add isl_schedule_node_get_prefix_schedule_relation
[isl.git] / isl_schedule_node.c
blob1f8db085597194dd43d7d293fe77cc0aac9c38dd
1 /*
2 * Copyright 2013-2014 Ecole Normale Superieure
3 * Copyright 2014 INRIA Rocquencourt
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege,
8 * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
9 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
10 * B.P. 105 - 78153 Le Chesnay, France
13 #include <isl/set.h>
14 #include <isl_schedule_band.h>
15 #include <isl_schedule_private.h>
16 #include <isl_schedule_node_private.h>
18 /* Create a new schedule node in the given schedule, point at the given
19 * tree with given ancestors and child positions.
20 * "child_pos" may be NULL if there are no ancestors.
22 __isl_give isl_schedule_node *isl_schedule_node_alloc(
23 __isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree,
24 __isl_take isl_schedule_tree_list *ancestors, int *child_pos)
26 isl_ctx *ctx;
27 isl_schedule_node *node;
28 int i, n;
30 if (!schedule || !tree || !ancestors)
31 goto error;
32 n = isl_schedule_tree_list_n_schedule_tree(ancestors);
33 if (n > 0 && !child_pos)
34 goto error;
35 ctx = isl_schedule_get_ctx(schedule);
36 node = isl_calloc_type(ctx, isl_schedule_node);
37 if (!node)
38 goto error;
39 node->ref = 1;
40 node->schedule = schedule;
41 node->tree = tree;
42 node->ancestors = ancestors;
43 node->child_pos = isl_alloc_array(ctx, int, n);
44 if (n && !node->child_pos)
45 return isl_schedule_node_free(node);
46 for (i = 0; i < n; ++i)
47 node->child_pos[i] = child_pos[i];
49 return node;
50 error:
51 isl_schedule_free(schedule);
52 isl_schedule_tree_free(tree);
53 isl_schedule_tree_list_free(ancestors);
54 return NULL;
57 /* Return a pointer to the root of a schedule tree with as single
58 * node a domain node with the given domain.
60 __isl_give isl_schedule_node *isl_schedule_node_from_domain(
61 __isl_take isl_union_set *domain)
63 isl_schedule *schedule;
64 isl_schedule_node *node;
66 schedule = isl_schedule_from_domain(domain);
67 node = isl_schedule_get_root(schedule);
68 isl_schedule_free(schedule);
70 return node;
73 /* Return the isl_ctx to which "node" belongs.
75 isl_ctx *isl_schedule_node_get_ctx(__isl_keep isl_schedule_node *node)
77 return node ? isl_schedule_get_ctx(node->schedule) : NULL;
80 /* Return a pointer to the leaf of the schedule into which "node" points.
82 * Even though these leaves are not reference counted, we still
83 * indicate that this function does not return a copy.
85 __isl_keep isl_schedule_tree *isl_schedule_node_peek_leaf(
86 __isl_keep isl_schedule_node *node)
88 return node ? isl_schedule_peek_leaf(node->schedule) : NULL;
91 /* Return a pointer to the leaf of the schedule into which "node" points.
93 * Even though these leaves are not reference counted, we still
94 * return a "copy" of the leaf here such that it can still be "freed"
95 * by the user.
97 __isl_give isl_schedule_tree *isl_schedule_node_get_leaf(
98 __isl_keep isl_schedule_node *node)
100 return isl_schedule_tree_copy(isl_schedule_node_peek_leaf(node));
103 /* Return the type of the node or isl_schedule_node_error on error.
105 enum isl_schedule_node_type isl_schedule_node_get_type(
106 __isl_keep isl_schedule_node *node)
108 return node ? isl_schedule_tree_get_type(node->tree)
109 : isl_schedule_node_error;
112 /* Return the type of the parent of "node" or isl_schedule_node_error on error.
114 enum isl_schedule_node_type isl_schedule_node_get_parent_type(
115 __isl_keep isl_schedule_node *node)
117 int pos;
118 int has_parent;
119 isl_schedule_tree *parent;
120 enum isl_schedule_node_type type;
122 if (!node)
123 return isl_schedule_node_error;
124 has_parent = isl_schedule_node_has_parent(node);
125 if (has_parent < 0)
126 return isl_schedule_node_error;
127 if (!has_parent)
128 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
129 "node has no parent", return isl_schedule_node_error);
131 pos = isl_schedule_tree_list_n_schedule_tree(node->ancestors) - 1;
132 parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, pos);
133 type = isl_schedule_tree_get_type(parent);
134 isl_schedule_tree_free(parent);
136 return type;
139 /* Return a copy of the subtree that this node points to.
141 __isl_give isl_schedule_tree *isl_schedule_node_get_tree(
142 __isl_keep isl_schedule_node *node)
144 if (!node)
145 return NULL;
147 return isl_schedule_tree_copy(node->tree);
150 /* Return a copy of the schedule into which "node" points.
152 __isl_give isl_schedule *isl_schedule_node_get_schedule(
153 __isl_keep isl_schedule_node *node)
155 if (!node)
156 return NULL;
157 return isl_schedule_copy(node->schedule);
160 /* Return a fresh copy of "node".
162 __isl_take isl_schedule_node *isl_schedule_node_dup(
163 __isl_keep isl_schedule_node *node)
165 if (!node)
166 return NULL;
168 return isl_schedule_node_alloc(isl_schedule_copy(node->schedule),
169 isl_schedule_tree_copy(node->tree),
170 isl_schedule_tree_list_copy(node->ancestors),
171 node->child_pos);
174 /* Return an isl_schedule_node that is equal to "node" and that has only
175 * a single reference.
177 __isl_give isl_schedule_node *isl_schedule_node_cow(
178 __isl_take isl_schedule_node *node)
180 if (!node)
181 return NULL;
183 if (node->ref == 1)
184 return node;
185 node->ref--;
186 return isl_schedule_node_dup(node);
189 /* Return a new reference to "node".
191 __isl_give isl_schedule_node *isl_schedule_node_copy(
192 __isl_keep isl_schedule_node *node)
194 if (!node)
195 return NULL;
197 node->ref++;
198 return node;
201 /* Free "node" and return NULL.
203 * Since the node may point to a leaf of its schedule, which
204 * point to a field inside the schedule, we need to make sure
205 * we free the tree before freeing the schedule.
207 __isl_null isl_schedule_node *isl_schedule_node_free(
208 __isl_take isl_schedule_node *node)
210 if (!node)
211 return NULL;
212 if (--node->ref > 0)
213 return NULL;
215 isl_schedule_tree_list_free(node->ancestors);
216 free(node->child_pos);
217 isl_schedule_tree_free(node->tree);
218 isl_schedule_free(node->schedule);
219 free(node);
221 return NULL;
224 /* Do "node1" and "node2" point to the same position in the same
225 * schedule?
227 int isl_schedule_node_is_equal(__isl_keep isl_schedule_node *node1,
228 __isl_keep isl_schedule_node *node2)
230 int i, n1, n2;
232 if (!node1 || !node2)
233 return -1;
234 if (node1 == node2)
235 return 1;
236 if (node1->schedule != node2->schedule)
237 return 0;
239 n1 = isl_schedule_node_get_tree_depth(node1);
240 n2 = isl_schedule_node_get_tree_depth(node2);
241 if (n1 != n2)
242 return 0;
243 for (i = 0; i < n1; ++i)
244 if (node1->child_pos[i] != node2->child_pos[i])
245 return 0;
247 return 1;
250 /* Return the number of outer schedule dimensions of "node"
251 * in its schedule tree.
253 * Return -1 on error.
255 int isl_schedule_node_get_schedule_depth(__isl_keep isl_schedule_node *node)
257 int i, n;
258 int depth = 0;
260 if (!node)
261 return -1;
263 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
264 for (i = n - 1; i >= 0; --i) {
265 isl_schedule_tree *tree;
267 tree = isl_schedule_tree_list_get_schedule_tree(
268 node->ancestors, i);
269 if (!tree)
270 return -1;
271 if (tree->type == isl_schedule_node_band)
272 depth += isl_schedule_tree_band_n_member(tree);
273 isl_schedule_tree_free(tree);
276 return depth;
279 /* Internal data structure for
280 * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff
282 * "initialized" is set if the filter field has been initialized.
283 * If "universe_domain" is not set, then the collected filter is intersected
284 * with the the domain of the root domain node.
285 * "universe_filter" is set if we are only collecting the universes of filters
286 * "collect_prefix" is set if we are collecting prefixes.
287 * "filter" collects all outer filters and is NULL until "initialized" is set.
288 * "prefix" collects all outer band partial schedules (if "collect_prefix"
289 * is set). If it is used, then it is initialized by the caller
290 * of collect_filter_prefix to a zero-dimensional function.
292 struct isl_schedule_node_get_filter_prefix_data {
293 int initialized;
294 int universe_domain;
295 int universe_filter;
296 int collect_prefix;
297 isl_union_set *filter;
298 isl_multi_union_pw_aff *prefix;
301 static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list,
302 int n, struct isl_schedule_node_get_filter_prefix_data *data);
304 /* Update the filter and prefix information in "data" based on the first "n"
305 * elements in "list" and the expansion tree root "tree".
307 * We first collect the information from the elements in "list",
308 * initializing the filter based on the domain of the expansion.
309 * Then we map the results to the expanded space and combined them
310 * with the results already in "data".
312 static int collect_filter_prefix_expansion(__isl_take isl_schedule_tree *tree,
313 __isl_keep isl_schedule_tree_list *list, int n,
314 struct isl_schedule_node_get_filter_prefix_data *data)
316 struct isl_schedule_node_get_filter_prefix_data contracted;
317 isl_union_pw_multi_aff *c;
318 isl_union_map *exp, *universe;
319 isl_union_set *filter;
321 c = isl_schedule_tree_expansion_get_contraction(tree);
322 exp = isl_schedule_tree_expansion_get_expansion(tree);
324 contracted.initialized = 1;
325 contracted.universe_domain = data->universe_domain;
326 contracted.universe_filter = data->universe_filter;
327 contracted.collect_prefix = data->collect_prefix;
328 universe = isl_union_map_universe(isl_union_map_copy(exp));
329 filter = isl_union_map_domain(universe);
330 if (data->collect_prefix) {
331 isl_space *space = isl_union_set_get_space(filter);
332 space = isl_space_set_from_params(space);
333 contracted.prefix = isl_multi_union_pw_aff_zero(space);
335 contracted.filter = filter;
337 if (collect_filter_prefix(list, n, &contracted) < 0)
338 contracted.filter = isl_union_set_free(contracted.filter);
339 if (data->collect_prefix) {
340 isl_multi_union_pw_aff *prefix;
342 prefix = contracted.prefix;
343 prefix =
344 isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
345 isl_union_pw_multi_aff_copy(c));
346 data->prefix = isl_multi_union_pw_aff_flat_range_product(
347 prefix, data->prefix);
349 filter = contracted.filter;
350 if (data->universe_domain)
351 filter = isl_union_set_preimage_union_pw_multi_aff(filter,
352 isl_union_pw_multi_aff_copy(c));
353 else
354 filter = isl_union_set_apply(filter, isl_union_map_copy(exp));
355 if (!data->initialized)
356 data->filter = filter;
357 else
358 data->filter = isl_union_set_intersect(filter, data->filter);
359 data->initialized = 1;
361 isl_union_pw_multi_aff_free(c);
362 isl_union_map_free(exp);
363 isl_schedule_tree_free(tree);
365 return 0;
368 /* Update "data" based on the tree node "tree" in case "data" has
369 * not been initialized yet.
371 * Return 0 on success and -1 on error.
373 * If "tree" is a filter, then we set data->filter to this filter
374 * (or its universe).
375 * If "tree" is a domain, then this means we have reached the root
376 * of the schedule tree without being able to extract any information.
377 * We therefore initialize data->filter to the universe of the domain,
378 * or the domain itself if data->universe_domain is not set.
379 * If "tree" is a band with at least one member, then we set data->filter
380 * to the universe of the schedule domain and replace the zero-dimensional
381 * data->prefix by the band schedule (if data->collect_prefix is set).
383 static int collect_filter_prefix_init(__isl_keep isl_schedule_tree *tree,
384 struct isl_schedule_node_get_filter_prefix_data *data)
386 enum isl_schedule_node_type type;
387 isl_multi_union_pw_aff *mupa;
388 isl_union_set *filter;
390 type = isl_schedule_tree_get_type(tree);
391 switch (type) {
392 case isl_schedule_node_error:
393 return -1;
394 case isl_schedule_node_expansion:
395 isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
396 "should be handled by caller", return -1);
397 case isl_schedule_node_context:
398 case isl_schedule_node_leaf:
399 case isl_schedule_node_mark:
400 case isl_schedule_node_sequence:
401 case isl_schedule_node_set:
402 return 0;
403 case isl_schedule_node_domain:
404 filter = isl_schedule_tree_domain_get_domain(tree);
405 if (data->universe_domain)
406 filter = isl_union_set_universe(filter);
407 data->filter = filter;
408 break;
409 case isl_schedule_node_band:
410 if (isl_schedule_tree_band_n_member(tree) == 0)
411 return 0;
412 mupa = isl_schedule_tree_band_get_partial_schedule(tree);
413 if (data->collect_prefix) {
414 isl_multi_union_pw_aff_free(data->prefix);
415 mupa = isl_multi_union_pw_aff_reset_tuple_id(mupa,
416 isl_dim_set);
417 data->prefix = isl_multi_union_pw_aff_copy(mupa);
419 filter = isl_multi_union_pw_aff_domain(mupa);
420 filter = isl_union_set_universe(filter);
421 data->filter = filter;
422 break;
423 case isl_schedule_node_filter:
424 filter = isl_schedule_tree_filter_get_filter(tree);
425 if (data->universe_filter)
426 filter = isl_union_set_universe(filter);
427 data->filter = filter;
428 break;
431 if ((data->collect_prefix && !data->prefix) || !data->filter)
432 return -1;
434 data->initialized = 1;
436 return 0;
439 /* Update "data" based on the tree node "tree" in case "data" has
440 * already been initialized.
442 * Return 0 on success and -1 on error.
444 * If "tree" is a domain and data->universe_domain is not set, then
445 * intersect data->filter with the domain.
446 * If "tree" is a filter, then we intersect data->filter with this filter
447 * (or its universe).
448 * If "tree" is a band with at least one member and data->collect_prefix
449 * is set, then we extend data->prefix with the band schedule.
