add isl_pw_*_plain_is_equal
[isl.git] / isl_flow.c
blobbb513c54169d1c79f4e6eda376951a31859f1963
1 /*
2 * Copyright 2005-2007 Universiteit Leiden
3 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Copyright 2010 INRIA Saclay
6 * Use of this software is governed by the GNU LGPLv2.1 license
8 * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9 * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10 * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11 * B-3001 Leuven, Belgium
12 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
16 #include <isl/set.h>
17 #include <isl/map.h>
18 #include <isl/flow.h>
20 /* A private structure to keep track of a mapping together with
21 * a user-specified identifier and a boolean indicating whether
22 * the map represents a must or may access/dependence.
24 struct isl_labeled_map {
25 struct isl_map *map;
26 void *data;
27 int must;
30 /* A structure containing the input for dependence analysis:
31 * - a sink
32 * - n_must + n_may (<= max_source) sources
33 * - a function for determining the relative order of sources and sink
34 * The must sources are placed before the may sources.
36 struct isl_access_info {
37 struct isl_labeled_map sink;
38 isl_access_level_before level_before;
39 int max_source;
40 int n_must;
41 int n_may;
42 struct isl_labeled_map source[1];
45 /* A structure containing the output of dependence analysis:
46 * - n_source dependences
47 * - a wrapped subset of the sink for which definitely no source could be found
48 * - a wrapped subset of the sink for which possibly no source could be found
50 struct isl_flow {
51 isl_set *must_no_source;
52 isl_set *may_no_source;
53 int n_source;
54 struct isl_labeled_map *dep;
57 /* Construct an isl_access_info structure and fill it up with
58 * the given data. The number of sources is set to 0.
60 __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
61 void *sink_user, isl_access_level_before fn, int max_source)
63 isl_ctx *ctx;
64 struct isl_access_info *acc;
66 if (!sink)
67 return NULL;
69 ctx = isl_map_get_ctx(sink);
70 isl_assert(ctx, max_source >= 0, goto error);
72 acc = isl_alloc(ctx, struct isl_access_info,
73 sizeof(struct isl_access_info) +
74 (max_source - 1) * sizeof(struct isl_labeled_map));
75 if (!acc)
76 goto error;
78 acc->sink.map = sink;
79 acc->sink.data = sink_user;
80 acc->level_before = fn;
81 acc->max_source = max_source;
82 acc->n_must = 0;
83 acc->n_may = 0;
85 return acc;
86 error:
87 isl_map_free(sink);
88 return NULL;
91 /* Free the given isl_access_info structure.
93 void isl_access_info_free(__isl_take isl_access_info *acc)
95 int i;
97 if (!acc)
98 return;
99 isl_map_free(acc->sink.map);
100 for (i = 0; i < acc->n_must + acc->n_may; ++i)
101 isl_map_free(acc->source[i].map);
102 free(acc);
105 isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
107 return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
110 /* Add another source to an isl_access_info structure, making
111 * sure the "must" sources are placed before the "may" sources.
112 * This function may be called at most max_source times on a
113 * given isl_access_info structure, with max_source as specified
114 * in the call to isl_access_info_alloc that constructed the structure.
116 __isl_give isl_access_info *isl_access_info_add_source(
117 __isl_take isl_access_info *acc, __isl_take isl_map *source,
118 int must, void *source_user)
120 isl_ctx *ctx;
122 if (!acc)
123 return NULL;
124 ctx = isl_map_get_ctx(acc->sink.map);
125 isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
127 if (must) {
128 if (acc->n_may)
129 acc->source[acc->n_must + acc->n_may] =
130 acc->source[acc->n_must];
131 acc->source[acc->n_must].map = source;
132 acc->source[acc->n_must].data = source_user;
133 acc->source[acc->n_must].must = 1;
134 acc->n_must++;
135 } else {
136 acc->source[acc->n_must + acc->n_may].map = source;
137 acc->source[acc->n_must + acc->n_may].data = source_user;
138 acc->source[acc->n_must + acc->n_may].must = 0;
139 acc->n_may++;
142 return acc;
143 error:
144 isl_map_free(source);
145 isl_access_info_free(acc);
146 return NULL;
149 /* A temporary structure used while sorting the accesses in an isl_access_info.
151 struct isl_access_sort_info {
152 struct isl_map *source_map;
153 void *source_data;
154 struct isl_access_info *acc;
157 /* Return -n, 0 or n (with n a positive value), depending on whether
158 * the source access identified by p1 should be sorted before, together
159 * or after that identified by p2.
161 * If p1 and p2 share a different number of levels with the sink,
162 * then the one with the lowest number of shared levels should be
163 * sorted first.
164 * If they both share no levels, then the order is irrelevant.
165 * Otherwise, if p1 appears before p2, then it should be sorted first.
166 * For more generic initial schedules, it is possible that neither
167 * p1 nor p2 appears before the other, or at least not in any obvious way.
168 * We therefore also check if p2 appears before p1, in which case p2
169 * should be sorted first.
170 * If not, we try to order the two statements based on the description
171 * of the iteration domains. This results in an arbitrary, but fairly
172 * stable ordering.
