avoid NULL pointer exception in isl_basic_map_n_*
[isl.git] / isl_convex_hull.c
blob663f142618c3c9facdeb22965ecb28cea01ab5b4
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Remove redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 __isl_give isl_basic_map *isl_basic_map_remove_redundancies(
91 __isl_take isl_basic_map *bmap)
93 struct isl_tab *tab;
95 if (!bmap)
96 return NULL;
98 bmap = isl_basic_map_gauss(bmap, NULL);
99 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
100 return bmap;
101 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
102 return bmap;
103 if (bmap->n_ineq <= 1)
104 return bmap;
106 tab = isl_tab_from_basic_map(bmap);
107 if (isl_tab_detect_implicit_equalities(tab) < 0)
108 goto error;
109 if (isl_tab_detect_redundant(tab) < 0)
110 goto error;
111 bmap = isl_basic_map_update_from_tab(bmap, tab);
112 isl_tab_free(tab);
113 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
114 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
115 return bmap;
116 error:
117 isl_tab_free(tab);
118 isl_basic_map_free(bmap);
119 return NULL;
122 __isl_give isl_basic_set *isl_basic_set_remove_redundancies(
123 __isl_take isl_basic_set *bset)
125 return (struct isl_basic_set *)
126 isl_basic_map_remove_redundancies((struct isl_basic_map *)bset);
129 /* Check if the set set is bound in the direction of the affine
130 * constraint c and if so, set the constant term such that the
131 * resulting constraint is a bounding constraint for the set.
133 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
135 int first;
136 int j;
137 isl_int opt;
138 isl_int opt_denom;
140 isl_int_init(opt);
141 isl_int_init(opt_denom);
142 first = 1;
143 for (j = 0; j < set->n; ++j) {
144 enum isl_lp_result res;
146 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
147 continue;
149 res = isl_basic_set_solve_lp(set->p[j],
150 0, c, set->ctx->one, &opt, &opt_denom, NULL);
151 if (res == isl_lp_unbounded)
152 break;
153 if (res == isl_lp_error)
154 goto error;
155 if (res == isl_lp_empty) {
156 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
157 if (!set->p[j])
158 goto error;
159 continue;
161 if (first || isl_int_is_neg(opt)) {
162 if (!isl_int_is_one(opt_denom))
163 isl_seq_scale(c, c, opt_denom, len);
164 isl_int_sub(c[0], c[0], opt);
166 first = 0;
168 isl_int_clear(opt);
169 isl_int_clear(opt_denom);
170 return j >= set->n;
171 error:
172 isl_int_clear(opt);
173 isl_int_clear(opt_denom);
174 return -1;
177 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
179 if (!bset)
180 return NULL;
182 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
183 return bset;
185 bset = isl_basic_set_cow(bset);
186 if (!bset)
187 return NULL;
189 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
191 return isl_basic_set_finalize(bset);
194 static struct isl_set *isl_set_set_rational(struct isl_set *set)
196 int i;
198 set = isl_set_cow(set);
199 if (!set)
200 return NULL;
201 for (i = 0; i < set->n; ++i) {
202 set->p[i] = isl_basic_set_set_rational(set->p[i]);
203 if (!set->p[i])
204 goto error;
206 return set;
207 error:
208 isl_set_free(set);
209 return NULL;
212 static struct isl_basic_set *isl_basic_set_add_equality(
213 struct isl_basic_set *bset, isl_int *c)
215 int i;
216 unsigned dim;
218 if (!bset)
219 return NULL;
221 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
222 return bset;
224 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
225 isl_assert(bset->ctx, bset->n_div == 0, goto error);
226 dim = isl_basic_set_n_dim(bset);
227 bset = isl_basic_set_cow(bset);
228 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
229 i = isl_basic_set_alloc_equality(bset);
230 if (i < 0)
231 goto error;
232 isl_seq_cpy(bset->eq[i], c, 1 + dim);
233 return bset;
234 error:
235 isl_basic_set_free(bset);
236 return NULL;
239 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
241 int i;
243 set = isl_set_cow(set);
244 if (!set)
245 return NULL;
246 for (i = 0; i < set->n; ++i) {
247 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
248 if (!set->p[i])
249 goto error;
251 return set;
252 error:
253 isl_set_free(set);
254 return NULL;
257 /* Given a union of basic sets, construct the constraints for wrapping
258 * a facet around one of its ridges.
259 * In particular, if each of n the d-dimensional basic sets i in "set"
260 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
261 * and is defined by the constraints
262 * [ 1 ]
263 * A_i [ x ] >= 0
265 * then the resulting set is of dimension n*(1+d) and has as constraints
267 * [ a_i ]
268 * A_i [ x_i ] >= 0
270 * a_i >= 0
272 * \sum_i x_{i,1} = 1
274 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
276 struct isl_basic_set *lp;
277 unsigned n_eq;
278 unsigned n_ineq;
279 int i, j, k;
280 unsigned dim, lp_dim;
282 if (!set)
283 return NULL;
285 dim = 1 + isl_set_n_dim(set);
286 n_eq = 1;
287 n_ineq = set->n;
288 for (i = 0; i < set->n; ++i) {
289 n_eq += set->p[i]->n_eq;
290 n_ineq += set->p[i]->n_ineq;
292 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
293 if (!lp)
294 return NULL;
295 lp_dim = isl_basic_set_n_dim(lp);
296 k = isl_basic_set_alloc_equality(lp);
297 isl_int_set_si(lp->eq[k][0], -1);
298 for (i = 0; i < set->n; ++i) {
299 isl_int_set_si(lp->eq[k][1+dim*i], 0);
300 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
301 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
303 for (i = 0; i < set->n; ++i) {
304 k = isl_basic_set_alloc_inequality(lp);
305 isl_seq_clr(lp->ineq[k], 1+lp_dim);
306 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
308 for (j = 0; j < set->p[i]->n_eq; ++j) {
309 k = isl_basic_set_alloc_equality(lp);
310 isl_seq_clr(lp->eq[k], 1+dim*i);
311 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
312 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
315 for (j = 0; j < set->p[i]->n_ineq; ++j) {
316 k = isl_basic_set_alloc_inequality(lp);
317 isl_seq_clr(lp->ineq[k], 1+dim*i);
318 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
319 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
322 return lp;
325 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
326 * of that facet, compute the other facet of the convex hull that contains
327 * the ridge.
329 * We first transform the set such that the facet constraint becomes
331 * x_1 >= 0
333 * I.e., the facet lies in
335 * x_1 = 0
337 * and on that facet, the constraint that defines the ridge is
339 * x_2 >= 0
341 * (This transformation is not strictly needed, all that is needed is
342 * that the ridge contains the origin.)
344 * Since the ridge contains the origin, the cone of the convex hull
345 * will be of the form
347 * x_1 >= 0
348 * x_2 >= a x_1
350 * with this second constraint defining the new facet.
351 * The constant a is obtained by settting x_1 in the cone of the
352 * convex hull to 1 and minimizing x_2.
353 * Now, each element in the cone of the convex hull is the sum
354 * of elements in the cones of the basic sets.
355 * If a_i is the dilation factor of basic set i, then the problem
356 * we need to solve is
358 * min \sum_i x_{i,2}
359 * st
360 * \sum_i x_{i,1} = 1
361 * a_i >= 0
362 * [ a_i ]
363 * A [ x_i ] >= 0
365 * with
366 * [ 1 ]
367 * A_i [ x_i ] >= 0
369 * the constraints of each (transformed) basic set.
370 * If a = n/d, then the constraint defining the new facet (in the transformed
371 * space) is
373 * -n x_1 + d x_2 >= 0
375 * In the original space, we need to take the same combination of the
376 * corresponding constraints "facet" and "ridge".
378 * If a = -infty = "-1/0", then we just return the original facet constraint.
379 * This means that the facet is unbounded, but has a bounded intersection
380 * with the union of sets.
