export isl_mat_dup
[isl.git] / isl_tab.c
blobcdc173a06f7be2cf02bc3b2332ed9511828cc6ac
1 #include "isl_map_private.h"
2 #include "isl_tab.h"
4 /*
5 * The implementation of tableaus in this file was inspired by Section 8
6 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
7 * prover for program checking".
8 */
10 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
11 unsigned n_row, unsigned n_var)
13 int i;
14 struct isl_tab *tab;
16 tab = isl_calloc_type(ctx, struct isl_tab);
17 if (!tab)
18 return NULL;
19 tab->mat = isl_mat_alloc(ctx, n_row, 2 + n_var);
20 if (!tab->mat)
21 goto error;
22 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
23 if (!tab->var)
24 goto error;
25 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
26 if (!tab->con)
27 goto error;
28 tab->col_var = isl_alloc_array(ctx, int, n_var);
29 if (!tab->col_var)
30 goto error;
31 tab->row_var = isl_alloc_array(ctx, int, n_row);
32 if (!tab->row_var)
33 goto error;
34 for (i = 0; i < n_var; ++i) {
35 tab->var[i].index = i;
36 tab->var[i].is_row = 0;
37 tab->var[i].is_nonneg = 0;
38 tab->var[i].is_zero = 0;
39 tab->var[i].is_redundant = 0;
40 tab->var[i].frozen = 0;
41 tab->col_var[i] = i;
43 tab->n_row = 0;
44 tab->n_con = 0;
45 tab->n_eq = 0;
46 tab->max_con = n_row;
47 tab->n_col = n_var;
48 tab->n_var = n_var;
49 tab->n_dead = 0;
50 tab->n_redundant = 0;
51 tab->need_undo = 0;
52 tab->rational = 0;
53 tab->empty = 0;
54 tab->in_undo = 0;
55 tab->bottom.type = isl_tab_undo_bottom;
56 tab->bottom.next = NULL;
57 tab->top = &tab->bottom;
58 return tab;
59 error:
60 isl_tab_free(tab);
61 return NULL;
64 static int extend_cons(struct isl_tab *tab, unsigned n_new)
66 if (tab->max_con < tab->n_con + n_new) {
67 struct isl_tab_var *con;
69 con = isl_realloc_array(tab->mat->ctx, tab->con,
70 struct isl_tab_var, tab->max_con + n_new);
71 if (!con)
72 return -1;
73 tab->con = con;
74 tab->max_con += n_new;
76 if (tab->mat->n_row < tab->n_row + n_new) {
77 int *row_var;
79 tab->mat = isl_mat_extend(tab->mat,
80 tab->n_row + n_new, tab->n_col);
81 if (!tab->mat)
82 return -1;
83 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
84 int, tab->mat->n_row);
85 if (!row_var)
86 return -1;
87 tab->row_var = row_var;
89 return 0;
92 struct isl_tab *isl_tab_extend(struct isl_tab *tab, unsigned n_new)
94 if (extend_cons(tab, n_new) >= 0)
95 return tab;
97 isl_tab_free(tab);
98 return NULL;
101 static void free_undo(struct isl_tab *tab)
103 struct isl_tab_undo *undo, *next;
105 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
106 next = undo->next;
107 free(undo);
109 tab->top = undo;
112 void isl_tab_free(struct isl_tab *tab)
114 if (!tab)
115 return;
116 free_undo(tab);
117 isl_mat_free(tab->mat);
118 isl_vec_free(tab->dual);
119 free(tab->var);
120 free(tab->con);
121 free(tab->row_var);
122 free(tab->col_var);
123 free(tab);
126 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
128 if (i >= 0)
129 return &tab->var[i];
130 else
131 return &tab->con[~i];
134 static struct isl_tab_var *var_from_row(struct isl_tab *tab, int i)
136 return var_from_index(tab, tab->row_var[i]);
139 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
141 return var_from_index(tab, tab->col_var[i]);
144 /* Check if there are any upper bounds on column variable "var",
145 * i.e., non-negative rows where var appears with a negative coefficient.
146 * Return 1 if there are no such bounds.
148 static int max_is_manifestly_unbounded(struct isl_tab *tab,
149 struct isl_tab_var *var)
151 int i;
153 if (var->is_row)
154 return 0;
155 for (i = tab->n_redundant; i < tab->n_row; ++i) {
156 if (!isl_int_is_neg(tab->mat->row[i][2 + var->index]))
157 continue;
158 if (var_from_row(tab, i)->is_nonneg)
159 return 0;
161 return 1;
164 /* Check if there are any lower bounds on column variable "var",
165 * i.e., non-negative rows where var appears with a positive coefficient.
166 * Return 1 if there are no such bounds.
168 static int min_is_manifestly_unbounded(struct isl_tab *tab,
169 struct isl_tab_var *var)
171 int i;
173 if (var->is_row)
174 return 0;
175 for (i = tab->n_redundant; i < tab->n_row; ++i) {
176 if (!isl_int_is_pos(tab->mat->row[i][2 + var->index]))
177 continue;
178 if (var_from_row(tab, i)->is_nonneg)
179 return 0;
181 return 1;
184 /* Given the index of a column "c", return the index of a row
185 * that can be used to pivot the column in, with either an increase
186 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
187 * If "var" is not NULL, then the row returned will be different from
188 * the one associated with "var".
190 * Each row in the tableau is of the form
192 * x_r = a_r0 + \sum_i a_ri x_i
194 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
195 * impose any limit on the increase or decrease in the value of x_c
196 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
197 * for the row with the smallest (most stringent) such bound.
198 * Note that the common denominator of each row drops out of the fraction.
199 * To check if row j has a smaller bound than row r, i.e.,
200 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
201 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
202 * where -sign(a_jc) is equal to "sgn".
204 static int pivot_row(struct isl_tab *tab,
205 struct isl_tab_var *var, int sgn, int c)
207 int j, r, tsgn;
208 isl_int t;
210 isl_int_init(t);
211 r = -1;
212 for (j = tab->n_redundant; j < tab->n_row; ++j) {
213 if (var && j == var->index)
214 continue;
215 if (!var_from_row(tab, j)->is_nonneg)
216 continue;
217 if (sgn * isl_int_sgn(tab->mat->row[j][2 + c]) >= 0)
218 continue;
219 if (r < 0) {
220 r = j;
221 continue;
223 isl_int_mul(t, tab->mat->row[r][1], tab->mat->row[j][2 + c]);
224 isl_int_submul(t, tab->mat->row[j][1], tab->mat->row[r][2 + c]);
225 tsgn = sgn * isl_int_sgn(t);
226 if (tsgn < 0 || (tsgn == 0 &&
227 tab->row_var[j] < tab->row_var[r]))
228 r = j;
230 isl_int_clear(t);
231 return r;
234 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
235 * (sgn < 0) the value of row variable var.
236 * If not NULL, then skip_var is a row variable that should be ignored
237 * while looking for a pivot row. It is usually equal to var.