174 static int access_sort_cmp(const void *p1, const void *p2)
176 const struct isl_access_sort_info *i1, *i2;
177 int level1, level2;
178 uint32_t h1, h2;
179 i1 = (const struct isl_access_sort_info *) p1;
180 i2 = (const struct isl_access_sort_info *) p2;
182 level1 = i1->acc->level_before(i1->source_data, i1->acc->sink.data);
183 level2 = i2->acc->level_before(i2->source_data, i2->acc->sink.data);
185 if (level1 != level2 || !level1)
186 return level1 - level2;
188 level1 = i1->acc->level_before(i1->source_data, i2->source_data);
189 if (level1 % 2)
190 return -1;
192 level2 = i1->acc->level_before(i2->source_data, i1->source_data);
193 if (level2 % 2)
194 return 1;
196 h1 = isl_map_get_hash(i1->source_map);
197 h2 = isl_map_get_hash(i2->source_map);
198 return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
201 /* Sort the must source accesses in order of increasing number of shared
202 * levels with the sink access.
203 * Source accesses with the same number of shared levels are sorted
204 * in their textual order.
206 static __isl_give isl_access_info *isl_access_info_sort_sources(
207 __isl_take isl_access_info *acc)
209 int i;
210 isl_ctx *ctx;
211 struct isl_access_sort_info *array;
213 if (!acc)
214 return NULL;
215 if (acc->n_must <= 1)
216 return acc;
218 ctx = isl_map_get_ctx(acc->sink.map);
219 array = isl_alloc_array(ctx, struct isl_access_sort_info, acc->n_must);
220 if (!array)
221 goto error;
223 for (i = 0; i < acc->n_must; ++i) {
224 array[i].source_map = acc->source[i].map;
225 array[i].source_data = acc->source[i].data;
226 array[i].acc = acc;
229 qsort(array, acc->n_must, sizeof(struct isl_access_sort_info),
230 access_sort_cmp);
232 for (i = 0; i < acc->n_must; ++i) {
233 acc->source[i].map = array[i].source_map;
234 acc->source[i].data = array[i].source_data;
237 free(array);
239 return acc;
240 error:
241 isl_access_info_free(acc);
242 return NULL;
245 /* Align the parameters of the two spaces if needed and then call
246 * isl_space_join.
248 static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
249 __isl_take isl_space *right)
251 if (isl_space_match(left, isl_dim_param, right, isl_dim_param))
252 return isl_space_join(left, right);
254 left = isl_space_align_params(left, isl_space_copy(right));
255 right = isl_space_align_params(right, isl_space_copy(left));
256 return isl_space_join(left, right);
259 /* Initialize an empty isl_flow structure corresponding to a given
260 * isl_access_info structure.
261 * For each must access, two dependences are created (initialized
262 * to the empty relation), one for the resulting must dependences
263 * and one for the resulting may dependences. May accesses can
264 * only lead to may dependences, so only one dependence is created
265 * for each of them.
266 * This function is private as isl_flow structures are only supposed
267 * to be created by isl_access_info_compute_flow.
269 static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
271 int i;
272 struct isl_ctx *ctx;
273 struct isl_flow *dep;
275 if (!acc)
276 return NULL;
278 ctx = isl_map_get_ctx(acc->sink.map);
279 dep = isl_calloc_type(ctx, struct isl_flow);
280 if (!dep)
281 return NULL;
283 dep->dep = isl_calloc_array(ctx, struct isl_labeled_map,
284 2 * acc->n_must + acc->n_may);
285 if (!dep->dep)
286 goto error;
288 dep->n_source = 2 * acc->n_must + acc->n_may;
289 for (i = 0; i < acc->n_must; ++i) {
290 isl_space *dim;
291 dim = space_align_and_join(
292 isl_map_get_space(acc->source[i].map),
293 isl_space_reverse(isl_map_get_space(acc->sink.map)));
294 dep->dep[2 * i].map = isl_map_empty(dim);
295 dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
296 dep->dep[2 * i].data = acc->source[i].data;
297 dep->dep[2 * i + 1].data = acc->source[i].data;
298 dep->dep[2 * i].must = 1;
299 dep->dep[2 * i + 1].must = 0;
300 if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
301 goto error;
303 for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
304 isl_space *dim;
305 dim = isl_space_join(isl_map_get_space(acc->source[i].map),
306 isl_space_reverse(isl_map_get_space(acc->sink.map)));
307 dep->dep[acc->n_must + i].map = isl_map_empty(dim);
308 dep->dep[acc->n_must + i].data = acc->source[i].data;
309 dep->dep[acc->n_must + i].must = 0;
310 if (!dep->dep[acc->n_must + i].map)
311 goto error;
314 return dep;
315 error:
316 isl_flow_free(dep);
317 return NULL;
320 /* Iterate over all sources and for each resulting flow dependence
321 * that is not empty, call the user specfied function.
322 * The second argument in this function call identifies the source,
323 * while the third argument correspond to the final argument of
324 * the isl_flow_foreach call.
326 int isl_flow_foreach(__isl_keep isl_flow *deps,
327 int (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user),
328 void *user)
330 int i;
332 if (!deps)
333 return -1;
335 for (i = 0; i < deps->n_source; ++i) {
336 if (isl_map_plain_is_empty(deps->dep[i].map))
337 continue;
338 if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
339 deps->dep[i].data, user) < 0)
340 return -1;
343 return 0;
346 /* Return a copy of the subset of the sink for which no source could be found.