451 static int collect_filter_prefix_update(__isl_keep isl_schedule_tree *tree,
452 struct isl_schedule_node_get_filter_prefix_data *data)
454 enum isl_schedule_node_type type;
455 isl_multi_union_pw_aff *mupa;
456 isl_union_set *filter;
458 type = isl_schedule_tree_get_type(tree);
459 switch (type) {
460 case isl_schedule_node_error:
461 return -1;
462 case isl_schedule_node_expansion:
463 isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
464 "should be handled by caller", return -1);
465 case isl_schedule_node_context:
466 case isl_schedule_node_leaf:
467 case isl_schedule_node_mark:
468 case isl_schedule_node_sequence:
469 case isl_schedule_node_set:
470 break;
471 case isl_schedule_node_domain:
472 if (data->universe_domain)
473 break;
474 filter = isl_schedule_tree_domain_get_domain(tree);
475 data->filter = isl_union_set_intersect(data->filter, filter);
476 break;
477 case isl_schedule_node_band:
478 if (isl_schedule_tree_band_n_member(tree) == 0)
479 break;
480 if (!data->collect_prefix)
481 break;
482 mupa = isl_schedule_tree_band_get_partial_schedule(tree);
483 data->prefix = isl_multi_union_pw_aff_flat_range_product(mupa,
484 data->prefix);
485 if (!data->prefix)
486 return -1;
487 break;
488 case isl_schedule_node_filter:
489 filter = isl_schedule_tree_filter_get_filter(tree);
490 if (data->universe_filter)
491 filter = isl_union_set_universe(filter);
492 data->filter = isl_union_set_intersect(data->filter, filter);
493 if (!data->filter)
494 return -1;
495 break;
498 return 0;
501 /* Collect filter and/or prefix information from the first "n"
502 * elements in "list" (which represent the ancestors of a node).
503 * Store the results in "data".
505 * Return 0 on success and -1 on error.
507 * We traverse the list from innermost ancestor (last element)
508 * to outermost ancestor (first element), calling collect_filter_prefix_init
509 * on each node as long as we have not been able to extract any information
510 * yet and collect_filter_prefix_update afterwards.
511 * If we come across an expansion node, then we interrupt the traversal
512 * and call collect_filter_prefix_expansion to restart the traversal
513 * over the remaining ancestors and to combine the results with those
514 * that have already been collected.
515 * On successful return, data->initialized will be set since the outermost
516 * ancestor is a domain node, which always results in an initialization.
518 static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list,
519 int n, struct isl_schedule_node_get_filter_prefix_data *data)
521 int i;
523 if (!list)
524 return -1;
526 for (i = n - 1; i >= 0; --i) {
527 isl_schedule_tree *tree;
528 enum isl_schedule_node_type type;
529 int r;
531 tree = isl_schedule_tree_list_get_schedule_tree(list, i);
532 if (!tree)
533 return -1;
534 type = isl_schedule_tree_get_type(tree);
535 if (type == isl_schedule_node_expansion)
536 return collect_filter_prefix_expansion(tree, list, i,
537 data);
538 if (!data->initialized)
539 r = collect_filter_prefix_init(tree, data);
540 else
541 r = collect_filter_prefix_update(tree, data);
542 isl_schedule_tree_free(tree);
543 if (r < 0)
544 return -1;
547 return 0;
550 /* Return the concatenation of the partial schedules of all outer band
551 * nodes of "node" interesected with all outer filters
552 * as an isl_multi_union_pw_aff.
554 * If "node" is pointing at the root of the schedule tree, then
555 * there are no domain elements reaching the current node, so
556 * we return an empty result.
558 * We collect all the filters and partial schedules in collect_filter_prefix
559 * and intersect the domain of the combined schedule with the combined filter.
561 __isl_give isl_multi_union_pw_aff *
562 isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(
563 __isl_keep isl_schedule_node *node)
565 int n;
566 isl_space *space;
567 struct isl_schedule_node_get_filter_prefix_data data;
569 if (!node)
570 return NULL;
572 space = isl_schedule_get_space(node->schedule);
573 space = isl_space_set_from_params(space);
574 if (node->tree == node->schedule->root)
575 return isl_multi_union_pw_aff_zero(space);
577 data.initialized = 0;
578 data.universe_domain = 1;
579 data.universe_filter = 0;
580 data.collect_prefix = 1;
581 data.filter = NULL;
582 data.prefix = isl_multi_union_pw_aff_zero(space);
584 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
585 if (collect_filter_prefix(node->ancestors, n, &data) < 0)
586 data.prefix = isl_multi_union_pw_aff_free(data.prefix);
588 data.prefix = isl_multi_union_pw_aff_intersect_domain(data.prefix,
589 data.filter);
591 return data.prefix;
594 /* Return the concatenation of the partial schedules of all outer band
595 * nodes of "node" interesected with all outer filters
596 * as an isl_union_pw_multi_aff.
598 * If "node" is pointing at the root of the schedule tree, then
599 * there are no domain elements reaching the current node, so
600 * we return an empty result.
602 * We collect all the filters and partial schedules in collect_filter_prefix.
603 * The partial schedules are collected as an isl_multi_union_pw_aff.
604 * If this isl_multi_union_pw_aff is zero-dimensional, then it does not
605 * contain any domain information, so we construct the isl_union_pw_multi_aff
606 * result as a zero-dimensional function on the collected filter.
607 * Otherwise, we convert the isl_multi_union_pw_aff to
608 * an isl_multi_union_pw_aff and intersect the domain with the filter.
610 __isl_give isl_union_pw_multi_aff *
611 isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(
612 __isl_keep isl_schedule_node *node)
614 int n;
615 isl_space *space;
616 isl_union_pw_multi_aff *prefix;
617 struct isl_schedule_node_get_filter_prefix_data data;
619 if (!node)
620 return NULL;
622 space = isl_schedule_get_space(node->schedule);
623 if (node->tree == node->schedule->root)
624 return isl_union_pw_multi_aff_empty(space);
626 space = isl_space_set_from_params(space);
627 data.initialized = 0;
628 data.universe_domain = 1;
629 data.universe_filter = 0;
630 data.collect_prefix = 1;
631 data.filter = NULL;
632 data.prefix = isl_multi_union_pw_aff_zero(space);
634 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
635 if (collect_filter_prefix(node->ancestors, n, &data) < 0)
636 data.prefix = isl_multi_union_pw_aff_free(data.prefix);
638 if (data.prefix &&
639 isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) {
640 isl_multi_union_pw_aff_free(data.prefix);
641 prefix = isl_union_pw_multi_aff_from_domain(data.filter);
642 } else {
643 prefix =
644 isl_union_pw_multi_aff_from_multi_union_pw_aff(data.prefix);
645 prefix = isl_union_pw_multi_aff_intersect_domain(prefix,
646 data.filter);
649 return prefix;
652 /* Return the concatenation of the partial schedules of all outer band
653 * nodes of "node" interesected with all outer filters
654 * as an isl_union_map.
656 __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_union_map(
657 __isl_keep isl_schedule_node *node)
659 isl_union_pw_multi_aff *upma;
661 upma = isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
662 return isl_union_map_from_union_pw_multi_aff(upma);
665 /* Return the concatenation of the partial schedules of all outer band
666 * nodes of "node" intersected with all outer domain constraints.
668 * Essentially, this functions intersected the domain of the output
669 * of isl_schedule_node_get_prefix_schedule_union_map with the output
670 * of isl_schedule_node_get_domain, except that it only traverses
671 * the ancestors of "node" once.
673 __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_relation(
674 __isl_keep isl_schedule_node *node)
676 int n;
677 isl_space *space;
678 isl_union_map *prefix;
679 struct isl_schedule_node_get_filter_prefix_data data;
681 if (!node)
682 return NULL;
684 space = isl_schedule_get_space(node->schedule);
685 if (node->tree == node->schedule->root)
686 return isl_union_map_empty(space);
688 space = isl_space_set_from_params(space);
689 data.initialized = 0;
690 data.universe_domain = 0;
691 data.universe_filter = 0;
692 data.collect_prefix = 1;
693 data.filter = NULL;
694 data.prefix = isl_multi_union_pw_aff_zero(space);
696 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
697 if (collect_filter_prefix(node->ancestors, n, &data) < 0)
698 data.prefix = isl_multi_union_pw_aff_free(data.prefix);
700 if (data.prefix &&
701 isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) {
702 isl_multi_union_pw_aff_free(data.prefix);
703 prefix = isl_union_map_from_domain(data.filter);
704 } else {
705 prefix = isl_union_map_from_multi_union_pw_aff(data.prefix);
706 prefix = isl_union_map_intersect_domain(prefix, data.filter);
709 return prefix;
712 /* Return the domain elements that reach "node".
714 * If "node" is pointing at the root of the schedule tree, then
715 * there are no domain elements reaching the current node, so
716 * we return an empty result.
718 * Otherwise, we collect all filters reaching the node,
719 * intersected with the root domain in collect_filter_prefix.
721 __isl_give isl_union_set *isl_schedule_node_get_domain(
722 __isl_keep isl_schedule_node *node)
724 int n;
725 struct isl_schedule_node_get_filter_prefix_data data;
727 if (!node)
728 return NULL;
730 if (node->tree == node->schedule->root) {
731 isl_space *space;
733 space = isl_schedule_get_space(node->schedule);
734 return isl_union_set_empty(space);
737 data.initialized = 0;
738 data.universe_domain = 0;
739 data.universe_filter = 0;
740 data.collect_prefix = 0;
741 data.filter = NULL;
742 data.prefix = NULL;
744 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
745 if (collect_filter_prefix(node->ancestors, n, &data) < 0)
746 data.filter = isl_union_set_free(data.filter);
748 return data.filter;
751 /* Return the union of universe sets of the domain elements that reach "node".
753 * If "node" is pointing at the root of the schedule tree, then
754 * there are no domain elements reaching the current node, so
755 * we return an empty result.
757 * Otherwise, we collect the universes of all filters reaching the node
758 * in collect_filter_prefix.
760 __isl_give isl_union_set *isl_schedule_node_get_universe_domain(
761 __isl_keep isl_schedule_node *node)
763 int n;
764 struct isl_schedule_node_get_filter_prefix_data data;
766 if (!node)
767 return NULL;
769 if (node->tree == node->schedule->root) {
770 isl_space *space;
772 space = isl_schedule_get_space(node->schedule);
773 return isl_union_set_empty(space);
776 data.initialized = 0;
777 data.universe_domain = 1;
778 data.universe_filter = 1;
779 data.collect_prefix = 0;
780 data.filter = NULL;
781 data.prefix = NULL;
783 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
784 if (collect_filter_prefix(node->ancestors, n, &data) < 0)
785 data.filter = isl_union_set_free(data.filter);
787 return data.filter;
790 /* Return the subtree schedule of "node".
792 * Since isl_schedule_tree_get_subtree_schedule_union_map does not handle
793 * trees that do not contain any schedule information, we first
794 * move down to the first relevant descendant and handle leaves ourselves.
796 * If the subtree rooted at "node" contains any expansion nodes, then
797 * the returned subtree schedule is formulated in terms of the expanded
798 * domains.
800 __isl_give isl_union_map *isl_schedule_node_get_subtree_schedule_union_map(
801 __isl_keep isl_schedule_node *node)
803 isl_schedule_tree *tree, *leaf;
804 isl_union_map *umap;
806 tree = isl_schedule_node_get_tree(node);
807 leaf = isl_schedule_node_peek_leaf(node);
808 tree = isl_schedule_tree_first_schedule_descendant(tree, leaf);
809 if (!tree)
810 return NULL;
811 if (tree == leaf) {
812 isl_union_set *domain;
813 domain = isl_schedule_node_get_universe_domain(node);
814 isl_schedule_tree_free(tree);
815 return isl_union_map_from_domain(domain);
818 umap = isl_schedule_tree_get_subtree_schedule_union_map(tree);
819 isl_schedule_tree_free(tree);
820 return umap;
823 /* Return the number of ancestors of "node" in its schedule tree.
825 int isl_schedule_node_get_tree_depth(__isl_keep isl_schedule_node *node)
827 if (!node)
828 return -1;
829 return isl_schedule_tree_list_n_schedule_tree(node->ancestors);
832 /* Does "node" have a parent?
834 * That is, does it point to any node of the schedule other than the root?
836 int isl_schedule_node_has_parent(__isl_keep isl_schedule_node *node)
838 if (!node)
839 return -1;
840 if (!node->ancestors)
841 return -1;
843 return isl_schedule_tree_list_n_schedule_tree(node->ancestors) != 0;
846 /* Return the position of "node" among the children of its parent.
848 int isl_schedule_node_get_child_position(__isl_keep isl_schedule_node *node)
850 int n;
851 int has_parent;
853 if (!node)
854 return -1;
855 has_parent = isl_schedule_node_has_parent(node);
856 if (has_parent < 0)
857 return -1;
858 if (!has_parent)
859 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
860 "node has no parent", return -1);
862 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
863 return node->child_pos[n - 1];
866 /* Does the parent (if any) of "node" have any children with a smaller child
867 * position than this one?
869 int isl_schedule_node_has_previous_sibling(__isl_keep isl_schedule_node *node)
871 int n;
872 int has_parent;
874 if (!node)
875 return -1;
876 has_parent = isl_schedule_node_has_parent(node);
877 if (has_parent < 0 || !has_parent)
878 return has_parent;
880 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
882 return node->child_pos[n - 1] > 0;
885 /* Does the parent (if any) of "node" have any children with a greater child
886 * position than this one?
888 int isl_schedule_node_has_next_sibling(__isl_keep isl_schedule_node *node)
890 int n, n_child;
891 int has_parent;
892 isl_schedule_tree *tree;
894 if (!node)
895 return -1;
896 has_parent = isl_schedule_node_has_parent(node);
897 if (has_parent < 0 || !has_parent)
898 return has_parent;
900 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
901 tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1);
902 if (!tree)
903 return -1;
904 n_child = isl_schedule_tree_list_n_schedule_tree(tree->children);
905 isl_schedule_tree_free(tree);
907 return node->child_pos[n - 1] + 1 < n_child;
910 /* Does "node" have any children?
912 * Any node other than the leaf nodes is considered to have at least
913 * one child, even if the corresponding isl_schedule_tree does not
914 * have any children.
916 int isl_schedule_node_has_children(__isl_keep isl_schedule_node *node)
918 if (!node)
919 return -1;
920 return !isl_schedule_tree_is_leaf(node->tree);
923 /* Return the number of children of "node"?
925 * Any node other than the leaf nodes is considered to have at least
926 * one child, even if the corresponding isl_schedule_tree does not
927 * have any children. That is, the number of children of "node" is
928 * only zero if its tree is the explicit empty tree. Otherwise,
929 * if the isl_schedule_tree has any children, then it is equal
930 * to the number of children of "node". If it has zero children,
931 * then "node" still has a leaf node as child.
933 int isl_schedule_node_n_children(__isl_keep isl_schedule_node *node)
935 int n;
937 if (!node)
938 return -1;
940 if (isl_schedule_tree_is_leaf(node->tree))
941 return 0;
943 n = isl_schedule_tree_n_children(node->tree);
944 if (n == 0)
945 return 1;
947 return n;
950 /* Move the "node" pointer to the ancestor of the given generation
951 * of the node it currently points to, where generation 0 is the node
952 * itself and generation 1 is its parent.
954 __isl_give isl_schedule_node *isl_schedule_node_ancestor(
955 __isl_take isl_schedule_node *node, int generation)
957 int n;
958 isl_schedule_tree *tree;
960 if (!node)
961 return NULL;
962 if (generation == 0)
963 return node;
964 n = isl_schedule_node_get_tree_depth(node);
965 if (n < 0)
966 return isl_schedule_node_free(node);
967 if (generation < 0 || generation > n)
968 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
969 "generation out of bounds",
970 return isl_schedule_node_free(node));
971 node = isl_schedule_node_cow(node);
972 if (!node)
973 return NULL;
975 tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
976 n - generation);
977 isl_schedule_tree_free(node->tree);
978 node->tree = tree;
979 node->ancestors = isl_schedule_tree_list_drop(node->ancestors,
980 n - generation, generation);
981 if (!node->ancestors || !node->tree)
982 return isl_schedule_node_free(node);
984 return node;
987 /* Move the "node" pointer to the parent of the node it currently points to.