239 * As the given row in the tableau is of the form
241 * x_r = a_r0 + \sum_i a_ri x_i
243 * we need to find a column such that the sign of a_ri is equal to "sgn"
244 * (such that an increase in x_i will have the desired effect) or a
245 * column with a variable that may attain negative values.
246 * If a_ri is positive, then we need to move x_i in the same direction
247 * to obtain the desired effect. Otherwise, x_i has to move in the
248 * opposite direction.
250 static void find_pivot(struct isl_tab *tab,
251 struct isl_tab_var *var, struct isl_tab_var *skip_var,
252 int sgn, int *row, int *col)
254 int j, r, c;
255 isl_int *tr;
257 *row = *col = -1;
259 isl_assert(tab->mat->ctx, var->is_row, return);
260 tr = tab->mat->row[var->index];
262 c = -1;
263 for (j = tab->n_dead; j < tab->n_col; ++j) {
264 if (isl_int_is_zero(tr[2 + j]))
265 continue;
266 if (isl_int_sgn(tr[2 + j]) != sgn &&
267 var_from_col(tab, j)->is_nonneg)
268 continue;
269 if (c < 0 || tab->col_var[j] < tab->col_var[c])
270 c = j;
272 if (c < 0)
273 return;
275 sgn *= isl_int_sgn(tr[2 + c]);
276 r = pivot_row(tab, skip_var, sgn, c);
277 *row = r < 0 ? var->index : r;
278 *col = c;
281 /* Return 1 if row "row" represents an obviously redundant inequality.
282 * This means
283 * - it represents an inequality or a variable
284 * - that is the sum of a non-negative sample value and a positive
285 * combination of zero or more non-negative variables.
287 static int is_redundant(struct isl_tab *tab, int row)
289 int i;
291 if (tab->row_var[row] < 0 && !var_from_row(tab, row)->is_nonneg)
292 return 0;
294 if (isl_int_is_neg(tab->mat->row[row][1]))
295 return 0;
297 for (i = tab->n_dead; i < tab->n_col; ++i) {
298 if (isl_int_is_zero(tab->mat->row[row][2 + i]))
299 continue;
300 if (isl_int_is_neg(tab->mat->row[row][2 + i]))
301 return 0;
302 if (!var_from_col(tab, i)->is_nonneg)
303 return 0;
305 return 1;
308 static void swap_rows(struct isl_tab *tab, int row1, int row2)
310 int t;
311 t = tab->row_var[row1];
312 tab->row_var[row1] = tab->row_var[row2];
313 tab->row_var[row2] = t;
314 var_from_row(tab, row1)->index = row1;
315 var_from_row(tab, row2)->index = row2;
316 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
319 static void push(struct isl_tab *tab,
320 enum isl_tab_undo_type type, struct isl_tab_var *var)
322 struct isl_tab_undo *undo;
324 if (!tab->need_undo)
325 return;
327 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
328 if (!undo) {
329 free_undo(tab);
330 tab->top = NULL;
331 return;
333 undo->type = type;
334 undo->var = var;
335 undo->next = tab->top;
336 tab->top = undo;
339 /* Mark row with index "row" as being redundant.
340 * If we may need to undo the operation or if the row represents
341 * a variable of the original problem, the row is kept,
342 * but no longer considered when looking for a pivot row.
343 * Otherwise, the row is simply removed.
345 * The row may be interchanged with some other row. If it
346 * is interchanged with a later row, return 1. Otherwise return 0.
347 * If the rows are checked in order in the calling function,
348 * then a return value of 1 means that the row with the given
349 * row number may now contain a different row that hasn't been checked yet.
351 static int mark_redundant(struct isl_tab *tab, int row)
353 struct isl_tab_var *var = var_from_row(tab, row);
354 var->is_redundant = 1;
355 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return);
356 if (tab->need_undo || tab->row_var[row] >= 0) {
357 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
358 var->is_nonneg = 1;
359 push(tab, isl_tab_undo_nonneg, var);
361 if (row != tab->n_redundant)
362 swap_rows(tab, row, tab->n_redundant);
363 push(tab, isl_tab_undo_redundant, var);
364 tab->n_redundant++;
365 return 0;
366 } else {
367 if (row != tab->n_row - 1)
368 swap_rows(tab, row, tab->n_row - 1);
369 var_from_row(tab, tab->n_row - 1)->index = -1;
370 tab->n_row--;
371 return 1;
375 static struct isl_tab *mark_empty(struct isl_tab *tab)
377 if (!tab->empty && tab->need_undo)
378 push(tab, isl_tab_undo_empty, NULL);
379 tab->empty = 1;
380 return tab;
383 /* Given a row number "row" and a column number "col", pivot the tableau
384 * such that the associated variables are interchanged.
385 * The given row in the tableau expresses
387 * x_r = a_r0 + \sum_i a_ri x_i
389 * or
391 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
393 * Substituting this equality into the other rows
395 * x_j = a_j0 + \sum_i a_ji x_i
397 * with a_jc \ne 0, we obtain
399 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
401 * The tableau
403 * n_rc/d_r n_ri/d_r
404 * n_jc/d_j n_ji/d_j
406 * where i is any other column and j is any other row,
407 * is therefore transformed into
409 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
410 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
412 * The transformation is performed along the following steps
414 * d_r/n_rc n_ri/n_rc
415 * n_jc/d_j n_ji/d_j
417 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
418 * n_jc/d_j n_ji/d_j
420 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
421 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
423 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
424 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
426 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
427 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
429 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
430 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
433 static void pivot(struct isl_tab *tab, int row, int col)
435 int i, j;
436 int sgn;
437 int t;
438 struct isl_mat *mat = tab->mat;
439 struct isl_tab_var *var;
441 isl_int_swap(mat->row[row][0], mat->row[row][2 + col]);
442 sgn = isl_int_sgn(mat->row[row][0]);
443 if (sgn < 0) {
444 isl_int_neg(mat->row[row][0], mat->row[row][0]);
445 isl_int_neg(mat->row[row][2 + col], mat->row[row][2 + col]);
446 } else
447 for (j = 0; j < 1 + tab->n_col; ++j) {
448 if (j == 1 + col)
449 continue;
450 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
452 if (!isl_int_is_one(mat->row[row][0]))
453 isl_seq_normalize(mat->row[row], 2 + tab->n_col);
454 for (i = 0; i < tab->n_row; ++i) {
455 if (i == row)
456 continue;
457 if (isl_int_is_zero(mat->row[i][2 + col]))
458 continue;
459 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
460 for (j = 0; j < 1 + tab->n_col; ++j) {
461 if (j == 1 + col)
462 continue;
463 isl_int_mul(mat->row[i][1 + j],
464 mat->row[i][1 + j], mat->row[row][0]);
465 isl_int_addmul(mat->row[i][1 + j],
466 mat->row[i][2 + col], mat->row[row][1 + j]);
468 isl_int_mul(mat->row[i][2 + col],
469 mat->row[i][2 + col], mat->row[row][2 + col]);
470 if (!isl_int_is_one(mat->row[row][0]))
471 isl_seq_normalize(mat->row[i], 2 + tab->n_col);
473 t = tab->row_var[row];
474 tab->row_var[row] = tab->col_var[col];
475 tab->col_var[col] = t;
476 var = var_from_row(tab, row);
477 var->is_row = 1;
478 var->index = row;
479 var = var_from_col(tab, col);
480 var->is_row = 0;
481 var->index = col;
482 if (tab->in_undo)
483 return;
484 for (i = tab->n_redundant; i < tab->n_row; ++i) {
485 if (isl_int_is_zero(mat->row[i][2 + col]))
486 continue;
487 if (!var_from_row(tab, i)->frozen &&
488 is_redundant(tab, i))
489 if (mark_redundant(tab, i))
490 --i;
494 /* If "var" represents a column variable, then pivot is up (sgn > 0)
495 * or down (sgn < 0) to a row. The variable is assumed not to be
496 * unbounded in the specified direction.