382 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
383 isl_int *facet, isl_int *ridge)
385 int i;
386 isl_ctx *ctx;
387 struct isl_mat *T = NULL;
388 struct isl_basic_set *lp = NULL;
389 struct isl_vec *obj;
390 enum isl_lp_result res;
391 isl_int num, den;
392 unsigned dim;
394 if (!set)
395 return NULL;
396 ctx = set->ctx;
397 set = isl_set_copy(set);
398 set = isl_set_set_rational(set);
400 dim = 1 + isl_set_n_dim(set);
401 T = isl_mat_alloc(ctx, 3, dim);
402 if (!T)
403 goto error;
404 isl_int_set_si(T->row[0][0], 1);
405 isl_seq_clr(T->row[0]+1, dim - 1);
406 isl_seq_cpy(T->row[1], facet, dim);
407 isl_seq_cpy(T->row[2], ridge, dim);
408 T = isl_mat_right_inverse(T);
409 set = isl_set_preimage(set, T);
410 T = NULL;
411 if (!set)
412 goto error;
413 lp = wrap_constraints(set);
414 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
415 if (!obj)
416 goto error;
417 isl_int_set_si(obj->block.data[0], 0);
418 for (i = 0; i < set->n; ++i) {
419 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
420 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
421 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
423 isl_int_init(num);
424 isl_int_init(den);
425 res = isl_basic_set_solve_lp(lp, 0,
426 obj->block.data, ctx->one, &num, &den, NULL);
427 if (res == isl_lp_ok) {
428 isl_int_neg(num, num);
429 isl_seq_combine(facet, num, facet, den, ridge, dim);
431 isl_int_clear(num);
432 isl_int_clear(den);
433 isl_vec_free(obj);
434 isl_basic_set_free(lp);
435 isl_set_free(set);
436 if (res == isl_lp_error)
437 return NULL;
438 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
439 return NULL);
440 return facet;
441 error:
442 isl_basic_set_free(lp);
443 isl_mat_free(T);
444 isl_set_free(set);
445 return NULL;
448 /* Compute the constraint of a facet of "set".
450 * We first compute the intersection with a bounding constraint
451 * that is orthogonal to one of the coordinate axes.
452 * If the affine hull of this intersection has only one equality,
453 * we have found a facet.
454 * Otherwise, we wrap the current bounding constraint around
455 * one of the equalities of the face (one that is not equal to
456 * the current bounding constraint).
457 * This process continues until we have found a facet.
458 * The dimension of the intersection increases by at least
459 * one on each iteration, so termination is guaranteed.
461 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
463 struct isl_set *slice = NULL;
464 struct isl_basic_set *face = NULL;
465 int i;
466 unsigned dim = isl_set_n_dim(set);
467 int is_bound;
468 isl_mat *bounds;
470 isl_assert(set->ctx, set->n > 0, goto error);
471 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
472 if (!bounds)
473 return NULL;
475 isl_seq_clr(bounds->row[0], dim);
476 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
477 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
478 if (is_bound < 0)
479 goto error;
480 isl_assert(set->ctx, is_bound, goto error);
481 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
482 bounds->n_row = 1;
484 for (;;) {
485 slice = isl_set_copy(set);
486 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
487 face = isl_set_affine_hull(slice);
488 if (!face)
489 goto error;
490 if (face->n_eq == 1) {
491 isl_basic_set_free(face);
492 break;
494 for (i = 0; i < face->n_eq; ++i)
495 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
496 !isl_seq_is_neg(bounds->row[0],
497 face->eq[i], 1 + dim))
498 break;
499 isl_assert(set->ctx, i < face->n_eq, goto error);
500 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
501 goto error;
502 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
503 isl_basic_set_free(face);
506 return bounds;
507 error:
508 isl_basic_set_free(face);
509 isl_mat_free(bounds);
510 return NULL;
513 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
514 * compute a hyperplane description of the facet, i.e., compute the facets
515 * of the facet.
517 * We compute an affine transformation that transforms the constraint
519 * [ 1 ]
520 * c [ x ] = 0
522 * to the constraint
524 * z_1 = 0
526 * by computing the right inverse U of a matrix that starts with the rows
528 * [ 1 0 ]
529 * [ c ]
531 * Then
532 * [ 1 ] [ 1 ]
533 * [ x ] = U [ z ]
534 * and
535 * [ 1 ] [ 1 ]
536 * [ z ] = Q [ x ]
538 * with Q = U^{-1}
539 * Since z_1 is zero, we can drop this variable as well as the corresponding
540 * column of U to obtain
542 * [ 1 ] [ 1 ]
543 * [ x ] = U' [ z' ]
544 * and
545 * [ 1 ] [ 1 ]
546 * [ z' ] = Q' [ x ]
548 * with Q' equal to Q, but without the corresponding row.
549 * After computing the facets of the facet in the z' space,
550 * we convert them back to the x space through Q.
552 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
554 struct isl_mat *m, *U, *Q;
555 struct isl_basic_set *facet = NULL;
556 struct isl_ctx *ctx;
557 unsigned dim;
559 ctx = set->ctx;
560 set = isl_set_copy(set);
561 dim = isl_set_n_dim(set);
562 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
563 if (!m)
564 goto error;
565 isl_int_set_si(m->row[0][0], 1);
566 isl_seq_clr(m->row[0]+1, dim);
567 isl_seq_cpy(m->row[1], c, 1+dim);
568 U = isl_mat_right_inverse(m);
569 Q = isl_mat_right_inverse(isl_mat_copy(U));
570 U = isl_mat_drop_cols(U, 1, 1);
571 Q = isl_mat_drop_rows(Q, 1, 1);
572 set = isl_set_preimage(set, U);
573 facet = uset_convex_hull_wrap_bounded(set);
574 facet = isl_basic_set_preimage(facet, Q);
575 if (facet)
576 isl_assert(ctx, facet->n_eq == 0, goto error);
577 return facet;
578 error:
579 isl_basic_set_free(facet);
580 isl_set_free(set);
581 return NULL;
584 /* Given an initial facet constraint, compute the remaining facets.
585 * We do this by running through all facets found so far and computing
586 * the adjacent facets through wrapping, adding those facets that we
587 * hadn't already found before.
589 * For each facet we have found so far, we first compute its facets
590 * in the resulting convex hull. That is, we compute the ridges
591 * of the resulting convex hull contained in the facet.
592 * We also compute the corresponding facet in the current approximation
593 * of the convex hull. There is no need to wrap around the ridges
594 * in this facet since that would result in a facet that is already
595 * present in the current approximation.
597 * This function can still be significantly optimized by checking which of
598 * the facets of the basic sets are also facets of the convex hull and
599 * using all the facets so far to help in constructing the facets of the
600 * facets
601 * and/or
602 * using the technique in section "3.1 Ridge Generation" of
603 * "Extended Convex Hull" by Fukuda et al.
605 static struct isl_basic_set *extend(struct isl_basic_set *hull,
606 struct isl_set *set)
608 int i, j, f;
609 int k;
610 struct isl_basic_set *facet = NULL;
611 struct isl_basic_set *hull_facet = NULL;
612 unsigned dim;
614 if (!hull)
615 return NULL;
617 isl_assert(set->ctx, set->n > 0, goto error);
619 dim = isl_set_n_dim(set);
621 for (i = 0; i < hull->n_ineq; ++i) {
622 facet = compute_facet(set, hull->ineq[i]);
623 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
624 facet = isl_basic_set_gauss(facet, NULL);
625 facet = isl_basic_set_normalize_constraints(facet);
626 hull_facet = isl_basic_set_copy(hull);
627 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
628 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
629 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
630 if (!facet || !hull_facet)
631 goto error;
632 hull = isl_basic_set_cow(hull);
633 hull = isl_basic_set_extend_dim(hull,
634 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
635 if (!hull)
636 goto error;
637 for (j = 0; j < facet->n_ineq; ++j) {
638 for (f = 0; f < hull_facet->n_ineq; ++f)
639 if (isl_seq_eq(facet->ineq[j],
640 hull_facet->ineq[f], 1 + dim))
641 break;
642 if (f < hull_facet->n_ineq)
643 continue;
644 k = isl_basic_set_alloc_inequality(hull);
645 if (k < 0)
646 goto error;
647 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
648 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
649 goto error;
651 isl_basic_set_free(hull_facet);
652 isl_basic_set_free(facet);
654 hull = isl_basic_set_simplify(hull);
655 hull = isl_basic_set_finalize(hull);
656 return hull;
657 error:
658 isl_basic_set_free(hull_facet);
659 isl_basic_set_free(facet);
660 isl_basic_set_free(hull);
661 return NULL;
664 /* Special case for computing the convex hull of a one dimensional set.