989 __isl_give isl_schedule_node *isl_schedule_node_parent(
990 __isl_take isl_schedule_node *node)
992 if (!node)
993 return NULL;
994 if (!isl_schedule_node_has_parent(node))
995 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
996 "node has no parent",
997 return isl_schedule_node_free(node));
998 return isl_schedule_node_ancestor(node, 1);
1001 /* Move the "node" pointer to the root of its schedule tree.
1003 __isl_give isl_schedule_node *isl_schedule_node_root(
1004 __isl_take isl_schedule_node *node)
1006 int n;
1008 if (!node)
1009 return NULL;
1010 n = isl_schedule_node_get_tree_depth(node);
1011 if (n < 0)
1012 return isl_schedule_node_free(node);
1013 return isl_schedule_node_ancestor(node, n);
1016 /* Move the "node" pointer to the child at position "pos" of the node
1017 * it currently points to.
1019 __isl_give isl_schedule_node *isl_schedule_node_child(
1020 __isl_take isl_schedule_node *node, int pos)
1022 int n;
1023 isl_ctx *ctx;
1024 isl_schedule_tree *tree;
1025 int *child_pos;
1027 node = isl_schedule_node_cow(node);
1028 if (!node)
1029 return NULL;
1030 if (!isl_schedule_node_has_children(node))
1031 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1032 "node has no children",
1033 return isl_schedule_node_free(node));
1035 ctx = isl_schedule_node_get_ctx(node);
1036 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
1037 child_pos = isl_realloc_array(ctx, node->child_pos, int, n + 1);
1038 if (!child_pos)
1039 return isl_schedule_node_free(node);
1040 node->child_pos = child_pos;
1041 node->child_pos[n] = pos;
1043 node->ancestors = isl_schedule_tree_list_add(node->ancestors,
1044 isl_schedule_tree_copy(node->tree));
1045 tree = node->tree;
1046 if (isl_schedule_tree_has_children(tree))
1047 tree = isl_schedule_tree_get_child(tree, pos);
1048 else
1049 tree = isl_schedule_node_get_leaf(node);
1050 isl_schedule_tree_free(node->tree);
1051 node->tree = tree;
1053 if (!node->tree || !node->ancestors)
1054 return isl_schedule_node_free(node);
1056 return node;
1059 /* Move the "node" pointer to the first child of the node
1060 * it currently points to.
1062 __isl_give isl_schedule_node *isl_schedule_node_first_child(
1063 __isl_take isl_schedule_node *node)
1065 return isl_schedule_node_child(node, 0);
1068 /* Move the "node" pointer to the child of this node's parent in
1069 * the previous child position.
1071 __isl_give isl_schedule_node *isl_schedule_node_previous_sibling(
1072 __isl_take isl_schedule_node *node)
1074 int n;
1075 isl_schedule_tree *parent, *tree;
1077 node = isl_schedule_node_cow(node);
1078 if (!node)
1079 return NULL;
1080 if (!isl_schedule_node_has_previous_sibling(node))
1081 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1082 "node has no previous sibling",
1083 return isl_schedule_node_free(node));
1085 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
1086 parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
1087 n - 1);
1088 if (!parent)
1089 return isl_schedule_node_free(node);
1090 node->child_pos[n - 1]--;
1091 tree = isl_schedule_tree_list_get_schedule_tree(parent->children,
1092 node->child_pos[n - 1]);
1093 isl_schedule_tree_free(parent);
1094 if (!tree)
1095 return isl_schedule_node_free(node);
1096 isl_schedule_tree_free(node->tree);
1097 node->tree = tree;
1099 return node;
1102 /* Move the "node" pointer to the child of this node's parent in
1103 * the next child position.
1105 __isl_give isl_schedule_node *isl_schedule_node_next_sibling(
1106 __isl_take isl_schedule_node *node)
1108 int n;
1109 isl_schedule_tree *parent, *tree;
1111 node = isl_schedule_node_cow(node);
1112 if (!node)
1113 return NULL;
1114 if (!isl_schedule_node_has_next_sibling(node))
1115 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1116 "node has no next sibling",
1117 return isl_schedule_node_free(node));
1119 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
1120 parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors,
1121 n - 1);
1122 if (!parent)
1123 return isl_schedule_node_free(node);
1124 node->child_pos[n - 1]++;
1125 tree = isl_schedule_tree_list_get_schedule_tree(parent->children,
1126 node->child_pos[n - 1]);
1127 isl_schedule_tree_free(parent);
1128 if (!tree)
1129 return isl_schedule_node_free(node);
1130 isl_schedule_tree_free(node->tree);
1131 node->tree = tree;
1133 return node;
1136 /* Return a copy to the child at position "pos" of "node".
1138 __isl_give isl_schedule_node *isl_schedule_node_get_child(
1139 __isl_keep isl_schedule_node *node, int pos)
1141 return isl_schedule_node_child(isl_schedule_node_copy(node), pos);
1144 /* Traverse the descendant of "node" in depth-first order, including
1145 * "node" itself. Call "enter" whenever a node is entered and "leave"
1146 * whenever a node is left. The callback "enter" is responsible
1147 * for moving to the deepest initial subtree of its argument that
1148 * should be traversed.
1150 static __isl_give isl_schedule_node *traverse(
1151 __isl_take isl_schedule_node *node,
1152 __isl_give isl_schedule_node *(*enter)(
1153 __isl_take isl_schedule_node *node, void *user),
1154 __isl_give isl_schedule_node *(*leave)(
1155 __isl_take isl_schedule_node *node, void *user),
1156 void *user)
1158 int depth;
1160 if (!node)
1161 return NULL;
1163 depth = isl_schedule_node_get_tree_depth(node);
1164 do {
1165 node = enter(node, user);
1166 node = leave(node, user);
1167 while (node && isl_schedule_node_get_tree_depth(node) > depth &&
1168 !isl_schedule_node_has_next_sibling(node)) {
1169 node = isl_schedule_node_parent(node);
1170 node = leave(node, user);
1172 if (node && isl_schedule_node_get_tree_depth(node) > depth)
1173 node = isl_schedule_node_next_sibling(node);
1174 } while (node && isl_schedule_node_get_tree_depth(node) > depth);
1176 return node;
1179 /* Internal data structure for isl_schedule_node_foreach_descendant.
1181 * "fn" is the user-specified callback function.
1182 * "user" is the user-specified argument for the callback.
1184 struct isl_schedule_node_preorder_data {
1185 int (*fn)(__isl_keep isl_schedule_node *node, void *user);
1186 void *user;
1189 /* Callback for "traverse" to enter a node and to move
1190 * to the deepest initial subtree that should be traversed
1191 * for use in a preorder visit.
1193 * If the user callback returns a negative value, then we abort
1194 * the traversal. If this callback returns zero, then we skip
1195 * the subtree rooted at the current node. Otherwise, we move
1196 * down to the first child and repeat the process until a leaf
1197 * is reached.
1199 static __isl_give isl_schedule_node *preorder_enter(
1200 __isl_take isl_schedule_node *node, void *user)
1202 struct isl_schedule_node_preorder_data *data = user;
1204 if (!node)
1205 return NULL;
1207 do {
1208 int r;
1210 r = data->fn(node, data->user);
1211 if (r < 0)
1212 return isl_schedule_node_free(node);
1213 if (r == 0)
1214 return node;
1215 } while (isl_schedule_node_has_children(node) &&
1216 (node = isl_schedule_node_first_child(node)) != NULL);
1218 return node;
1221 /* Callback for "traverse" to leave a node
1222 * for use in a preorder visit.
1223 * Since we already visited the node when we entered it,
1224 * we do not need to do anything here.
1226 static __isl_give isl_schedule_node *preorder_leave(
1227 __isl_take isl_schedule_node *node, void *user)
1229 return node;
1232 /* Traverse the descendants of "node" (including the node itself)
1233 * in depth first preorder.
1235 * If "fn" returns -1 on any of the nodes, then the traversal is aborted.
1236 * If "fn" returns 0 on any of the nodes, then the subtree rooted
1237 * at that node is skipped.
1239 * Return 0 on success and -1 on failure.
1241 int isl_schedule_node_foreach_descendant(__isl_keep isl_schedule_node *node,
1242 int (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user)
1244 struct isl_schedule_node_preorder_data data = { fn, user };
1246 node = isl_schedule_node_copy(node);
1247 node = traverse(node, &preorder_enter, &preorder_leave, &data);
1248 isl_schedule_node_free(node);
1250 return node ? 0 : -1;
1253 /* Internal data structure for isl_schedule_node_map_descendant.
1255 * "fn" is the user-specified callback function.
1256 * "user" is the user-specified argument for the callback.
1258 struct isl_schedule_node_postorder_data {
1259 __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
1260 void *user);
1261 void *user;
1264 /* Callback for "traverse" to enter a node and to move
1265 * to the deepest initial subtree that should be traversed
1266 * for use in a postorder visit.
1268 * Since we are performing a postorder visit, we only need
1269 * to move to the deepest initial leaf here.
1271 static __isl_give isl_schedule_node *postorder_enter(
1272 __isl_take isl_schedule_node *node, void *user)
1274 while (node && isl_schedule_node_has_children(node))
1275 node = isl_schedule_node_first_child(node);
1277 return node;
1280 /* Callback for "traverse" to leave a node
1281 * for use in a postorder visit.
1283 * Since we are performing a postorder visit, we need
1284 * to call the user callback here.
1286 static __isl_give isl_schedule_node *postorder_leave(
1287 __isl_take isl_schedule_node *node, void *user)
1289 struct isl_schedule_node_postorder_data *data = user;
1291 return data->fn(node, data->user);
1294 /* Traverse the descendants of "node" (including the node itself)
1295 * in depth first postorder, allowing the user to modify the visited node.
1296 * The traversal continues from the node returned by the callback function.
1297 * It is the responsibility of the user to ensure that this does not
1298 * lead to an infinite loop. It is safest to always return a pointer
1299 * to the same position (same ancestors and child positions) as the input node.
1301 __isl_give isl_schedule_node *isl_schedule_node_map_descendant(
1302 __isl_take isl_schedule_node *node,
1303 __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node,
1304 void *user), void *user)
1306 struct isl_schedule_node_postorder_data data = { fn, user };
1308 return traverse(node, &postorder_enter, &postorder_leave, &data);
1311 /* Traverse the ancestors of "node" from the root down to and including
1312 * the parent of "node", calling "fn" on each of them.
1314 * If "fn" returns -1 on any of the nodes, then the traversal is aborted.
1316 * Return 0 on success and -1 on failure.
1318 int isl_schedule_node_foreach_ancestor_top_down(
1319 __isl_keep isl_schedule_node *node,
1320 int (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user)
1322 int i, n;
1324 if (!node)
1325 return -1;
1327 n = isl_schedule_node_get_tree_depth(node);
1328 for (i = 0; i < n; ++i) {
1329 isl_schedule_node *ancestor;
1330 int r;
1332 ancestor = isl_schedule_node_copy(node);
1333 ancestor = isl_schedule_node_ancestor(ancestor, n - i);
1334 r = fn(ancestor, user);
1335 isl_schedule_node_free(ancestor);
1336 if (r < 0)
1337 return -1;
1340 return 0;
1343 /* Is any node in the subtree rooted at "node" anchored?
1344 * That is, do any of these nodes reference the outer band nodes?
1346 int isl_schedule_node_is_subtree_anchored(__isl_keep isl_schedule_node *node)
1348 if (!node)
1349 return -1;
1350 return isl_schedule_tree_is_subtree_anchored(node->tree);
1353 /* Return the number of members in the given band node.
1355 unsigned isl_schedule_node_band_n_member(__isl_keep isl_schedule_node *node)
1357 return node ? isl_schedule_tree_band_n_member(node->tree) : 0;
1360 /* Is the band member at position "pos" of the band node "node"
1361 * marked coincident?
1363 int isl_schedule_node_band_member_get_coincident(
1364 __isl_keep isl_schedule_node *node, int pos)
1366 if (!node)
1367 return -1;
1368 return isl_schedule_tree_band_member_get_coincident(node->tree, pos);
1371 /* Mark the band member at position "pos" the band node "node"
1372 * as being coincident or not according to "coincident".
1374 __isl_give isl_schedule_node *isl_schedule_node_band_member_set_coincident(
1375 __isl_take isl_schedule_node *node, int pos, int coincident)
1377 int c;
1378 isl_schedule_tree *tree;
1380 if (!node)
1381 return NULL;
1382 c = isl_schedule_node_band_member_get_coincident(node, pos);
1383 if (c == coincident)
1384 return node;
1386 tree = isl_schedule_tree_copy(node->tree);
1387 tree = isl_schedule_tree_band_member_set_coincident(tree, pos,
1388 coincident);
1389 node = isl_schedule_node_graft_tree(node, tree);
1391 return node;
1394 /* Is the band node "node" marked permutable?
1396 int isl_schedule_node_band_get_permutable(__isl_keep isl_schedule_node *node)
1398 if (!node)
1399 return -1;
1401 return isl_schedule_tree_band_get_permutable(node->tree);
1404 /* Mark the band node "node" permutable or not according to "permutable"?
1406 __isl_give isl_schedule_node *isl_schedule_node_band_set_permutable(
1407 __isl_take isl_schedule_node *node, int permutable)
1409 isl_schedule_tree *tree;
1411 if (!node)
1412 return NULL;
1413 if (isl_schedule_node_band_get_permutable(node) == permutable)
1414 return node;
1416 tree = isl_schedule_tree_copy(node->tree);
1417 tree = isl_schedule_tree_band_set_permutable(tree, permutable);
1418 node = isl_schedule_node_graft_tree(node, tree);
1420 return node;
1423 /* Return the schedule space of the band node.
1425 __isl_give isl_space *isl_schedule_node_band_get_space(
1426 __isl_keep isl_schedule_node *node)
1428 if (!node)
1429 return NULL;
1431 return isl_schedule_tree_band_get_space(node->tree);
1434 /* Return the schedule of the band node in isolation.
1436 __isl_give isl_multi_union_pw_aff *isl_schedule_node_band_get_partial_schedule(
1437 __isl_keep isl_schedule_node *node)
1439 if (!node)
1440 return NULL;
1442 return isl_schedule_tree_band_get_partial_schedule(node->tree);
1445 /* Return the schedule of the band node in isolation in the form of
1446 * an isl_union_map.
1448 * If the band does not have any members, then we construct a universe map
1449 * with the universe of the domain elements reaching the node as domain.
1450 * Otherwise, we extract an isl_multi_union_pw_aff representation and
1451 * convert that to an isl_union_map.
1453 __isl_give isl_union_map *isl_schedule_node_band_get_partial_schedule_union_map(
1454 __isl_keep isl_schedule_node *node)
1456 isl_multi_union_pw_aff *mupa;
1458 if (!node)
1459 return NULL;
1461 if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
1462 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1463 "not a band node", return NULL);
1464 if (isl_schedule_node_band_n_member(node) == 0) {
1465 isl_union_set *domain;
1467 domain = isl_schedule_node_get_universe_domain(node);
1468 return isl_union_map_from_domain(domain);
1471 mupa = isl_schedule_node_band_get_partial_schedule(node);
1472 return isl_union_map_from_multi_union_pw_aff(mupa);
1475 /* Return the loop AST generation type for the band member of band node "node"
1476 * at position "pos".