497 * If sgn = 0, then the variable is unbounded in both directions,
498 * and we pivot with any row we can find.
500 static void to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
502 int r;
504 if (var->is_row)
505 return;
507 if (sign == 0) {
508 for (r = tab->n_redundant; r < tab->n_row; ++r)
509 if (!isl_int_is_zero(tab->mat->row[r][2 + var->index]))
510 break;
511 isl_assert(tab->mat->ctx, r < tab->n_row, return);
512 } else {
513 r = pivot_row(tab, NULL, sign, var->index);
514 isl_assert(tab->mat->ctx, r >= 0, return);
517 pivot(tab, r, var->index);
520 static void check_table(struct isl_tab *tab)
522 int i;
524 if (tab->empty)
525 return;
526 for (i = 0; i < tab->n_row; ++i) {
527 if (!var_from_row(tab, i)->is_nonneg)
528 continue;
529 assert(!isl_int_is_neg(tab->mat->row[i][1]));
533 /* Return the sign of the maximal value of "var".
534 * If the sign is not negative, then on return from this function,
535 * the sample value will also be non-negative.
537 * If "var" is manifestly unbounded wrt positive values, we are done.
538 * Otherwise, we pivot the variable up to a row if needed
539 * Then we continue pivoting down until either
540 * - no more down pivots can be performed
541 * - the sample value is positive
542 * - the variable is pivoted into a manifestly unbounded column
544 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
546 int row, col;
548 if (max_is_manifestly_unbounded(tab, var))
549 return 1;
550 to_row(tab, var, 1);
551 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
552 find_pivot(tab, var, var, 1, &row, &col);
553 if (row == -1)
554 return isl_int_sgn(tab->mat->row[var->index][1]);
555 pivot(tab, row, col);
556 if (!var->is_row) /* manifestly unbounded */
557 return 1;
559 return 1;
562 /* Perform pivots until the row variable "var" has a non-negative
563 * sample value or until no more upward pivots can be performed.
564 * Return the sign of the sample value after the pivots have been
565 * performed.
567 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
569 int row, col;
571 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
572 find_pivot(tab, var, var, 1, &row, &col);
573 if (row == -1)
574 break;
575 pivot(tab, row, col);
576 if (!var->is_row) /* manifestly unbounded */
577 return 1;
579 return isl_int_sgn(tab->mat->row[var->index][1]);
582 /* Perform pivots until we are sure that the row variable "var"
583 * can attain non-negative values. After return from this
584 * function, "var" is still a row variable, but its sample
585 * value may not be non-negative, even if the function returns 1.
587 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
589 int row, col;
591 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
592 find_pivot(tab, var, var, 1, &row, &col);
593 if (row == -1)
594 break;
595 if (row == var->index) /* manifestly unbounded */
596 return 1;
597 pivot(tab, row, col);
599 return !isl_int_is_neg(tab->mat->row[var->index][1]);
602 /* Return a negative value if "var" can attain negative values.
603 * Return a non-negative value otherwise.
605 * If "var" is manifestly unbounded wrt negative values, we are done.
606 * Otherwise, if var is in a column, we can pivot it down to a row.
607 * Then we continue pivoting down until either
608 * - the pivot would result in a manifestly unbounded column
609 * => we don't perform the pivot, but simply return -1
610 * - no more down pivots can be performed
611 * - the sample value is negative
612 * If the sample value becomes negative and the variable is supposed
613 * to be nonnegative, then we undo the last pivot.
614 * However, if the last pivot has made the pivoting variable
615 * obviously redundant, then it may have moved to another row.
616 * In that case we look for upward pivots until we reach a non-negative
617 * value again.
619 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
621 int row, col;
622 struct isl_tab_var *pivot_var;
624 if (min_is_manifestly_unbounded(tab, var))
625 return -1;
626 if (!var->is_row) {
627 col = var->index;
628 row = pivot_row(tab, NULL, -1, col);
629 pivot_var = var_from_col(tab, col);
630 pivot(tab, row, col);
631 if (var->is_redundant)
632 return 0;
633 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
634 if (var->is_nonneg) {
635 if (!pivot_var->is_redundant &&
636 pivot_var->index == row)
637 pivot(tab, row, col);
638 else
639 restore_row(tab, var);
641 return -1;
644 if (var->is_redundant)
645 return 0;
646 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
647 find_pivot(tab, var, var, -1, &row, &col);
648 if (row == var->index)
649 return -1;
650 if (row == -1)
651 return isl_int_sgn(tab->mat->row[var->index][1]);
652 pivot_var = var_from_col(tab, col);
653 pivot(tab, row, col);
654 if (var->is_redundant)
655 return 0;
657 if (var->is_nonneg) {
658 /* pivot back to non-negative value */
659 if (!pivot_var->is_redundant && pivot_var->index == row)
660 pivot(tab, row, col);
661 else
662 restore_row(tab, var);
664 return -1;
667 /* Return 1 if "var" can attain values <= -1.
668 * Return 0 otherwise.
670 * The sample value of "var" is assumed to be non-negative when the
671 * the function is called and will be made non-negative again before
672 * the function returns.
674 static int min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
676 int row, col;
677 struct isl_tab_var *pivot_var;
679 if (min_is_manifestly_unbounded(tab, var))
680 return 1;
681 if (!var->is_row) {
682 col = var->index;
683 row = pivot_row(tab, NULL, -1, col);
684 pivot_var = var_from_col(tab, col);
685 pivot(tab, row, col);
686 if (var->is_redundant)
687 return 0;
688 if (isl_int_is_neg(tab->mat->row[var->index][1]) &&
689 isl_int_abs_ge(tab->mat->row[var->index][1],
690 tab->mat->row[var->index][0])) {
691 if (var->is_nonneg) {
692 if (!pivot_var->is_redundant &&
693 pivot_var->index == row)
694 pivot(tab, row, col);
695 else
696 restore_row(tab, var);
698 return 1;
701 if (var->is_redundant)
702 return 0;
703 do {
704 find_pivot(tab, var, var, -1, &row, &col);
705 if (row == var->index)
706 return 1;
707 if (row == -1)
708 return 0;
709 pivot_var = var_from_col(tab, col);
710 pivot(tab, row, col);
711 if (var->is_redundant)
712 return 0;
713 } while (!isl_int_is_neg(tab->mat->row[var->index][1]) ||
714 isl_int_abs_lt(tab->mat->row[var->index][1],
715 tab->mat->row[var->index][0]));
716 if (var->is_nonneg) {
717 /* pivot back to non-negative value */
718 if (!pivot_var->is_redundant && pivot_var->index == row)
719 pivot(tab, row, col);
720 restore_row(tab, var);
722 return 1;
725 /* Return 1 if "var" can attain values >= 1.