348 __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
350 if (!deps)
351 return NULL;
353 if (must)
354 return isl_set_unwrap(isl_set_copy(deps->must_no_source));
355 else
356 return isl_set_unwrap(isl_set_copy(deps->may_no_source));
359 void isl_flow_free(__isl_take isl_flow *deps)
361 int i;
363 if (!deps)
364 return;
365 isl_set_free(deps->must_no_source);
366 isl_set_free(deps->may_no_source);
367 if (deps->dep) {
368 for (i = 0; i < deps->n_source; ++i)
369 isl_map_free(deps->dep[i].map);
370 free(deps->dep);
372 free(deps);
375 isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
377 return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
380 /* Return a map that enforces that the domain iteration occurs after
381 * the range iteration at the given level.
382 * If level is odd, then the domain iteration should occur after
383 * the target iteration in their shared level/2 outermost loops.
384 * In this case we simply need to enforce that these outermost
385 * loop iterations are the same.
386 * If level is even, then the loop iterator of the domain should
387 * be greater than the loop iterator of the range at the last
388 * of the level/2 shared loops, i.e., loop level/2 - 1.
390 static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level)
392 struct isl_basic_map *bmap;
394 if (level % 2)
395 bmap = isl_basic_map_equal(dim, level/2);
396 else
397 bmap = isl_basic_map_more_at(dim, level/2 - 1);
399 return isl_map_from_basic_map(bmap);
402 /* Compute the last iteration of must source j that precedes the sink
403 * at the given level for sink iterations in set_C.
404 * The subset of set_C for which no such iteration can be found is returned
405 * in *empty.
407 static struct isl_map *last_source(struct isl_access_info *acc,
408 struct isl_set *set_C,
409 int j, int level, struct isl_set **empty)
411 struct isl_map *read_map;
412 struct isl_map *write_map;
413 struct isl_map *dep_map;
414 struct isl_map *after;
415 struct isl_map *result;
417 read_map = isl_map_copy(acc->sink.map);
418 write_map = isl_map_copy(acc->source[j].map);
419 write_map = isl_map_reverse(write_map);
420 dep_map = isl_map_apply_range(read_map, write_map);
421 after = after_at_level(isl_map_get_space(dep_map), level);
422 dep_map = isl_map_intersect(dep_map, after);
423 result = isl_map_partial_lexmax(dep_map, set_C, empty);
424 result = isl_map_reverse(result);
426 return result;
429 /* For a given mapping between iterations of must source j and iterations
430 * of the sink, compute the last iteration of must source k preceding
431 * the sink at level before_level for any of the sink iterations,
432 * but following the corresponding iteration of must source j at level
433 * after_level.
435 static struct isl_map *last_later_source(struct isl_access_info *acc,
436 struct isl_map *old_map,
437 int j, int before_level,
438 int k, int after_level,
439 struct isl_set **empty)
441 isl_space *dim;
442 struct isl_set *set_C;
443 struct isl_map *read_map;
444 struct isl_map *write_map;
445 struct isl_map *dep_map;
446 struct isl_map *after_write;
447 struct isl_map *before_read;
448 struct isl_map *result;
450 set_C = isl_map_range(isl_map_copy(old_map));
451 read_map = isl_map_copy(acc->sink.map);
452 write_map = isl_map_copy(acc->source[k].map);
454 write_map = isl_map_reverse(write_map);
455 dep_map = isl_map_apply_range(read_map, write_map);
456 dim = space_align_and_join(isl_map_get_space(acc->source[k].map),
457 isl_space_reverse(isl_map_get_space(acc->source[j].map)));
458 after_write = after_at_level(dim, after_level);
459 after_write = isl_map_apply_range(after_write, old_map);
460 after_write = isl_map_reverse(after_write);
461 dep_map = isl_map_intersect(dep_map, after_write);
462 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
463 dep_map = isl_map_intersect(dep_map, before_read);
464 result = isl_map_partial_lexmax(dep_map, set_C, empty);
465 result = isl_map_reverse(result);
467 return result;
470 /* Given a shared_level between two accesses, return 1 if the
471 * the first can precede the second at the requested target_level.
472 * If the target level is odd, i.e., refers to a statement level
473 * dimension, then first needs to precede second at the requested
474 * level, i.e., shared_level must be equal to target_level.
475 * If the target level is odd, then the two loops should share
476 * at least the requested number of outer loops.
478 static int can_precede_at_level(int shared_level, int target_level)
480 if (shared_level < target_level)
481 return 0;
482 if ((target_level % 2) && shared_level > target_level)
483 return 0;
484 return 1;
487 /* Given a possible flow dependence temp_rel[j] between source j and the sink
488 * at level sink_level, remove those elements for which
489 * there is an iteration of another source k < j that is closer to the sink.
490 * The flow dependences temp_rel[k] are updated with the improved sources.
491 * Any improved source needs to precede the sink at the same level
492 * and needs to follow source j at the same or a deeper level.
493 * The lower this level, the later the execution date of source k.
494 * We therefore consider lower levels first.
496 * If temp_rel[j] is empty, then there can be no improvement and
497 * we return immediately.