1478 enum isl_ast_loop_type isl_schedule_node_band_member_get_ast_loop_type(
1479 __isl_keep isl_schedule_node *node, int pos)
1481 if (!node)
1482 return isl_ast_loop_error;
1484 return isl_schedule_tree_band_member_get_ast_loop_type(node->tree, pos);
1487 /* Set the loop AST generation type for the band member of band node "node"
1488 * at position "pos" to "type".
1490 __isl_give isl_schedule_node *isl_schedule_node_band_member_set_ast_loop_type(
1491 __isl_take isl_schedule_node *node, int pos,
1492 enum isl_ast_loop_type type)
1494 isl_schedule_tree *tree;
1496 if (!node)
1497 return NULL;
1499 tree = isl_schedule_tree_copy(node->tree);
1500 tree = isl_schedule_tree_band_member_set_ast_loop_type(tree, pos, type);
1501 return isl_schedule_node_graft_tree(node, tree);
1504 /* Return the loop AST generation type for the band member of band node "node"
1505 * at position "pos" for the isolated part.
1507 enum isl_ast_loop_type isl_schedule_node_band_member_get_isolate_ast_loop_type(
1508 __isl_keep isl_schedule_node *node, int pos)
1510 if (!node)
1511 return isl_ast_loop_error;
1513 return isl_schedule_tree_band_member_get_isolate_ast_loop_type(
1514 node->tree, pos);
1517 /* Set the loop AST generation type for the band member of band node "node"
1518 * at position "pos" for the isolated part to "type".
1520 __isl_give isl_schedule_node *
1521 isl_schedule_node_band_member_set_isolate_ast_loop_type(
1522 __isl_take isl_schedule_node *node, int pos,
1523 enum isl_ast_loop_type type)
1525 isl_schedule_tree *tree;
1527 if (!node)
1528 return NULL;
1530 tree = isl_schedule_tree_copy(node->tree);
1531 tree = isl_schedule_tree_band_member_set_isolate_ast_loop_type(tree,
1532 pos, type);
1533 return isl_schedule_node_graft_tree(node, tree);
1536 /* Return the AST build options associated to band node "node".
1538 __isl_give isl_union_set *isl_schedule_node_band_get_ast_build_options(
1539 __isl_keep isl_schedule_node *node)
1541 if (!node)
1542 return NULL;
1544 return isl_schedule_tree_band_get_ast_build_options(node->tree);
1547 /* Replace the AST build options associated to band node "node" by "options".
1549 __isl_give isl_schedule_node *isl_schedule_node_band_set_ast_build_options(
1550 __isl_take isl_schedule_node *node, __isl_take isl_union_set *options)
1552 isl_schedule_tree *tree;
1554 if (!node || !options)
1555 goto error;
1557 tree = isl_schedule_tree_copy(node->tree);
1558 tree = isl_schedule_tree_band_set_ast_build_options(tree, options);
1559 return isl_schedule_node_graft_tree(node, tree);
1560 error:
1561 isl_schedule_node_free(node);
1562 isl_union_set_free(options);
1563 return NULL;
1566 /* Make sure that that spaces of "node" and "mv" are the same.
1567 * Return -1 on error, reporting the error to the user.
1569 static int check_space_multi_val(__isl_keep isl_schedule_node *node,
1570 __isl_keep isl_multi_val *mv)
1572 isl_space *node_space, *mv_space;
1573 int equal;
1575 node_space = isl_schedule_node_band_get_space(node);
1576 mv_space = isl_multi_val_get_space(mv);
1577 equal = isl_space_tuple_is_equal(node_space, isl_dim_set,
1578 mv_space, isl_dim_set);
1579 isl_space_free(mv_space);
1580 isl_space_free(node_space);
1581 if (equal < 0)
1582 return -1;
1583 if (!equal)
1584 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1585 "spaces don't match", return -1);
1587 return 0;
1590 /* Multiply the partial schedule of the band node "node"
1591 * with the factors in "mv".
1593 __isl_give isl_schedule_node *isl_schedule_node_band_scale(
1594 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv)
1596 isl_schedule_tree *tree;
1597 int anchored;
1599 if (!node || !mv)
1600 goto error;
1601 if (check_space_multi_val(node, mv) < 0)
1602 goto error;
1603 anchored = isl_schedule_node_is_subtree_anchored(node);
1604 if (anchored < 0)
1605 goto error;
1606 if (anchored)
1607 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1608 "cannot scale band node with anchored subtree",
1609 goto error);
1611 tree = isl_schedule_node_get_tree(node);
1612 tree = isl_schedule_tree_band_scale(tree, mv);
1613 return isl_schedule_node_graft_tree(node, tree);
1614 error:
1615 isl_multi_val_free(mv);
1616 isl_schedule_node_free(node);
1617 return NULL;
1620 /* Divide the partial schedule of the band node "node"
1621 * by the factors in "mv".
1623 __isl_give isl_schedule_node *isl_schedule_node_band_scale_down(
1624 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv)
1626 isl_schedule_tree *tree;
1627 int anchored;
1629 if (!node || !mv)
1630 goto error;
1631 if (check_space_multi_val(node, mv) < 0)
1632 goto error;
1633 anchored = isl_schedule_node_is_subtree_anchored(node);
1634 if (anchored < 0)
1635 goto error;
1636 if (anchored)
1637 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1638 "cannot scale down band node with anchored subtree",
1639 goto error);
1641 tree = isl_schedule_node_get_tree(node);
1642 tree = isl_schedule_tree_band_scale_down(tree, mv);
1643 return isl_schedule_node_graft_tree(node, tree);
1644 error:
1645 isl_multi_val_free(mv);
1646 isl_schedule_node_free(node);
1647 return NULL;
1650 /* Tile "node" with tile sizes "sizes".
1652 * The current node is replaced by two nested nodes corresponding
1653 * to the tile dimensions and the point dimensions.
1655 * Return a pointer to the outer (tile) node.
1657 * If any of the descendants of "node" depend on the set of outer band nodes,
1658 * then we refuse to tile the node.
1660 * If the scale tile loops option is set, then the tile loops
1661 * are scaled by the tile sizes. If the shift point loops option is set,
1662 * then the point loops are shifted to start at zero.
1663 * In particular, these options affect the tile and point loop schedules
1664 * as follows
1666 * scale shift original tile point
1668 * 0 0 i floor(i/s) i
1669 * 1 0 i s * floor(i/s) i
1670 * 0 1 i floor(i/s) i - s * floor(i/s)
1671 * 1 1 i s * floor(i/s) i - s * floor(i/s)
1673 __isl_give isl_schedule_node *isl_schedule_node_band_tile(
1674 __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
1676 isl_schedule_tree *tree;
1677 int anchored;
1679 if (!node || !sizes)
1680 goto error;
1681 anchored = isl_schedule_node_is_subtree_anchored(node);
1682 if (anchored < 0)
1683 goto error;
1684 if (anchored)
1685 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1686 "cannot tile band node with anchored subtree",
1687 goto error);
1689 if (check_space_multi_val(node, sizes) < 0)
1690 goto error;
1692 tree = isl_schedule_node_get_tree(node);
1693 tree = isl_schedule_tree_band_tile(tree, sizes);
1694 return isl_schedule_node_graft_tree(node, tree);
1695 error:
1696 isl_multi_val_free(sizes);
1697 isl_schedule_node_free(node);
1698 return NULL;
1701 /* Move the band node "node" down to all the leaves in the subtree
1702 * rooted at "node".
1703 * Return a pointer to the node in the resulting tree that is in the same
1704 * position as the node pointed to by "node" in the original tree.
1706 * If the node only has a leaf child, then nothing needs to be done.
1707 * Otherwise, the child of the node is removed and the result is
1708 * appended to all the leaves in the subtree rooted at the original child.
1709 * The original node is then replaced by the result of this operation.
1711 * If any of the nodes in the subtree rooted at "node" depend on
1712 * the set of outer band nodes then we refuse to sink the band node.
1714 __isl_give isl_schedule_node *isl_schedule_node_band_sink(
1715 __isl_take isl_schedule_node *node)
1717 enum isl_schedule_node_type type;
1718 isl_schedule_tree *tree, *child;
1719 int anchored;
1721 if (!node)
1722 return NULL;
1724 type = isl_schedule_node_get_type(node);
1725 if (type != isl_schedule_node_band)
1726 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1727 "not a band node", isl_schedule_node_free(node));
1728 anchored = isl_schedule_node_is_subtree_anchored(node);
1729 if (anchored < 0)
1730 return isl_schedule_node_free(node);
1731 if (anchored)
1732 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1733 "cannot sink band node in anchored subtree",
1734 isl_schedule_node_free(node));
1735 if (isl_schedule_tree_n_children(node->tree) == 0)
1736 return node;
1738 tree = isl_schedule_node_get_tree(node);
1739 child = isl_schedule_tree_get_child(tree, 0);
1740 tree = isl_schedule_tree_reset_children(tree);
1741 tree = isl_schedule_tree_append_to_leaves(child, tree);
1743 return isl_schedule_node_graft_tree(node, tree);
1746 /* Split "node" into two nested band nodes, one with the first "pos"
1747 * dimensions and one with the remaining dimensions.
1748 * The schedules of the two band nodes live in anonymous spaces.
1750 __isl_give isl_schedule_node *isl_schedule_node_band_split(
1751 __isl_take isl_schedule_node *node, int pos)
1753 isl_schedule_tree *tree;
1755 tree = isl_schedule_node_get_tree(node);
1756 tree = isl_schedule_tree_band_split(tree, pos);
1757 return isl_schedule_node_graft_tree(node, tree);
1760 /* Return the context of the context node "node".
1762 __isl_give isl_set *isl_schedule_node_context_get_context(
1763 __isl_keep isl_schedule_node *node)
1765 if (!node)
1766 return NULL;
1768 return isl_schedule_tree_context_get_context(node->tree);
1771 /* Return the domain of the domain node "node".
1773 __isl_give isl_union_set *isl_schedule_node_domain_get_domain(
1774 __isl_keep isl_schedule_node *node)
1776 if (!node)
1777 return NULL;
1779 return isl_schedule_tree_domain_get_domain(node->tree);
1782 /* Return the expansion map of expansion node "node".
1784 __isl_give isl_union_map *isl_schedule_node_expansion_get_expansion(
1785 __isl_keep isl_schedule_node *node)
1787 if (!node)
1788 return NULL;
1790 return isl_schedule_tree_expansion_get_expansion(node->tree);
1793 /* Return the contraction of expansion node "node".
1795 __isl_give isl_union_pw_multi_aff *isl_schedule_node_expansion_get_contraction(
1796 __isl_keep isl_schedule_node *node)
1798 if (!node)
1799 return NULL;
1801 return isl_schedule_tree_expansion_get_contraction(node->tree);
1804 /* Replace the contraction and the expansion of the expansion node "node"
1805 * by "contraction" and "expansion".
1807 __isl_give isl_schedule_node *
1808 isl_schedule_node_expansion_set_contraction_and_expansion(
1809 __isl_take isl_schedule_node *node,
1810 __isl_take isl_union_pw_multi_aff *contraction,
1811 __isl_take isl_union_map *expansion)
1813 isl_schedule_tree *tree;
1815 if (!node || !contraction || !expansion)
1816 goto error;
1818 tree = isl_schedule_tree_copy(node->tree);
1819 tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree,
1820 contraction, expansion);
1821 return isl_schedule_node_graft_tree(node, tree);
1822 error:
1823 isl_schedule_node_free(node);
1824 isl_union_pw_multi_aff_free(contraction);
1825 isl_union_map_free(expansion);
1826 return NULL;
1829 /* Return the filter of the filter node "node".
1831 __isl_give isl_union_set *isl_schedule_node_filter_get_filter(
1832 __isl_keep isl_schedule_node *node)
1834 if (!node)
1835 return NULL;
1837 return isl_schedule_tree_filter_get_filter(node->tree);
1840 /* Replace the filter of filter node "node" by "filter".
1842 __isl_give isl_schedule_node *isl_schedule_node_filter_set_filter(
1843 __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
1845 isl_schedule_tree *tree;
1847 if (!node || !filter)
1848 goto error;
1850 tree = isl_schedule_tree_copy(node->tree);
1851 tree = isl_schedule_tree_filter_set_filter(tree, filter);
1852 return isl_schedule_node_graft_tree(node, tree);
1853 error:
1854 isl_schedule_node_free(node);
1855 isl_union_set_free(filter);
1856 return NULL;
1859 /* Return the mark identifier of the mark node "node".
1861 __isl_give isl_id *isl_schedule_node_mark_get_id(
1862 __isl_keep isl_schedule_node *node)
1864 if (!node)
1865 return NULL;
1867 return isl_schedule_tree_mark_get_id(node->tree);
1870 /* Update the ancestors of "node" to point to the tree that "node"
1871 * now points to.
1872 * That is, replace the child in the original parent that corresponds
1873 * to the current tree position by node->tree and continue updating
1874 * the ancestors in the same way until the root is reached.
1876 * If "fn" is not NULL, then it is called on each ancestor as we move up
1877 * the tree so that it can modify the ancestor before it is added
1878 * to the list of ancestors of the modified node.
1879 * The additional "pos" argument records the position
1880 * of the "tree" argument in the original schedule tree.
1882 * If "node" originally points to a leaf of the schedule tree, then make sure
1883 * that in the end it points to a leaf in the updated schedule tree.
1885 static __isl_give isl_schedule_node *update_ancestors(
1886 __isl_take isl_schedule_node *node,
1887 __isl_give isl_schedule_tree *(*fn)(__isl_take isl_schedule_tree *tree,
1888 __isl_keep isl_schedule_node *pos, void *user), void *user)
1890 int i, n;
1891 int is_leaf;
1892 isl_ctx *ctx;
1893 isl_schedule_tree *tree;
1894 isl_schedule_node *pos = NULL;
1896 if (fn)
1897 pos = isl_schedule_node_copy(node);
1899 node = isl_schedule_node_cow(node);
1900 if (!node)
1901 return isl_schedule_node_free(pos);
1903 ctx = isl_schedule_node_get_ctx(node);
1904 n = isl_schedule_tree_list_n_schedule_tree(node->ancestors);
1905 tree = isl_schedule_tree_copy(node->tree);
1907 for (i = n - 1; i >= 0; --i) {
1908 isl_schedule_tree *parent;
1910 parent = isl_schedule_tree_list_get_schedule_tree(
1911 node->ancestors, i);
1912 parent = isl_schedule_tree_replace_child(parent,
1913 node->child_pos[i], tree);
1914 if (fn) {
1915 pos = isl_schedule_node_parent(pos);
1916 parent = fn(parent, pos, user);
1918 node->ancestors = isl_schedule_tree_list_set_schedule_tree(
1919 node->ancestors, i, isl_schedule_tree_copy(parent));
1921 tree = parent;
1924 if (fn)
1925 isl_schedule_node_free(pos);
1927 is_leaf = isl_schedule_tree_is_leaf(node->tree);
1928 node->schedule = isl_schedule_set_root(node->schedule, tree);
1929 if (is_leaf) {
1930 isl_schedule_tree_free(node->tree);
1931 node->tree = isl_schedule_node_get_leaf(node);
1934 if (!node->schedule || !node->ancestors)
1935 return isl_schedule_node_free(node);
1937 return node;
1940 /* Replace the subtree that "pos" points to by "tree", updating
1941 * the ancestors to maintain a consistent state.