665 * We simply collect the lower and upper bounds of each basic set
666 * and the biggest of those.
668 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
670 struct isl_mat *c = NULL;
671 isl_int *lower = NULL;
672 isl_int *upper = NULL;
673 int i, j, k;
674 isl_int a, b;
675 struct isl_basic_set *hull;
677 for (i = 0; i < set->n; ++i) {
678 set->p[i] = isl_basic_set_simplify(set->p[i]);
679 if (!set->p[i])
680 goto error;
682 set = isl_set_remove_empty_parts(set);
683 if (!set)
684 goto error;
685 isl_assert(set->ctx, set->n > 0, goto error);
686 c = isl_mat_alloc(set->ctx, 2, 2);
687 if (!c)
688 goto error;
690 if (set->p[0]->n_eq > 0) {
691 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
692 lower = c->row[0];
693 upper = c->row[1];
694 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
695 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
696 isl_seq_neg(upper, set->p[0]->eq[0], 2);
697 } else {
698 isl_seq_neg(lower, set->p[0]->eq[0], 2);
699 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
701 } else {
702 for (j = 0; j < set->p[0]->n_ineq; ++j) {
703 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
704 lower = c->row[0];
705 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
706 } else {
707 upper = c->row[1];
708 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
713 isl_int_init(a);
714 isl_int_init(b);
715 for (i = 0; i < set->n; ++i) {
716 struct isl_basic_set *bset = set->p[i];
717 int has_lower = 0;
718 int has_upper = 0;
720 for (j = 0; j < bset->n_eq; ++j) {
721 has_lower = 1;
722 has_upper = 1;
723 if (lower) {
724 isl_int_mul(a, lower[0], bset->eq[j][1]);
725 isl_int_mul(b, lower[1], bset->eq[j][0]);
726 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
727 isl_seq_cpy(lower, bset->eq[j], 2);
728 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
729 isl_seq_neg(lower, bset->eq[j], 2);
731 if (upper) {
732 isl_int_mul(a, upper[0], bset->eq[j][1]);
733 isl_int_mul(b, upper[1], bset->eq[j][0]);
734 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
735 isl_seq_neg(upper, bset->eq[j], 2);
736 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
737 isl_seq_cpy(upper, bset->eq[j], 2);
740 for (j = 0; j < bset->n_ineq; ++j) {
741 if (isl_int_is_pos(bset->ineq[j][1]))
742 has_lower = 1;
743 if (isl_int_is_neg(bset->ineq[j][1]))
744 has_upper = 1;
745 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
746 isl_int_mul(a, lower[0], bset->ineq[j][1]);
747 isl_int_mul(b, lower[1], bset->ineq[j][0]);
748 if (isl_int_lt(a, b))
749 isl_seq_cpy(lower, bset->ineq[j], 2);
751 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
752 isl_int_mul(a, upper[0], bset->ineq[j][1]);
753 isl_int_mul(b, upper[1], bset->ineq[j][0]);
754 if (isl_int_gt(a, b))
755 isl_seq_cpy(upper, bset->ineq[j], 2);
758 if (!has_lower)
759 lower = NULL;
760 if (!has_upper)
761 upper = NULL;
763 isl_int_clear(a);
764 isl_int_clear(b);
766 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
767 hull = isl_basic_set_set_rational(hull);
768 if (!hull)
769 goto error;
770 if (lower) {
771 k = isl_basic_set_alloc_inequality(hull);
772 isl_seq_cpy(hull->ineq[k], lower, 2);
774 if (upper) {
775 k = isl_basic_set_alloc_inequality(hull);
776 isl_seq_cpy(hull->ineq[k], upper, 2);
778 hull = isl_basic_set_finalize(hull);
779 isl_set_free(set);
780 isl_mat_free(c);
781 return hull;
782 error:
783 isl_set_free(set);
784 isl_mat_free(c);
785 return NULL;
788 /* Project out final n dimensions using Fourier-Motzkin */
789 static struct isl_set *set_project_out(struct isl_ctx *ctx,
790 struct isl_set *set, unsigned n)
792 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
795 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
797 struct isl_basic_set *convex_hull;
799 if (!set)
800 return NULL;
802 if (isl_set_is_empty(set))
803 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
804 else
805 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
806 isl_set_free(set);
807 return convex_hull;
810 /* Compute the convex hull of a pair of basic sets without any parameters or
811 * integer divisions using Fourier-Motzkin elimination.
812 * The convex hull is the set of all points that can be written as
813 * the sum of points from both basic sets (in homogeneous coordinates).
814 * We set up the constraints in a space with dimensions for each of
815 * the three sets and then project out the dimensions corresponding
816 * to the two original basic sets, retaining only those corresponding
817 * to the convex hull.
819 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
820 struct isl_basic_set *bset2)
822 int i, j, k;
823 struct isl_basic_set *bset[2];
824 struct isl_basic_set *hull = NULL;
825 unsigned dim;
827 if (!bset1 || !bset2)
828 goto error;
830 dim = isl_basic_set_n_dim(bset1);
831 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
832 1 + dim + bset1->n_eq + bset2->n_eq,
833 2 + bset1->n_ineq + bset2->n_ineq);
834 bset[0] = bset1;
835 bset[1] = bset2;
836 for (i = 0; i < 2; ++i) {
837 for (j = 0; j < bset[i]->n_eq; ++j) {
838 k = isl_basic_set_alloc_equality(hull);
839 if (k < 0)
840 goto error;
841 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
842 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
843 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
844 1+dim);
846 for (j = 0; j < bset[i]->n_ineq; ++j) {
847 k = isl_basic_set_alloc_inequality(hull);
848 if (k < 0)
849 goto error;
850 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
851 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
852 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
853 bset[i]->ineq[j], 1+dim);
855 k = isl_basic_set_alloc_inequality(hull);
856 if (k < 0)
857 goto error;
858 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
859 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
861 for (j = 0; j < 1+dim; ++j) {
862 k = isl_basic_set_alloc_equality(hull);
863 if (k < 0)
864 goto error;
865 isl_seq_clr(hull->eq[k], 1+2+3*dim);
866 isl_int_set_si(hull->eq[k][j], -1);
867 isl_int_set_si(hull->eq[k][1+dim+j], 1);
868 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
870 hull = isl_basic_set_set_rational(hull);
871 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
872 hull = isl_basic_set_remove_redundancies(hull);
873 isl_basic_set_free(bset1);
874 isl_basic_set_free(bset2);
875 return hull;
876 error:
877 isl_basic_set_free(bset1);
878 isl_basic_set_free(bset2);
879 isl_basic_set_free(hull);
880 return NULL;
883 /* Is the set bounded for each value of the parameters?
885 int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
887 struct isl_tab *tab;
888 int bounded;
890 if (!bset)
891 return -1;
892 if (isl_basic_set_fast_is_empty(bset))
893 return 1;
895 tab = isl_tab_from_recession_cone(bset, 1);
896 bounded = isl_tab_cone_is_bounded(tab);
897 isl_tab_free(tab);
898 return bounded;
901 /* Is the set bounded for each value of the parameters?
903 int isl_set_is_bounded(__isl_keep isl_set *set)
905 int i;
907 if (!set)
908 return -1;
910 for (i = 0; i < set->n; ++i) {
911 int bounded = isl_basic_set_is_bounded(set->p[i]);
912 if (!bounded || bounded < 0)
913 return bounded;
915 return 1;
918 /* Compute the lineality space of the convex hull of bset1 and bset2.
920 * We first compute the intersection of the recession cone of bset1
921 * with the negative of the recession cone of bset2 and then compute
922 * the linear hull of the resulting cone.