726 * Return 0 otherwise.
728 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
730 int row, col;
731 isl_int *r;
733 if (max_is_manifestly_unbounded(tab, var))
734 return 1;
735 to_row(tab, var, 1);
736 r = tab->mat->row[var->index];
737 while (isl_int_lt(r[1], r[0])) {
738 find_pivot(tab, var, var, 1, &row, &col);
739 if (row == -1)
740 return isl_int_ge(r[1], r[0]);
741 if (row == var->index) /* manifestly unbounded */
742 return 1;
743 pivot(tab, row, col);
745 return 1;
748 static void swap_cols(struct isl_tab *tab, int col1, int col2)
750 int t;
751 t = tab->col_var[col1];
752 tab->col_var[col1] = tab->col_var[col2];
753 tab->col_var[col2] = t;
754 var_from_col(tab, col1)->index = col1;
755 var_from_col(tab, col2)->index = col2;
756 tab->mat = isl_mat_swap_cols(tab->mat, 2 + col1, 2 + col2);
759 /* Mark column with index "col" as representing a zero variable.
760 * If we may need to undo the operation the column is kept,
761 * but no longer considered.
762 * Otherwise, the column is simply removed.
764 * The column may be interchanged with some other column. If it
765 * is interchanged with a later column, return 1. Otherwise return 0.
766 * If the columns are checked in order in the calling function,
767 * then a return value of 1 means that the column with the given
768 * column number may now contain a different column that
769 * hasn't been checked yet.
771 static int kill_col(struct isl_tab *tab, int col)
773 var_from_col(tab, col)->is_zero = 1;
774 if (tab->need_undo) {
775 push(tab, isl_tab_undo_zero, var_from_col(tab, col));
776 if (col != tab->n_dead)
777 swap_cols(tab, col, tab->n_dead);
778 tab->n_dead++;
779 return 0;
780 } else {
781 if (col != tab->n_col - 1)
782 swap_cols(tab, col, tab->n_col - 1);
783 var_from_col(tab, tab->n_col - 1)->index = -1;
784 tab->n_col--;
785 return 1;
789 /* Row variable "var" is non-negative and cannot attain any values
790 * larger than zero. This means that the coefficients of the unrestricted
791 * column variables are zero and that the coefficients of the non-negative
792 * column variables are zero or negative.
793 * Each of the non-negative variables with a negative coefficient can
794 * then also be written as the negative sum of non-negative variables
795 * and must therefore also be zero.
797 static void close_row(struct isl_tab *tab, struct isl_tab_var *var)
799 int j;
800 struct isl_mat *mat = tab->mat;
802 isl_assert(tab->mat->ctx, var->is_nonneg, return);
803 var->is_zero = 1;
804 for (j = tab->n_dead; j < tab->n_col; ++j) {
805 if (isl_int_is_zero(mat->row[var->index][2 + j]))
806 continue;
807 isl_assert(tab->mat->ctx,
808 isl_int_is_neg(mat->row[var->index][2 + j]), return);
809 if (kill_col(tab, j))
810 --j;
812 mark_redundant(tab, var->index);
815 /* Add a constraint to the tableau and allocate a row for it.
816 * Return the index into the constraint array "con".
818 static int allocate_con(struct isl_tab *tab)
820 int r;
822 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
824 r = tab->n_con;
825 tab->con[r].index = tab->n_row;
826 tab->con[r].is_row = 1;
827 tab->con[r].is_nonneg = 0;
828 tab->con[r].is_zero = 0;
829 tab->con[r].is_redundant = 0;
830 tab->con[r].frozen = 0;
831 tab->row_var[tab->n_row] = ~r;
833 tab->n_row++;
834 tab->n_con++;
835 push(tab, isl_tab_undo_allocate, &tab->con[r]);
837 return r;
840 /* Add a row to the tableau. The row is given as an affine combination
841 * of the original variables and needs to be expressed in terms of the
842 * column variables.
844 * We add each term in turn.
845 * If r = n/d_r is the current sum and we need to add k x, then
846 * if x is a column variable, we increase the numerator of
847 * this column by k d_r
848 * if x = f/d_x is a row variable, then the new representation of r is
850 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
851 * --- + --- = ------------------- = -------------------
852 * d_r d_r d_r d_x/g m
854 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
856 static int add_row(struct isl_tab *tab, isl_int *line)
858 int i;
859 int r;
860 isl_int *row;
861 isl_int a, b;
863 r = allocate_con(tab);
864 if (r < 0)
865 return -1;
867 isl_int_init(a);
868 isl_int_init(b);
869 row = tab->mat->row[tab->con[r].index];
870 isl_int_set_si(row[0], 1);
871 isl_int_set(row[1], line[0]);
872 isl_seq_clr(row + 2, tab->n_col);
873 for (i = 0; i < tab->n_var; ++i) {
874 if (tab->var[i].is_zero)
875 continue;
876 if (tab->var[i].is_row) {
877 isl_int_lcm(a,
878 row[0], tab->mat->row[tab->var[i].index][0]);
879 isl_int_swap(a, row[0]);
880 isl_int_divexact(a, row[0], a);
881 isl_int_divexact(b,
882 row[0], tab->mat->row[tab->var[i].index][0]);
883 isl_int_mul(b, b, line[1 + i]);
884 isl_seq_combine(row + 1, a, row + 1,
885 b, tab->mat->row[tab->var[i].index] + 1,
886 1 + tab->n_col);
887 } else
888 isl_int_addmul(row[2 + tab->var[i].index],
889 line[1 + i], row[0]);
891 isl_seq_normalize(row, 2 + tab->n_col);
892 isl_int_clear(a);
893 isl_int_clear(b);
895 return r;
898 static int drop_row(struct isl_tab *tab, int row)
900 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1);
901 if (row != tab->n_row - 1)
902 swap_rows(tab, row, tab->n_row - 1);
903 tab->n_row--;
904 tab->n_con--;
905 return 0;
908 /* Add inequality "ineq" and check if it conflicts with the
909 * previously added constraints or if it is obviously redundant.
911 struct isl_tab *isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
913 int r;
914 int sgn;
916 if (!tab)
917 return NULL;
918 r = add_row(tab, ineq);
919 if (r < 0)
920 goto error;
921 tab->con[r].is_nonneg = 1;
922 push(tab, isl_tab_undo_nonneg, &tab->con[r]);
923 if (is_redundant(tab, tab->con[r].index)) {
924 mark_redundant(tab, tab->con[r].index);
925 return tab;
928 sgn = restore_row(tab, &tab->con[r]);
929 if (sgn < 0)
930 return mark_empty(tab);
931 if (tab->con[r].is_row && is_redundant(tab, tab->con[r].index))
932 mark_redundant(tab, tab->con[r].index);
933 return tab;
934 error:
935 isl_tab_free(tab);
936 return NULL;
939 /* Pivot a non-negative variable down until it reaches the value zero
940 * and then pivot the variable into a column position.
