every element in S is associated with
2023 * the same domain spaces.
2025 * "space" is the (single) domain space of "executed".
2027 static __isl_give isl_set *separate_schedule_domains(
2028 __isl_take isl_space *space, __isl_take isl_union_map *executed,
2029 __isl_keep isl_ast_build *build)
2031 struct isl_separate_domain_data data = { build };
2032 isl_ctx *ctx;
2034 ctx = isl_ast_build_get_ctx(build);
2035 data.explicit = isl_options_get_ast_build_separation_bounds(ctx) ==
2036 ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT;
2037 data.domain = isl_set_empty(space);
2038 if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0)
2039 data.domain = isl_set_free(data.domain);
2041 isl_union_map_free(executed);
2042 return data.domain;
2045 /* Temporary data used during the search for a lower bound for unrolling.
2047 * "domain" is the original set for which to find a lower bound
2048 * "depth" is the dimension for which to find a lower boudn
2050 * "lower" is the best lower bound found so far. It is NULL if we have not
2051 * found any yet.
2052 * "n" is the corresponding size. If lower is NULL, then the value of n
2053 * is undefined.
2055 * "tmp" is a temporary initialized isl_int.
2057 struct isl_find_unroll_data {
2058 isl_set *domain;
2059 int depth;
2061 isl_aff *lower;
2062 int *n;
2063 isl_int tmp;
2066 /* Check if we can use "c" as a lower bound and if it is better than
2067 * any previously found lower bound.
2069 * If "c" does not involve the dimension at the current depth,
2070 * then we cannot use it.
2071 * Otherwise, let "c" be of the form
2073 * i >= f(j)/a
2075 * We compute the maximal value of
2077 * -ceil(f(j)/a)) + i + 1
2079 * over the domain. If there is such a value "n", then we know
2081 * -ceil(f(j)/a)) + i + 1 <= n
2083 * or
2085 * i < ceil(f(j)/a)) + n
2087 * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling.
2088 * We just need to check if we have found any lower bound before and
2089 * if the new lower bound is better (smaller n) than the previously found
2090 * lower bounds.
2092 static int update_unrolling_lower_bound(struct isl_find_unroll_data *data,
2093 __isl_keep isl_constraint *c)
2095 isl_aff *aff, *lower;
2096 enum isl_lp_result res;
2098 if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth))
2099 return 0;
2101 lower = isl_constraint_get_bound(c, isl_dim_set, data->depth);
2102 lower = isl_aff_ceil(lower);
2103 aff = isl_aff_copy(lower);
2104 aff = isl_aff_neg(aff);
2105 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1);
2106 aff = isl_aff_add_constant_si(aff, 1);
2107 res = isl_set_max(data->domain, aff, &data->tmp);
2108 isl_aff_free(aff);
2110 if (res == isl_lp_error)
2111 goto error;
2112 if (res == isl_lp_unbounded) {
2113 isl_aff_free(lower);
2114 return 0;
2117 if (isl_int_cmp_si(data->tmp, INT_MAX) <= 0 &&
2118 (!data->lower || isl_int_cmp_si(data->tmp, *data->n) < 0)) {
2119 isl_aff_free(data->lower);
2120 data->lower = lower;
2121 *data->n = isl_int_get_si(data->tmp);
2122 } else
2123 isl_aff_free(lower);
2125 return 1;
2126 error:
2127 isl_aff_free(lower);
2128 return -1;
2131 /* Check if we can use "c" as a lower bound and if it is better than
2132 * any previously found lower bound.
2134 static int constraint_find_unroll(__isl_take isl_constraint *c, void *user)
2136 struct isl_find_unroll_data *data;
2137 int r;
2139 data = (struct isl_find_unroll_data *) user;
2140 r = update_unrolling_lower_bound(data, c);
2141 isl_constraint_free(c);
2143 return r;
2146 /* Look for a lower bound l(i) on the dimension at "depth"
2147 * and a size n such that "domain" is a subset of
2149 * { [i] : l(i) <= i_d < l(i) + n }
2151 * where d is "depth" and l(i) depends only on earlier dimensions.
2152 * Furthermore, try and find a lower bound such that n is as small as possible.
2153 * In particular, "n" needs to be finite.
2155 * Inner dimensions have been eliminated from "domain" by the caller.
2157 * We first construct a collection of lower bounds on the input set
2158 * by computing its simple hull. We then iterate through them,
2159 * discarding those that we cannot use (either because they do not
2160 * involve the dimension at "depth" or because they have no corresponding
2161 * upper bound, meaning that "n" would be unbounded) and pick out the
2162 * best from the remaining ones.
2164 * If we cannot find a suitable lower bound, then we consider that
2165 * to be an error.
2167 static __isl_give isl_aff *find_unroll_lower_bound(__isl_keep isl_set *domain,
2168 int depth, int *n)
2170 struct isl_find_unroll_data data = { domain, depth, NULL, n };
2171 isl_basic_set *hull;
2173 isl_int_init(data.tmp);
2174 hull = isl_set_simple_hull(isl_set_copy(domain));
2176 if (isl_basic_set_foreach_constraint(hull,
2177 &constraint_find_unroll, &data) < 0)
2178 goto error;
2180 isl_basic_set_free(hull);
2181 isl_int_clear(data.tmp);
2183 if (!data.lower)
2184 isl_die(isl_set_get_ctx(domain), isl_error_invalid,
2185 "cannot find lower bound for unrolling", return NULL);
2187 return data.lower;
2188 error:
2189 isl_basic_set_free(hull);
2190 isl_int_clear(data.tmp);
2191 return isl_aff_free(data.lower);
2194 /* Return the constraint
2196 * i_"depth" = aff + offset
2198 static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff,
2199 int offset)
2201 aff = isl_aff_copy(aff);
2202 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1);
2203 aff = isl_aff_add_constant_si(aff, offset);
2204 return isl_equality_from_aff(aff);
2207 /* Return a list of basic sets, one for each value of the current dimension
2208 * in "domain".
2209 * The divs that involve the current dimension have not been projected out
2210 * from this domain.
2212 * Since we are going to be iterating over the individual values,
2213 * we first check if there are any strides on the current dimension.
2214 * If there is, we rewrite the current dimension i as
2216 * i = stride i' + offset
2218 * and then iterate over individual values of i' instead.
2220 * We then look for a lower bound on i' and a size such that the domain
2221 * is a subset of
2223 * { [j,i'] : l(j) <= i' < l(j) + n }
2225 * and then take slices of the domain at values of i'
2226 * between l(j) and l(j) + n - 1.
2228 * We compute the unshifted simple hull of each slice to ensure that
2229 * we have a single basic set per offset. The slicing constraint
2230 * may get simplified away before the unshifted simple hull is taken
2231 * and may therefore in some rare cases disappear from the result.
2232 * We therefore explicitly add the constraint back after computing
2233 * the unshifted simple hull to ensure that the basic sets
2234 * remain disjoint. The constraints that are dropped by taking the hull
2235 * will be taken into account at the next level, as in the case of the
2236 * atomic option.
2238 * Finally, we map i' back to i and add each basic set to the list.
