transitive closure: project out parameters when any constraints are impure
[isl.git] / isl_transitive_closure.c
blobbd0bd7a3e4cf90241beb59e806eb9d2f5c56e7c5
1 /*
2 * Copyright 2010 INRIA Saclay
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
11 #include <isl_map_private.h>
12 #include <isl/map.h>
13 #include <isl/seq.h>
14 #include <isl_dim_private.h>
15 #include <isl/lp.h>
16 #include <isl/union_map.h>
17 #include <isl_mat_private.h>
19 int isl_map_is_transitively_closed(__isl_keep isl_map *map)
21 isl_map *map2;
22 int closed;
24 map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
25 closed = isl_map_is_subset(map2, map);
26 isl_map_free(map2);
28 return closed;
31 int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
33 isl_union_map *umap2;
34 int closed;
36 umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
37 isl_union_map_copy(umap));
38 closed = isl_union_map_is_subset(umap2, umap);
39 isl_union_map_free(umap2);
41 return closed;
44 /* Given a map that represents a path with the length of the path
45 * encoded as the difference between the last output coordindate
46 * and the last input coordinate, set this length to either
47 * exactly "length" (if "exactly" is set) or at least "length"
48 * (if "exactly" is not set).
50 static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
51 int exactly, int length)
53 struct isl_dim *dim;
54 struct isl_basic_map *bmap;
55 unsigned d;
56 unsigned nparam;
57 int k;
58 isl_int *c;
60 if (!map)
61 return NULL;
63 dim = isl_map_get_dim(map);
64 d = isl_dim_size(dim, isl_dim_in);
65 nparam = isl_dim_size(dim, isl_dim_param);
66 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
67 if (exactly) {
68 k = isl_basic_map_alloc_equality(bmap);
69 c = bmap->eq[k];
70 } else {
71 k = isl_basic_map_alloc_inequality(bmap);
72 c = bmap->ineq[k];
74 if (k < 0)
75 goto error;
76 isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap));
77 isl_int_set_si(c[0], -length);
78 isl_int_set_si(c[1 + nparam + d - 1], -1);
79 isl_int_set_si(c[1 + nparam + d + d - 1], 1);
81 bmap = isl_basic_map_finalize(bmap);
82 map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
84 return map;
85 error:
86 isl_basic_map_free(bmap);
87 isl_map_free(map);
88 return NULL;
91 /* Check whether the overapproximation of the power of "map" is exactly
92 * the power of "map". Let R be "map" and A_k the overapproximation.
93 * The approximation is exact if
95 * A_1 = R
96 * A_k = A_{k-1} \circ R k >= 2
98 * Since A_k is known to be an overapproximation, we only need to check
100 * A_1 \subset R
101 * A_k \subset A_{k-1} \circ R k >= 2
103 * In practice, "app" has an extra input and output coordinate
104 * to encode the length of the path. So, we first need to add
105 * this coordinate to "map" and set the length of the path to
106 * one.
108 static int check_power_exactness(__isl_take isl_map *map,
109 __isl_take isl_map *app)
111 int exact;
112 isl_map *app_1;
113 isl_map *app_2;
115 map = isl_map_add_dims(map, isl_dim_in, 1);
116 map = isl_map_add_dims(map, isl_dim_out, 1);
117 map = set_path_length(map, 1, 1);
119 app_1 = set_path_length(isl_map_copy(app), 1, 1);
121 exact = isl_map_is_subset(app_1, map);
122 isl_map_free(app_1);
124 if (!exact || exact < 0) {
125 isl_map_free(app);
126 isl_map_free(map);
127 return exact;
130 app_1 = set_path_length(isl_map_copy(app), 0, 1);
131 app_2 = set_path_length(app, 0, 2);
132 app_1 = isl_map_apply_range(map, app_1);
134 exact = isl_map_is_subset(app_2, app_1);
136 isl_map_free(app_1);
137 isl_map_free(app_2);
139 return exact;
142 /* Check whether the overapproximation of the power of "map" is exactly
143 * the power of "map", possibly after projecting out the power (if "project"
144 * is set).
146 * If "project" is set and if "steps" can only result in acyclic paths,
147 * then we check
149 * A = R \cup (A \circ R)
151 * where A is the overapproximation with the power projected out, i.e.,
152 * an overapproximation of the transitive closure.