499 static int intermediate_sources(__isl_keep isl_access_info *acc,
500 struct isl_map **temp_rel, int j, int sink_level)
502 int k, level;
503 int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
505 if (isl_map_plain_is_empty(temp_rel[j]))
506 return 0;
508 for (k = j - 1; k >= 0; --k) {
509 int plevel, plevel2;
510 plevel = acc->level_before(acc->source[k].data, acc->sink.data);
511 if (!can_precede_at_level(plevel, sink_level))
512 continue;
514 plevel2 = acc->level_before(acc->source[j].data,
515 acc->source[k].data);
517 for (level = sink_level; level <= depth; ++level) {
518 struct isl_map *T;
519 struct isl_set *trest;
520 struct isl_map *copy;
522 if (!can_precede_at_level(plevel2, level))
523 continue;
525 copy = isl_map_copy(temp_rel[j]);
526 T = last_later_source(acc, copy, j, sink_level, k,
527 level, &trest);
528 if (isl_map_plain_is_empty(T)) {
529 isl_set_free(trest);
530 isl_map_free(T);
531 continue;
533 temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
534 temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
538 return 0;
541 /* Compute all iterations of may source j that precedes the sink at the given
542 * level for sink iterations in set_C.
544 static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
545 __isl_take isl_set *set_C, int j, int level)
547 isl_map *read_map;
548 isl_map *write_map;
549 isl_map *dep_map;
550 isl_map *after;
552 read_map = isl_map_copy(acc->sink.map);
553 read_map = isl_map_intersect_domain(read_map, set_C);
554 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
555 write_map = isl_map_reverse(write_map);
556 dep_map = isl_map_apply_range(read_map, write_map);
557 after = after_at_level(isl_map_get_space(dep_map), level);
558 dep_map = isl_map_intersect(dep_map, after);
560 return isl_map_reverse(dep_map);
563 /* For a given mapping between iterations of must source k and iterations
564 * of the sink, compute the all iteration of may source j preceding
565 * the sink at level before_level for any of the sink iterations,
566 * but following the corresponding iteration of must source k at level
567 * after_level.
569 static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
570 __isl_keep isl_map *old_map,
571 int j, int before_level, int k, int after_level)
573 isl_space *dim;
574 isl_set *set_C;
575 isl_map *read_map;
576 isl_map *write_map;
577 isl_map *dep_map;
578 isl_map *after_write;
579 isl_map *before_read;
581 set_C = isl_map_range(isl_map_copy(old_map));
582 read_map = isl_map_copy(acc->sink.map);
583 read_map = isl_map_intersect_domain(read_map, set_C);
584 write_map = isl_map_copy(acc->source[acc->n_must + j].map);
586 write_map = isl_map_reverse(write_map);
587 dep_map = isl_map_apply_range(read_map, write_map);
588 dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map),
589 isl_space_reverse(isl_map_get_space(acc->source[k].map)));
590 after_write = after_at_level(dim, after_level);
591 after_write = isl_map_apply_range(after_write, old_map);
592 after_write = isl_map_reverse(after_write);
593 dep_map = isl_map_intersect(dep_map, after_write);
594 before_read = after_at_level(isl_map_get_space(dep_map), before_level);
595 dep_map = isl_map_intersect(dep_map, before_read);
596 return isl_map_reverse(dep_map);
599 /* Given the must and may dependence relations for the must accesses
600 * for level sink_level, check if there are any accesses of may access j
601 * that occur in between and return their union.
602 * If some of these accesses are intermediate with respect to
603 * (previously thought to be) must dependences, then these
604 * must dependences are turned into may dependences.
606 static __isl_give isl_map *all_intermediate_sources(
607 __isl_keep isl_access_info *acc, __isl_take isl_map *map,
608 struct isl_map **must_rel, struct isl_map **may_rel,
609 int j, int sink_level)
611 int k, level;
612 int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
613 isl_dim_in) + 1;
615 for (k = 0; k < acc->n_must; ++k) {
616 int plevel;
618 if (isl_map_plain_is_empty(may_rel[k]) &&
619 isl_map_plain_is_empty(must_rel[k]))
620 continue;
622 plevel = acc->level_before(acc->source[k].data,
623 acc->source[acc->n_must + j].data);
625 for (level = sink_level; level <= depth; ++level) {
626 isl_map *T;
627 isl_map *copy;
628 isl_set *ran;
630 if (!can_precede_at_level(plevel, level))
631 continue;
633 copy = isl_map_copy(may_rel[k]);
634 T = all_later_sources(acc, copy, j, sink_level, k, level);
635 map = isl_map_union(map, T);
637 copy = isl_map_copy(must_rel[k]);
638 T = all_later_sources(acc, copy, j, sink_level, k, level);
639 ran = isl_map_range(isl_map_copy(T));
640 map = isl_map_union(map, T);
641 may_rel[k] = isl_map_union_disjoint(may_rel[k],
642 isl_map_intersect_range(isl_map_copy(must_rel[k]),
643 isl_set_copy(ran)));
644 T = isl_map_from_domain_and_range(
645 isl_set_universe(
646 isl_space_domain(isl_map_get_space(must_rel[k]))),
647 ran);
648 must_rel[k] = isl_map_subtract(must_rel[k], T);
652 return map;
655 /* Compute dependences for the case where all accesses are "may"
656 * accesses, which boils down to computing memory based dependences.