2240 static __isl_give isl_basic_set_list *do_unroll(__isl_take isl_set *domain,
2241 __isl_keep isl_ast_build *build)
2243 int i, n;
2244 int depth;
2245 isl_ctx *ctx;
2246 isl_aff *lower;
2247 isl_basic_set_list *list;
2248 isl_multi_aff *expansion;
2249 isl_basic_map *bmap;
2251 if (!domain)
2252 return NULL;
2254 ctx = isl_set_get_ctx(domain);
2255 depth = isl_ast_build_get_depth(build);
2256 build = isl_ast_build_copy(build);
2257 domain = isl_ast_build_eliminate_inner(build, domain);
2258 build = isl_ast_build_detect_strides(build, isl_set_copy(domain));
2259 expansion = isl_ast_build_get_stride_expansion(build);
2261 domain = isl_set_preimage_multi_aff(domain,
2262 isl_multi_aff_copy(expansion));
2263 domain = isl_ast_build_eliminate_divs(build, domain);
2265 isl_ast_build_free(build);
2267 list = isl_basic_set_list_alloc(ctx, 0);
2269 lower = find_unroll_lower_bound(domain, depth, &n);
2270 if (!lower)
2271 list = isl_basic_set_list_free(list);
2273 bmap = isl_basic_map_from_multi_aff(expansion);
2275 for (i = 0; list && i < n; ++i) {
2276 isl_set *set;
2277 isl_basic_set *bset;
2278 isl_constraint *slice;
2280 slice = at_offset(depth, lower, i);
2281 set = isl_set_copy(domain);
2282 set = isl_set_add_constraint(set, isl_constraint_copy(slice));
2283 bset = isl_set_unshifted_simple_hull(set);
2284 bset = isl_basic_set_add_constraint(bset, slice);
2285 bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap));
2286 list = isl_basic_set_list_add(list, bset);
2289 isl_aff_free(lower);
2290 isl_set_free(domain);
2291 isl_basic_map_free(bmap);
2293 return list;
2296 /* Data structure for storing the results and the intermediate objects
2297 * of compute_domains.
2299 * "list" is the main result of the function and contains a list
2300 * of disjoint basic sets for which code should be generated.
2302 * "executed" and "build" are inputs to compute_domains.
2303 * "schedule_domain" is the domain of "executed".
2305 * "option" constains the domains at the current depth that should by
2306 * atomic, separated or unrolled. These domains are as specified by
2307 * the user, except that inner dimensions have been eliminated and
2308 * that they have been made pair-wise disjoint.
2310 * "sep_class" contains the user-specified split into separation classes
2311 * specialized to the current depth.
2312 * "done" contains the union of th separation domains that have already
2313 * been handled.
2314 * "atomic" contains the domain that has effectively been made atomic.
2315 * This domain may be larger than the intersection of option[atomic]
2316 * and the schedule domain.
2318 struct isl_codegen_domains {
2319 isl_basic_set_list *list;
2321 isl_union_map *executed;
2322 isl_ast_build *build;
2323 isl_set *schedule_domain;
2325 isl_set *option[3];
2327 isl_map *sep_class;
2328 isl_set *done;
2329 isl_set *atomic;
2332 /* Add domains to domains->list for each individual value of the current
2333 * dimension, for that part of the schedule domain that lies in the
2334 * intersection of the option domain and the class domain.
2336 * "domain" is the intersection of the class domain and the schedule domain.
2337 * The divs that involve the current dimension have not been projected out
2338 * from this domain.
2340 * We first break up the unroll option domain into individual pieces
2341 * and then handle each of them separately. The unroll option domain
2342 * has been made disjoint in compute_domains_init_options,
2344 * Note that we actively want to combine different pieces of the
2345 * schedule domain that have the same value at the current dimension.
2346 * We therefore need to break up the unroll option domain before
2347 * intersecting with class and schedule domain, hoping that the
2348 * unroll option domain specified by the user is relatively simple.
2350 static int compute_unroll_domains(struct isl_codegen_domains *domains,
2351 __isl_keep isl_set *domain)
2353 isl_set *unroll_domain;
2354 isl_basic_set_list *unroll_list;
2355 int i, n;
2356 int empty;
2358 empty = isl_set_is_empty(domains->option[unroll]);
2359 if (empty < 0)
2360 return -1;
2361 if (empty)
2362 return 0;
2364 unroll_domain = isl_set_copy(domains->option[unroll]);
2365 unroll_list = isl_basic_set_list_from_set(unroll_domain);
2367 n = isl_basic_set_list_n_basic_set(unroll_list);
2368 for (i = 0; i < n; ++i) {
2369 isl_basic_set *bset;
2370 isl_basic_set_list *list;
2372 bset = isl_basic_set_list_get_basic_set(unroll_list, i);
2373 unroll_domain = isl_set_from_basic_set(bset);
2374 unroll_domain = isl_set_intersect(unroll_domain,
2375 isl_set_copy(domain));
2377 empty = isl_set_is_empty(unroll_domain);
2378 if (empty >= 0 && empty) {
2379 isl_set_free(unroll_domain);
2380 continue;
2383 list = do_unroll(unroll_domain, domains->build);
2384 domains->list = isl_basic_set_list_concat(domains->list, list);
2387 isl_basic_set_list_free(unroll_list);
2389 return 0;
2392 /* Construct a single basic set that includes the intersection of
2393 * the schedule domain, the atomic option domain and the class domain.
2394 * Add the resulting basic set to domains->list and save a copy
2395 * in domains->atomic for use in compute_partial_domains.
2397 * We construct a single domain rather than trying to combine
2398 * the schedule domains of individual domains because we are working
2399 * within a single component so that non-overlapping schedule domains
2400 * should already have been separated.
2401 * Note, though, that this does not take into account the class domain.
2402 * So, it is possible for a class domain to carve out a piece of the
2403 * schedule domain with independent pieces and then we would only
2404 * generate a single domain for them. If this proves to be problematic
2405 * for some users, then this function will have to be adjusted.
2407 * "domain" is the intersection of the schedule domain and the class domain,
2408 * with inner dimensions projected out.
2410 static int compute_atomic_domain(struct isl_codegen_domains *domains,
2411 __isl_keep isl_set *domain)
2413 isl_basic_set *bset;
2414 isl_set *atomic_domain;
2415 int empty;
2417 atomic_domain = isl_set_copy(domains->option[atomic]);
2418 atomic_domain = isl_set_intersect(atomic_domain, isl_set_copy(domain));
2419 empty = isl_set_is_empty(atomic_domain);
2420 if (empty < 0 || empty) {
2421 domains->atomic = atomic_domain;
2422 return empty < 0 ? -1 : 0;
2425 atomic_domain = isl_set_coalesce(atomic_domain);
2426 bset = isl_set_unshifted_simple_hull(atomic_domain);
2427 domains->atomic = isl_set_from_basic_set(isl_basic_set_copy(bset));
2428 domains->list = isl_basic_set_list_add(domains->list, bset);
2430 return 0;
2433 /* Split up the schedule domain into uniform basic sets,
2434 * in the sense that each element in a basic set is associated to
2435 * elements of the same domains, and add the result to domains->list.