153 * More specifically, since A is known to be an overapproximation, we check
155 * A \subset R \cup (A \circ R)
157 * Otherwise, we check if the power is exact.
159 * Note that "app" has an extra input and output coordinate to encode
160 * the length of the part. If we are only interested in the transitive
161 * closure, then we can simply project out these coordinates first.
163 static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app,
164 int project)
166 isl_map *test;
167 int exact;
168 unsigned d;
170 if (!project)
171 return check_power_exactness(map, app);
173 d = isl_map_dim(map, isl_dim_in);
174 app = set_path_length(app, 0, 1);
175 app = isl_map_project_out(app, isl_dim_in, d, 1);
176 app = isl_map_project_out(app, isl_dim_out, d, 1);
178 app = isl_map_reset_dim(app, isl_map_get_dim(map));
180 test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
181 test = isl_map_union(test, isl_map_copy(map));
183 exact = isl_map_is_subset(app, test);
185 isl_map_free(app);
186 isl_map_free(test);
188 isl_map_free(map);
190 return exact;
194 * The transitive closure implementation is based on the paper
195 * "Computing the Transitive Closure of a Union of Affine Integer
196 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
197 * Albert Cohen.
200 /* Given a set of n offsets v_i (the rows of "steps"), construct a relation
201 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
202 * that maps an element x to any element that can be reached
203 * by taking a non-negative number of steps along any of
204 * the extended offsets v'_i = [v_i 1].
205 * That is, construct
207 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
209 * For any element in this relation, the number of steps taken
210 * is equal to the difference in the final coordinates.
212 static __isl_give isl_map *path_along_steps(__isl_take isl_dim *dim,
213 __isl_keep isl_mat *steps)
215 int i, j, k;
216 struct isl_basic_map *path = NULL;
217 unsigned d;
218 unsigned n;
219 unsigned nparam;
221 if (!dim || !steps)
222 goto error;
224 d = isl_dim_size(dim, isl_dim_in);
225 n = steps->n_row;
226 nparam = isl_dim_size(dim, isl_dim_param);
228 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n, d, n);
230 for (i = 0; i < n; ++i) {
231 k = isl_basic_map_alloc_div(path);
232 if (k < 0)
233 goto error;
234 isl_assert(steps->ctx, i == k, goto error);
235 isl_int_set_si(path->div[k][0], 0);
238 for (i = 0; i < d; ++i) {
239 k = isl_basic_map_alloc_equality(path);
240 if (k < 0)
241 goto error;
242 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
243 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
244 isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
245 if (i == d - 1)
246 for (j = 0; j < n; ++j)
247 isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
248 else
249 for (j = 0; j < n; ++j)
250 isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
251 steps->row[j][i]);
254 for (i = 0; i < n; ++i) {
255 k = isl_basic_map_alloc_inequality(path);
256 if (k < 0)
257 goto error;
258 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
259 isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
262 isl_dim_free(dim);
264 path = isl_basic_map_simplify(path);
265 path = isl_basic_map_finalize(path);
266 return isl_map_from_basic_map(path);
267 error:
268 isl_dim_free(dim);
269 isl_basic_map_free(path);
270 return NULL;
273 #define IMPURE 0
274 #define PURE_PARAM 1
275 #define PURE_VAR 2
276 #define MIXED 3
278 /* Check whether the parametric constant term of constraint c is never
279 * positive in "bset".
281 static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset,
282 isl_int *c, int *div_purity)
284 unsigned d;
285 unsigned n_div;
286 unsigned nparam;
287 int i;
288 int k;
289 int empty;
291 n_div = isl_basic_set_dim(bset, isl_dim_div);
292 d = isl_basic_set_dim(bset, isl_dim_set);
293 nparam = isl_basic_set_dim(bset, isl_dim_param);
295 bset = isl_basic_set_copy(bset);
296 bset = isl_basic_set_cow(bset);
297 bset = isl_basic_set_extend_constraints(bset, 0, 1);
298 k = isl_basic_set_alloc_inequality(bset);
299 if (k < 0)
300 goto error;
301 isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset));
302 isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
303 for (i = 0; i < n_div; ++i) {
304 if (div_purity[i] != PURE_PARAM)
305 continue;
306 isl_int_set(bset->ineq[k][1 + nparam + d + i],
307 c[1 + nparam + d + i]);
309 isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
310 empty = isl_basic_set_is_empty(bset);
311 isl_basic_set_free(bset);
313 return empty;
314 error:
315 isl_basic_set_free(bset);
316 return -1;
319 /* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
320 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
321 * Return MIXED if only the coefficients of the parameters and the set
322 * variables are non-zero and if moreover the parametric constant
323 * can never attain positive values.