657 * The generic algorithm would also work in this case, but it would
658 * be overkill to use it.
660 static __isl_give isl_flow *compute_mem_based_dependences(
661 __isl_take isl_access_info *acc)
663 int i;
664 isl_set *mustdo;
665 isl_set *maydo;
666 isl_flow *res;
668 res = isl_flow_alloc(acc);
669 if (!res)
670 goto error;
672 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
673 maydo = isl_set_copy(mustdo);
675 for (i = 0; i < acc->n_may; ++i) {
676 int plevel;
677 int is_before;
678 isl_space *dim;
679 isl_map *before;
680 isl_map *dep;
682 plevel = acc->level_before(acc->source[i].data, acc->sink.data);
683 is_before = plevel & 1;
684 plevel >>= 1;
686 dim = isl_map_get_space(res->dep[i].map);
687 if (is_before)
688 before = isl_map_lex_le_first(dim, plevel);
689 else
690 before = isl_map_lex_lt_first(dim, plevel);
691 dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
692 isl_map_reverse(isl_map_copy(acc->sink.map)));
693 dep = isl_map_intersect(dep, before);
694 mustdo = isl_set_subtract(mustdo,
695 isl_map_range(isl_map_copy(dep)));
696 res->dep[i].map = isl_map_union(res->dep[i].map, dep);
699 res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
700 res->must_no_source = mustdo;
702 isl_access_info_free(acc);
704 return res;
705 error:
706 isl_access_info_free(acc);
707 return NULL;
710 /* Compute dependences for the case where there is at least one
711 * "must" access.
713 * The core algorithm considers all levels in which a source may precede
714 * the sink, where a level may either be a statement level or a loop level.
715 * The outermost statement level is 1, the first loop level is 2, etc...
716 * The algorithm basically does the following:
717 * for all levels l of the read access from innermost to outermost
718 * for all sources w that may precede the sink access at that level
719 * compute the last iteration of the source that precedes the sink access
720 * at that level
721 * add result to possible last accesses at level l of source w
722 * for all sources w2 that we haven't considered yet at this level that may
723 * also precede the sink access
724 * for all levels l2 of w from l to innermost
725 * for all possible last accesses dep of w at l
726 * compute last iteration of w2 between the source and sink
727 * of dep
728 * add result to possible last accesses at level l of write w2
729 * and replace possible last accesses dep by the remainder
732 * The above algorithm is applied to the must access. During the course
733 * of the algorithm, we keep track of sink iterations that still
734 * need to be considered. These iterations are split into those that
735 * haven't been matched to any source access (mustdo) and those that have only
736 * been matched to may accesses (maydo).
737 * At the end of each level, we also consider the may accesses.
738 * In particular, we consider may accesses that precede the remaining
739 * sink iterations, moving elements from mustdo to maydo when appropriate,
740 * and may accesses that occur between a must source and a sink of any
741 * dependences found at the current level, turning must dependences into
742 * may dependences when appropriate.
745 static __isl_give isl_flow *compute_val_based_dependences(
746 __isl_take isl_access_info *acc)
748 isl_ctx *ctx;
749 isl_flow *res;
750 isl_set *mustdo = NULL;
751 isl_set *maydo = NULL;
752 int level, j;
753 int depth;
754 isl_map **must_rel = NULL;
755 isl_map **may_rel = NULL;
757 acc = isl_access_info_sort_sources(acc);
758 if (!acc)
759 return NULL;
761 res = isl_flow_alloc(acc);
762 if (!res)
763 goto error;
764 ctx = isl_map_get_ctx(acc->sink.map);
766 depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
767 mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
768 maydo = isl_set_empty_like(mustdo);
769 if (!mustdo || !maydo)
770 goto error;
771 if (isl_set_plain_is_empty(mustdo))
772 goto done;
774 must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
775 may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must);
776 if (!must_rel || !may_rel)
777 goto error;
779 for (level = depth; level >= 1; --level) {
780 for (j = acc->n_must-1; j >=0; --j) {
781 must_rel[j] = isl_map_empty_like(res->dep[j].map);
782 may_rel[j] = isl_map_copy(must_rel[j]);
785 for (j = acc->n_must - 1; j >= 0; --j) {
786 struct isl_map *T;
787 struct isl_set *rest;
788 int plevel;
790 plevel = acc->level_before(acc->source[j].data,
791 acc->sink.data);
792 if (!can_precede_at_level(plevel, level))
793 continue;
795 T = last_source(acc, mustdo, j, level, &rest);
796 must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