2436 * Do this for that part of the schedule domain that lies in the
2437 * intersection of "class_domain" and the separate option domain.
2439 * "class_domain" may or may not include the constraints
2440 * of the schedule domain, but this does not make a difference
2441 * since we are going to intersect it with the domain of the inverse schedule.
2442 * If it includes schedule domain constraints, then they may involve
2443 * inner dimensions, but we will eliminate them in separation_domain.
2445 static int compute_separate_domain(struct isl_codegen_domains *domains,
2446 __isl_keep isl_set *class_domain)
2448 isl_space *space;
2449 isl_set *domain;
2450 isl_union_map *executed;
2451 isl_basic_set_list *list;
2452 int empty;
2454 domain = isl_set_copy(domains->option[separate]);
2455 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2456 executed = isl_union_map_copy(domains->executed);
2457 executed = isl_union_map_intersect_domain(executed,
2458 isl_union_set_from_set(domain));
2459 empty = isl_union_map_is_empty(executed);
2460 if (empty < 0 || empty) {
2461 isl_union_map_free(executed);
2462 return empty < 0 ? -1 : 0;
2465 space = isl_set_get_space(class_domain);
2466 domain = separate_schedule_domains(space, executed, domains->build);
2468 list = isl_basic_set_list_from_set(domain);
2469 domains->list = isl_basic_set_list_concat(domains->list, list);
2471 return 0;
2474 /* Split up the domain at the current depth into disjoint
2475 * basic sets for which code should be generated separately
2476 * for the given separation class domain.
2478 * If any separation classes have been defined, then "class_domain"
2479 * is the domain of the current class and does not refer to inner dimensions.
2480 * Otherwise, "class_domain" is the universe domain.
2482 * We first make sure that the class domain is disjoint from
2483 * previously considered class domains.
2485 * The separate domains can be computed directly from the "class_domain".
2487 * The unroll, atomic and remainder domains need the constraints
2488 * from the schedule domain.
2490 * For unrolling, the actual schedule domain is needed (with divs that
2491 * may refer to the current dimension) so that stride detection can be
2492 * performed.
2494 * For atomic and remainder domains, inner dimensions and divs involving
2495 * the current dimensions should be eliminated.
2496 * In case we are working within a separation class, we need to intersect
2497 * the result with the current "class_domain" to ensure that the domains
2498 * are disjoint from those generated from other class domains.
2500 * The domain that has been made atomic may be larger than specified
2501 * by the user since it needs to be representable as a single basic set.
2502 * This possibly larger domain is stored in domains->atomic by
2503 * compute_atomic_domain.
2505 * If anything is left after handling separate, unroll and atomic,
2506 * we split it up into basic sets and append the basic sets to domains->list.
2508 static int compute_partial_domains(struct isl_codegen_domains *domains,
2509 __isl_take isl_set *class_domain)
2511 isl_basic_set_list *list;
2512 isl_set *domain;
2514 class_domain = isl_set_subtract(class_domain,
2515 isl_set_copy(domains->done));
2516 domains->done = isl_set_union(domains->done,
2517 isl_set_copy(class_domain));
2519 domain = isl_set_copy(class_domain);
2521 if (compute_separate_domain(domains, domain) < 0)
2522 goto error;
2523 domain = isl_set_subtract(domain,
2524 isl_set_copy(domains->option[separate]));
2526 domain = isl_set_intersect(domain,
2527 isl_set_copy(domains->schedule_domain));
2529 if (compute_unroll_domains(domains, domain) < 0)
2530 goto error;
2531 domain = isl_set_subtract(domain,
2532 isl_set_copy(domains->option[unroll]));
2534 domain = isl_ast_build_eliminate(domains->build, domain);
2535 domain = isl_set_intersect(domain, isl_set_copy(class_domain));
2537 if (compute_atomic_domain(domains, domain) < 0)
2538 domain = isl_set_free(domain);
2539 domain = isl_set_subtract(domain, domains->atomic);
2541 domain = isl_set_coalesce(domain);
2542 domain = isl_set_make_disjoint(domain);
2544 list = isl_basic_set_list_from_set(domain);
2545 domains->list = isl_basic_set_list_concat(domains->list, list);
2547 isl_set_free(class_domain);
2549 return 0;
2550 error:
2551 isl_set_free(domain);
2552 isl_set_free(class_domain);
2553 return -1;
2556 /* Split up the domain at the current depth into disjoint
2557 * basic sets for which code should be generated separately
2558 * for the separation class identified by "pnt".
2560 * We extract the corresponding class domain from domains->sep_class,
2561 * eliminate inner dimensions and pass control to compute_partial_domains.
2563 static int compute_class_domains(__isl_take isl_point *pnt, void *user)
2565 struct isl_codegen_domains *domains = user;
2566 isl_set *class_set;
2567 isl_set *domain;
2568 int disjoint;
2570 class_set = isl_set_from_point(pnt);
2571 domain = isl_map_domain(isl_map_intersect_range(
2572 isl_map_copy(domains->sep_class), class_set));
2573 domain = isl_ast_build_compute_gist(domains->build, domain);
2574 domain = isl_ast_build_eliminate(domains->build, domain);
2576 disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain);
2577 if (disjoint < 0)
2578 return -1;
2579 if (disjoint) {
2580 isl_set_free(domain);
2581 return 0;
2584 return compute_partial_domains(domains, domain);
2587 /* Extract the domains at the current depth that should be atomic,
2588 * separated or unrolled and store them in option.
2590 * The domains specified by the user might overlap, so we make
2591 * them disjoint by subtracting earlier domains from later domains.
2593 static void compute_domains_init_options(isl_set *option[3],
2594 __isl_keep isl_ast_build *build)
2596 enum isl_ast_build_domain_type type, type2;
2598 for (type = atomic; type <= separate; ++type) {
2599 option[type] = isl_ast_build_get_option_domain(build, type);
2600 for (type2 = atomic; type2 < type; ++type2)
2601 option[type] = isl_set_subtract(option[type],
2602 isl_set_copy(option[type2]));
2605 option[unroll] = isl_set_coalesce(option[unroll]);
2606 option[unroll] = isl_set_make_disjoint(option[unroll]);
2609 /* Split up the domain at the current depth into disjoint
2610 * basic sets for which code should be generated separately,
2611 * based on the user-specified options.
2612 * Return the list of disjoint basic sets.
2614 * There are three kinds of domains that we need to keep track of.
2615 * - the "schedule domain" is the domain of "executed"
2616 * - the "class domain" is the domain corresponding to the currrent
2617 * separation class
2618 * - the "option domain" is the domain corresponding to one of the options
2619 * atomic, unroll or separate
2621 * We first consider the individial values of the separation classes
2622 * and split up the domain for each of them separately.
2623 * Finally, we consider the remainder. If no separation classes were
2624 * specified, then we call compute_partial_domains with the universe
2625 * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain",
2626 * with inner dimensions removed. We do this because we want to
2627 * avoid computing the complement of the class domains (i.e., the difference
2628 * between the universe and domains->done).