924 static struct isl_basic_set *induced_lineality_space(
925 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
927 int i, k;
928 struct isl_basic_set *lin = NULL;
929 unsigned dim;
931 if (!bset1 || !bset2)
932 goto error;
934 dim = isl_basic_set_total_dim(bset1);
935 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
936 bset1->n_eq + bset2->n_eq,
937 bset1->n_ineq + bset2->n_ineq);
938 lin = isl_basic_set_set_rational(lin);
939 if (!lin)
940 goto error;
941 for (i = 0; i < bset1->n_eq; ++i) {
942 k = isl_basic_set_alloc_equality(lin);
943 if (k < 0)
944 goto error;
945 isl_int_set_si(lin->eq[k][0], 0);
946 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
948 for (i = 0; i < bset1->n_ineq; ++i) {
949 k = isl_basic_set_alloc_inequality(lin);
950 if (k < 0)
951 goto error;
952 isl_int_set_si(lin->ineq[k][0], 0);
953 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
955 for (i = 0; i < bset2->n_eq; ++i) {
956 k = isl_basic_set_alloc_equality(lin);
957 if (k < 0)
958 goto error;
959 isl_int_set_si(lin->eq[k][0], 0);
960 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
962 for (i = 0; i < bset2->n_ineq; ++i) {
963 k = isl_basic_set_alloc_inequality(lin);
964 if (k < 0)
965 goto error;
966 isl_int_set_si(lin->ineq[k][0], 0);
967 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
970 isl_basic_set_free(bset1);
971 isl_basic_set_free(bset2);
972 return isl_basic_set_affine_hull(lin);
973 error:
974 isl_basic_set_free(lin);
975 isl_basic_set_free(bset1);
976 isl_basic_set_free(bset2);
977 return NULL;
980 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
982 /* Given a set and a linear space "lin" of dimension n > 0,
983 * project the linear space from the set, compute the convex hull
984 * and then map the set back to the original space.
986 * Let
988 * M x = 0
990 * describe the linear space. We first compute the Hermite normal
991 * form H = M U of M = H Q, to obtain
993 * H Q x = 0
995 * The last n rows of H will be zero, so the last n variables of x' = Q x
996 * are the one we want to project out. We do this by transforming each
997 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
998 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
999 * we transform the hull back to the original space as A' Q_1 x >= b',
1000 * with Q_1 all but the last n rows of Q.
1002 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
1003 struct isl_basic_set *lin)
1005 unsigned total = isl_basic_set_total_dim(lin);
1006 unsigned lin_dim;
1007 struct isl_basic_set *hull;
1008 struct isl_mat *M, *U, *Q;
1010 if (!set || !lin)
1011 goto error;
1012 lin_dim = total - lin->n_eq;
1013 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1014 M = isl_mat_left_hermite(M, 0, &U, &Q);
1015 if (!M)
1016 goto error;
1017 isl_mat_free(M);
1018 isl_basic_set_free(lin);
1020 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1022 U = isl_mat_lin_to_aff(U);
1023 Q = isl_mat_lin_to_aff(Q);
1025 set = isl_set_preimage(set, U);
1026 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1027 hull = uset_convex_hull(set);
1028 hull = isl_basic_set_preimage(hull, Q);
1030 return hull;
1031 error:
1032 isl_basic_set_free(lin);
1033 isl_set_free(set);
1034 return NULL;
1037 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1038 * set up an LP for solving
1040 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1042 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1043 * The next \alpha{ij} correspond to the equalities and come in pairs.
1044 * The final \alpha{ij} correspond to the inequalities.
1046 static struct isl_basic_set *valid_direction_lp(
1047 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1049 struct isl_dim *dim;
1050 struct isl_basic_set *lp;
1051 unsigned d;
1052 int n;
1053 int i, j, k;
1055 if (!bset1 || !bset2)
1056 goto error;
1057 d = 1 + isl_basic_set_total_dim(bset1);
1058 n = 2 +
1059 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1060 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1061 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1062 if (!lp)
1063 goto error;
1064 for (i = 0; i < n; ++i) {
1065 k = isl_basic_set_alloc_inequality(lp);
1066 if (k < 0)
1067 goto error;
1068 isl_seq_clr(lp->ineq[k] + 1, n);
1069 isl_int_set_si(lp->ineq[k][0], -1);
1070 isl_int_set_si(lp->ineq[k][1 + i], 1);
1072 for (i = 0; i < d; ++i) {
1073 k = isl_basic_set_alloc_equality(lp);
1074 if (k < 0)
1075 goto error;
1076 n = 0;
1077 isl_int_set_si(lp->eq[k][n], 0); n++;
1078 /* positivity constraint 1 >= 0 */
1079 isl_int_set_si(lp->eq[k][n], i == 0); n++;
1080 for (j = 0; j < bset1->n_eq; ++j) {
1081 isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++;
1082 isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++;
1084 for (j = 0; j < bset1->n_ineq; ++j) {
1085 isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++;
1087 /* positivity constraint 1 >= 0 */
1088 isl_int_set_si(lp->eq[k][n], -(i == 0)); n++;
1089 for (j = 0; j < bset2->n_eq; ++j) {
1090 isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++;
1091 isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++;
1093 for (j = 0; j < bset2->n_ineq; ++j) {
1094 isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++;
1097 lp = isl_basic_set_gauss(lp, NULL);
1098 isl_basic_set_free(bset1);
1099 isl_basic_set_free(bset2);
1100 return lp;
1101 error:
1102 isl_basic_set_free(bset1);
1103 isl_basic_set_free(bset2);
1104 return NULL;
1107 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1108 * for all rays in the homogeneous space of the two cones that correspond
1109 * to the input polyhedra bset1 and bset2.
1111 * We compute s as a vector that satisfies
1113 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1115 * with h_{ij} the normals of the facets of polyhedron i
1116 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1117 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1118 * We first set up an LP with as variables the \alpha{ij}.
1119 * In this formulation, for each polyhedron i,
1120 * the first constraint is the positivity constraint, followed by pairs
1121 * of variables for the equalities, followed by variables for the inequalities.
1122 * We then simply pick a feasible solution and compute s using (*).
1124 * Note that we simply pick any valid direction and make no attempt
1125 * to pick a "good" or even the "best" valid direction.
1127 static struct isl_vec *valid_direction(
1128 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1130 struct isl_basic_set *lp;
1131 struct isl_tab *tab;
1132 struct isl_vec *sample = NULL;
1133 struct isl_vec *dir;
1134 unsigned d;
1135 int i;
1136 int n;
1138 if (!bset1 || !bset2)
1139 goto error;
1140 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1141 isl_basic_set_copy(bset2));
1142 tab = isl_tab_from_basic_set(lp);
1143 sample = isl_tab_get_sample_value(tab);
1144 isl_tab_free(tab);
1145 isl_basic_set_free(lp);
1146 if (!sample)
1147 goto error;
1148 d = isl_basic_set_total_dim(bset1);
1149 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1150 if (!dir)
1151 goto error;
1152 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1153 n = 1;
1154 /* positivity constraint 1 >= 0 */
1155 isl_int_set(dir->block.data[0], sample->block.data[n]); n++;
1156 for (i = 0; i < bset1->n_eq; ++i) {
1157 isl_int_sub(sample->block.data[n],
1158 sample->block.data[n], sample->block.data[n+1]);
1159 isl_seq_combine(dir->block.data,
1160 bset1->ctx->one, dir->block.data,
1161 sample->block.data[n], bset1->eq[i], 1 + d);
1163 n += 2;
1165 for (i = 0; i < bset1->n_ineq; ++i)
1166 isl_seq_combine(dir->block.data,
1167 bset1->ctx->one, dir->block.data,
1168 sample->block.data[n++], bset1->ineq[i], 1 + d);
1169 isl_vec_free(sample);
1170 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1171 isl_basic_set_free(bset1);
1172 isl_basic_set_free(bset2);
1173 return dir;
1174 error:
1175 isl_vec_free(sample);
1176 isl_basic_set_free(bset1);
1177 isl_basic_set_free(bset2);
1178 return NULL;
1181 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1182 * compute b_i' + A_i' x' >= 0, with
1184 * [ b_i A_i ] [ y' ] [ y' ]
1185 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1187 * In particular, add the "positivity constraint" and then perform
1188 * the mapping.