324 * Return IMPURE otherwise.
326 * If div_purity is NULL then we are dealing with a non-parametric set
327 * and so the constraint is obviously PURE_VAR.
329 static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
330 int eq)
332 unsigned d;
333 unsigned n_div;
334 unsigned nparam;
335 int empty;
336 int i;
337 int p = 0, v = 0;
339 if (!div_purity)
340 return PURE_VAR;
342 n_div = isl_basic_set_dim(bset, isl_dim_div);
343 d = isl_basic_set_dim(bset, isl_dim_set);
344 nparam = isl_basic_set_dim(bset, isl_dim_param);
346 for (i = 0; i < n_div; ++i) {
347 if (isl_int_is_zero(c[1 + nparam + d + i]))
348 continue;
349 switch (div_purity[i]) {
350 case PURE_PARAM: p = 1; break;
351 case PURE_VAR: v = 1; break;
352 default: return IMPURE;
355 if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
356 return PURE_VAR;
357 if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
358 return PURE_PARAM;
360 empty = parametric_constant_never_positive(bset, c, div_purity);
361 if (eq && empty >= 0 && !empty) {
362 isl_seq_neg(c, c, 1 + nparam + d + n_div);
363 empty = parametric_constant_never_positive(bset, c, div_purity);
366 return empty < 0 ? -1 : empty ? MIXED : IMPURE;
369 /* Return an array of integers indicating the type of each div in bset.
370 * If the div is (recursively) defined in terms of only the parameters,
371 * then the type is PURE_PARAM.
372 * If the div is (recursively) defined in terms of only the set variables,
373 * then the type is PURE_VAR.
374 * Otherwise, the type is IMPURE.
376 static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
378 int i, j;
379 int *div_purity;
380 unsigned d;
381 unsigned n_div;
382 unsigned nparam;
384 if (!bset)
385 return NULL;
387 n_div = isl_basic_set_dim(bset, isl_dim_div);
388 d = isl_basic_set_dim(bset, isl_dim_set);
389 nparam = isl_basic_set_dim(bset, isl_dim_param);
391 div_purity = isl_alloc_array(bset->ctx, int, n_div);
392 if (!div_purity)
393 return NULL;
395 for (i = 0; i < bset->n_div; ++i) {
396 int p = 0, v = 0;
397 if (isl_int_is_zero(bset->div[i][0])) {
398 div_purity[i] = IMPURE;
399 continue;
401 if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
402 p = 1;
403 if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
404 v = 1;
405 for (j = 0; j < i; ++j) {
406 if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
407 continue;
408 switch (div_purity[j]) {
409 case PURE_PARAM: p = 1; break;
410 case PURE_VAR: v = 1; break;
411 default: p = v = 1; break;
414 div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
417 return div_purity;
420 /* Given a path with the as yet unconstrained length at position "pos",
421 * check if setting the length to zero results in only the identity
422 * mapping.
424 static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos)
426 isl_basic_map *test = NULL;
427 isl_basic_map *id = NULL;
428 int k;
429 int is_id;
431 test = isl_basic_map_copy(path);
432 test = isl_basic_map_extend_constraints(test, 1, 0);
433 k = isl_basic_map_alloc_equality(test);
434 if (k < 0)
435 goto error;
436 isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test));
437 isl_int_set_si(test->eq[k][pos], 1);
438 id = isl_basic_map_identity(isl_dim_domain(isl_basic_map_get_dim(path)));
439 is_id = isl_basic_map_is_equal(test, id);
440 isl_basic_map_free(test);
441 isl_basic_map_free(id);
442 return is_id;
443 error:
444 isl_basic_map_free(test);
445 return -1;
448 /* If any of the constraints is found to be impure then this function
449 * sets *impurity to 1.