1943 __isl_give isl_schedule_node *isl_schedule_node_graft_tree(
1944 __isl_take isl_schedule_node *pos, __isl_take isl_schedule_tree *tree)
1946 if (!tree || !pos)
1947 goto error;
1948 if (pos->tree == tree) {
1949 isl_schedule_tree_free(tree);
1950 return pos;
1953 pos = isl_schedule_node_cow(pos);
1954 if (!pos)
1955 goto error;
1957 isl_schedule_tree_free(pos->tree);
1958 pos->tree = tree;
1960 return update_ancestors(pos, NULL, NULL);
1961 error:
1962 isl_schedule_node_free(pos);
1963 isl_schedule_tree_free(tree);
1964 return NULL;
1967 /* Make sure we can insert a node between "node" and its parent.
1968 * Return -1 on error, reporting the reason why we cannot insert a node.
1970 static int check_insert(__isl_keep isl_schedule_node *node)
1972 int has_parent;
1973 enum isl_schedule_node_type type;
1975 has_parent = isl_schedule_node_has_parent(node);
1976 if (has_parent < 0)
1977 return -1;
1978 if (!has_parent)
1979 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1980 "cannot insert node outside of root", return -1);
1982 type = isl_schedule_node_get_parent_type(node);
1983 if (type == isl_schedule_node_error)
1984 return -1;
1985 if (type == isl_schedule_node_set || type == isl_schedule_node_sequence)
1986 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
1987 "cannot insert node between set or sequence node "
1988 "and its filter children", return -1);
1990 return 0;
1993 /* Insert a band node with partial schedule "mupa" between "node" and
1994 * its parent.
1995 * Return a pointer to the new band node.
1997 * If any of the nodes in the subtree rooted at "node" depend on
1998 * the set of outer band nodes then we refuse to insert the band node.
2000 __isl_give isl_schedule_node *isl_schedule_node_insert_partial_schedule(
2001 __isl_take isl_schedule_node *node,
2002 __isl_take isl_multi_union_pw_aff *mupa)
2004 int anchored;
2005 isl_schedule_band *band;
2006 isl_schedule_tree *tree;
2008 if (check_insert(node) < 0)
2009 node = isl_schedule_node_free(node);
2010 anchored = isl_schedule_node_is_subtree_anchored(node);
2011 if (anchored < 0)
2012 goto error;
2013 if (anchored)
2014 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2015 "cannot insert band node in anchored subtree",
2016 goto error);
2018 tree = isl_schedule_node_get_tree(node);
2019 band = isl_schedule_band_from_multi_union_pw_aff(mupa);
2020 tree = isl_schedule_tree_insert_band(tree, band);
2021 node = isl_schedule_node_graft_tree(node, tree);
2023 return node;
2024 error:
2025 isl_schedule_node_free(node);
2026 isl_multi_union_pw_aff_free(mupa);
2027 return NULL;
2030 /* Insert a context node with context "context" between "node" and its parent.
2031 * Return a pointer to the new context node.
2033 __isl_give isl_schedule_node *isl_schedule_node_insert_context(
2034 __isl_take isl_schedule_node *node, __isl_take isl_set *context)
2036 isl_schedule_tree *tree;
2038 if (check_insert(node) < 0)
2039 node = isl_schedule_node_free(node);
2041 tree = isl_schedule_node_get_tree(node);
2042 tree = isl_schedule_tree_insert_context(tree, context);
2043 node = isl_schedule_node_graft_tree(node, tree);
2045 return node;
2048 /* Insert an expansion node with the given "contraction" and "expansion"
2049 * between "node" and its parent.
2050 * Return a pointer to the new expansion node.
2052 * Typically the domain and range spaces of the expansion are different.
2053 * This means that only one of them can refer to the current domain space
2054 * in a consistent tree. It is up to the caller to ensure that the tree
2055 * returns to a consistent state.
2057 __isl_give isl_schedule_node *isl_schedule_node_insert_expansion(
2058 __isl_take isl_schedule_node *node,
2059 __isl_take isl_union_pw_multi_aff *contraction,
2060 __isl_take isl_union_map *expansion)
2062 isl_schedule_tree *tree;
2064 if (check_insert(node) < 0)
2065 node = isl_schedule_node_free(node);
2067 tree = isl_schedule_node_get_tree(node);
2068 tree = isl_schedule_tree_insert_expansion(tree, contraction, expansion);
2069 node = isl_schedule_node_graft_tree(node, tree);
2071 return node;
2074 /* Insert a filter node with filter "filter" between "node" and its parent.
2075 * Return a pointer to the new filter node.
2077 __isl_give isl_schedule_node *isl_schedule_node_insert_filter(
2078 __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter)
2080 isl_schedule_tree *tree;
2082 if (check_insert(node) < 0)
2083 node = isl_schedule_node_free(node);
2085 tree = isl_schedule_node_get_tree(node);
2086 tree = isl_schedule_tree_insert_filter(tree, filter);
2087 node = isl_schedule_node_graft_tree(node, tree);
2089 return node;
2092 /* Insert a mark node with mark identifier "mark" between "node" and
2093 * its parent.
2094 * Return a pointer to the new mark node.
2096 __isl_give isl_schedule_node *isl_schedule_node_insert_mark(
2097 __isl_take isl_schedule_node *node, __isl_take isl_id *mark)
2099 isl_schedule_tree *tree;
2101 if (check_insert(node) < 0)
2102 node = isl_schedule_node_free(node);
2104 tree = isl_schedule_node_get_tree(node);
2105 tree = isl_schedule_tree_insert_mark(tree, mark);
2106 node = isl_schedule_node_graft_tree(node, tree);
2108 return node;
2111 /* Attach the current subtree of "node" to a sequence of filter tree nodes
2112 * with filters described by "filters", attach this sequence
2113 * of filter tree nodes as children to a new tree of type "type" and
2114 * replace the original subtree of "node" by this new tree.
2116 static __isl_give isl_schedule_node *isl_schedule_node_insert_children(
2117 __isl_take isl_schedule_node *node,
2118 enum isl_schedule_node_type type,
2119 __isl_take isl_union_set_list *filters)
2121 int i, n;
2122 isl_ctx *ctx;
2123 isl_schedule_tree *tree;
2124 isl_schedule_tree_list *list;
2126 if (check_insert(node) < 0)
2127 node = isl_schedule_node_free(node);
2129 if (!node || !filters)
2130 goto error;
2132 ctx = isl_schedule_node_get_ctx(node);
2133 n = isl_union_set_list_n_union_set(filters);
2134 list = isl_schedule_tree_list_alloc(ctx, n);
2135 for (i = 0; i < n; ++i) {
2136 isl_schedule_tree *tree;
2137 isl_union_set *filter;
2139 tree = isl_schedule_node_get_tree(node);
2140 filter = isl_union_set_list_get_union_set(filters, i);
2141 tree = isl_schedule_tree_insert_filter(tree, filter);
2142 list = isl_schedule_tree_list_add(list, tree);
2144 tree = isl_schedule_tree_from_children(type, list);
2145 node = isl_schedule_node_graft_tree(node, tree);
2147 isl_union_set_list_free(filters);
2148 return node;
2149 error:
2150 isl_union_set_list_free(filters);
2151 isl_schedule_node_free(node);
2152 return NULL;
2155 /* Insert a sequence node with child filters "filters" between "node" and
2156 * its parent. That is, the tree that "node" points to is attached
2157 * to each of the child nodes of the filter nodes.
2158 * Return a pointer to the new sequence node.
2160 __isl_give isl_schedule_node *isl_schedule_node_insert_sequence(
2161 __isl_take isl_schedule_node *node,
2162 __isl_take isl_union_set_list *filters)
2164 return isl_schedule_node_insert_children(node,
2165 isl_schedule_node_sequence, filters);
2168 /* Insert a set node with child filters "filters" between "node" and
2169 * its parent. That is, the tree that "node" points to is attached
2170 * to each of the child nodes of the filter nodes.
2171 * Return a pointer to the new set node.
2173 __isl_give isl_schedule_node *isl_schedule_node_insert_set(
2174 __isl_take isl_schedule_node *node,
2175 __isl_take isl_union_set_list *filters)
2177 return isl_schedule_node_insert_children(node,
2178 isl_schedule_node_set, filters);
2181 /* Remove "node" from its schedule tree and return a pointer
2182 * to the leaf at the same position in the updated schedule tree.
2184 * It is not allowed to remove the root of a schedule tree or
2185 * a child of a set or sequence node.
2187 __isl_give isl_schedule_node *isl_schedule_node_cut(
2188 __isl_take isl_schedule_node *node)
2190 isl_schedule_tree *leaf;
2191 enum isl_schedule_node_type parent_type;
2193 if (!node)
2194 return NULL;
2195 if (!isl_schedule_node_has_parent(node))
2196 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2197 "cannot cut root", return isl_schedule_node_free(node));
2199 parent_type = isl_schedule_node_get_parent_type(node);
2200 if (parent_type == isl_schedule_node_set ||
2201 parent_type == isl_schedule_node_sequence)
2202 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2203 "cannot cut child of set or sequence",
2204 return isl_schedule_node_free(node));
2206 leaf = isl_schedule_node_get_leaf(node);
2207 return isl_schedule_node_graft_tree(node, leaf);
2210 /* Remove a single node from the schedule tree, attaching the child
2211 * of "node" directly to its parent.
2212 * Return a pointer to this former child or to the leaf the position
2213 * of the original node if there was no child.
2214 * It is not allowed to remove the root of a schedule tree,
2215 * a set or sequence node, a child of a set or sequence node or
2216 * a band node with an anchored subtree.
2218 __isl_give isl_schedule_node *isl_schedule_node_delete(
2219 __isl_take isl_schedule_node *node)
2221 int n;
2222 isl_schedule_tree *tree;
2223 enum isl_schedule_node_type type;
2225 if (!node)
2226 return NULL;
2228 if (isl_schedule_node_get_tree_depth(node) == 0)
2229 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2230 "cannot delete root node",
2231 return isl_schedule_node_free(node));
2232 n = isl_schedule_node_n_children(node);
2233 if (n != 1)
2234 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2235 "can only delete node with a single child",
2236 return isl_schedule_node_free(node));
2237 type = isl_schedule_node_get_parent_type(node);
2238 if (type == isl_schedule_node_sequence || type == isl_schedule_node_set)
2239 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2240 "cannot delete child of set or sequence",
2241 return isl_schedule_node_free(node));
2242 if (isl_schedule_node_get_type(node) == isl_schedule_node_band) {
2243 int anchored;
2245 anchored = isl_schedule_node_is_subtree_anchored(node);
2246 if (anchored < 0)
2247 return isl_schedule_node_free(node);
2248 if (anchored)
2249 isl_die(isl_schedule_node_get_ctx(node),
2250 isl_error_invalid,
2251 "cannot delete band node with anchored subtree",
2252 return isl_schedule_node_free(node));
2255 tree = isl_schedule_node_get_tree(node);
2256 if (!tree || isl_schedule_tree_has_children(tree)) {
2257 tree = isl_schedule_tree_child(tree, 0);
2258 } else {
2259 isl_schedule_tree_free(tree);
2260 tree = isl_schedule_node_get_leaf(node);
2262 node = isl_schedule_node_graft_tree(node, tree);
2264 return node;
2267 /* Internal data structure for the group_ancestor callback.
2269 * If "finished" is set, then we no longer need to modify
2270 * any further ancestors.
2272 * "contraction" and "expansion" represent the expansion
2273 * that reflects the grouping.
2275 * "domain" contains the domain elements that reach the position
2276 * where the grouping is performed. That is, it is the range
2277 * of the resulting expansion.
2278 * "domain_universe" is the universe of "domain".
2279 * "group" is the set of group elements, i.e., the domain
2280 * of the resulting expansion.
2281 * "group_universe" is the universe of "group".
2283 * "sched" is the schedule for the group elements, in pratice
2284 * an identity mapping on "group_universe".
2285 * "dim" is the dimension of "sched".
2287 struct isl_schedule_group_data {
2288 int finished;
2290 isl_union_map *expansion;
2291 isl_union_pw_multi_aff *contraction;
2293 isl_union_set *domain;
2294 isl_union_set *domain_universe;
2295 isl_union_set *group;
2296 isl_union_set *group_universe;
2298 int dim;
2299 isl_multi_aff *sched;
2302 /* Is domain covered by data->domain within data->domain_universe?
2304 static int locally_covered_by_domain(__isl_keep isl_union_set *domain,
2305 struct isl_schedule_group_data *data)
2307 int is_subset;
2308 isl_union_set *test;
2310 test = isl_union_set_copy(domain);
2311 test = isl_union_set_intersect(test,
2312 isl_union_set_copy(data->domain_universe));
2313 is_subset = isl_union_set_is_subset(test, data->domain);
2314 isl_union_set_free(test);
2316 return is_subset;
2319 /* Update the band tree root "tree" to refer to the group instances
2320 * in data->group rather than the original domain elements in data->domain.
2321 * "pos" is the position in the original schedule tree where the modified
2322 * "tree" will be attached.
2324 * Add the part of the identity schedule on the group instances data->sched
2325 * that corresponds to this band node to the band schedule.
2326 * If the domain elements that reach the node and that are part
2327 * of data->domain_universe are all elements of data->domain (and therefore
2328 * replaced by the group instances) then this data->domain_universe
2329 * is removed from the domain of the band schedule.
2331 static __isl_give isl_schedule_tree *group_band(
2332 __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
2333 struct isl_schedule_group_data *data)
2335 isl_union_set *domain;
2336 isl_multi_aff *ma;
2337 isl_multi_union_pw_aff *mupa, *partial;
2338 int is_covered;
2339 int depth, n, has_id;
2341 domain = isl_schedule_node_get_domain(pos);
2342 is_covered = locally_covered_by_domain(domain, data);
2343 if (is_covered >= 0 && is_covered) {
2344 domain = isl_union_set_universe(domain);
2345 domain = isl_union_set_subtract(domain,
2346 isl_union_set_copy(data->domain_universe));
2347 tree = isl_schedule_tree_band_intersect_domain(tree, domain);
2348 } else
2349 isl_union_set_free(domain);
2350 if (is_covered < 0)
2351 return isl_schedule_tree_free(tree);
2352 depth = isl_schedule_node_get_schedule_depth(pos);
2353 n = isl_schedule_tree_band_n_member(tree);
2354 ma = isl_multi_aff_copy(data->sched);
2355 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, depth);
2356 ma = isl_multi_aff_drop_dims(ma, isl_dim_out, n, data->dim - depth - n);
2357 mupa = isl_multi_union_pw_aff_from_multi_aff(ma);
2358 partial = isl_schedule_tree_band_get_partial_schedule(tree);
2359 has_id = isl_multi_union_pw_aff_has_tuple_id(partial, isl_dim_set);
2360 if (has_id < 0) {
2361 partial = isl_multi_union_pw_aff_free(partial);
2362 } else if (has_id) {
2363 isl_id *id;
2364 id = isl_multi_union_pw_aff_get_tuple_id(partial, isl_dim_set);
2365 mupa = isl_multi_union_pw_aff_set_tuple_id(mupa,
2366 isl_dim_set, id);
2368 partial = isl_multi_union_pw_aff_union_add(partial, mupa);
2369 tree = isl_schedule_tree_band_set_partial_schedule(tree, partial);
2371 return tree;
2374 /* Drop the parameters in "uset" that are not also in "space".