2630 static __isl_give isl_basic_set_list *compute_domains(
2631 __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build)
2633 struct isl_codegen_domains domains;
2634 isl_ctx *ctx;
2635 isl_set *domain;
2636 isl_union_set *schedule_domain;
2637 isl_set *classes;
2638 isl_space *space;
2639 int n_param;
2640 enum isl_ast_build_domain_type type;
2641 int empty;
2643 if (!executed)
2644 return NULL;
2646 ctx = isl_union_map_get_ctx(executed);
2647 domains.list = isl_basic_set_list_alloc(ctx, 0);
2649 schedule_domain = isl_union_map_domain(isl_union_map_copy(executed));
2650 domain = isl_set_from_union_set(schedule_domain);
2652 compute_domains_init_options(domains.option, build);
2654 domains.sep_class = isl_ast_build_get_separation_class(build);
2655 classes = isl_map_range(isl_map_copy(domains.sep_class));
2656 n_param = isl_set_dim(classes, isl_dim_param);
2657 classes = isl_set_project_out(classes, isl_dim_param, 0, n_param);
2659 space = isl_set_get_space(domain);
2660 domains.build = build;
2661 domains.schedule_domain = isl_set_copy(domain);
2662 domains.executed = executed;
2663 domains.done = isl_set_empty(space);
2665 if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0)
2666 domains.list = isl_basic_set_list_free(domains.list);
2667 isl_set_free(classes);
2669 empty = isl_set_is_empty(domains.done);
2670 if (empty < 0) {
2671 domains.list = isl_basic_set_list_free(domains.list);
2672 domain = isl_set_free(domain);
2673 } else if (empty) {
2674 isl_set_free(domain);
2675 domain = isl_set_universe(isl_set_get_space(domains.done));
2676 } else {
2677 domain = isl_ast_build_eliminate(build, domain);
2679 if (compute_partial_domains(&domains, domain) < 0)
2680 domains.list = isl_basic_set_list_free(domains.list);
2682 isl_set_free(domains.schedule_domain);
2683 isl_set_free(domains.done);
2684 isl_map_free(domains.sep_class);
2685 for (type = atomic; type <= separate; ++type)
2686 isl_set_free(domains.option[type]);
2688 return domains.list;
2691 /* Generate code for a single component, after shifting (if any)
2692 * has been applied.
2694 * We first split up the domain at the current depth into disjoint
2695 * basic sets based on the user-specified options.
2696 * Then we generated code for each of them and concatenate the results.
2698 static __isl_give isl_ast_graft_list *generate_shifted_component(
2699 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
2701 isl_basic_set_list *domain_list;
2702 isl_ast_graft_list *list = NULL;
2704 domain_list = compute_domains(executed, build);
2705 list = generate_parallel_domains(domain_list, executed, build);
2707 isl_basic_set_list_free(domain_list);
2708 isl_union_map_free(executed);
2709 isl_ast_build_free(build);
2711 return list;
2714 struct isl_set_map_pair {
2715 isl_set *set;
2716 isl_map *map;
2719 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2720 * of indices into the "domain" array,
2721 * return the union of the "map" fields of the elements
2722 * indexed by the first "n" elements of "order".
2724 static __isl_give isl_union_map *construct_component_executed(
2725 struct isl_set_map_pair *domain, int *order, int n)
2727 int i;
2728 isl_map *map;
2729 isl_union_map *executed;
2731 map = isl_map_copy(domain[order[0]].map);
2732 executed = isl_union_map_from_map(map);
2733 for (i = 1; i < n; ++i) {
2734 map = isl_map_copy(domain[order[i]].map);
2735 executed = isl_union_map_add_map(executed, map);
2738 return executed;
2741 /* Generate code for a single component, after shifting (if any)
2742 * has been applied.
2744 * The component inverse schedule is specified as the "map" fields
2745 * of the elements of "domain" indexed by the first "n" elements of "order".
2747 static __isl_give isl_ast_graft_list *generate_shifted_component_from_list(
2748 struct isl_set_map_pair *domain, int *order, int n,
2749 __isl_take isl_ast_build *build)
2751 isl_union_map *executed;
2753 executed = construct_component_executed(domain, order, n);
2754 return generate_shifted_component(executed, build);
2757 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2758 * of indices into the "domain" array,
2759 * do all (except for at most one) of the "set" field of the elements
2760 * indexed by the first "n" elements of "order" have a fixed value
2761 * at position "depth"?
2763 static int at_most_one_non_fixed(struct isl_set_map_pair *domain,
2764 int *order, int n, int depth)
2766 int i;
2767 int non_fixed = -1;
2769 for (i = 0; i < n; ++i) {
2770 int f;
2772 f = isl_set_plain_is_fixed(domain[order[i]].set,
2773 isl_dim_set, depth, NULL);
2774 if (f < 0)
2775 return -1;
2776 if (f)
2777 continue;
2778 if (non_fixed >= 0)
2779 return 0;
2780 non_fixed = i;
2783 return 1;
2786 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2787 * of indices into the "domain" array,
2788 * eliminate the inner dimensions from the "set" field of the elements
2789 * indexed by the first "n" elements of "order", provided the current
2790 * dimension does not have a fixed value.
2792 * Return the index of the first element in "order" with a corresponding
2793 * "set" field that does not have an (obviously) fixed value.
2795 static int eliminate_non_fixed(struct isl_set_map_pair *domain,
2796 int *order, int n, int depth, __isl_keep isl_ast_build *build)
2798 int i;
2799 int base = -1;
2801 for (i = n - 1; i >= 0; --i) {
2802 int f;
2803 f = isl_set_plain_is_fixed(domain[order[i]].set,
2804 isl_dim_set, depth, NULL);
2805 if (f < 0)
2806 return -1;
2807 if (f)
2808 continue;
2809 domain[order[i]].set = isl_ast_build_eliminate_inner(build,
2810 domain[order[i]].set);
2811 base = i;
2814 return base;
2817 /* Given an array "domain" of isl_set_map_pairs and an array "order"
2818 * of indices into the "domain" array,
2819 * find the element of "domain" (amongst those indexed by the first "n"
2820 * elements of "order") with the "set" field that has the smallest
2821 * value for the current iterator.
2823 * Note that the domain with the smallest value may depend on the parameters
2824 * and/or outer loop dimension. Since the result of this function is only
2825 * used as heuristic, we only make a reasonable attempt at finding the best
2826 * domain, one that should work in case a single domain provides the smallest
2827 * value for the current dimension over all values of the parameters
2828 * and outer dimensions.
2830 * In particular, we compute the smallest value of the first domain
2831 * and replace it by that of any later domain if that later domain
2832 * has a smallest value that is smaller for at least some value
2833 * of the parameters and outer dimensions.