942 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
944 int i;
945 int row, col;
947 if (!var->is_row)
948 return;
950 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
951 find_pivot(tab, var, NULL, -1, &row, &col);
952 isl_assert(tab->mat->ctx, row != -1, return -1);
953 pivot(tab, row, col);
954 if (!var->is_row)
955 return;
958 for (i = tab->n_dead; i < tab->n_col; ++i)
959 if (!isl_int_is_zero(tab->mat->row[var->index][2 + i]))
960 break;
962 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
963 pivot(tab, var->index, i);
965 return 0;
968 /* We assume Gaussian elimination has been performed on the equalities.
969 * The equalities can therefore never conflict.
970 * Adding the equalities is currently only really useful for a later call
971 * to isl_tab_ineq_type.
973 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
975 int i;
976 int r;
978 if (!tab)
979 return NULL;
980 r = add_row(tab, eq);
981 if (r < 0)
982 goto error;
984 r = tab->con[r].index;
985 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->n_dead,
986 tab->n_col - tab->n_dead);
987 isl_assert(tab->mat->ctx, i >= 0, goto error);
988 i += tab->n_dead;
989 pivot(tab, r, i);
990 kill_col(tab, i);
991 tab->n_eq++;
993 return tab;
994 error:
995 isl_tab_free(tab);
996 return NULL;
999 /* Add an equality that is known to be valid for the given tableau.
1001 struct isl_tab *isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
1003 struct isl_tab_var *var;
1004 int i;
1005 int r;
1007 if (!tab)
1008 return NULL;
1009 r = add_row(tab, eq);
1010 if (r < 0)
1011 goto error;
1013 var = &tab->con[r];
1014 r = var->index;
1015 if (isl_int_is_neg(tab->mat->row[r][1]))
1016 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
1017 1 + tab->n_col);
1018 var->is_nonneg = 1;
1019 if (to_col(tab, var) < 0)
1020 goto error;
1021 var->is_nonneg = 0;
1022 kill_col(tab, var->index);
1024 return tab;
1025 error:
1026 isl_tab_free(tab);
1027 return NULL;
1030 struct isl_tab *isl_tab_from_basic_map(struct isl_basic_map *bmap)
1032 int i;
1033 struct isl_tab *tab;
1035 if (!bmap)
1036 return NULL;
1037 tab = isl_tab_alloc(bmap->ctx,
1038 isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1,
1039 isl_basic_map_total_dim(bmap));
1040 if (!tab)
1041 return NULL;
1042 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1043 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1044 return mark_empty(tab);
1045 for (i = 0; i < bmap->n_eq; ++i) {
1046 tab = add_eq(tab, bmap->eq[i]);
1047 if (!tab)
1048 return tab;
1050 for (i = 0; i < bmap->n_ineq; ++i) {
1051 tab = isl_tab_add_ineq(tab, bmap->ineq[i]);
1052 if (!tab || tab->empty)
1053 return tab;
1055 return tab;
1058 struct isl_tab *isl_tab_from_basic_set(struct isl_basic_set *bset)
1060 return isl_tab_from_basic_map((struct isl_basic_map *)bset);
1063 /* Construct a tableau corresponding to the recession cone of "bmap".
1065 struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_map *bmap)
1067 isl_int cst;
1068 int i;
1069 struct isl_tab *tab;
1071 if (!bmap)
1072 return NULL;
1073 tab = isl_tab_alloc(bmap->ctx, bmap->n_eq + bmap->n_ineq,
1074 isl_basic_map_total_dim(bmap));
1075 if (!tab)
1076 return NULL;
1077 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
1079 isl_int_init(cst);
1080 for (i = 0; i < bmap->n_eq; ++i) {
1081 isl_int_swap(bmap->eq[i][0], cst);
1082 tab = add_eq(tab, bmap->eq[i]);
1083 isl_int_swap(bmap->eq[i][0], cst);
1084 if (!tab)
1085 goto done;
1087 for (i = 0; i < bmap->n_ineq; ++i) {
1088 int r;
1089 isl_int_swap(bmap->ineq[i][0], cst);
1090 r = add_row(tab, bmap->ineq[i]);
1091 isl_int_swap(bmap->ineq[i][0], cst);
1092 if (r < 0)
1093 goto error;
1094 tab->con[r].is_nonneg = 1;
1095 push(tab, isl_tab_undo_nonneg, &tab->con[r]);
1097 done:
1098 isl_int_clear(cst);
1099 return tab;
1100 error:
1101 isl_int_clear(cst);
1102 isl_tab_free(tab);
1103 return NULL;
1106 /* Assuming "tab" is the tableau of a cone, check if the cone is
1107 * bounded, i.e., if it is empty or only contains the origin.
1109 int isl_tab_cone_is_bounded(struct isl_tab *tab)
1111 int i;
1113 if (!tab)
1114 return -1;
1115 if (tab->empty)
1116 return 1;
1117 if (tab->n_dead == tab->n_col)
1118 return 1;
1120 for (;;) {
1121 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1122 struct isl_tab_var *var;
1123 var = var_from_row(tab, i);
1124 if (!var->is_nonneg)
1125 continue;
1126 if (sign_of_max(tab, var) != 0)
1127 return 0;
1128 close_row(tab, var);
1129 break;
1131 if (tab->n_dead == tab->n_col)
1132 return 1;
1133 if (i == tab->n_row)
1134 return 0;
1138 int isl_tab_sample_is_integer(struct isl_tab *tab)
1140 int i;
1142 if (!tab)
1143 return -1;
1145 for (i = 0; i < tab->n_var; ++i) {
1146 int row;
1147 if (!tab->var[i].is_row)
1148 continue;
1149 row = tab->var[i].index;
1150 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
1151 tab->mat->row[row][0]))
1152 return 0;
1154 return 1;
1157 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
1159 int i;
1160 struct isl_vec *vec;
1162 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
1163 if (!vec)
1164 return NULL;
1166 isl_int_set_si(vec->block.data[0], 1);
1167 for (i = 0; i < tab->n_var; ++i) {
1168 if (!tab->var[i].is_row)
1169 isl_int_set_si(vec->block.data[1 + i], 0);
1170 else {
1171 int row = tab->var[i].index;
1172 isl_int_divexact(vec->block.data[1 + i],
1173 tab->mat->row[row][1], tab->mat->row[row][0]);
1177 return vec;
1180 struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
1182 int i;
1183 struct isl_vec *vec;
1184 isl_int m;
1186 if (!tab)
1187 return NULL;
1189 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
1190 if (!vec)
1191 return NULL;
1193 isl_int_init(m);
1195 isl_int_set_si(vec->block.data[0], 1);
1196 for (i = 0; i < tab->n_var; ++i) {
1197 int row;
1198 if (!tab->var[i].is_row) {
1199 isl_int_set_si(vec->block.data[1 + i], 0);
1200 continue;
1202 row = tab->var[i].index;
1203 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
1204 isl_int_divexact(m, tab->mat->row[row][0], m);
1205 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
1206 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
1207 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
1209 isl_seq_normalize(vec->block.data, vec->size);
1211 isl_int_clear(m);
1212 return vec;
1215 /* Update "bmap" based on the results of the tableau "tab".