2375 * "n" is the number of parameters in "space".
2377 static __isl_give isl_union_set *union_set_drop_extra_params(
2378 __isl_take isl_union_set *uset, __isl_keep isl_space *space, int n)
2380 int n2;
2382 uset = isl_union_set_align_params(uset, isl_space_copy(space));
2383 n2 = isl_union_set_dim(uset, isl_dim_param);
2384 uset = isl_union_set_project_out(uset, isl_dim_param, n, n2 - n);
2386 return uset;
2389 /* Update the context tree root "tree" to refer to the group instances
2390 * in data->group rather than the original domain elements in data->domain.
2391 * "pos" is the position in the original schedule tree where the modified
2392 * "tree" will be attached.
2394 * We do not actually need to update "tree" since a context node only
2395 * refers to the schedule space. However, we may need to update "data"
2396 * to not refer to any parameters introduced by the context node.
2398 static __isl_give isl_schedule_tree *group_context(
2399 __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
2400 struct isl_schedule_group_data *data)
2402 isl_space *space;
2403 isl_union_set *domain;
2404 int n1, n2;
2405 int involves;
2407 if (isl_schedule_node_get_tree_depth(pos) == 1)
2408 return tree;
2410 domain = isl_schedule_node_get_universe_domain(pos);
2411 space = isl_union_set_get_space(domain);
2412 isl_union_set_free(domain);
2414 n1 = isl_space_dim(space, isl_dim_param);
2415 data->expansion = isl_union_map_align_params(data->expansion, space);
2416 n2 = isl_union_map_dim(data->expansion, isl_dim_param);
2418 if (!data->expansion)
2419 return isl_schedule_tree_free(tree);
2420 if (n1 == n2)
2421 return tree;
2423 involves = isl_union_map_involves_dims(data->expansion,
2424 isl_dim_param, n1, n2 - n1);
2425 if (involves < 0)
2426 return isl_schedule_tree_free(tree);
2427 if (involves)
2428 isl_die(isl_schedule_node_get_ctx(pos), isl_error_invalid,
2429 "grouping cannot only refer to global parameters",
2430 return isl_schedule_tree_free(tree));
2432 data->expansion = isl_union_map_project_out(data->expansion,
2433 isl_dim_param, n1, n2 - n1);
2434 space = isl_union_map_get_space(data->expansion);
2436 data->contraction = isl_union_pw_multi_aff_align_params(
2437 data->contraction, isl_space_copy(space));
2438 n2 = isl_union_pw_multi_aff_dim(data->contraction, isl_dim_param);
2439 data->contraction = isl_union_pw_multi_aff_drop_dims(data->contraction,
2440 isl_dim_param, n1, n2 - n1);
2442 data->domain = union_set_drop_extra_params(data->domain, space, n1);
2443 data->domain_universe =
2444 union_set_drop_extra_params(data->domain_universe, space, n1);
2445 data->group = union_set_drop_extra_params(data->group, space, n1);
2446 data->group_universe =
2447 union_set_drop_extra_params(data->group_universe, space, n1);
2449 data->sched = isl_multi_aff_align_params(data->sched,
2450 isl_space_copy(space));
2451 n2 = isl_multi_aff_dim(data->sched, isl_dim_param);
2452 data->sched = isl_multi_aff_drop_dims(data->sched,
2453 isl_dim_param, n1, n2 - n1);
2455 isl_space_free(space);
2457 return tree;
2460 /* Update the domain tree root "tree" to refer to the group instances
2461 * in data->group rather than the original domain elements in data->domain.
2462 * "pos" is the position in the original schedule tree where the modified
2463 * "tree" will be attached.
2465 * We first double-check that all grouped domain elements are actually
2466 * part of the root domain and then replace those elements by the group
2467 * instances.
2469 static __isl_give isl_schedule_tree *group_domain(
2470 __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
2471 struct isl_schedule_group_data *data)
2473 isl_union_set *domain;
2474 int is_subset;
2476 domain = isl_schedule_tree_domain_get_domain(tree);
2477 is_subset = isl_union_set_is_subset(data->domain, domain);
2478 isl_union_set_free(domain);
2479 if (is_subset < 0)
2480 return isl_schedule_tree_free(tree);
2481 if (!is_subset)
2482 isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
2483 "grouped domain should be part of outer domain",
2484 return isl_schedule_tree_free(tree));
2485 domain = isl_schedule_tree_domain_get_domain(tree);
2486 domain = isl_union_set_subtract(domain,
2487 isl_union_set_copy(data->domain));
2488 domain = isl_union_set_union(domain, isl_union_set_copy(data->group));
2489 tree = isl_schedule_tree_domain_set_domain(tree, domain);
2491 return tree;
2494 /* Update the expansion tree root "tree" to refer to the group instances
2495 * in data->group rather than the original domain elements in data->domain.
2496 * "pos" is the position in the original schedule tree where the modified
2497 * "tree" will be attached.
2499 * Let G_1 -> D_1 be the expansion of "tree" and G_2 -> D_2 the newly
2500 * introduced expansion in a descendant of "tree".
2501 * We first double-check that D_2 is a subset of D_1.
2502 * Then we remove D_2 from the range of G_1 -> D_1 and add the mapping
2503 * G_1 -> D_1 . D_2 -> G_2.
2504 * Simmilarly, we restrict the domain of the contraction to the universe
2505 * of the range of the updated expansion and add G_2 -> D_2 . D_1 -> G_1,
2506 * attempting to remove the domain constraints of this additional part.
2508 static __isl_give isl_schedule_tree *group_expansion(
2509 __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
2510 struct isl_schedule_group_data *data)
2512 isl_union_set *domain;
2513 isl_union_map *expansion, *umap;
2514 isl_union_pw_multi_aff *contraction, *upma;
2515 int is_subset;
2517 expansion = isl_schedule_tree_expansion_get_expansion(tree);
2518 domain = isl_union_map_range(expansion);
2519 is_subset = isl_union_set_is_subset(data->domain, domain);
2520 isl_union_set_free(domain);
2521 if (is_subset < 0)
2522 return isl_schedule_tree_free(tree);
2523 if (!is_subset)
2524 isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal,
2525 "grouped domain should be part "
2526 "of outer expansion domain",
2527 return isl_schedule_tree_free(tree));
2528 expansion = isl_schedule_tree_expansion_get_expansion(tree);
2529 umap = isl_union_map_from_union_pw_multi_aff(
2530 isl_union_pw_multi_aff_copy(data->contraction));
2531 umap = isl_union_map_apply_range(expansion, umap);
2532 expansion = isl_schedule_tree_expansion_get_expansion(tree);
2533 expansion = isl_union_map_subtract_range(expansion,
2534 isl_union_set_copy(data->domain));
2535 expansion = isl_union_map_union(expansion, umap);
2536 umap = isl_union_map_universe(isl_union_map_copy(expansion));
2537 domain = isl_union_map_range(umap);
2538 contraction = isl_schedule_tree_expansion_get_contraction(tree);
2539 umap = isl_union_map_from_union_pw_multi_aff(contraction);
2540 umap = isl_union_map_apply_range(isl_union_map_copy(data->expansion),
2541 umap);
2542 upma = isl_union_pw_multi_aff_from_union_map(umap);
2543 contraction = isl_schedule_tree_expansion_get_contraction(tree);
2544 contraction = isl_union_pw_multi_aff_intersect_domain(contraction,
2545 domain);
2546 domain = isl_union_pw_multi_aff_domain(
2547 isl_union_pw_multi_aff_copy(upma));
2548 upma = isl_union_pw_multi_aff_gist(upma, domain);
2549 contraction = isl_union_pw_multi_aff_union_add(contraction, upma);
2550 tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree,
2551 contraction, expansion);
2553 return tree;
2556 /* Update the tree root "tree" to refer to the group instances
2557 * in data->group rather than the original domain elements in data->domain.
2558 * "pos" is the position in the original schedule tree where the modified
2559 * "tree" will be attached.
2561 * If we have come across a domain or expansion node before (data->finished
2562 * is set), then we no longer need perform any modifications.
2564 * If "tree" is a filter, then we add data->group_universe to the filter.
2565 * We also remove data->domain_universe from the filter if all the domain
2566 * elements in this universe that reach the filter node are part of
2567 * the elements that are being grouped by data->expansion.
2568 * If "tree" is a band, domain or expansion, then it is handled
2569 * in a separate function.
2571 static __isl_give isl_schedule_tree *group_ancestor(
2572 __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos,
2573 void *user)
2575 struct isl_schedule_group_data *data = user;
2576 isl_union_set *domain;
2577 int is_covered;
2579 if (!tree || !pos)
2580 return isl_schedule_tree_free(tree);
2582 if (data->finished)
2583 return tree;
2585 switch (isl_schedule_tree_get_type(tree)) {
2586 case isl_schedule_node_error:
2587 return isl_schedule_tree_free(tree);
2588 case isl_schedule_node_band:
2589 tree = group_band(tree, pos, data);
2590 break;
2591 case isl_schedule_node_context:
2592 tree = group_context(tree, pos, data);
2593 break;
2594 case isl_schedule_node_domain:
2595 tree = group_domain(tree, pos, data);
2596 data->finished = 1;
2597 break;
2598 case isl_schedule_node_filter:
2599 domain = isl_schedule_node_get_domain(pos);
2600 is_covered = locally_covered_by_domain(domain, data);
2601 isl_union_set_free(domain);
2602 if (is_covered < 0)
2603 return isl_schedule_tree_free(tree);
2604 domain = isl_schedule_tree_filter_get_filter(tree);
2605 if (is_covered)
2606 domain = isl_union_set_subtract(domain,
2607 isl_union_set_copy(data->domain_universe));
2608 domain = isl_union_set_union(domain,
2609 isl_union_set_copy(data->group_universe));
2610 tree = isl_schedule_tree_filter_set_filter(tree, domain);
2611 break;
2612 case isl_schedule_node_expansion:
2613 tree = group_expansion(tree, pos, data);
2614 data->finished = 1;
2615 break;
2616 case isl_schedule_node_leaf:
2617 case isl_schedule_node_mark:
2618 case isl_schedule_node_sequence:
2619 case isl_schedule_node_set:
2620 break;
2623 return tree;
2626 /* Group the domain elements that reach "node" into instances
2627 * of a single statement with identifier "group_id".
2628 * In particular, group the domain elements according to their
2629 * prefix schedule.
2631 * That is, introduce an expansion node with as contraction
2632 * the prefix schedule (with the target space replaced by "group_id")
2633 * and as expansion the inverse of this contraction (with its range
2634 * intersected with the domain elements that reach "node").
2635 * The outer nodes are then modified to refer to the group instances
2636 * instead of the original domain elements.
2638 * No instance of "group_id" is allowed to reach "node" prior
2639 * to the grouping.
2641 * Return a pointer to original node in tree, i.e., the child
2642 * of the newly introduced expansion node.
2644 __isl_give isl_schedule_node *isl_schedule_node_group(
2645 __isl_take isl_schedule_node *node, __isl_take isl_id *group_id)
2647 struct isl_schedule_group_data data = { 0 };
2648 isl_space *space;
2649 isl_union_set *domain;
2650 isl_union_pw_multi_aff *contraction;
2651 isl_union_map *expansion;
2652 int disjoint;
2654 if (!node || !group_id)
2655 goto error;
2656 if (check_insert(node) < 0)
2657 goto error;
2659 domain = isl_schedule_node_get_domain(node);
2660 data.domain = isl_union_set_copy(domain);
2661 data.domain_universe = isl_union_set_copy(domain);
2662 data.domain_universe = isl_union_set_universe(data.domain_universe);
2664 data.dim = isl_schedule_node_get_schedule_depth(node);
2665 if (data.dim == 0) {
2666 isl_ctx *ctx;
2667 isl_set *set;
2668 isl_union_set *group;
2669 isl_union_map *univ;
2671 ctx = isl_schedule_node_get_ctx(node);
2672 space = isl_space_set_alloc(ctx, 0, 0);
2673 space = isl_space_set_tuple_id(space, isl_dim_set, group_id);
2674 set = isl_set_universe(isl_space_copy(space));
2675 group = isl_union_set_from_set(set);
2676 expansion = isl_union_map_from_domain_and_range(domain, group);
2677 univ = isl_union_map_universe(isl_union_map_copy(expansion));
2678 contraction = isl_union_pw_multi_aff_from_union_map(univ);
2679 expansion = isl_union_map_reverse(expansion);
2680 } else {
2681 isl_multi_union_pw_aff *prefix;
2682 isl_union_set *univ;
2684 prefix =
2685 isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
2686 prefix = isl_multi_union_pw_aff_set_tuple_id(prefix,
2687 isl_dim_set, group_id);
2688 space = isl_multi_union_pw_aff_get_space(prefix);
2689 contraction = isl_union_pw_multi_aff_from_multi_union_pw_aff(
2690 prefix);
2691 univ = isl_union_set_universe(isl_union_set_copy(domain));
2692 contraction =
2693 isl_union_pw_multi_aff_intersect_domain(contraction, univ);
2694 expansion = isl_union_map_from_union_pw_multi_aff(
2695 isl_union_pw_multi_aff_copy(contraction));
2696 expansion = isl_union_map_reverse(expansion);
2697 expansion = isl_union_map_intersect_range(expansion, domain);
2699 space = isl_space_map_from_set(space);
2700 data.sched = isl_multi_aff_identity(space);
2701 data.group = isl_union_map_domain(isl_union_map_copy(expansion));
2702 data.group = isl_union_set_coalesce(data.group);
2703 data.group_universe = isl_union_set_copy(data.group);
2704 data.group_universe = isl_union_set_universe(data.group_universe);
2705 data.expansion = isl_union_map_copy(expansion);
2706 data.contraction = isl_union_pw_multi_aff_copy(contraction);
2707 node = isl_schedule_node_insert_expansion(node, contraction, expansion);
2709 disjoint = isl_union_set_is_disjoint(data.domain_universe,
2710 data.group_universe);
2712 node = update_ancestors(node, &group_ancestor, &data);
2714 isl_union_set_free(data.domain);
2715 isl_union_set_free(data.domain_universe);
2716 isl_union_set_free(data.group);
2717 isl_union_set_free(data.group_universe);
2718 isl_multi_aff_free(data.sched);
2719 isl_union_map_free(data.expansion);
2720 isl_union_pw_multi_aff_free(data.contraction);
2722 node = isl_schedule_node_child(node, 0);
2724 if (!node || disjoint < 0)
2725 return isl_schedule_node_free(node);
2726 if (!disjoint)
2727 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
2728 "group instances already reach node",
2729 isl_schedule_node_free(node));
2731 return node;
2732 error:
2733 isl_schedule_node_free(node);
2734 isl_id_free(group_id);
2735 return NULL;
2738 /* Compute the gist of the given band node with respect to "context".