451 static __isl_give isl_basic_map *add_delta_constraints(
452 __isl_take isl_basic_map *path,
453 __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
454 unsigned d, int *div_purity, int eq, int *impurity)
456 int i, k;
457 int n = eq ? delta->n_eq : delta->n_ineq;
458 isl_int **delta_c = eq ? delta->eq : delta->ineq;
459 unsigned n_div;
461 n_div = isl_basic_set_dim(delta, isl_dim_div);
463 for (i = 0; i < n; ++i) {
464 isl_int *path_c;
465 int p = purity(delta, delta_c[i], div_purity, eq);
466 if (p < 0)
467 goto error;
468 if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
469 *impurity = 1;
470 if (p == IMPURE)
471 continue;
472 if (eq && p != MIXED) {
473 k = isl_basic_map_alloc_equality(path);
474 path_c = path->eq[k];
475 } else {
476 k = isl_basic_map_alloc_inequality(path);
477 path_c = path->ineq[k];
479 if (k < 0)
480 goto error;
481 isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path));
482 if (p == PURE_VAR) {
483 isl_seq_cpy(path_c + off,
484 delta_c[i] + 1 + nparam, d);
485 isl_int_set(path_c[off + d], delta_c[i][0]);
486 } else if (p == PURE_PARAM) {
487 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
488 } else {
489 isl_seq_cpy(path_c + off,
490 delta_c[i] + 1 + nparam, d);
491 isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
493 isl_seq_cpy(path_c + off - n_div,
494 delta_c[i] + 1 + nparam + d, n_div);
497 return path;
498 error:
499 isl_basic_map_free(path);
500 return NULL;
503 /* Given a set of offsets "delta", construct a relation of the
504 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
505 * is an overapproximation of the relations that
506 * maps an element x to any element that can be reached
507 * by taking a non-negative number of steps along any of
508 * the elements in "delta".
509 * That is, construct an approximation of
511 * { [x] -> [y] : exists f \in \delta, k \in Z :
512 * y = x + k [f, 1] and k >= 0 }
514 * For any element in this relation, the number of steps taken
515 * is equal to the difference in the final coordinates.
517 * In particular, let delta be defined as
519 * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
520 * C x + C'p + c >= 0 and
521 * D x + D'p + d >= 0 }
523 * where the constraints C x + C'p + c >= 0 are such that the parametric
524 * constant term of each constraint j, "C_j x + C'_j p + c_j",
525 * can never attain positive values, then the relation is constructed as
527 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
528 * A f + k a >= 0 and B p + b >= 0 and
529 * C f + C'p + c >= 0 and k >= 1 }
530 * union { [x] -> [x] }
532 * If the zero-length paths happen to correspond exactly to the identity
533 * mapping, then we return
535 * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
536 * A f + k a >= 0 and B p + b >= 0 and
537 * C f + C'p + c >= 0 and k >= 0 }
539 * instead.
541 * Existentially quantified variables in \delta are handled by
542 * classifying them as independent of the parameters, purely
543 * parameter dependent and others. Constraints containing
544 * any of the other existentially quantified variables are removed.
545 * This is safe, but leads to an additional overapproximation.
547 * If there are any impure constraints, then we also eliminate
548 * the parameters from \delta, resulting in a set
550 * \delta' = { [x] : E x + e >= 0 }
552 * and add the constraints
554 * E f + k e >= 0
556 * to the constructed relation.
558 static __isl_give isl_map *path_along_delta(__isl_take isl_dim *dim,
559 __isl_take isl_basic_set *delta)
561 isl_basic_map *path = NULL;
562 unsigned d;
563 unsigned n_div;
564 unsigned nparam;
565 unsigned off;
566 int i, k;
567 int is_id;
568 int *div_purity = NULL;
569 int impurity = 0;
571 if (!delta)
572 goto error;
573 n_div = isl_basic_set_dim(delta, isl_dim_div);
574 d = isl_basic_set_dim(delta, isl_dim_set);
575 nparam = isl_basic_set_dim(delta, isl_dim_param);
576 path = isl_basic_map_alloc_dim(isl_dim_copy(dim), n_div + d + 1,
577 d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
578 off = 1 + nparam + 2 * (d + 1) + n_div;
580 for (i = 0; i < n_div + d + 1; ++i) {
581 k = isl_basic_map_alloc_div(path);
582 if (k < 0)
583 goto error;
584 isl_int_set_si(path->div[k][0], 0);
587 for (i = 0; i < d + 1; ++i) {
588 k = isl_basic_map_alloc_equality(path);
589 if (k < 0)
590 goto error;
591 isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path));