1190 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1191 struct isl_mat *T)
1193 int k;
1195 if (!bset)
1196 goto error;
1197 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1198 k = isl_basic_set_alloc_inequality(bset);
1199 if (k < 0)
1200 goto error;
1201 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1202 isl_int_set_si(bset->ineq[k][0], 1);
1203 bset = isl_basic_set_preimage(bset, T);
1204 return bset;
1205 error:
1206 isl_mat_free(T);
1207 isl_basic_set_free(bset);
1208 return NULL;
1211 /* Compute the convex hull of a pair of basic sets without any parameters or
1212 * integer divisions, where the convex hull is known to be pointed,
1213 * but the basic sets may be unbounded.
1215 * We turn this problem into the computation of a convex hull of a pair
1216 * _bounded_ polyhedra by "changing the direction of the homogeneous
1217 * dimension". This idea is due to Matthias Koeppe.
1219 * Consider the cones in homogeneous space that correspond to the
1220 * input polyhedra. The rays of these cones are also rays of the
1221 * polyhedra if the coordinate that corresponds to the homogeneous
1222 * dimension is zero. That is, if the inner product of the rays
1223 * with the homogeneous direction is zero.
1224 * The cones in the homogeneous space can also be considered to
1225 * correspond to other pairs of polyhedra by chosing a different
1226 * homogeneous direction. To ensure that both of these polyhedra
1227 * are bounded, we need to make sure that all rays of the cones
1228 * correspond to vertices and not to rays.
1229 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1230 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1231 * The vector s is computed in valid_direction.
1233 * Note that we need to consider _all_ rays of the cones and not just
1234 * the rays that correspond to rays in the polyhedra. If we were to
1235 * only consider those rays and turn them into vertices, then we
1236 * may inadvertently turn some vertices into rays.
1238 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1239 * We therefore transform the two polyhedra such that the selected
1240 * direction is mapped onto this standard direction and then proceed
1241 * with the normal computation.
1242 * Let S be a non-singular square matrix with s as its first row,
1243 * then we want to map the polyhedra to the space
1245 * [ y' ] [ y ] [ y ] [ y' ]
1246 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1248 * We take S to be the unimodular completion of s to limit the growth
1249 * of the coefficients in the following computations.
1251 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1252 * We first move to the homogeneous dimension
1254 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1255 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1257 * Then we change directoin
1259 * [ b_i A_i ] [ y' ] [ y' ]
1260 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1262 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1263 * resulting in b' + A' x' >= 0, which we then convert back
1265 * [ y ] [ y ]
1266 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1268 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1270 static struct isl_basic_set *convex_hull_pair_pointed(
1271 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1273 struct isl_ctx *ctx = NULL;
1274 struct isl_vec *dir = NULL;
1275 struct isl_mat *T = NULL;
1276 struct isl_mat *T2 = NULL;
1277 struct isl_basic_set *hull;
1278 struct isl_set *set;
1280 if (!bset1 || !bset2)
1281 goto error;
1282 ctx = bset1->ctx;
1283 dir = valid_direction(isl_basic_set_copy(bset1),
1284 isl_basic_set_copy(bset2));
1285 if (!dir)
1286 goto error;
1287 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1288 if (!T)
1289 goto error;
1290 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1291 T = isl_mat_unimodular_complete(T, 1);
1292 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1294 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1295 bset2 = homogeneous_map(bset2, T2);
1296 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1297 set = isl_set_add_basic_set(set, bset1);
1298 set = isl_set_add_basic_set(set, bset2);
1299 hull = uset_convex_hull(set);
1300 hull = isl_basic_set_preimage(hull, T);
1302 isl_vec_free(dir);
1304 return hull;
1305 error:
1306 isl_vec_free(dir);
1307 isl_basic_set_free(bset1);
1308 isl_basic_set_free(bset2);
1309 return NULL;
1312 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1313 static struct isl_basic_set *modulo_affine_hull(
1314 struct isl_set *set, struct isl_basic_set *affine_hull);
1316 /* Compute the convex hull of a pair of basic sets without any parameters or
1317 * integer divisions.
1319 * This function is called from uset_convex_hull_unbounded, which
1320 * means that the complete convex hull is unbounded. Some pairs
1321 * of basic sets may still be bounded, though.
1322 * They may even lie inside a lower dimensional space, in which
1323 * case they need to be handled inside their affine hull since
1324 * the main algorithm assumes that the result is full-dimensional.
1326 * If the convex hull of the two basic sets would have a non-trivial
1327 * lineality space, we first project out this lineality space.
1329 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1330 struct isl_basic_set *bset2)
1332 isl_basic_set *lin, *aff;
1333 int bounded1, bounded2;
1335 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1336 isl_basic_set_copy(bset2)));
1337 if (!aff)
1338 goto error;
1339 if (aff->n_eq != 0)
1340 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1341 isl_basic_set_free(aff);
1343 bounded1 = isl_basic_set_is_bounded(bset1);
1344 bounded2 = isl_basic_set_is_bounded(bset2);
1346 if (bounded1 < 0 || bounded2 < 0)
1347 goto error;
1349 if (bounded1 && bounded2)
1350 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1352 if (bounded1 || bounded2)
1353 return convex_hull_pair_pointed(bset1, bset2);
1355 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1356 isl_basic_set_copy(bset2));
1357 if (!lin)
1358 goto error;
1359 if (isl_basic_set_is_universe(lin)) {
1360 isl_basic_set_free(bset1);
1361 isl_basic_set_free(bset2);
1362 return lin;
1364 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1365 struct isl_set *set;
1366 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1367 set = isl_set_add_basic_set(set, bset1);
1368 set = isl_set_add_basic_set(set, bset2);
1369 return modulo_lineality(set, lin);
1371 isl_basic_set_free(lin);
1373 return convex_hull_pair_pointed(bset1, bset2);
1374 error:
1375 isl_basic_set_free(bset1);
1376 isl_basic_set_free(bset2);
1377 return NULL;
1380 /* Compute the lineality space of a basic set.
1381 * We currently do not allow the basic set to have any divs.
1382 * We basically just drop the constants and turn every inequality
1383 * into an equality.
1385 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1387 int i, k;
1388 struct isl_basic_set *lin = NULL;
1389 unsigned dim;
1391 if (!bset)
1392 goto error;
1393 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1394 dim = isl_basic_set_total_dim(bset);
1396 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1397 if (!lin)
1398 goto error;
1399 for (i = 0; i < bset->n_eq; ++i) {
1400 k = isl_basic_set_alloc_equality(lin);
1401 if (k < 0)
1402 goto error;
1403 isl_int_set_si(lin->eq[k][0], 0);
1404 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1406 lin = isl_basic_set_gauss(lin, NULL);
1407 if (!lin)
1408 goto error;
1409 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1410 k = isl_basic_set_alloc_equality(lin);
1411 if (k < 0)
1412 goto error;
1413 isl_int_set_si(lin->eq[k][0], 0);
1414 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1415 lin = isl_basic_set_gauss(lin, NULL);
1416 if (!lin)
1417 goto error;
1419 isl_basic_set_free(bset);
1420 return lin;
1421 error:
1422 isl_basic_set_free(lin);
1423 isl_basic_set_free(bset);
1424 return NULL;
1427 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1428 * "underlying" set "set".
1430 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1432 int i;
1433 struct isl_set *lin = NULL;
1435 if (!set)
1436 return NULL;
1437 if (set->n == 0) {
1438 struct isl_dim *dim = isl_set_get_dim(set);
1439 isl_set_free(set);
1440 return isl_basic_set_empty(dim);
1443 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1444 for (i = 0; i < set->n; ++i)
1445 lin = isl_set_add_basic_set(lin,
1446 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1447 isl_set_free(set);
1448 return isl_set_affine_hull(lin);
1451 /* Compute the convex hull of a set without any parameters or
1452 * integer divisions.
1453 * In each step, we combined two basic sets until only one
1454 * basic set is left.
1455 * The input basic sets are assumed not to have a non-trivial
1456 * lineality space. If any of the intermediate results has
1457 * a non-trivial lineality space, it is projected out.