797 mustdo = rest;
799 intermediate_sources(acc, must_rel, j, level);
801 T = last_source(acc, maydo, j, level, &rest);
802 may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
803 maydo = rest;
805 intermediate_sources(acc, may_rel, j, level);
807 if (isl_set_plain_is_empty(mustdo) &&
808 isl_set_plain_is_empty(maydo))
809 break;
811 for (j = j - 1; j >= 0; --j) {
812 int plevel;
814 plevel = acc->level_before(acc->source[j].data,
815 acc->sink.data);
816 if (!can_precede_at_level(plevel, level))
817 continue;
819 intermediate_sources(acc, must_rel, j, level);
820 intermediate_sources(acc, may_rel, j, level);
823 for (j = 0; j < acc->n_may; ++j) {
824 int plevel;
825 isl_map *T;
826 isl_set *ran;
828 plevel = acc->level_before(acc->source[acc->n_must + j].data,
829 acc->sink.data);
830 if (!can_precede_at_level(plevel, level))
831 continue;
833 T = all_sources(acc, isl_set_copy(maydo), j, level);
834 res->dep[2 * acc->n_must + j].map =
835 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
836 T = all_sources(acc, isl_set_copy(mustdo), j, level);
837 ran = isl_map_range(isl_map_copy(T));
838 res->dep[2 * acc->n_must + j].map =
839 isl_map_union(res->dep[2 * acc->n_must + j].map, T);
840 mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
841 maydo = isl_set_union_disjoint(maydo, ran);
843 T = res->dep[2 * acc->n_must + j].map;
844 T = all_intermediate_sources(acc, T, must_rel, may_rel,
845 j, level);
846 res->dep[2 * acc->n_must + j].map = T;
849 for (j = acc->n_must - 1; j >= 0; --j) {
850 res->dep[2 * j].map =
851 isl_map_union_disjoint(res->dep[2 * j].map,
852 must_rel[j]);
853 res->dep[2 * j + 1].map =
854 isl_map_union_disjoint(res->dep[2 * j + 1].map,
855 may_rel[j]);
858 if (isl_set_plain_is_empty(mustdo) &&
859 isl_set_plain_is_empty(maydo))
860 break;
863 free(must_rel);
864 free(may_rel);
865 done:
866 res->must_no_source = mustdo;
867 res->may_no_source = maydo;
868 isl_access_info_free(acc);
869 return res;
870 error:
871 isl_access_info_free(acc);
872 isl_flow_free(res);
873 isl_set_free(mustdo);
874 isl_set_free(maydo);
875 free(must_rel);
876 free(may_rel);
877 return NULL;
880 /* Given a "sink" access, a list of n "source" accesses,
881 * compute for each iteration of the sink access
882 * and for each element accessed by that iteration,
883 * the source access in the list that last accessed the
884 * element accessed by the sink access before this sink access.
885 * Each access is given as a map from the loop iterators
886 * to the array indices.
887 * The result is a list of n relations between source and sink
888 * iterations and a subset of the domain of the sink access,
889 * corresponding to those iterations that access an element
890 * not previously accessed.
892 * To deal with multi-valued sink access relations, the sink iteration
893 * domain is first extended with dimensions that correspond to the data
894 * space. After the computation is finished, these extra dimensions are
895 * projected out again.
897 __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
899 int j;
900 struct isl_flow *res;
901 isl_map *domain_map = NULL;
903 if (!acc)
904 return NULL;
906 domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
907 acc->sink.map = isl_map_range_map(acc->sink.map);
908 if (!acc->sink.map)
909 goto error;
911 if (acc->n_must == 0)
912 res = compute_mem_based_dependences(acc);
913 else
914 res = compute_val_based_dependences(acc);
915 if (!res)
916 goto error2;
918 for (j = 0; j < res->n_source; ++j) {
919 res->dep[j].map = isl_map_apply_range(res->dep[j].map,
920 isl_map_copy(domain_map));
921 if (!res->dep[j].map)
922 goto error2;
924 if (!res->must_no_source || !res->may_no_source)
925 goto error2;
927 isl_map_free(domain_map);
928 return res;
929 error:
930 isl_map_free(domain_map);
931 isl_access_info_free(acc);
932 return NULL;
933 error2:
934 isl_map_free(domain_map);
935 isl_flow_free(res);
936 return NULL;
940 /* Keep track of some information about a schedule for a given
941 * access. In particular, keep track of which dimensions
942 * have a constant value and of the actual constant values.
944 struct isl_sched_info {
945 int *is_cst;
946 isl_vec *cst;
949 static void sched_info_free(__isl_take struct isl_sched_info *info)
951 if (!info)
952 return;
953 isl_vec_free(info->cst);
954 free(info->is_cst);
955 free(info);
958 /* Extract information on the constant dimensions of the schedule
959 * for a given access. The "map" is of the form
961 * [S -> D] -> A
963 * with S the schedule domain, D the iteration domain and A the data domain.