1216 * In particular, implicit equalities are made explicit, redundant constraints
1217 * are removed and if the sample value happens to be integer, it is stored
1218 * in "bmap" (unless "bmap" already had an integer sample).
1220 * The tableau is assumed to have been created from "bmap" using
1221 * isl_tab_from_basic_map.
1223 struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap,
1224 struct isl_tab *tab)
1226 int i;
1227 unsigned n_eq;
1229 if (!bmap)
1230 return NULL;
1231 if (!tab)
1232 return bmap;
1234 n_eq = tab->n_eq;
1235 if (tab->empty)
1236 bmap = isl_basic_map_set_to_empty(bmap);
1237 else
1238 for (i = bmap->n_ineq - 1; i >= 0; --i) {
1239 if (isl_tab_is_equality(tab, n_eq + i))
1240 isl_basic_map_inequality_to_equality(bmap, i);
1241 else if (isl_tab_is_redundant(tab, n_eq + i))
1242 isl_basic_map_drop_inequality(bmap, i);
1244 if (!tab->rational &&
1245 !bmap->sample && isl_tab_sample_is_integer(tab))
1246 bmap->sample = extract_integer_sample(tab);
1247 return bmap;
1250 struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset,
1251 struct isl_tab *tab)
1253 return (struct isl_basic_set *)isl_basic_map_update_from_tab(
1254 (struct isl_basic_map *)bset, tab);
1257 /* Given a non-negative variable "var", add a new non-negative variable
1258 * that is the opposite of "var", ensuring that var can only attain the
1259 * value zero.
1260 * If var = n/d is a row variable, then the new variable = -n/d.
1261 * If var is a column variables, then the new variable = -var.
1262 * If the new variable cannot attain non-negative values, then
1263 * the resulting tableau is empty.
1264 * Otherwise, we know the value will be zero and we close the row.
1266 static struct isl_tab *cut_to_hyperplane(struct isl_tab *tab,
1267 struct isl_tab_var *var)
1269 unsigned r;
1270 isl_int *row;
1271 int sgn;
1273 if (extend_cons(tab, 1) < 0)
1274 goto error;
1276 r = tab->n_con;
1277 tab->con[r].index = tab->n_row;
1278 tab->con[r].is_row = 1;
1279 tab->con[r].is_nonneg = 0;
1280 tab->con[r].is_zero = 0;
1281 tab->con[r].is_redundant = 0;
1282 tab->con[r].frozen = 0;
1283 tab->row_var[tab->n_row] = ~r;
1284 row = tab->mat->row[tab->n_row];
1286 if (var->is_row) {
1287 isl_int_set(row[0], tab->mat->row[var->index][0]);
1288 isl_seq_neg(row + 1,
1289 tab->mat->row[var->index] + 1, 1 + tab->n_col);
1290 } else {
1291 isl_int_set_si(row[0], 1);
1292 isl_seq_clr(row + 1, 1 + tab->n_col);
1293 isl_int_set_si(row[2 + var->index], -1);
1296 tab->n_row++;
1297 tab->n_con++;
1298 push(tab, isl_tab_undo_allocate, &tab->con[r]);
1300 sgn = sign_of_max(tab, &tab->con[r]);
1301 if (sgn < 0)
1302 return mark_empty(tab);
1303 tab->con[r].is_nonneg = 1;
1304 push(tab, isl_tab_undo_nonneg, &tab->con[r]);
1305 /* sgn == 0 */
1306 close_row(tab, &tab->con[r]);
1308 return tab;
1309 error:
1310 isl_tab_free(tab);
1311 return NULL;
1314 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
1315 * relax the inequality by one. That is, the inequality r >= 0 is replaced
1316 * by r' = r + 1 >= 0.
1317 * If r is a row variable, we simply increase the constant term by one
1318 * (taking into account the denominator).
1319 * If r is a column variable, then we need to modify each row that
1320 * refers to r = r' - 1 by substituting this equality, effectively
1321 * subtracting the coefficient of the column from the constant.
1323 struct isl_tab *isl_tab_relax(struct isl_tab *tab, int con)
1325 struct isl_tab_var *var;
1326 if (!tab)
1327 return NULL;
1329 var = &tab->con[con];
1331 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
1332 to_row(tab, var, 1);
1334 if (var->is_row)
1335 isl_int_add(tab->mat->row[var->index][1],
1336 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1337 else {
1338 int i;
1340 for (i = 0; i < tab->n_row; ++i) {
1341 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1342 continue;
1343 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
1344 tab->mat->row[i][2 + var->index]);
1349 push(tab, isl_tab_undo_relax, var);
1351 return tab;
1354 struct isl_tab *isl_tab_select_facet(struct isl_tab *tab, int con)
1356 if (!tab)
1357 return NULL;
1359 return cut_to_hyperplane(tab, &tab->con[con]);
1362 static int may_be_equality(struct isl_tab *tab, int row)
1364 return (tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
1365 : isl_int_lt(tab->mat->row[row][1],
1366 tab->mat->row[row][0])) &&
1367 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1368 tab->n_col - tab->n_dead) != -1;
1371 /* Check for (near) equalities among the constraints.
1372 * A constraint is an equality if it is non-negative and if
1373 * its maximal value is either
1374 * - zero (in case of rational tableaus), or
1375 * - strictly less than 1 (in case of integer tableaus)
1377 * We first mark all non-redundant and non-dead variables that
1378 * are not frozen and not obviously not an equality.
1379 * Then we iterate over all marked variables if they can attain
1380 * any values larger than zero or at least one.
1381 * If the maximal value is zero, we mark any column variables
1382 * that appear in the row as being zero and mark the row as being redundant.
1383 * Otherwise, if the maximal value is strictly less than one (and the
1384 * tableau is integer), then we restrict the value to being zero
1385 * by adding an opposite non-negative variable.