1459 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1461 struct isl_basic_set *convex_hull = NULL;
1463 convex_hull = isl_set_copy_basic_set(set);
1464 set = isl_set_drop_basic_set(set, convex_hull);
1465 if (!set)
1466 goto error;
1467 while (set->n > 0) {
1468 struct isl_basic_set *t;
1469 t = isl_set_copy_basic_set(set);
1470 if (!t)
1471 goto error;
1472 set = isl_set_drop_basic_set(set, t);
1473 if (!set)
1474 goto error;
1475 convex_hull = convex_hull_pair(convex_hull, t);
1476 if (set->n == 0)
1477 break;
1478 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1479 if (!t)
1480 goto error;
1481 if (isl_basic_set_is_universe(t)) {
1482 isl_basic_set_free(convex_hull);
1483 convex_hull = t;
1484 break;
1486 if (t->n_eq < isl_basic_set_total_dim(t)) {
1487 set = isl_set_add_basic_set(set, convex_hull);
1488 return modulo_lineality(set, t);
1490 isl_basic_set_free(t);
1492 isl_set_free(set);
1493 return convex_hull;
1494 error:
1495 isl_set_free(set);
1496 isl_basic_set_free(convex_hull);
1497 return NULL;
1500 /* Compute an initial hull for wrapping containing a single initial
1501 * facet.
1502 * This function assumes that the given set is bounded.
1504 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1505 struct isl_set *set)
1507 struct isl_mat *bounds = NULL;
1508 unsigned dim;
1509 int k;
1511 if (!hull)
1512 goto error;
1513 bounds = initial_facet_constraint(set);
1514 if (!bounds)
1515 goto error;
1516 k = isl_basic_set_alloc_inequality(hull);
1517 if (k < 0)
1518 goto error;
1519 dim = isl_set_n_dim(set);
1520 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1521 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1522 isl_mat_free(bounds);
1524 return hull;
1525 error:
1526 isl_basic_set_free(hull);
1527 isl_mat_free(bounds);
1528 return NULL;
1531 struct max_constraint {
1532 struct isl_mat *c;
1533 int count;
1534 int ineq;
1537 static int max_constraint_equal(const void *entry, const void *val)
1539 struct max_constraint *a = (struct max_constraint *)entry;
1540 isl_int *b = (isl_int *)val;
1542 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1545 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1546 isl_int *con, unsigned len, int n, int ineq)
1548 struct isl_hash_table_entry *entry;
1549 struct max_constraint *c;
1550 uint32_t c_hash;
1552 c_hash = isl_seq_get_hash(con + 1, len);
1553 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1554 con + 1, 0);
1555 if (!entry)
1556 return;
1557 c = entry->data;
1558 if (c->count < n) {
1559 isl_hash_table_remove(ctx, table, entry);
1560 return;
1562 c->count++;
1563 if (isl_int_gt(c->c->row[0][0], con[0]))
1564 return;
1565 if (isl_int_eq(c->c->row[0][0], con[0])) {
1566 if (ineq)
1567 c->ineq = ineq;
1568 return;
1570 c->c = isl_mat_cow(c->c);
1571 isl_int_set(c->c->row[0][0], con[0]);
1572 c->ineq = ineq;
1575 /* Check whether the constraint hash table "table" constains the constraint
1576 * "con".
1578 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1579 isl_int *con, unsigned len, int n)
1581 struct isl_hash_table_entry *entry;
1582 struct max_constraint *c;
1583 uint32_t c_hash;
1585 c_hash = isl_seq_get_hash(con + 1, len);
1586 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1587 con + 1, 0);
1588 if (!entry)
1589 return 0;
1590 c = entry->data;
1591 if (c->count < n)
1592 return 0;
1593 return isl_int_eq(c->c->row[0][0], con[0]);
1596 /* Check for inequality constraints of a basic set without equalities
1597 * such that the same or more stringent copies of the constraint appear
1598 * in all of the basic sets. Such constraints are necessarily facet
1599 * constraints of the convex hull.
1601 * If the resulting basic set is by chance identical to one of
1602 * the basic sets in "set", then we know that this basic set contains
1603 * all other basic sets and is therefore the convex hull of set.
1604 * In this case we set *is_hull to 1.
1606 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1607 struct isl_set *set, int *is_hull)
1609 int i, j, s, n;
1610 int min_constraints;
1611 int best;
1612 struct max_constraint *constraints = NULL;
1613 struct isl_hash_table *table = NULL;
1614 unsigned total;
1616 *is_hull = 0;
1618 for (i = 0; i < set->n; ++i)
1619 if (set->p[i]->n_eq == 0)
1620 break;
1621 if (i >= set->n)
1622 return hull;
1623 min_constraints = set->p[i]->n_ineq;
1624 best = i;
1625 for (i = best + 1; i < set->n; ++i) {
1626 if (set->p[i]->n_eq != 0)
1627 continue;
1628 if (set->p[i]->n_ineq >= min_constraints)
1629 continue;
1630 min_constraints = set->p[i]->n_ineq;
1631 best = i;
1633 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1634 min_constraints);
1635 if (!constraints)
1636 return hull;
1637 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1638 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1639 goto error;
1641 total = isl_dim_total(set->dim);
1642 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1643 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1644 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1645 if (!constraints[i].c)
1646 goto error;
1647 constraints[i].ineq = 1;
1649 for (i = 0; i < min_constraints; ++i) {
1650 struct isl_hash_table_entry *entry;
1651 uint32_t c_hash;
1652 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1653 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1654 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1655 if (!entry)
1656 goto error;
1657 isl_assert(hull->ctx, !entry->data, goto error);
1658 entry->data = &constraints[i];
1661 n = 0;
1662 for (s = 0; s < set->n; ++s) {
1663 if (s == best)
1664 continue;
1666 for (i = 0; i < set->p[s]->n_eq; ++i) {
1667 isl_int *eq = set->p[s]->eq[i];
1668 for (j = 0; j < 2; ++j) {
1669 isl_seq_neg(eq, eq, 1 + total);
1670 update_constraint(hull->ctx, table,
1671 eq, total, n, 0);
1674 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1675 isl_int *ineq = set->p[s]->ineq[i];
1676 update_constraint(hull->ctx, table, ineq, total, n,
1677 set->p[s]->n_eq == 0);
1679 ++n;
1682 for (i = 0; i < min_constraints; ++i) {
1683 if (constraints[i].count < n)
1684 continue;
1685 if (!constraints[i].ineq)
1686 continue;
1687 j = isl_basic_set_alloc_inequality(hull);
1688 if (j < 0)
1689 goto error;
1690 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1693 for (s = 0; s < set->n; ++s) {
1694 if (set->p[s]->n_eq)
1695 continue;
1696 if (set->p[s]->n_ineq != hull->n_ineq)
1697 continue;
1698 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1699 isl_int *ineq = set->p[s]->ineq[i];
1700 if (!has_constraint(hull->ctx, table, ineq, total, n))
1701 break;
1703 if (i == set->p[s]->n_ineq)
1704 *is_hull = 1;
1707 isl_hash_table_clear(table);
1708 for (i = 0; i < min_constraints; ++i)
1709 isl_mat_free(constraints[i].c);
1710 free(constraints);
1711 free(table);
1712 return hull;
1713 error:
1714 isl_hash_table_clear(table);
1715 free(table);
1716 if (constraints)
1717 for (i = 0; i < min_constraints; ++i)
1718 isl_mat_free(constraints[i].c);
1719 free(constraints);
1720 return hull;
1723 /* Create a template for the convex hull of "set" and fill it up
1724 * obvious facet constraints, if any. If the result happens to
1725 * be the convex hull of "set" then *is_hull is set to 1.
1727 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1729 struct isl_basic_set *hull;
1730 unsigned n_ineq;
1731 int i;
1733 n_ineq = 1;
1734 for (i = 0; i < set->n; ++i) {
1735 n_ineq += set->p[i]->n_eq;
1736 n_ineq += set->p[i]->n_ineq;
1738 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1739 hull = isl_basic_set_set_rational(hull);
1740 if (!hull)
1741 return NULL;
1742 return common_constraints(hull, set, is_hull);
1745 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1747 struct isl_basic_set *hull;
1748 int is_hull;
1750 hull = proto_hull(set, &is_hull);
1751 if (hull && !is_hull) {
1752 if (hull->n_ineq == 0)
1753 hull = initial_hull(hull, set);
1754 hull = extend(hull, set);
1756 isl_set_free(set);
1758 return hull;
1761 /* Compute the convex hull of a set without any parameters or
1762 * integer divisions. Depending on whether the set is bounded,
1763 * we pass control to the wrapping based convex hull or
1764 * the Fourier-Motzkin elimination based convex hull.