965 static __isl_give struct isl_sched_info *sched_info_alloc(
966 __isl_keep isl_map *map)
968 isl_ctx *ctx;
969 isl_space *dim;
970 struct isl_sched_info *info;
971 int i, n;
973 if (!map)
974 return NULL;
976 dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
977 if (!dim)
978 return NULL;
979 n = isl_space_dim(dim, isl_dim_in);
980 isl_space_free(dim);
982 ctx = isl_map_get_ctx(map);
983 info = isl_alloc_type(ctx, struct isl_sched_info);
984 if (!info)
985 return NULL;
986 info->is_cst = isl_alloc_array(ctx, int, n);
987 info->cst = isl_vec_alloc(ctx, n);
988 if (!info->is_cst || !info->cst)
989 goto error;
991 for (i = 0; i < n; ++i)
992 info->is_cst[i] = isl_map_plain_is_fixed(map, isl_dim_in, i,
993 &info->cst->el[i]);
995 return info;
996 error:
997 sched_info_free(info);
998 return NULL;
1001 struct isl_compute_flow_data {
1002 isl_union_map *must_source;
1003 isl_union_map *may_source;
1004 isl_union_map *must_dep;
1005 isl_union_map *may_dep;
1006 isl_union_map *must_no_source;
1007 isl_union_map *may_no_source;
1009 int count;
1010 int must;
1011 isl_space *dim;
1012 struct isl_sched_info *sink_info;
1013 struct isl_sched_info **source_info;
1014 isl_access_info *accesses;
1017 static int count_matching_array(__isl_take isl_map *map, void *user)
1019 int eq;
1020 isl_space *dim;
1021 struct isl_compute_flow_data *data;
1023 data = (struct isl_compute_flow_data *)user;
1025 dim = isl_space_range(isl_map_get_space(map));
1027 eq = isl_space_is_equal(dim, data->dim);
1029 isl_space_free(dim);
1030 isl_map_free(map);
1032 if (eq < 0)
1033 return -1;
1034 if (eq)
1035 data->count++;
1037 return 0;
1040 static int collect_matching_array(__isl_take isl_map *map, void *user)
1042 int eq;
1043 isl_space *dim;
1044 struct isl_sched_info *info;
1045 struct isl_compute_flow_data *data;
1047 data = (struct isl_compute_flow_data *)user;
1049 dim = isl_space_range(isl_map_get_space(map));
1051 eq = isl_space_is_equal(dim, data->dim);
1053 isl_space_free(dim);
1055 if (eq < 0)
1056 goto error;
1057 if (!eq) {
1058 isl_map_free(map);
1059 return 0;
1062 info = sched_info_alloc(map);
1063 data->source_info[data->count] = info;
1065 data->accesses = isl_access_info_add_source(data->accesses,
1066 map, data->must, info);
1068 data->count++;
1070 return 0;
1071 error:
1072 isl_map_free(map);
1073 return -1;
1076 /* Determine the shared nesting level and the "textual order" of
1077 * the given accesses.
1079 * We first determine the minimal schedule dimension for both accesses.
1081 * If among those dimensions, we can find one where both have a fixed
1082 * value and if moreover those values are different, then the previous
1083 * dimension is the last shared nesting level and the textual order
1084 * is determined based on the order of the fixed values.
1085 * If no such fixed values can be found, then we set the shared
1086 * nesting level to the minimal schedule dimension, with no textual ordering.
1088 static int before(void *first, void *second)
1090 struct isl_sched_info *info1 = first;
1091 struct isl_sched_info *info2 = second;
1092 int n1, n2;
1093 int i;
1095 n1 = info1->cst->size;
1096 n2 = info2->cst->size;
1098 if (n2 < n1)
1099 n1 = n2;
1101 for (i = 0; i < n1; ++i) {
1102 if (!info1->is_cst[i])
1103 continue;
1104 if (!info2->is_cst[i])
1105 continue;
1106 if (isl_int_eq(info1->cst->el[i], info2->cst->el[i]))
1107 continue;
1108 return 2 * i + isl_int_lt(info1->cst->el[i], info2->cst->el[i]);
1111 return 2 * n1;
1114 /* Given a sink access, look for all the source accesses that access
1115 * the same array and perform dataflow analysis on them using
1116 * isl_access_info_compute_flow.
1118 static int compute_flow(__isl_take isl_map *map, void *user)
1120 int i;
1121 isl_ctx *ctx;
1122 struct isl_compute_flow_data *data;
1123 isl_flow *flow;
1125 data = (struct isl_compute_flow_data *)user;
1127 ctx = isl_map_get_ctx(map);
1129 data->accesses = NULL;
1130 data->sink_info = NULL;
1131 data->source_info = NULL;
1132 data->count = 0;
1133 data->dim = isl_space_range(isl_map_get_space(map));
1135 if (isl_union_map_foreach_map(data->must_source,
1136 &count_matching_array, data) < 0)
1137 goto error;
1138 if (isl_union_map_foreach_map(data->may_source,
1139 &count_matching_array, data) < 0)
1140 goto error;
1142 data->sink_info = sched_info_alloc(map);
1143 data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
1144 data->count);
1146 data->accesses = isl_access_info_alloc(isl_map_copy(map),
1147 data->sink_info, &before, data->count);
1148 if (!data->sink_info || !data->source_info || !data->accesses)
1149 goto error;
1150 data->count = 0;
1151 data->must = 1;
1152 if (isl_union_map_foreach_map(data->must_source,
1153 &collect_matching_array, data) < 0)
1154 goto error;
1155 data->must = 0;
1156 if (isl_union_map_foreach_map(data->may_source,
1157 &collect_matching_array, data) < 0)
1158 goto error;
1160 flow = isl_access_info_compute_flow(data->accesses);
1161 data->accesses = NULL;
1163 if (!flow)
1164 goto error;
1166 data->must_no_source = isl_union_map_union(data->must_no_source,
1167 isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
1168 data->may_no_source = isl_union_map_union(data->may_no_source,
1169 isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
1171 for (i = 0; i < flow->n_source; ++i) {
1172 isl_union_map *dep;
1173 dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
1174 if (flow->dep[i].must)
1175 data->must_dep = isl_union_map_union(data->must_dep, dep);
1176 else
1177 data->may_dep = isl_union_map_union(data->may_dep, dep);
1180 isl_flow_free(flow);
1182 sched_info_free(data->sink_info);
1183 if (data->source_info) {
1184 for (i = 0; i < data->count; ++i)
1185 sched_info_free(data->source_info[i]);
1186 free(data->source_info);
1188 isl_space_free(data->dim);
1189 isl_map_free(map);
1191 return 0;
1192 error:
1193 isl_access_info_free(data->accesses);
1194 sched_info_free(data->sink_info);
1195 if (data->source_info) {
1196 for (i = 0; i < data->count; ++i)
1197 sched_info_free(data->source_info[i]);
1198 free(data->source_info);
1200 isl_space_free(data->dim);
1201 isl_map_free(map);
1203 return -1;
1206 /* Given a collection of "sink" and "source" accesses,
1207 * compute for each iteration of a sink access
1208 * and for each element accessed by that iteration,
1209 * the source access in the list that last accessed the
1210 * element accessed by the sink access before this sink access.