1387 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab)
1389 int i;
1390 unsigned n_marked;
1392 if (!tab)
1393 return NULL;
1394 if (tab->empty)
1395 return tab;
1396 if (tab->n_dead == tab->n_col)
1397 return tab;
1399 n_marked = 0;
1400 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1401 struct isl_tab_var *var = var_from_row(tab, i);
1402 var->marked = !var->frozen && var->is_nonneg &&
1403 may_be_equality(tab, i);
1404 if (var->marked)
1405 n_marked++;
1407 for (i = tab->n_dead; i < tab->n_col; ++i) {
1408 struct isl_tab_var *var = var_from_col(tab, i);
1409 var->marked = !var->frozen && var->is_nonneg;
1410 if (var->marked)
1411 n_marked++;
1413 while (n_marked) {
1414 struct isl_tab_var *var;
1415 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1416 var = var_from_row(tab, i);
1417 if (var->marked)
1418 break;
1420 if (i == tab->n_row) {
1421 for (i = tab->n_dead; i < tab->n_col; ++i) {
1422 var = var_from_col(tab, i);
1423 if (var->marked)
1424 break;
1426 if (i == tab->n_col)
1427 break;
1429 var->marked = 0;
1430 n_marked--;
1431 if (sign_of_max(tab, var) == 0)
1432 close_row(tab, var);
1433 else if (!tab->rational && !at_least_one(tab, var)) {
1434 tab = cut_to_hyperplane(tab, var);
1435 return isl_tab_detect_equalities(tab);
1437 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1438 var = var_from_row(tab, i);
1439 if (!var->marked)
1440 continue;
1441 if (may_be_equality(tab, i))
1442 continue;
1443 var->marked = 0;
1444 n_marked--;
1448 return tab;
1451 /* Check for (near) redundant constraints.
1452 * A constraint is redundant if it is non-negative and if
1453 * its minimal value (temporarily ignoring the non-negativity) is either
1454 * - zero (in case of rational tableaus), or
1455 * - strictly larger than -1 (in case of integer tableaus)
1457 * We first mark all non-redundant and non-dead variables that
1458 * are not frozen and not obviously negatively unbounded.
1459 * Then we iterate over all marked variables if they can attain
1460 * any values smaller than zero or at most negative one.
1461 * If not, we mark the row as being redundant (assuming it hasn't
1462 * been detected as being obviously redundant in the mean time).
1464 struct isl_tab *isl_tab_detect_redundant(struct isl_tab *tab)
1466 int i;
1467 unsigned n_marked;
1469 if (!tab)
1470 return NULL;
1471 if (tab->empty)
1472 return tab;
1473 if (tab->n_redundant == tab->n_row)
1474 return tab;
1476 n_marked = 0;
1477 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1478 struct isl_tab_var *var = var_from_row(tab, i);
1479 var->marked = !var->frozen && var->is_nonneg;
1480 if (var->marked)
1481 n_marked++;
1483 for (i = tab->n_dead; i < tab->n_col; ++i) {
1484 struct isl_tab_var *var = var_from_col(tab, i);
1485 var->marked = !var->frozen && var->is_nonneg &&
1486 !min_is_manifestly_unbounded(tab, var);
1487 if (var->marked)
1488 n_marked++;
1490 while (n_marked) {
1491 struct isl_tab_var *var;
1492 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1493 var = var_from_row(tab, i);
1494 if (var->marked)
1495 break;
1497 if (i == tab->n_row) {
1498 for (i = tab->n_dead; i < tab->n_col; ++i) {
1499 var = var_from_col(tab, i);
1500 if (var->marked)
1501 break;
1503 if (i == tab->n_col)
1504 break;
1506 var->marked = 0;
1507 n_marked--;
1508 if ((tab->rational ? (sign_of_min(tab, var) >= 0)
1509 : !min_at_most_neg_one(tab, var)) &&
1510 !var->is_redundant)
1511 mark_redundant(tab, var->index);
1512 for (i = tab->n_dead; i < tab->n_col; ++i) {
1513 var = var_from_col(tab, i);
1514 if (!var->marked)
1515 continue;
1516 if (!min_is_manifestly_unbounded(tab, var))
1517 continue;
1518 var->marked = 0;
1519 n_marked--;
1523 return tab;
1526 int isl_tab_is_equality(struct isl_tab *tab, int con)
1528 int row;
1530 if (!tab)
1531 return -1;
1532 if (tab->con[con].is_zero)
1533 return 1;
1534 if (tab->con[con].is_redundant)
1535 return 0;
1536 if (!tab->con[con].is_row)
1537 return tab->con[con].index < tab->n_dead;
1539 row = tab->con[con].index;
1541 return isl_int_is_zero(tab->mat->row[row][1]) &&
1542 isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1543 tab->n_col - tab->n_dead) == -1;
1546 /* Return the minimial value of the affine expression "f" with denominator
1547 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
1548 * the expression cannot attain arbitrarily small values.
1549 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
1550 * The return value reflects the nature of the result (empty, unbounded,
1551 * minmimal value returned in *opt).
1553 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
1554 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
1555 unsigned flags)
1557 int r;
1558 enum isl_lp_result res = isl_lp_ok;
1559 struct isl_tab_var *var;
1560 struct isl_tab_undo *snap;
1562 if (tab->empty)
1563 return isl_lp_empty;
1565 snap = isl_tab_snap(tab);
1566 r = add_row(tab, f);
1567 if (r < 0)
1568 return isl_lp_error;
1569 var = &tab->con[r];
1570 isl_int_mul(tab->mat->row[var->index][0],
1571 tab->mat->row[var->index][0], denom);
1572 for (;;) {
1573 int row, col;
1574 find_pivot(tab, var, var, -1, &row, &col);
1575 if (row == var->index) {
1576 res = isl_lp_unbounded;
1577 break;
1579 if (row == -1)
1580 break;
1581 pivot(tab, row, col);
1583 if (isl_tab_rollback(tab, snap) < 0)
1584 return isl_lp_error;
1585 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
1586 int i;
1588 isl_vec_free(tab->dual);
1589 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
1590 if (!tab->dual)
1591 return isl_lp_error;
1592 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
1593 for (i = 0; i < tab->n_con; ++i) {
1594 if (tab->con[i].is_row)
1595 isl_int_set_si(tab->dual->el[1 + i], 0);
1596 else {
1597 int pos = 2 + tab->con[i].index;
1598 isl_int_set(tab->dual->el[1 + i],
1599 tab->mat->row[var->index][pos]);
1603 if (res == isl_lp_ok) {
1604 if (opt_denom) {
1605 isl_int_set(*opt, tab->mat->row[var->index][1]);
1606 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
1607 } else
1608 isl_int_cdiv_q(*opt, tab->mat->row[var->index][1],
1609 tab->mat->row[var->index][0]);
1611 return res;
1614 int isl_tab_is_redundant(struct isl_tab *tab, int con)
1616 int row;
1617 unsigned n_col;
1619 if (!tab)
1620 return -1;
1621 if (tab->con[con].is_zero)
1622 return 0;
1623 if (tab->con[con].is_redundant)
1624 return 1;
1625 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
1628 /* Take a snapshot of the tableau that can be restored by s call to
1629 * isl_tab_rollback.
1631 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
1633 if (!tab)
1634 return NULL;
1635 tab->need_undo = 1;
1636 return tab->top;
1639 /* Undo the operation performed by isl_tab_relax.