2835 static int first_offset(struct isl_set_map_pair *domain, int *order, int n,
2836 __isl_keep isl_ast_build *build)
2838 int i;
2839 isl_map *min_first;
2840 int first = 0;
2842 min_first = isl_ast_build_map_to_iterator(build,
2843 isl_set_copy(domain[order[0]].set));
2844 min_first = isl_map_lexmin(min_first);
2846 for (i = 1; i < n; ++i) {
2847 isl_map *min, *test;
2848 int empty;
2850 min = isl_ast_build_map_to_iterator(build,
2851 isl_set_copy(domain[order[i]].set));
2852 min = isl_map_lexmin(min);
2853 test = isl_map_copy(min);
2854 test = isl_map_apply_domain(isl_map_copy(min_first), test);
2855 test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0);
2856 empty = isl_map_is_empty(test);
2857 isl_map_free(test);
2858 if (empty >= 0 && !empty) {
2859 isl_map_free(min_first);
2860 first = i;
2861 min_first = min;
2862 } else
2863 isl_map_free(min);
2865 if (empty < 0)
2866 break;
2869 isl_map_free(min_first);
2871 return i < n ? -1 : first;
2874 /* Construct a shifted inverse schedule based on the original inverse schedule,
2875 * the stride and the offset.
2877 * The original inverse schedule is specified as the "map" fields
2878 * of the elements of "domain" indexed by the first "n" elements of "order".
2880 * "stride" and "offset" are such that the difference
2881 * between the values of the current dimension of domain "i"
2882 * and the values of the current dimension for some reference domain are
2883 * equal to
2885 * stride * integer + offset[i]
2887 * Moreover, 0 <= offset[i] < stride.
2889 * For each domain, we create a map
2891 * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] }
2893 * where j refers to the current dimension and the other dimensions are
2894 * unchanged, and apply this map to the original schedule domain.
2896 * For example, for the original schedule
2898 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
2900 * and assuming the offset is 0 for the A domain and 1 for the B domain,
2901 * we apply the mapping
2903 * { [j] -> [j, 0] }
2905 * to the schedule of the "A" domain and the mapping
2907 * { [j - 1] -> [j, 1] }
2909 * to the schedule of the "B" domain.
2912 * Note that after the transformation, the differences between pairs
2913 * of values of the current dimension over all domains are multiples
2914 * of stride and that we have therefore exposed the stride.
2917 * To see that the mapping preserves the lexicographic order,
2918 * first note that each of the individual maps above preserves the order.
2919 * If the value of the current iterator is j1 in one domain and j2 in another,
2920 * then if j1 = j2, we know that the same map is applied to both domains
2921 * and the order is preserved.
2922 * Otherwise, let us assume, without loss of generality, that j1 < j2.
2923 * If c1 >= c2 (with c1 and c2 the corresponding offsets), then
2925 * j1 - c1 < j2 - c2
2927 * and the order is preserved.
2928 * If c1 < c2, then we know
2930 * 0 <= c2 - c1 < s
2932 * We also have
2934 * j2 - j1 = n * s + r
2936 * with n >= 0 and 0 <= r < s.
2937 * In other words, r = c2 - c1.
2938 * If n > 0, then
2940 * j1 - c1 < j2 - c2
2942 * If n = 0, then
2944 * j1 - c1 = j2 - c2
2946 * and so
2948 * (j1 - c1, c1) << (j2 - c2, c2)
2950 * with "<<" the lexicographic order, proving that the order is preserved
2951 * in all cases.
2953 static __isl_give isl_union_map *contruct_shifted_executed(
2954 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
2955 __isl_keep isl_vec *offset, __isl_keep isl_ast_build *build)
2957 int i;
2958 isl_int v;
2959 isl_union_map *executed;
2960 isl_space *space;
2961 isl_map *map;
2962 int depth;
2963 isl_constraint *c;
2965 depth = isl_ast_build_get_depth(build);
2966 space = isl_ast_build_get_space(build, 1);
2967 executed = isl_union_map_empty(isl_space_copy(space));
2968 space = isl_space_map_from_set(space);
2969 map = isl_map_identity(isl_space_copy(space));
2970 map = isl_map_eliminate(map, isl_dim_out, depth, 1);
2971 map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1);
2972 space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1);
2974 c = isl_equality_alloc(isl_local_space_from_space(space));
2975 c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1);
2976 c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1);
2978 isl_int_init(v);
2980 for (i = 0; i < n; ++i) {
2981 isl_map *map_i;
2983 if (isl_vec_get_element(offset, i, &v) < 0)
2984 break;
2985 map_i = isl_map_copy(map);
2986 map_i = isl_map_fix(map_i, isl_dim_out, depth + 1, v);
2987 isl_int_neg(v, v);
2988 c = isl_constraint_set_constant(c, v);
2989 map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c));
2991 map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map),
2992 map_i);
2993 executed = isl_union_map_add_map(executed, map_i);
2996 isl_constraint_free(c);
2997 isl_map_free(map);
2999 isl_int_clear(v);
3001 if (i < n)
3002 executed = isl_union_map_free(executed);
3004 return executed;
3007 /* Generate code for a single component, after exposing the stride,
3008 * given that the schedule domain is "shifted strided".
3010 * The component inverse schedule is specified as the "map" fields
3011 * of the elements of "domain" indexed by the first "n" elements of "order".
3013 * The schedule domain being "shifted strided" means that the differences
3014 * between the values of the current dimension of domain "i"
3015 * and the values of the current dimension for some reference domain are
3016 * equal to
3018 * stride * integer + offset[i]
3020 * We first look for the domain with the "smallest" value for the current
3021 * dimension and adjust the offsets such that the offset of the "smallest"
3022 * domain is equal to zero. The other offsets are reduced modulo stride.
3024 * Based on this information, we construct a new inverse schedule in
3025 * contruct_shifted_executed that exposes the stride.
3026 * Since this involves the introduction of a new schedule dimension,
3027 * the build needs to be changed accodingly.
3028 * After computing the AST, the newly introduced dimension needs
3029 * to be removed again from the list of grafts. We do this by plugging
3030 * in a mapping that represents the new schedule domain in terms of the
3031 * old schedule domain.
3033 static __isl_give isl_ast_graft_list *generate_shift_component(
3034 struct isl_set_map_pair *domain, int *order, int n, isl_int stride,
3035 __isl_keep isl_vec *offset, __isl_take isl_ast_build *build)
3037 isl_ast_graft_list *list;
3038 int first;
3039 int depth;
3040 isl_ctx *ctx;
3041 isl_int val;
3042 isl_vec *v;
3043 isl_space *space;
3044 isl_multi_aff *ma, *zero;
3045 isl_union_map *executed;
3047 ctx = isl_ast_build_get_ctx(build);
3048 depth = isl_ast_build_get_depth(build);
3050 first = first_offset(domain, order, n, build);
3051 if (first < 0)
3052 return isl_ast_build_free(build);
3054 isl_int_init(val);
3055 v = isl_vec_alloc(ctx, n);
3056 if (isl_vec_get_element(offset, first, &val) < 0)
3057 v = isl_vec_free(v);
3058 isl_int_neg(val, val);
3059 v = isl_vec_set(v, val);
3060 v = isl_vec_add(v, isl_vec_copy(offset));
3061 v = isl_vec_fdiv_r(v, stride);
3063 executed = contruct_shifted_executed(domain, order, n, stride, v,
3064 build);
3065 space = isl_ast_build_get_space(build, 1);
3066 space = isl_space_map_from_set(space);
3067 ma = isl_multi_aff_identity(isl_space_copy(space));
3068 space = isl_space_from_domain(isl_space_domain(space));
3069 space = isl_space_add_dims(space, isl_dim_out, 1);
3070 zero = isl_multi_aff_zero(space);
3071 ma = isl_multi_aff_range_splice(ma, depth + 1, zero);
3072 build = isl_ast_build_insert_dim(build, depth + 1);
3073 list = generate_shifted_component(executed, build);
3075 list = isl_ast_graft_list_preimage_multi_aff(list, ma);
3077 isl_vec_free(v);
3078 isl_int_clear(val);
3080 return list;
3083 /* Generate code for a single component.