1765 * We also handle a few special cases before checking the boundedness.
1767 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1769 struct isl_basic_set *convex_hull = NULL;
1770 struct isl_basic_set *lin;
1772 if (isl_set_n_dim(set) == 0)
1773 return convex_hull_0d(set);
1775 set = isl_set_coalesce(set);
1776 set = isl_set_set_rational(set);
1778 if (!set)
1779 goto error;
1780 if (!set)
1781 return NULL;
1782 if (set->n == 1) {
1783 convex_hull = isl_basic_set_copy(set->p[0]);
1784 isl_set_free(set);
1785 return convex_hull;
1787 if (isl_set_n_dim(set) == 1)
1788 return convex_hull_1d(set);
1790 if (isl_set_is_bounded(set))
1791 return uset_convex_hull_wrap(set);
1793 lin = uset_combined_lineality_space(isl_set_copy(set));
1794 if (!lin)
1795 goto error;
1796 if (isl_basic_set_is_universe(lin)) {
1797 isl_set_free(set);
1798 return lin;
1800 if (lin->n_eq < isl_basic_set_total_dim(lin))
1801 return modulo_lineality(set, lin);
1802 isl_basic_set_free(lin);
1804 return uset_convex_hull_unbounded(set);
1805 error:
1806 isl_set_free(set);
1807 isl_basic_set_free(convex_hull);
1808 return NULL;
1811 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1812 * without parameters or divs and where the convex hull of set is
1813 * known to be full-dimensional.
1815 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1817 struct isl_basic_set *convex_hull = NULL;
1819 if (!set)
1820 goto error;
1822 if (isl_set_n_dim(set) == 0) {
1823 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1824 isl_set_free(set);
1825 convex_hull = isl_basic_set_set_rational(convex_hull);
1826 return convex_hull;
1829 set = isl_set_set_rational(set);
1830 set = isl_set_coalesce(set);
1831 if (!set)
1832 goto error;
1833 if (set->n == 1) {
1834 convex_hull = isl_basic_set_copy(set->p[0]);
1835 isl_set_free(set);
1836 return convex_hull;
1838 if (isl_set_n_dim(set) == 1)
1839 return convex_hull_1d(set);
1841 return uset_convex_hull_wrap(set);
1842 error:
1843 isl_set_free(set);
1844 return NULL;
1847 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1848 * We first remove the equalities (transforming the set), compute the
1849 * convex hull of the transformed set and then add the equalities back
1850 * (after performing the inverse transformation.
1852 static struct isl_basic_set *modulo_affine_hull(
1853 struct isl_set *set, struct isl_basic_set *affine_hull)
1855 struct isl_mat *T;
1856 struct isl_mat *T2;
1857 struct isl_basic_set *dummy;
1858 struct isl_basic_set *convex_hull;
1860 dummy = isl_basic_set_remove_equalities(
1861 isl_basic_set_copy(affine_hull), &T, &T2);
1862 if (!dummy)
1863 goto error;
1864 isl_basic_set_free(dummy);
1865 set = isl_set_preimage(set, T);
1866 convex_hull = uset_convex_hull(set);
1867 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1868 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1869 return convex_hull;
1870 error:
1871 isl_basic_set_free(affine_hull);
1872 isl_set_free(set);
1873 return NULL;
1876 /* Compute the convex hull of a map.
1878 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1879 * specifically, the wrapping of facets to obtain new facets.
1881 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1883 struct isl_basic_set *bset;
1884 struct isl_basic_map *model = NULL;
1885 struct isl_basic_set *affine_hull = NULL;
1886 struct isl_basic_map *convex_hull = NULL;
1887 struct isl_set *set = NULL;
1888 struct isl_ctx *ctx;
1890 if (!map)
1891 goto error;
1893 ctx = map->ctx;
1894 if (map->n == 0) {
1895 convex_hull = isl_basic_map_empty_like_map(map);
1896 isl_map_free(map);
1897 return convex_hull;
1900 map = isl_map_detect_equalities(map);
1901 map = isl_map_align_divs(map);
1902 if (!map)
1903 goto error;
1904 model = isl_basic_map_copy(map->p[0]);
1905 set = isl_map_underlying_set(map);
1906 if (!set)
1907 goto error;
1909 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1910 if (!affine_hull)
1911 goto error;
1912 if (affine_hull->n_eq != 0)
1913 bset = modulo_affine_hull(set, affine_hull);
1914 else {
1915 isl_basic_set_free(affine_hull);
1916 bset = uset_convex_hull(set);
1919 convex_hull = isl_basic_map_overlying_set(bset, model);
1920 if (!convex_hull)
1921 return NULL;
1923 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1924 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1925 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1926 return convex_hull;
1927 error:
1928 isl_set_free(set);
1929 isl_basic_map_free(model);
1930 return NULL;
1933 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1935 return (struct isl_basic_set *)
1936 isl_map_convex_hull((struct isl_map *)set);
1939 struct sh_data_entry {
1940 struct isl_hash_table *table;
1941 struct isl_tab *tab;
1944 /* Holds the data needed during the simple hull computation.
1945 * In particular,
1946 * n the number of basic sets in the original set
1947 * hull_table a hash table of already computed constraints
1948 * in the simple hull
1949 * p for each basic set,
1950 * table a hash table of the constraints
1951 * tab the tableau corresponding to the basic set
1953 struct sh_data {
1954 struct isl_ctx *ctx;
1955 unsigned n;
1956 struct isl_hash_table *hull_table;
1957 struct sh_data_entry p[1];
1960 static void sh_data_free(struct sh_data *data)
1962 int i;
1964 if (!data)
1965 return;
1966 isl_hash_table_free(data->ctx, data->hull_table);
1967 for (i = 0; i < data->n; ++i) {
1968 isl_hash_table_free(data->ctx, data->p[i].table);
1969 isl_tab_free(data->p[i].tab);
1971 free(data);
1974 struct ineq_cmp_data {
1975 unsigned len;
1976 isl_int *p;
1979 static int has_ineq(const void *entry, const void *val)
1981 isl_int *row = (isl_int *)entry;
1982 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1984 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1985 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1988 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1989 isl_int *ineq, unsigned len)
1991 uint32_t c_hash;
1992 struct ineq_cmp_data v;
1993 struct isl_hash_table_entry *entry;
1995 v.len = len;
1996 v.p = ineq;
1997 c_hash = isl_seq_get_hash(ineq + 1, len);
1998 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1999 if (!entry)
2000 return - 1;
2001 entry->data = ineq;
2002 return 0;
2005 /* Fill hash table "table" with the constraints of "bset".
2006 * Equalities are added as two inequalities.
2007 * The value in the hash table is a pointer to the (in)equality of "bset".
2009 static int hash_basic_set(struct isl_hash_table *table,
2010 struct isl_basic_set *bset)
2012 int i, j;
2013 unsigned dim = isl_basic_set_total_dim(bset);
2015 for (i = 0; i < bset->n_eq; ++i) {
2016 for (j = 0; j < 2; ++j) {
2017 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2018 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2019 return -1;
2022 for (i = 0; i < bset->n_ineq; ++i) {
2023 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2024 return -1;
2026 return 0;
2029 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2031 struct sh_data *data;
2032 int i;
2034 data = isl_calloc(set->ctx, struct sh_data,
2035 sizeof(struct sh_data) +
2036 (set->n - 1) * sizeof(struct sh_data_entry));
2037 if (!data)
2038 return NULL;
2039 data->ctx = set->ctx;
2040 data->n = set->n;
2041 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2042 if (!data->hull_table)
2043 goto error;
2044 for (i = 0; i < set->n; ++i) {
2045 data->p[i].table = isl_hash_table_alloc(set->ctx,
2046 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2047 if (!data->p[i].table)
2048 goto error;
2049 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2050 goto error;
2052 return data;
2053 error:
2054 sh_data_free(data);
2055 return NULL;
2058 /* Check if inequality "ineq" is a bound for basic set "j" or if
2059 * it can be relaxed (by increasing the constant term) to become
2060 * a bound for that basic set. In the latter case, the constant
2061 * term is updated.