1641 static void unrelax(struct isl_tab *tab, struct isl_tab_var *var)
1643 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
1644 to_row(tab, var, 1);
1646 if (var->is_row)
1647 isl_int_sub(tab->mat->row[var->index][1],
1648 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
1649 else {
1650 int i;
1652 for (i = 0; i < tab->n_row; ++i) {
1653 if (isl_int_is_zero(tab->mat->row[i][2 + var->index]))
1654 continue;
1655 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
1656 tab->mat->row[i][2 + var->index]);
1662 static void perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
1664 switch(undo->type) {
1665 case isl_tab_undo_empty:
1666 tab->empty = 0;
1667 break;
1668 case isl_tab_undo_nonneg:
1669 undo->var->is_nonneg = 0;
1670 break;
1671 case isl_tab_undo_redundant:
1672 undo->var->is_redundant = 0;
1673 tab->n_redundant--;
1674 break;
1675 case isl_tab_undo_zero:
1676 undo->var->is_zero = 0;
1677 tab->n_dead--;
1678 break;
1679 case isl_tab_undo_allocate:
1680 if (!undo->var->is_row) {
1681 if (!max_is_manifestly_unbounded(tab, undo->var))
1682 to_row(tab, undo->var, 1);
1683 else if (!min_is_manifestly_unbounded(tab, undo->var))
1684 to_row(tab, undo->var, -1);
1685 else
1686 to_row(tab, undo->var, 0);
1688 drop_row(tab, undo->var->index);
1689 break;
1690 case isl_tab_undo_relax:
1691 unrelax(tab, undo->var);
1692 break;
1696 /* Return the tableau to the state it was in when the snapshot "snap"
1697 * was taken.
1699 int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
1701 struct isl_tab_undo *undo, *next;
1703 if (!tab)
1704 return -1;
1706 tab->in_undo = 1;
1707 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
1708 next = undo->next;
1709 if (undo == snap)
1710 break;
1711 perform_undo(tab, undo);
1712 free(undo);
1714 tab->in_undo = 0;
1715 tab->top = undo;
1716 if (!undo)
1717 return -1;
1718 return 0;
1721 /* The given row "row" represents an inequality violated by all
1722 * points in the tableau. Check for some special cases of such
1723 * separating constraints.
1724 * In particular, if the row has been reduced to the constant -1,
1725 * then we know the inequality is adjacent (but opposite) to
1726 * an equality in the tableau.
1727 * If the row has been reduced to r = -1 -r', with r' an inequality
1728 * of the tableau, then the inequality is adjacent (but opposite)
1729 * to the inequality r'.
1731 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
1733 int pos;
1735 if (tab->rational)
1736 return isl_ineq_separate;
1738 if (!isl_int_is_one(tab->mat->row[row][0]))
1739 return isl_ineq_separate;
1740 if (!isl_int_is_negone(tab->mat->row[row][1]))
1741 return isl_ineq_separate;
1743 pos = isl_seq_first_non_zero(tab->mat->row[row] + 2 + tab->n_dead,
1744 tab->n_col - tab->n_dead);
1745 if (pos == -1)
1746 return isl_ineq_adj_eq;
1748 if (!isl_int_is_negone(tab->mat->row[row][2 + tab->n_dead + pos]))
1749 return isl_ineq_separate;
1751 pos = isl_seq_first_non_zero(
1752 tab->mat->row[row] + 2 + tab->n_dead + pos + 1,
1753 tab->n_col - tab->n_dead - pos - 1);
1755 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
1758 /* Check the effect of inequality "ineq" on the tableau "tab".
1759 * The result may be
1760 * isl_ineq_redundant: satisfied by all points in the tableau
1761 * isl_ineq_separate: satisfied by no point in the tableau
1762 * isl_ineq_cut: satisfied by some by not all points
1763 * isl_ineq_adj_eq: adjacent to an equality
1764 * isl_ineq_adj_ineq: adjacent to an inequality.
1766 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
1768 enum isl_ineq_type type = isl_ineq_error;
1769 struct isl_tab_undo *snap = NULL;
1770 int con;
1771 int row;
1773 if (!tab)
1774 return isl_ineq_error;
1776 if (extend_cons(tab, 1) < 0)
1777 return isl_ineq_error;
1779 snap = isl_tab_snap(tab);
1781 con = add_row(tab, ineq);
1782 if (con < 0)
1783 goto error;
1785 row = tab->con[con].index;
1786 if (is_redundant(tab, row))
1787 type = isl_ineq_redundant;
1788 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
1789 (tab->rational ||
1790 isl_int_abs_ge(tab->mat->row[row][1],
1791 tab->mat->row[row][0]))) {
1792 if (at_least_zero(tab, &tab->con[con]))
1793 type = isl_ineq_cut;
1794 else
1795 type = separation_type(tab, row);
1796 } else if (tab->rational ? (sign_of_min(tab, &tab->con[con]) < 0)
1797 : min_at_most_neg_one(tab, &tab->con[con]))
1798 type = isl_ineq_cut;
1799 else
1800 type = isl_ineq_redundant;
1802 if (isl_tab_rollback(tab, snap))
1803 return isl_ineq_error;
1804 return type;
1805 error:
1806 isl_tab_rollback(tab, snap);
1807 return isl_ineq_error;
1810 void isl_tab_dump(struct isl_tab *tab, FILE *out, int indent)
1812 unsigned r, c;
1813 int i;
1815 if (!tab) {
1816 fprintf(out, "%*snull tab\n", indent, "");
1817 return;
1819 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
1820 tab->n_redundant, tab->n_dead);
1821 if (tab->rational)
1822 fprintf(out, ", rational");
1823 if (tab->empty)
1824 fprintf(out, ", empty");
1825 fprintf(out, "\n");
1826 fprintf(out, "%*s[", indent, "");
1827 for (i = 0; i < tab->n_var; ++i) {
1828 if (i)
1829 fprintf(out, ", ");
1830 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
1831 tab->var[i].index,
1832 tab->var[i].is_zero ? " [=0]" :
1833 tab->var[i].is_redundant ? " [R]" : "");
1835 fprintf(out, "]\n");
1836 fprintf(out, "%*s[", indent, "");
1837 for (i = 0; i < tab->n_con; ++i) {
1838 if (i)
1839 fprintf(out, ", ");
1840 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
1841 tab->con[i].index,
1842 tab->con[i].is_zero ? " [=0]" :
1843 tab->con[i].is_redundant ? " [R]" : "");
1845 fprintf(out, "]\n");
1846 fprintf(out, "%*s[", indent, "");
1847 for (i = 0; i < tab->n_row; ++i) {
1848 if (i)
1849 fprintf(out, ", ");
1850 fprintf(out, "r%d: %d%s", i, tab->row_var[i],
1851 var_from_row(tab, i)->is_nonneg ? " [>=0]" : "");
1853 fprintf(out, "]\n");
1854 fprintf(out, "%*s[", indent, "");
1855 for (i = 0; i < tab->n_col; ++i) {
1856 if (i)
1857 fprintf(out, ", ");
1858 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
1859 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
1861 fprintf(out, "]\n");
1862 r = tab->mat->n_row;
1863 tab->mat->n_row = tab->n_row;
1864 c = tab->mat->n_col;
1865 tab->mat->n_col = 2 + tab->n_col;
1866 isl_mat_dump(tab->mat, out, indent);
1867 tab->mat->n_row = r;
1868 tab->mat->n_col = c;