2740 __isl_give isl_schedule_node *isl_schedule_node_band_gist(
2741 __isl_take isl_schedule_node *node, __isl_take isl_union_set *context)
2743 isl_schedule_tree *tree;
2745 tree = isl_schedule_node_get_tree(node);
2746 tree = isl_schedule_tree_band_gist(tree, context);
2747 return isl_schedule_node_graft_tree(node, tree);
2750 /* Internal data structure for isl_schedule_node_gist.
2751 * "n_expansion" is the number of outer expansion nodes
2752 * with respect to the current position
2753 * "filters" contains an element for each outer filter or expansion node
2754 * with respect to the current position, each representing
2755 * the intersection of the previous element and the filter on the filter node
2756 * or the expansion of the previous element.
2757 * The first element in the original context passed to isl_schedule_node_gist.
2759 struct isl_node_gist_data {
2760 int n_expansion;
2761 isl_union_set_list *filters;
2764 /* Enter the expansion node "node" during a isl_schedule_node_gist traversal.
2766 * In particular, add an extra element to data->filters containing
2767 * the expansion of the previous element and replace the expansion
2768 * and contraction on "node" by the gist with respect to these filters.
2769 * Also keep track of the fact that we have entered another expansion.
2771 static __isl_give isl_schedule_node *gist_enter_expansion(
2772 __isl_take isl_schedule_node *node, struct isl_node_gist_data *data)
2774 int n;
2775 isl_union_set *inner;
2776 isl_union_map *expansion;
2777 isl_union_pw_multi_aff *contraction;
2779 data->n_expansion++;
2781 n = isl_union_set_list_n_union_set(data->filters);
2782 inner = isl_union_set_list_get_union_set(data->filters, n - 1);
2783 expansion = isl_schedule_node_expansion_get_expansion(node);
2784 inner = isl_union_set_apply(inner, expansion);
2786 contraction = isl_schedule_node_expansion_get_contraction(node);
2787 contraction = isl_union_pw_multi_aff_gist(contraction,
2788 isl_union_set_copy(inner));
2790 data->filters = isl_union_set_list_add(data->filters, inner);
2792 inner = isl_union_set_list_get_union_set(data->filters, n - 1);
2793 expansion = isl_schedule_node_expansion_get_expansion(node);
2794 expansion = isl_union_map_gist_domain(expansion, inner);
2795 node = isl_schedule_node_expansion_set_contraction_and_expansion(node,
2796 contraction, expansion);
2798 return node;
2801 /* Can we finish gisting at this node?
2802 * That is, is the filter on the current filter node a subset of
2803 * the original context passed to isl_schedule_node_gist?
2804 * If we have gone through any expansions, then we cannot perform
2805 * this test since the current domain elements are incomparable
2806 * to the domain elements in the original context.
2808 static int gist_done(__isl_keep isl_schedule_node *node,
2809 struct isl_node_gist_data *data)
2811 isl_union_set *filter, *outer;
2812 int subset;
2814 if (data->n_expansion != 0)
2815 return 0;
2817 filter = isl_schedule_node_filter_get_filter(node);
2818 outer = isl_union_set_list_get_union_set(data->filters, 0);
2819 subset = isl_union_set_is_subset(filter, outer);
2820 isl_union_set_free(outer);
2821 isl_union_set_free(filter);
2823 return subset;
2826 /* Callback for "traverse" to enter a node and to move
2827 * to the deepest initial subtree that should be traversed
2828 * by isl_schedule_node_gist.
2830 * The "filters" list is extended by one element each time
2831 * we come across a filter node by the result of intersecting
2832 * the last element in the list with the filter on the filter node.
2834 * If the filter on the current filter node is a subset of
2835 * the original context passed to isl_schedule_node_gist,
2836 * then there is no need to go into its subtree since it cannot
2837 * be further simplified by the context. The "filters" list is
2838 * still extended for consistency, but the actual value of the
2839 * added element is immaterial since it will not be used.
2841 * Otherwise, the filter on the current filter node is replaced by
2842 * the gist of the original filter with respect to the intersection
2843 * of the original context with the intermediate filters.
2845 * If the new element in the "filters" list is empty, then no elements
2846 * can reach the descendants of the current filter node. The subtree
2847 * underneath the filter node is therefore removed.
2849 * Each expansion node we come across is handled by
2850 * gist_enter_expansion.
2852 static __isl_give isl_schedule_node *gist_enter(
2853 __isl_take isl_schedule_node *node, void *user)
2855 struct isl_node_gist_data *data = user;
2857 do {
2858 isl_union_set *filter, *inner;
2859 int done, empty;
2860 int n;
2862 switch (isl_schedule_node_get_type(node)) {
2863 case isl_schedule_node_error:
2864 return isl_schedule_node_free(node);
2865 case isl_schedule_node_expansion:
2866 node = gist_enter_expansion(node, data);
2867 continue;
2868 case isl_schedule_node_band:
2869 case isl_schedule_node_context:
2870 case isl_schedule_node_domain:
2871 case isl_schedule_node_leaf:
2872 case isl_schedule_node_mark:
2873 case isl_schedule_node_sequence:
2874 case isl_schedule_node_set:
2875 continue;
2876 case isl_schedule_node_filter:
2877 break;
2879 done = gist_done(node, data);
2880 filter = isl_schedule_node_filter_get_filter(node);
2881 if (done < 0 || done) {
2882 data->filters = isl_union_set_list_add(data->filters,
2883 filter);
2884 if (done < 0)
2885 return isl_schedule_node_free(node);
2886 return node;
2888 n = isl_union_set_list_n_union_set(data->filters);
2889 inner = isl_union_set_list_get_union_set(data->filters, n - 1);
2890 filter = isl_union_set_gist(filter, isl_union_set_copy(inner));
2891 node = isl_schedule_node_filter_set_filter(node,
2892 isl_union_set_copy(filter));
2893 filter = isl_union_set_intersect(filter, inner);
2894 empty = isl_union_set_is_empty(filter);
2895 data->filters = isl_union_set_list_add(data->filters, filter);
2896 if (empty < 0)
2897 return isl_schedule_node_free(node);
2898 if (!empty)
2899 continue;
2900 node = isl_schedule_node_child(node, 0);
2901 node = isl_schedule_node_cut(node);
2902 node = isl_schedule_node_parent(node);
2903 return node;
2904 } while (isl_schedule_node_has_children(node) &&
2905 (node = isl_schedule_node_first_child(node)) != NULL);
2907 return node;
2910 /* Callback for "traverse" to leave a node for isl_schedule_node_gist.
2912 * In particular, if the current node is a filter node, then we remove
2913 * the element on the "filters" list that was added when we entered
2914 * the node. There is no need to compute any gist here, since we
2915 * already did that when we entered the node.
2917 * If the current node is an expansion, then we decrement
2918 * the number of outer expansions and remove the element
2919 * in data->filters that was added by gist_enter_expansion.
2921 * If the current node is a band node, then we compute the gist of
2922 * the band node with respect to the intersection of the original context
2923 * and the intermediate filters.
2925 * If the current node is a sequence or set node, then some of
2926 * the filter children may have become empty and so they are removed.
2927 * If only one child is left, then the set or sequence node along with
2928 * the single remaining child filter is removed. The filter can be
2929 * removed because the filters on a sequence or set node are supposed
2930 * to partition the incoming domain instances.
2931 * In principle, it should then be impossible for there to be zero
2932 * remaining children, but should this happen, we replace the entire
2933 * subtree with an empty filter.
2935 static __isl_give isl_schedule_node *gist_leave(
2936 __isl_take isl_schedule_node *node, void *user)
2938 struct isl_node_gist_data *data = user;
2939 isl_schedule_tree *tree;
2940 int i, n;
2941 isl_union_set *filter;
2943 switch (isl_schedule_node_get_type(node)) {
2944 case isl_schedule_node_error:
2945 return isl_schedule_node_free(node);
2946 case isl_schedule_node_expansion:
2947 data->n_expansion--;
2948 case isl_schedule_node_filter:
2949 n = isl_union_set_list_n_union_set(data->filters);
2950 data->filters = isl_union_set_list_drop(data->filters,
2951 n - 1, 1);
2952 break;
2953 case isl_schedule_node_band:
2954 n = isl_union_set_list_n_union_set(data->filters);
2955 filter = isl_union_set_list_get_union_set(data->filters, n - 1);
2956 node = isl_schedule_node_band_gist(node, filter);
2957 break;
2958 case isl_schedule_node_set:
2959 case isl_schedule_node_sequence:
2960 tree = isl_schedule_node_get_tree(node);
2961 n = isl_schedule_tree_n_children(tree);
2962 for (i = n - 1; i >= 0; --i) {
2963 isl_schedule_tree *child;
2964 isl_union_set *filter;
2965 int empty;
2967 child = isl_schedule_tree_get_child(tree, i);
2968 filter = isl_schedule_tree_filter_get_filter(child);
2969 empty = isl_union_set_is_empty(filter);
2970 isl_union_set_free(filter);
2971 isl_schedule_tree_free(child);
2972 if (empty < 0)
2973 tree = isl_schedule_tree_free(tree);
2974 else if (empty)
2975 tree = isl_schedule_tree_drop_child(tree, i);
2977 n = isl_schedule_tree_n_children(tree);
2978 node = isl_schedule_node_graft_tree(node, tree);
2979 if (n == 1) {
2980 node = isl_schedule_node_delete(node);
2981 node = isl_schedule_node_delete(node);
2982 } else if (n == 0) {
2983 isl_space *space;
2985 filter =
2986 isl_union_set_list_get_union_set(data->filters, 0);
2987 space = isl_union_set_get_space(filter);
2988 isl_union_set_free(filter);
2989 filter = isl_union_set_empty(space);
2990 node = isl_schedule_node_cut(node);
2991 node = isl_schedule_node_insert_filter(node, filter);
2993 break;
2994 case isl_schedule_node_context:
2995 case isl_schedule_node_domain:
2996 case isl_schedule_node_leaf:
2997 case isl_schedule_node_mark:
2998 break;
3001 return node;
3004 /* Compute the gist of the subtree at "node" with respect to
3005 * the reaching domain elements in "context".
3006 * In particular, compute the gist of all band and filter nodes
3007 * in the subtree with respect to "context". Children of set or sequence
3008 * nodes that end up with an empty filter are removed completely.
3010 * We keep track of the intersection of "context" with all outer filters
3011 * of the current node within the subtree in the final element of "filters".
3012 * Initially, this list contains the single element "context" and it is
3013 * extended or shortened each time we enter or leave a filter node.
3015 __isl_give isl_schedule_node *isl_schedule_node_gist(
3016 __isl_take isl_schedule_node *node, __isl_take isl_union_set *context)
3018 struct isl_node_gist_data data;
3020 data.n_expansion = 0;
3021 data.filters = isl_union_set_list_from_union_set(context);
3022 node = traverse(node, &gist_enter, &gist_leave, &data);
3023 isl_union_set_list_free(data.filters);
3024 return node;
3027 /* Intersect the domain of domain node "node" with "domain".
3029 * If the domain of "node" is already a subset of "domain",
3030 * then nothing needs to be changed.
3032 * Otherwise, we replace the domain of the domain node by the intersection
3033 * and simplify the subtree rooted at "node" with respect to this intersection.
3035 __isl_give isl_schedule_node *isl_schedule_node_domain_intersect_domain(
3036 __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain)
3038 isl_schedule_tree *tree;
3039 isl_union_set *uset;
3040 int is_subset;
3042 if (!node || !domain)
3043 goto error;
3045 uset = isl_schedule_tree_domain_get_domain(node->tree);
3046 is_subset = isl_union_set_is_subset(uset, domain);
3047 isl_union_set_free(uset);
3048 if (is_subset < 0)
3049 goto error;
3050 if (is_subset) {
3051 isl_union_set_free(domain);
3052 return node;
3055 tree = isl_schedule_tree_copy(node->tree);
3056 uset = isl_schedule_tree_domain_get_domain(tree);
3057 uset = isl_union_set_intersect(uset, domain);
3058 tree = isl_schedule_tree_domain_set_domain(tree,
3059 isl_union_set_copy(uset));
3060 node = isl_schedule_node_graft_tree(node, tree);
3062 node = isl_schedule_node_child(node, 0);
3063 node = isl_schedule_node_gist(node, uset);
3064 node = isl_schedule_node_parent(node);
3066 return node;
3067 error:
3068 isl_schedule_node_free(node);
3069 isl_union_set_free(domain);
3070 return NULL;
3073 /* Internal data structure for isl_schedule_node_get_subtree_expansion.
3074 * "expansions" contains a list of accumulated expansions
3075 * for each outer expansion, set or sequence node. The first element
3076 * in the list is an identity mapping on the reaching domain elements.
3077 * "res" collects the results.
3079 struct isl_subtree_expansion_data {
3080 isl_union_map_list *expansions;
3081 isl_union_map *res;
3084 /* Callback for "traverse" to enter a node and to move
3085 * to the deepest initial subtree that should be traversed
3086 * by isl_schedule_node_get_subtree_expansion.
3088 * Whenever we come across an expansion node, the last element
3089 * of data->expansions is combined with the expansion
3090 * on the expansion node.
3092 * Whenever we come across a filter node that is the child
3093 * of a set or sequence node, data->expansions is extended
3094 * with a new element that restricts the previous element
3095 * to the elements selected by the filter.
3096 * The previous element can then be reused while backtracking.
3098 static __isl_give isl_schedule_node *subtree_expansion_enter(
3099 __isl_take isl_schedule_node *node, void *user)
3101 struct isl_subtree_expansion_data *data = user;
3103 do {
3104 enum isl_schedule_node_type type;
3105 isl_union_set *filter;
3106 isl_union_map *inner, *expansion;
3107 int n;
3109 switch (isl_schedule_node_get_type(node)) {
3110 case isl_schedule_node_error:
3111 return isl_schedule_node_free(node);
3112 case isl_schedule_node_filter:
3113 type = isl_schedule_node_get_parent_type(node);
3114 if (type != isl_schedule_node_set &&
3115 type != isl_schedule_node_sequence)
3116 break;
3117 filter = isl_schedule_node_filter_get_filter(node);
3118 n = isl_union_map_list_n_union_map(data->expansions);
3119 inner =
3120 isl_union_map_list_get_union_map(data->expansions,
3121 n - 1);
3122 inner = isl_union_map_intersect_range(inner, filter);
3123 data->expansions =
3124 isl_union_map_list_add(data->expansions, inner);
3125 break;
3126 case isl_schedule_node_expansion:
3127 n = isl_union_map_list_n_union_map(data->expansions);
3128 expansion =
3129 isl_schedule_node_expansion_get_expansion(node);
3130 inner =
3131 isl_union_map_list_get_union_map(data->expansions,
3132 n - 1);
3133 inner = isl_union_map_apply_range(inner, expansion);
3134 data->expansions =
3135 isl_union_map_list_set_union_map(data->expansions,
3136 n - 1, inner);
3137 break;
3138 case isl_schedule_node_band:
3139 case isl_schedule_node_context:
3140 case isl_schedule_node_domain:
3141 case isl_schedule_node_leaf:
3142 case isl_schedule_node_mark:
3143 case isl_schedule_node_sequence:
3144 case isl_schedule_node_set:
3145 break;
3147 } while (isl_schedule_node_has_children(node) &&
3148 (node = isl_schedule_node_first_child(node)) != NULL);
3150 return node;
3153 /* Callback for "traverse" to leave a node for
3154 * isl_schedule_node_get_subtree_expansion.