2062 * Return 1 if "ineq" is a bound
2063 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2064 * -1 if some error occurred
2066 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2067 isl_int *ineq)
2069 enum isl_lp_result res;
2070 isl_int opt;
2072 if (!data->p[j].tab) {
2073 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2074 if (!data->p[j].tab)
2075 return -1;
2078 isl_int_init(opt);
2080 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2081 &opt, NULL, 0);
2082 if (res == isl_lp_ok && isl_int_is_neg(opt))
2083 isl_int_sub(ineq[0], ineq[0], opt);
2085 isl_int_clear(opt);
2087 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2088 res == isl_lp_unbounded ? 0 : -1;
2091 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2092 * become a bound on the whole set. If so, add the (relaxed) inequality
2093 * to "hull".
2095 * We first check if "hull" already contains a translate of the inequality.
2096 * If so, we are done.
2097 * Then, we check if any of the previous basic sets contains a translate
2098 * of the inequality. If so, then we have already considered this
2099 * inequality and we are done.
2100 * Otherwise, for each basic set other than "i", we check if the inequality
2101 * is a bound on the basic set.
2102 * For previous basic sets, we know that they do not contain a translate
2103 * of the inequality, so we directly call is_bound.
2104 * For following basic sets, we first check if a translate of the
2105 * inequality appears in its description and if so directly update
2106 * the inequality accordingly.
2108 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2109 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2111 uint32_t c_hash;
2112 struct ineq_cmp_data v;
2113 struct isl_hash_table_entry *entry;
2114 int j, k;
2116 if (!hull)
2117 return NULL;
2119 v.len = isl_basic_set_total_dim(hull);
2120 v.p = ineq;
2121 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2123 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2124 has_ineq, &v, 0);
2125 if (entry)
2126 return hull;
2128 for (j = 0; j < i; ++j) {
2129 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2130 c_hash, has_ineq, &v, 0);
2131 if (entry)
2132 break;
2134 if (j < i)
2135 return hull;
2137 k = isl_basic_set_alloc_inequality(hull);
2138 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2139 if (k < 0)
2140 goto error;
2142 for (j = 0; j < i; ++j) {
2143 int bound;
2144 bound = is_bound(data, set, j, hull->ineq[k]);
2145 if (bound < 0)
2146 goto error;
2147 if (!bound)
2148 break;
2150 if (j < i) {
2151 isl_basic_set_free_inequality(hull, 1);
2152 return hull;
2155 for (j = i + 1; j < set->n; ++j) {
2156 int bound, neg;
2157 isl_int *ineq_j;
2158 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2159 c_hash, has_ineq, &v, 0);
2160 if (entry) {
2161 ineq_j = entry->data;
2162 neg = isl_seq_is_neg(ineq_j + 1,
2163 hull->ineq[k] + 1, v.len);
2164 if (neg)
2165 isl_int_neg(ineq_j[0], ineq_j[0]);
2166 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2167 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2168 if (neg)
2169 isl_int_neg(ineq_j[0], ineq_j[0]);
2170 continue;
2172 bound = is_bound(data, set, j, hull->ineq[k]);
2173 if (bound < 0)
2174 goto error;
2175 if (!bound)
2176 break;
2178 if (j < set->n) {
2179 isl_basic_set_free_inequality(hull, 1);
2180 return hull;
2183 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2184 has_ineq, &v, 1);
2185 if (!entry)
2186 goto error;
2187 entry->data = hull->ineq[k];
2189 return hull;
2190 error:
2191 isl_basic_set_free(hull);
2192 return NULL;
2195 /* Check if any inequality from basic set "i" can be relaxed to
2196 * become a bound on the whole set. If so, add the (relaxed) inequality
2197 * to "hull".
2199 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2200 struct sh_data *data, struct isl_set *set, int i)
2202 int j, k;
2203 unsigned dim = isl_basic_set_total_dim(bset);
2205 for (j = 0; j < set->p[i]->n_eq; ++j) {
2206 for (k = 0; k < 2; ++k) {
2207 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2208 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2211 for (j = 0; j < set->p[i]->n_ineq; ++j)
2212 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2213 return bset;
2216 /* Compute a superset of the convex hull of set that is described
2217 * by only translates of the constraints in the constituents of set.
2219 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2221 struct sh_data *data = NULL;
2222 struct isl_basic_set *hull = NULL;
2223 unsigned n_ineq;
2224 int i;
2226 if (!set)
2227 return NULL;
2229 n_ineq = 0;
2230 for (i = 0; i < set->n; ++i) {
2231 if (!set->p[i])
2232 goto error;
2233 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2236 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2237 if (!hull)
2238 goto error;
2240 data = sh_data_alloc(set, n_ineq);
2241 if (!data)
2242 goto error;
2244 for (i = 0; i < set->n; ++i)
2245 hull = add_bounds(hull, data, set, i);
2247 sh_data_free(data);
2248 isl_set_free(set);
2250 return hull;
2251 error:
2252 sh_data_free(data);
2253 isl_basic_set_free(hull);
2254 isl_set_free(set);
2255 return NULL;
2258 /* Compute a superset of the convex hull of map that is described
2259 * by only translates of the constraints in the constituents of map.
2261 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2263 struct isl_set *set = NULL;
2264 struct isl_basic_map *model = NULL;
2265 struct isl_basic_map *hull;
2266 struct isl_basic_map *affine_hull;
2267 struct isl_basic_set *bset = NULL;
2269 if (!map)
2270 return NULL;
2271 if (map->n == 0) {
2272 hull = isl_basic_map_empty_like_map(map);
2273 isl_map_free(map);
2274 return hull;
2276 if (map->n == 1) {
2277 hull = isl_basic_map_copy(map->p[0]);
2278 isl_map_free(map);
2279 return hull;
2282 map = isl_map_detect_equalities(map);
2283 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2284 map = isl_map_align_divs(map);
2285 model = isl_basic_map_copy(map->p[0]);
2287 set = isl_map_underlying_set(map);
2289 bset = uset_simple_hull(set);
2291 hull = isl_basic_map_overlying_set(bset, model);
2293 hull = isl_basic_map_intersect(hull, affine_hull);
2294 hull = isl_basic_map_remove_redundancies(hull);
2295 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2296 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2298 return hull;
2301 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2303 return (struct isl_basic_set *)
2304 isl_map_simple_hull((struct isl_map *)set);
2307 /* Given a set "set", return parametric bounds on the dimension "dim".
2309 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2311 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2312 set = isl_set_copy(set);
2313 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2314 set = isl_set_eliminate_dims(set, 0, dim);
2315 return isl_set_convex_hull(set);
2318 /* Computes a "simple hull" and then check if each dimension in the
2319 * resulting hull is bounded by a symbolic constant. If not, the
2320 * hull is intersected with the corresponding bounds on the whole set.
2322 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2324 int i, j;
2325 struct isl_basic_set *hull;
2326 unsigned nparam, left;
2327 int removed_divs = 0;
2329 hull = isl_set_simple_hull(isl_set_copy(set));
2330 if (!hull)
2331 goto error;
2333 nparam = isl_basic_set_dim(hull, isl_dim_param);
2334 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2335 int lower = 0, upper = 0;
2336 struct isl_basic_set *bounds;
2338 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2339 for (j = 0; j < hull->n_eq; ++j) {
2340 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2341 continue;
2342 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2343 left) == -1)
2344 break;
2346 if (j < hull->n_eq)
2347 continue;
2349 for (j = 0; j < hull->n_ineq; ++j) {
2350 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2351 continue;
2352 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2353 left) != -1 ||
2354 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2355 i) != -1)
2356 continue;
2357 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2358 lower = 1;
2359 else
2360 upper = 1;
2361 if (lower && upper)
2362 break;
2365 if (lower && upper)
2366 continue;
2368 if (!removed_divs) {
2369 set = isl_set_remove_divs(set);
2370 if (!set)
2371 goto error;
2372 removed_divs = 1;
2374 bounds = set_bounds(set, i);
2375 hull = isl_basic_set_intersect(hull, bounds);
2376 if (!hull)
2377 goto error;
2380 isl_set_free(set);
2381 return hull;
2382 error:
2383 isl_set_free(set);
2384 return NULL;