1211 * Each access is given as a map from the loop iterators
1212 * to the array indices.
1213 * The result is a relations between source and sink
1214 * iterations and a subset of the domain of the sink accesses,
1215 * corresponding to those iterations that access an element
1216 * not previously accessed.
1218 * We first prepend the schedule dimensions to the domain
1219 * of the accesses so that we can easily compare their relative order.
1220 * Then we consider each sink access individually in compute_flow.
1222 int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
1223 __isl_take isl_union_map *must_source,
1224 __isl_take isl_union_map *may_source,
1225 __isl_take isl_union_map *schedule,
1226 __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
1227 __isl_give isl_union_map **must_no_source,
1228 __isl_give isl_union_map **may_no_source)
1230 isl_space *dim;
1231 isl_union_map *range_map = NULL;
1232 struct isl_compute_flow_data data;
1234 sink = isl_union_map_align_params(sink,
1235 isl_union_map_get_space(must_source));
1236 sink = isl_union_map_align_params(sink,
1237 isl_union_map_get_space(may_source));
1238 sink = isl_union_map_align_params(sink,
1239 isl_union_map_get_space(schedule));
1240 dim = isl_union_map_get_space(sink);
1241 must_source = isl_union_map_align_params(must_source, isl_space_copy(dim));
1242 may_source = isl_union_map_align_params(may_source, isl_space_copy(dim));
1243 schedule = isl_union_map_align_params(schedule, isl_space_copy(dim));
1245 schedule = isl_union_map_reverse(schedule);
1246 range_map = isl_union_map_range_map(schedule);
1247 schedule = isl_union_map_reverse(isl_union_map_copy(range_map));
1248 sink = isl_union_map_apply_domain(sink, isl_union_map_copy(schedule));
1249 must_source = isl_union_map_apply_domain(must_source,
1250 isl_union_map_copy(schedule));
1251 may_source = isl_union_map_apply_domain(may_source, schedule);
1253 data.must_source = must_source;
1254 data.may_source = may_source;
1255 data.must_dep = must_dep ?
1256 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1257 data.may_dep = may_dep ? isl_union_map_empty(isl_space_copy(dim)) : NULL;
1258 data.must_no_source = must_no_source ?
1259 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1260 data.may_no_source = may_no_source ?
1261 isl_union_map_empty(isl_space_copy(dim)) : NULL;
1263 isl_space_free(dim);
1265 if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
1266 goto error;
1268 isl_union_map_free(sink);
1269 isl_union_map_free(must_source);
1270 isl_union_map_free(may_source);
1272 if (must_dep) {
1273 data.must_dep = isl_union_map_apply_domain(data.must_dep,
1274 isl_union_map_copy(range_map));
1275 data.must_dep = isl_union_map_apply_range(data.must_dep,
1276 isl_union_map_copy(range_map));
1277 *must_dep = data.must_dep;
1279 if (may_dep) {
1280 data.may_dep = isl_union_map_apply_domain(data.may_dep,
1281 isl_union_map_copy(range_map));
1282 data.may_dep = isl_union_map_apply_range(data.may_dep,
1283 isl_union_map_copy(range_map));
1284 *may_dep = data.may_dep;
1286 if (must_no_source) {
1287 data.must_no_source = isl_union_map_apply_domain(
1288 data.must_no_source, isl_union_map_copy(range_map));
1289 *must_no_source = data.must_no_source;
1291 if (may_no_source) {
1292 data.may_no_source = isl_union_map_apply_domain(
1293 data.may_no_source, isl_union_map_copy(range_map));
1294 *may_no_source = data.may_no_source;
1297 isl_union_map_free(range_map);
1299 return 0;
1300 error:
1301 isl_union_map_free(range_map);
1302 isl_union_map_free(sink);
1303 isl_union_map_free(must_source);
1304 isl_union_map_free(may_source);
1305 isl_union_map_free(data.must_dep);
1306 isl_union_map_free(data.may_dep);
1307 isl_union_map_free(data.must_no_source);
1308 isl_union_map_free(data.may_no_source);
1310 if (must_dep)
1311 *must_dep = NULL;
1312 if (may_dep)
1313 *may_dep = NULL;
1314 if (must_no_source)
1315 *must_no_source = NULL;
1316 if (may_no_source)
1317 *may_no_source = NULL;
1318 return -1;