3085 * The component inverse schedule is specified as the "map" fields
3086 * of the elements of "domain" indexed by the first "n" elements of "order".
3088 * This function may modify the "set" fields of "domain".
3090 * Before proceeding with the actual code generation for the component,
3091 * we first check if there are any "shifted" strides, meaning that
3092 * the schedule domains of the individual domains are all strided,
3093 * but that they have different offsets, resulting in the union
3094 * of schedule domains not being strided anymore.
3096 * The simplest example is the schedule
3098 * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 }
3100 * Both schedule domains are strided, but their union is not.
3101 * This function detects such cases and then rewrites the schedule to
3103 * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 }
3105 * In the new schedule, the schedule domains have the same offset (modulo
3106 * the stride), ensuring that the union of schedule domains is also strided.
3109 * If there is only a single domain in the component, then there is
3110 * nothing to do. Similarly, if the current schedule dimension has
3111 * a fixed value for almost all domains then there is nothing to be done.
3112 * In particular, we need at least two domains where the current schedule
3113 * dimension does not have a fixed value.
3114 * Finally, if any of the options refer to the current schedule dimension,
3115 * then we bail out as well. It would be possible to reformulate the options
3116 * in terms of the new schedule domain, but that would introduce constraints
3117 * that separate the domains in the options and that is something we would
3118 * like to avoid.
3121 * To see if there is any shifted stride, we look at the differences
3122 * between the values of the current dimension in pairs of domains
3123 * for equal values of outer dimensions. These differences should be
3124 * of the form
3126 * m x + r
3128 * with "m" the stride and "r" a constant. Note that we cannot perform
3129 * this analysis on individual domains as the lower bound in each domain
3130 * may depend on parameters or outer dimensions and so the current dimension
3131 * itself may not have a fixed remainder on division by the stride.
3133 * In particular, we compare the first domain that does not have an
3134 * obviously fixed value for the current dimension to itself and all
3135 * other domains and collect the offsets and the gcd of the strides.
3136 * If the gcd becomes one, then we failed to find shifted strides.
3137 * If all the offsets are the same (for those domains that do not have
3138 * an obviously fixed value for the current dimension), then we do not
3139 * apply the transformation.
3140 * If none of the domains were skipped, then there is nothing to do.
3141 * If some of them were skipped, then if we apply separation, the schedule
3142 * domain should get split in pieces with a (non-shifted) stride.
3144 * Otherwise, we apply a shift to expose the stride in
3145 * generate_shift_component.
3147 static __isl_give isl_ast_graft_list *generate_component(
3148 struct isl_set_map_pair *domain, int *order, int n,
3149 __isl_take isl_ast_build *build)
3151 int i, d;
3152 int depth;
3153 isl_ctx *ctx;
3154 isl_map *map;
3155 isl_set *deltas;
3156 isl_int m, r, gcd;
3157 isl_vec *v;
3158 int fixed, skip;
3159 int base;
3160 isl_ast_graft_list *list;
3161 int res = 0;
3163 depth = isl_ast_build_get_depth(build);
3165 skip = n == 1;
3166 if (skip >= 0 && !skip)
3167 skip = at_most_one_non_fixed(domain, order, n, depth);
3168 if (skip >= 0 && !skip)
3169 skip = isl_ast_build_options_involve_depth(build);
3170 if (skip < 0)
3171 return isl_ast_build_free(build);
3172 if (skip)
3173 return generate_shifted_component_from_list(domain,
3174 order, n, build);
3176 base = eliminate_non_fixed(domain, order, n, depth, build);
3177 if (base < 0)
3178 return isl_ast_build_free(build);
3180 ctx = isl_ast_build_get_ctx(build);
3182 isl_int_init(m);
3183 isl_int_init(r);
3184 isl_int_init(gcd);
3185 v = isl_vec_alloc(ctx, n);
3187 fixed = 1;
3188 for (i = 0; i < n; ++i) {
3189 map = isl_map_from_domain_and_range(
3190 isl_set_copy(domain[order[base]].set),
3191 isl_set_copy(domain[order[i]].set));
3192 for (d = 0; d < depth; ++d)
3193 map = isl_map_equate(map, isl_dim_in, d,
3194 isl_dim_out, d);
3195 deltas = isl_map_deltas(map);
3196 res = isl_set_dim_residue_class(deltas, depth, &m, &r);
3197 isl_set_free(deltas);
3198 if (res < 0)
3199 break;
3201 if (i == 0)
3202 isl_int_set(gcd, m);
3203 else
3204 isl_int_gcd(gcd, gcd, m);
3205 if (isl_int_is_one(gcd))
3206 break;
3207 v = isl_vec_set_element(v, i, r);
3209 res = isl_set_plain_is_fixed(domain[order[i]].set,
3210 isl_dim_set, depth, NULL);
3211 if (res < 0)
3212 break;
3213 if (res)
3214 continue;
3216 if (fixed && i > base) {
3217 isl_vec_get_element(v, base, &m);
3218 if (isl_int_ne(m, r))
3219 fixed = 0;
3223 if (res < 0) {
3224 isl_ast_build_free(build);
3225 list = NULL;
3226 } else if (i < n || fixed) {
3227 list = generate_shifted_component_from_list(domain,
3228 order, n, build);
3229 } else {
3230 list = generate_shift_component(domain, order, n, gcd, v,
3231 build);
3234 isl_vec_free(v);
3235 isl_int_clear(gcd);
3236 isl_int_clear(r);
3237 isl_int_clear(m);
3239 return list;
3242 /* Store both "map" itself and its domain in the
3243 * structure pointed to by *next and advance to the next array element.
3245 static int extract_domain(__isl_take isl_map *map, void *user)
3247 struct isl_set_map_pair **next = user;
3249 (*next)->map = isl_map_copy(map);
3250 (*next)->set = isl_map_domain(map);
3251 (*next)++;
3253 return 0;
3256 /* Internal data for any_scheduled_after.
3258 * "depth" is the number of loops that have already been generated
3259 * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled
3260 * "domain" is an array of set-map pairs corresponding to the different
3261 * iteration domains. The set is the schedule domain, i.e., the domain
3262 * of the inverse schedule, while the map is the inverse schedule itself.
3264 struct isl_any_scheduled_after_data {
3265 int depth;
3266 int group_coscheduled;
3267 struct isl_set_map_pair *domain;
3270 /* Is any element of domain "i" scheduled after any element of domain "j"
3271 * (for a common iteration of the first data->depth loops)?