3156 * If we come across a filter node that is the child
3157 * of a set or sequence node, then we remove the element
3158 * of data->expansions that was added in subtree_expansion_enter.
3160 * If we reach a leaf node, then the accumulated expansion is
3161 * added to data->res.
3163 static __isl_give isl_schedule_node *subtree_expansion_leave(
3164 __isl_take isl_schedule_node *node, void *user)
3166 struct isl_subtree_expansion_data *data = user;
3167 int n;
3168 isl_union_map *inner;
3169 enum isl_schedule_node_type type;
3171 switch (isl_schedule_node_get_type(node)) {
3172 case isl_schedule_node_error:
3173 return isl_schedule_node_free(node);
3174 case isl_schedule_node_filter:
3175 type = isl_schedule_node_get_parent_type(node);
3176 if (type != isl_schedule_node_set &&
3177 type != isl_schedule_node_sequence)
3178 break;
3179 n = isl_union_map_list_n_union_map(data->expansions);
3180 data->expansions = isl_union_map_list_drop(data->expansions,
3181 n - 1, 1);
3182 break;
3183 case isl_schedule_node_leaf:
3184 n = isl_union_map_list_n_union_map(data->expansions);
3185 inner = isl_union_map_list_get_union_map(data->expansions,
3186 n - 1);
3187 data->res = isl_union_map_union(data->res, inner);
3188 break;
3189 case isl_schedule_node_band:
3190 case isl_schedule_node_context:
3191 case isl_schedule_node_domain:
3192 case isl_schedule_node_expansion:
3193 case isl_schedule_node_mark:
3194 case isl_schedule_node_sequence:
3195 case isl_schedule_node_set:
3196 break;
3199 return node;
3202 /* Return a mapping from the domain elements that reach "node"
3203 * to the corresponding domain elements in the leaves of the subtree
3204 * rooted at "node" obtained by composing the intermediate expansions.
3206 * We start out with an identity mapping between the domain elements
3207 * that reach "node" and compose it with all the expansions
3208 * on a path from "node" to a leaf while traversing the subtree.
3209 * Within the children of an a sequence or set node, the
3210 * accumulated expansion is restricted to the elements selected
3211 * by the filter child.
3213 __isl_give isl_union_map *isl_schedule_node_get_subtree_expansion(
3214 __isl_keep isl_schedule_node *node)
3216 struct isl_subtree_expansion_data data;
3217 isl_space *space;
3218 isl_union_set *domain;
3219 isl_union_map *expansion;
3221 if (!node)
3222 return NULL;
3224 domain = isl_schedule_node_get_universe_domain(node);
3225 space = isl_union_set_get_space(domain);
3226 expansion = isl_union_set_identity(domain);
3227 data.res = isl_union_map_empty(space);
3228 data.expansions = isl_union_map_list_from_union_map(expansion);
3230 node = isl_schedule_node_copy(node);
3231 node = traverse(node, &subtree_expansion_enter,
3232 &subtree_expansion_leave, &data);
3233 if (!node)
3234 data.res = isl_union_map_free(data.res);
3235 isl_schedule_node_free(node);
3237 isl_union_map_list_free(data.expansions);
3239 return data.res;
3242 /* Internal data structure for isl_schedule_node_get_subtree_contraction.
3243 * "contractions" contains a list of accumulated contractions
3244 * for each outer expansion, set or sequence node. The first element
3245 * in the list is an identity mapping on the reaching domain elements.
3246 * "res" collects the results.
3248 struct isl_subtree_contraction_data {
3249 isl_union_pw_multi_aff_list *contractions;
3250 isl_union_pw_multi_aff *res;
3253 /* Callback for "traverse" to enter a node and to move
3254 * to the deepest initial subtree that should be traversed
3255 * by isl_schedule_node_get_subtree_contraction.
3257 * Whenever we come across an expansion node, the last element
3258 * of data->contractions is combined with the contraction
3259 * on the expansion node.
3261 * Whenever we come across a filter node that is the child
3262 * of a set or sequence node, data->contractions is extended
3263 * with a new element that restricts the previous element
3264 * to the elements selected by the filter.
3265 * The previous element can then be reused while backtracking.
3267 static __isl_give isl_schedule_node *subtree_contraction_enter(
3268 __isl_take isl_schedule_node *node, void *user)
3270 struct isl_subtree_contraction_data *data = user;
3272 do {
3273 enum isl_schedule_node_type type;
3274 isl_union_set *filter;
3275 isl_union_pw_multi_aff *inner, *contraction;
3276 int n;
3278 switch (isl_schedule_node_get_type(node)) {
3279 case isl_schedule_node_error:
3280 return isl_schedule_node_free(node);
3281 case isl_schedule_node_filter:
3282 type = isl_schedule_node_get_parent_type(node);
3283 if (type != isl_schedule_node_set &&
3284 type != isl_schedule_node_sequence)
3285 break;
3286 filter = isl_schedule_node_filter_get_filter(node);
3287 n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
3288 data->contractions);
3289 inner =
3290 isl_union_pw_multi_aff_list_get_union_pw_multi_aff(
3291 data->contractions, n - 1);
3292 inner = isl_union_pw_multi_aff_intersect_domain(inner,
3293 filter);
3294 data->contractions =
3295 isl_union_pw_multi_aff_list_add(data->contractions,
3296 inner);
3297 break;
3298 case isl_schedule_node_expansion:
3299 n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
3300 data->contractions);
3301 contraction =
3302 isl_schedule_node_expansion_get_contraction(node);
3303 inner =
3304 isl_union_pw_multi_aff_list_get_union_pw_multi_aff(
3305 data->contractions, n - 1);
3306 inner =
3307 isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
3308 inner, contraction);
3309 data->contractions =
3310 isl_union_pw_multi_aff_list_set_union_pw_multi_aff(
3311 data->contractions, n - 1, inner);
3312 break;
3313 case isl_schedule_node_band:
3314 case isl_schedule_node_context:
3315 case isl_schedule_node_domain:
3316 case isl_schedule_node_leaf:
3317 case isl_schedule_node_mark:
3318 case isl_schedule_node_sequence:
3319 case isl_schedule_node_set:
3320 break;
3322 } while (isl_schedule_node_has_children(node) &&
3323 (node = isl_schedule_node_first_child(node)) != NULL);
3325 return node;
3328 /* Callback for "traverse" to leave a node for
3329 * isl_schedule_node_get_subtree_contraction.
3331 * If we come across a filter node that is the child
3332 * of a set or sequence node, then we remove the element
3333 * of data->contractions that was added in subtree_contraction_enter.
3335 * If we reach a leaf node, then the accumulated contraction is
3336 * added to data->res.
3338 static __isl_give isl_schedule_node *subtree_contraction_leave(
3339 __isl_take isl_schedule_node *node, void *user)
3341 struct isl_subtree_contraction_data *data = user;
3342 int n;
3343 isl_union_pw_multi_aff *inner;
3344 enum isl_schedule_node_type type;
3346 switch (isl_schedule_node_get_type(node)) {
3347 case isl_schedule_node_error:
3348 return isl_schedule_node_free(node);
3349 case isl_schedule_node_filter:
3350 type = isl_schedule_node_get_parent_type(node);
3351 if (type != isl_schedule_node_set &&
3352 type != isl_schedule_node_sequence)
3353 break;
3354 n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
3355 data->contractions);
3356 data->contractions =
3357 isl_union_pw_multi_aff_list_drop(data->contractions,
3358 n - 1, 1);
3359 break;
3360 case isl_schedule_node_leaf:
3361 n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff(
3362 data->contractions);
3363 inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff(
3364 data->contractions, n - 1);
3365 data->res = isl_union_pw_multi_aff_union_add(data->res, inner);
3366 break;
3367 case isl_schedule_node_band:
3368 case isl_schedule_node_context:
3369 case isl_schedule_node_domain:
3370 case isl_schedule_node_expansion:
3371 case isl_schedule_node_mark:
3372 case isl_schedule_node_sequence:
3373 case isl_schedule_node_set:
3374 break;
3377 return node;
3380 /* Return a mapping from the domain elements in the leaves of the subtree
3381 * rooted at "node" to the corresponding domain elements that reach "node"
3382 * obtained by composing the intermediate contractions.
3384 * We start out with an identity mapping between the domain elements
3385 * that reach "node" and compose it with all the contractions
3386 * on a path from "node" to a leaf while traversing the subtree.
3387 * Within the children of an a sequence or set node, the
3388 * accumulated contraction is restricted to the elements selected
3389 * by the filter child.
3391 __isl_give isl_union_pw_multi_aff *isl_schedule_node_get_subtree_contraction(
3392 __isl_keep isl_schedule_node *node)
3394 struct isl_subtree_contraction_data data;
3395 isl_space *space;
3396 isl_union_set *domain;
3397 isl_union_pw_multi_aff *contraction;
3399 if (!node)
3400 return NULL;
3402 domain = isl_schedule_node_get_universe_domain(node);
3403 space = isl_union_set_get_space(domain);
3404 contraction = isl_union_set_identity_union_pw_multi_aff(domain);
3405 data.res = isl_union_pw_multi_aff_empty(space);
3406 data.contractions =
3407 isl_union_pw_multi_aff_list_from_union_pw_multi_aff(contraction);
3409 node = isl_schedule_node_copy(node);
3410 node = traverse(node, &subtree_contraction_enter,
3411 &subtree_contraction_leave, &data);
3412 if (!node)
3413 data.res = isl_union_pw_multi_aff_free(data.res);
3414 isl_schedule_node_free(node);
3416 isl_union_pw_multi_aff_list_free(data.contractions);
3418 return data.res;
3421 /* Reset the user pointer on all identifiers of parameters and tuples
3422 * in the schedule node "node".
3424 __isl_give isl_schedule_node *isl_schedule_node_reset_user(
3425 __isl_take isl_schedule_node *node)
3427 isl_schedule_tree *tree;
3429 tree = isl_schedule_node_get_tree(node);
3430 tree = isl_schedule_tree_reset_user(tree);
3431 node = isl_schedule_node_graft_tree(node, tree);
3433 return node;
3436 /* Align the parameters of the schedule node "node" to those of "space".
3438 __isl_give isl_schedule_node *isl_schedule_node_align_params(
3439 __isl_take isl_schedule_node *node, __isl_take isl_space *space)
3441 isl_schedule_tree *tree;
3443 tree = isl_schedule_node_get_tree(node);
3444 tree = isl_schedule_tree_align_params(tree, space);
3445 node = isl_schedule_node_graft_tree(node, tree);
3447 return node;
3450 /* Compute the pullback of schedule node "node"
3451 * by the function represented by "upma".
3452 * In other words, plug in "upma" in the iteration domains
3453 * of schedule node "node".
3454 * We currently do not handle expansion nodes.
3456 * Note that this is only a helper function for
3457 * isl_schedule_pullback_union_pw_multi_aff. In order to maintain consistency,
3458 * this function should not be called on a single node without also
3459 * calling it on all the other nodes.
3461 __isl_give isl_schedule_node *isl_schedule_node_pullback_union_pw_multi_aff(
3462 __isl_take isl_schedule_node *node,
3463 __isl_take isl_union_pw_multi_aff *upma)
3465 isl_schedule_tree *tree;
3467 tree = isl_schedule_node_get_tree(node);
3468 tree = isl_schedule_tree_pullback_union_pw_multi_aff(tree, upma);
3469 node = isl_schedule_node_graft_tree(node, tree);
3471 return node;
3474 /* Return the position of the subtree containing "node" among the children
3475 * of "ancestor". "node" is assumed to be a descendant of "ancestor".
3476 * In particular, both nodes should point to the same schedule tree.
3478 * Return -1 on error.
3480 int isl_schedule_node_get_ancestor_child_position(
3481 __isl_keep isl_schedule_node *node,
3482 __isl_keep isl_schedule_node *ancestor)
3484 int n1, n2;
3485 isl_schedule_tree *tree;
3487 if (!node || !ancestor)
3488 return -1;
3490 if (node->schedule != ancestor->schedule)
3491 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
3492 "not a descendant", return -1);
3494 n1 = isl_schedule_node_get_tree_depth(ancestor);
3495 n2 = isl_schedule_node_get_tree_depth(node);
3497 if (n1 >= n2)
3498 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
3499 "not a descendant", return -1);
3500 tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n1);
3501 isl_schedule_tree_free(tree);
3502 if (tree != ancestor->tree)
3503 isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid,
3504 "not a descendant", return -1);
3506 return node->child_pos[n1];
3509 /* Given two nodes that point to the same schedule tree, return their
3510 * closest shared ancestor.
3512 * Since the two nodes point to the same schedule, they share at least
3513 * one ancestor, the root of the schedule. We move down from the root
3514 * to the first ancestor where the respective children have a different
3515 * child position. This is the requested ancestor.
3516 * If there is no ancestor where the children have a different position,
3517 * then one node is an ancestor of the other and then this node is
3518 * the requested ancestor.
3520 __isl_give isl_schedule_node *isl_schedule_node_get_shared_ancestor(
3521 __isl_keep isl_schedule_node *node1,
3522 __isl_keep isl_schedule_node *node2)
3524 int i, n1, n2;
3526 if (!node1 || !node2)
3527 return NULL;
3528 if (node1->schedule != node2->schedule)
3529 isl_die(isl_schedule_node_get_ctx(node1), isl_error_invalid,
3530 "not part of same schedule", return NULL);
3531 n1 = isl_schedule_node_get_tree_depth(node1);
3532 n2 = isl_schedule_node_get_tree_depth(node2);
3533 if (n2 < n1)
3534 return isl_schedule_node_get_shared_ancestor(node2, node1);
3535 if (n1 == 0)
3536 return isl_schedule_node_copy(node1);
3537 if (isl_schedule_node_is_equal(node1, node2))
3538 return isl_schedule_node_copy(node1);
3540 for (i = 0; i < n1; ++i)
3541 if (node1->child_pos[i] != node2->child_pos[i])
3542 break;
3544 node1 = isl_schedule_node_copy(node1);
3545 return isl_schedule_node_ancestor(node1, n1 - i);
3548 /* Print "node" to "p".
3550 __isl_give isl_printer *isl_printer_print_schedule_node(
3551 __isl_take isl_printer *p, __isl_keep isl_schedule_node *node)
3553 if (!node)
3554 return isl_printer_free(p);
3555 return isl_printer_print_schedule_tree_mark(p, node->schedule->root,
3556 isl_schedule_tree_list_n_schedule_tree(node->ancestors),
3557 node->child_pos);
3560 void isl_schedule_node_dump(__isl_keep isl_schedule_node *node)
3562 isl_ctx *ctx;
3563 isl_printer *printer;
3565 if (!node)
3566 return;
3568 ctx = isl_schedule_node_get_ctx(node);
3569 printer = isl_printer_to_file(ctx, stderr);
3570 printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK);
3571 printer = isl_printer_print_schedule_node(printer, node);
3573 isl_printer_free(printer);