3273 * data->domain[i].set contains the domain of the inverse schedule
3274 * for domain "i", i.e., elements in the schedule domain.
3276 * If data->group_coscheduled is set, then we also return 1 if there
3277 * is any pair of elements in the two domains that are scheduled together.
3279 static int any_scheduled_after(int i, int j, void *user)
3281 struct isl_any_scheduled_after_data *data = user;
3282 int dim = isl_set_dim(data->domain[i].set, isl_dim_set);
3283 int pos;
3285 for (pos = data->depth; pos < dim; ++pos) {
3286 int follows;
3288 follows = isl_set_follows_at(data->domain[i].set,
3289 data->domain[j].set, pos);
3291 if (follows < -1)
3292 return -1;
3293 if (follows > 0)
3294 return 1;
3295 if (follows < 0)
3296 return 0;
3299 return data->group_coscheduled;
3302 /* Look for independent components at the current depth and generate code
3303 * for each component separately. The resulting lists of grafts are
3304 * merged in an attempt to combine grafts with identical guards.
3306 * Code for two domains can be generated separately if all the elements
3307 * of one domain are scheduled before (or together with) all the elements
3308 * of the other domain. We therefore consider the graph with as nodes
3309 * the domains and an edge between two nodes if any element of the first
3310 * node is scheduled after any element of the second node.
3311 * If the ast_build_group_coscheduled is set, then we also add an edge if
3312 * there is any pair of elements in the two domains that are scheduled
3313 * together.
3314 * Code is then generated (by generate_component)
3315 * for each of the strongly connected components in this graph
3316 * in their topological order.
3318 * Since the test is performed on the domain of the inverse schedules of
3319 * the different domains, we precompute these domains and store
3320 * them in data.domain.
3322 static __isl_give isl_ast_graft_list *generate_components(
3323 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3325 int i;
3326 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3327 int n = isl_union_map_n_map(executed);
3328 struct isl_any_scheduled_after_data data;
3329 struct isl_set_map_pair *next;
3330 struct isl_tarjan_graph *g = NULL;
3331 isl_ast_graft_list *list = NULL;
3332 int n_domain = 0;
3334 data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n);
3335 if (!data.domain)
3336 goto error;
3337 n_domain = n;
3339 next = data.domain;
3340 if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0)
3341 goto error;
3343 if (!build)
3344 goto error;
3345 data.depth = isl_ast_build_get_depth(build);
3346 data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx);
3347 g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data);
3349 list = isl_ast_graft_list_alloc(ctx, 0);
3351 i = 0;
3352 while (list && n) {
3353 isl_ast_graft_list *list_c;
3354 int first = i;
3356 if (g->order[i] == -1)
3357 isl_die(ctx, isl_error_internal, "cannot happen",
3358 goto error);
3359 ++i; --n;
3360 while (g->order[i] != -1) {
3361 ++i; --n;
3364 list_c = generate_component(data.domain,
3365 g->order + first, i - first,
3366 isl_ast_build_copy(build));
3367 list = isl_ast_graft_list_merge(list, list_c, build);
3369 ++i;
3372 if (0)
3373 error: list = isl_ast_graft_list_free(list);
3374 isl_tarjan_graph_free(g);
3375 for (i = 0; i < n_domain; ++i) {
3376 isl_map_free(data.domain[i].map);
3377 isl_set_free(data.domain[i].set);
3379 free(data.domain);
3380 isl_union_map_free(executed);
3381 isl_ast_build_free(build);
3383 return list;
3386 /* Generate code for the next level (and all inner levels).
3388 * If "executed" is empty, i.e., no code needs to be generated,
3389 * then we return an empty list.
3391 * If we have already generated code for all loop levels, then we pass
3392 * control to generate_inner_level.
3394 * If "executed" lives in a single space, i.e., if code needs to be
3395 * generated for a single domain, then there can only be a single
3396 * component and we go directly to generate_shifted_component.
3397 * Otherwise, we call generate_components to detect the components
3398 * and to call generate_component on each of them separately.
3400 static __isl_give isl_ast_graft_list *generate_next_level(
3401 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build)
3403 int depth;
3405 if (!build || !executed)
3406 goto error;
3408 if (isl_union_map_is_empty(executed)) {
3409 isl_ctx *ctx = isl_ast_build_get_ctx(build);
3410 isl_union_map_free(executed);
3411 isl_ast_build_free(build);
3412 return isl_ast_graft_list_alloc(ctx, 0);
3415 depth = isl_ast_build_get_depth(build);
3416 if (depth >= isl_set_dim(build->domain, isl_dim_set))
3417 return generate_inner_level(executed, build);
3419 if (isl_union_map_n_map(executed) == 1)
3420 return generate_shifted_component(executed, build);
3422 return generate_components(executed, build);
3423 error:
3424 isl_union_map_free(executed);
3425 isl_ast_build_free(build);
3426 return NULL;
3429 /* Internal data structure used by isl_ast_build_ast_from_schedule.
3430 * internal, executed and build are the inputs to generate_code.
3431 * list collects the output.
3433 struct isl_generate_code_data {
3434 int internal;
3435 isl_union_map *executed;
3436 isl_ast_build *build;
3438 isl_ast_graft_list *list;
3441 /* Given an inverse schedule in terms of the external build schedule, i.e.,
3443 * [E -> S] -> D
3445 * with E the external build schedule and S the additional schedule "space",
3446 * reformulate the inverse schedule in terms of the internal schedule domain,
3447 * i.e., return
3449 * [I -> S] -> D
3451 * We first obtain a mapping
3453 * I -> E
3455 * take the inverse and the product with S -> S, resulting in
3457 * [I -> S] -> [E -> S]
3459 * Applying the map to the input produces the desired result.
3461 static __isl_give isl_union_map *internal_executed(
3462 __isl_take isl_union_map *executed, __isl_keep isl_space *space,
3463 __isl_keep isl_ast_build *build)
3465 isl_map *id, *proj;
3467 proj = isl_ast_build_get_schedule_map(build);
3468 proj = isl_map_reverse(proj);
3469 space = isl_space_map_from_set(isl_space_copy(space));
3470 id = isl_map_identity(space);
3471 proj = isl_map_product(proj, id);
3472 executed = isl_union_map_apply_domain(executed,
3473 isl_union_map_from_map(proj));
3474 return executed;
3477 /* Generate an AST that visits the elements in the range of data->executed
3478 * in the relative order specified by the corresponding image element(s)
3479 * for those image elements that belong to "set".
3480 * Add the result to data->list.
3482 * The caller ensures that "set" is a universe domain.
3483 * "space" is the space of the additional part of the schedule.
3484 * It is equal to the space of "set" if build->domain is parametric.
3485 * Otherwise, it is equal to the range of the wrapped space of "set".
3487 * If the build space is not parametric and if isl_ast_build_ast_from_schedule
3488 * was called from an outside user (data->internal not set), then
3489 * the (inverse) schedule refers to the external build domain and needs to
3490 * be transformed to refer to the internal build domain.
3492 * The build is extended to include the additional part of the schedule.
3493 * If the original build space was not parametric, then the options
3494 * in data->build refer only to the additional part of the schedule
3495 * and they need to be adjusted to refer to the complete AST build
3496 * domain.
3498 * After having adjusted inverse schedule and build, we start generating
3499 * code with the outer loop of the current code generation
3500 * in generate_next_level.
3502 * If the original build space was not parametric, we undo the embedding
3503 * on the resulting isl_ast_node_list so that it can be used within
3504 * the outer AST build.
3506 static int generate_code_in_space(struct isl_generate_code_data *data,
3507 __isl_take isl_set *set, __isl_take isl_space *space)
3509 isl_union_map *executed;
3510 isl_ast_build *build;
3511 isl_ast_graft_list *list;
3512 int embed;
3514 executed = isl_union_map_copy(data->executed);
3515 executed = isl_union_map_intersect_domain(executed,
3516 isl_union_set_from_set(set));
3518 embed = !isl_set_is_params(data->build->domain);
3519 if (embed && !data->internal)
3520 executed = internal_executed(executed, space, data->build);
3522 build = isl_ast_build_copy(data->build);
3523 build = isl_ast_build_product(build, space);
3525 list = generate_next_level(executed, build);
3527 list = isl_ast_graft_list_unembed(list, embed);
3529 data->list = isl_ast_graft_list_concat(data->list, list);
3531 return 0;
3534 /* Generate an AST that visits the elements in the range of data->executed
3535 * in the relative order specified by the corresponding domain element(s)
3536 * for those domain elements that belong to "set".
3537 * Add the result to data->list.
3539 * The caller ensures that "set" is a universe domain.
3541 * If the build space S is not parametric, then the space of "set"
3542 * need to be a wrapped relation with S as domain. That is, it needs
3543 * to be of the form
3545 * [S -> T]
3547 * Check this property and pass control to generate_code_in_space
3548 * passing along T.
3549 * If the build space is not parametric, then T is the space of "set".
3551 static int generate_code_set(__isl_take isl_set *set, void *user)
3553 struct isl_generate_code_data *data = user;
3554 isl_space *space, *build_space;
3555 int is_domain;
3557 space = isl_set_get_space(set);
3559 if (isl_set_is_params(data->build->domain))
3560 return generate_code_in_space(data, set, space);
3562 build_space = isl_ast_build_get_space(data->build, data->internal);
3563 space = isl_space_unwrap(space);
3564 is_domain = isl_space_is_domain(build_space, space);
3565 isl_space_free(build_space);
3566 space = isl_space_range(space);
3568 if (is_domain < 0)
3569 goto error;
3570 if (!is_domain)
3571 isl_die(isl_set_get_ctx(set), isl_error_invalid,
3572 "invalid nested schedule space", goto error);
3574 return generate_code_in_space(data, set, space);
3575 error:
3576 isl_set_free(set);
3577 isl_space_free(space);
3578 return -1;
3581 /* Generate an AST that visits the elements in the range of "executed"
3582 * in the relative order specified by the corresponding domain element(s).
3584 * "build" is an isl_ast_build that has either been constructed by
3585 * isl_ast_build_from_context or passed to a callback set by
3586 * isl_ast_build_set_create_leaf.
3587 * In the first case, the space of the isl_ast_build is typically
3588 * a parametric space, although this is currently not enforced.
3589 * In the second case, the space is never a parametric space.
3590 * If the space S is not parametric, then the domain space(s) of "executed"
3591 * need to be wrapped relations with S as domain.
3593 * If the domain of "executed" consists of several spaces, then an AST
3594 * is generated for each of them (in arbitrary order) and the results
3595 * are concatenated.
3597 * If "internal" is set, then the domain "S" above refers to the internal
3598 * schedule domain representation. Otherwise, it refers to the external
3599 * representation, as returned by isl_ast_build_get_schedule_space.
3601 * We essentially run over all the spaces in the domain of "executed"
3602 * and call generate_code_set on each of them.
3604 static __isl_give isl_ast_graft_list *generate_code(
3605 __isl_take isl_union_map *executed, __isl_take isl_ast_build *build,
3606 int internal)
3608 isl_ctx *ctx;
3609 struct isl_generate_code_data data = { 0 };
3610 isl_space *space;
3611 isl_union_set *schedule_domain;
3612 isl_union_map *universe;
3614 if (!build)
3615 goto error;
3616 space = isl_ast_build_get_space(build, 1);
3617 space = isl_space_align_params(space,
3618 isl_union_map_get_space(executed));
3619 space = isl_space_align_params(space,
3620 isl_union_map_get_space(build->options));
3621 build = isl_ast_build_align_params(build, isl_space_copy(space));
3622 executed = isl_union_map_align_params(executed, space);
3623 if (!executed || !build)
3624 goto error;
3626 ctx = isl_ast_build_get_ctx(build);
3628 data.internal = internal;
3629 data.executed = executed;
3630 data.build = build;
3631 data.list = isl_ast_graft_list_alloc(ctx, 0);
3633 universe = isl_union_map_universe(isl_union_map_copy(executed));
3634 schedule_domain = isl_union_map_domain(universe);
3635 if (isl_union_set_foreach_set(schedule_domain, &generate_code_set,
3636 &data) < 0)
3637 data.list = isl_ast_graft_list_free(data.list);
3639 isl_union_set_free(schedule_domain);
3640 isl_union_map_free(executed);
3642 isl_ast_build_free(build);
3643 return data.list;
3644 error:
3645 isl_union_map_free(executed);
3646 isl_ast_build_free(build);
3647 return NULL;
3650 /* Generate an AST that visits the elements in the domain of "schedule"
3651 * in the relative order specified by the corresponding image element(s).
3653 * "build" is an isl_ast_build that has either been constructed by
3654 * isl_ast_build_from_context or passed to a callback set by
3655 * isl_ast_build_set_create_leaf.
3656 * In the first case, the space of the isl_ast_build is typically
3657 * a parametric space, although this is currently not enforced.
3658 * In the second case, the space is never a parametric space.
3659 * If the space S is not parametric, then the range space(s) of "schedule"
3660 * need to be wrapped relations with S as domain.
3662 * If the range of "schedule" consists of several spaces, then an AST
3663 * is generated for each of them (in arbitrary order) and the results
3664 * are concatenated.
3666 * We first initialize the local copies of the relevant options.
3667 * We do this here rather than when the isl_ast_build is created
3668 * because the options may have changed between the construction
3669 * of the isl_ast_build and the call to isl_generate_code.
3671 * The main computation is performed on an inverse schedule (with
3672 * the schedule domain in the domain and the elements to be executed
3673 * in the range) called "executed".
3675 __isl_give isl_ast_node *isl_ast_build_ast_from_schedule(
3676 __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule)
3678 isl_ast_graft_list *list;
3679 isl_ast_node *node;
3680 isl_union_map *executed;
3682 build = isl_ast_build_copy(build);
3683 build = isl_ast_build_set_single_valued(build, 0);
3684 executed = isl_union_map_reverse(schedule);
3685 list = generate_code(executed, isl_ast_build_copy(build), 0);
3686 node = isl_ast_node_from_graft_list(list, build);
3687 isl_ast_build_free(build);
3689 return node;