592 isl_int_set_si(path->eq[k][1 + nparam + i], 1);
593 isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
594 isl_int_set_si(path->eq[k][off + i], 1);
597 div_purity = get_div_purity(delta);
598 if (!div_purity)
599 goto error;
601 path = add_delta_constraints(path, delta, off, nparam, d,
602 div_purity, 1, &impurity);
603 path = add_delta_constraints(path, delta, off, nparam, d,
604 div_purity, 0, &impurity);
605 if (impurity) {
606 isl_dim *dim = isl_basic_set_get_dim(delta);
607 delta = isl_basic_set_project_out(delta,
608 isl_dim_param, 0, nparam);
609 delta = isl_basic_set_add(delta, isl_dim_param, nparam);
610 delta = isl_basic_set_reset_dim(delta, dim);
611 if (!delta)
612 goto error;
613 path = isl_basic_map_extend_constraints(path, delta->n_eq,
614 delta->n_ineq + 1);
615 path = add_delta_constraints(path, delta, off, nparam, d,
616 NULL, 1, &impurity);
617 path = add_delta_constraints(path, delta, off, nparam, d,
618 NULL, 0, &impurity);
619 path = isl_basic_map_gauss(path, NULL);
622 is_id = empty_path_is_identity(path, off + d);
623 if (is_id < 0)
624 goto error;
626 k = isl_basic_map_alloc_inequality(path);
627 if (k < 0)
628 goto error;
629 isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path));
630 if (!is_id)
631 isl_int_set_si(path->ineq[k][0], -1);
632 isl_int_set_si(path->ineq[k][off + d], 1);
634 free(div_purity);
635 isl_basic_set_free(delta);
636 path = isl_basic_map_finalize(path);
637 if (is_id) {
638 isl_dim_free(dim);
639 return isl_map_from_basic_map(path);
641 return isl_basic_map_union(path,
642 isl_basic_map_identity(isl_dim_domain(dim)));
643 error:
644 free(div_purity);
645 isl_dim_free(dim);
646 isl_basic_set_free(delta);
647 isl_basic_map_free(path);
648 return NULL;
651 /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
652 * construct a map that equates the parameter to the difference
653 * in the final coordinates and imposes that this difference is positive.
654 * That is, construct
656 * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
658 static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_dim *dim,
659 unsigned param)
661 struct isl_basic_map *bmap;
662 unsigned d;
663 unsigned nparam;
664 int k;
666 d = isl_dim_size(dim, isl_dim_in);
667 nparam = isl_dim_size(dim, isl_dim_param);
668 bmap = isl_basic_map_alloc_dim(dim, 0, 1, 1);
669 k = isl_basic_map_alloc_equality(bmap);
670 if (k < 0)
671 goto error;
672 isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap));
673 isl_int_set_si(bmap->eq[k][1 + param], -1);
674 isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
675 isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
677 k = isl_basic_map_alloc_inequality(bmap);
678 if (k < 0)
679 goto error;
680 isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap));
681 isl_int_set_si(bmap->ineq[k][1 + param], 1);
682 isl_int_set_si(bmap->ineq[k][0], -1);
684 bmap = isl_basic_map_finalize(bmap);
685 return isl_map_from_basic_map(bmap);
686 error:
687 isl_basic_map_free(bmap);
688 return NULL;
691 /* Check whether "path" is acyclic, where the last coordinates of domain
692 * and range of path encode the number of steps taken.
693 * That is, check whether
695 * { d | d = y - x and (x,y) in path }
697 * does not contain any element with positive last coordinate (positive length)
698 * and zero remaining coordinates (cycle).
700 static int is_acyclic(__isl_take isl_map *path)
702 int i;
703 int acyclic;
704 unsigned dim;
705 struct isl_set *delta;
707 delta = isl_map_deltas(path);
708 dim = isl_set_dim(delta, isl_dim_set);
709 for (i = 0; i < dim; ++i) {
710 if (i == dim -1)
711 delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
712 else
713 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
716 acyclic = isl_set_is_empty(delta);
717 isl_set_free(delta);
719 return acyclic;
722 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
723 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
724 * construct a map that is an overapproximation of the map
725 * that takes an element from the space D \times Z to another
726 * element from the same space, such that the first n coordinates of the
727 * difference between them is a sum of differences between images
728 * and pre-images in one of the R_i and such that the last coordinate
729 * is equal to the number of steps taken.
730 * That is, let
732 * \Delta_i = { y - x | (x, y) in R_i }
734 * then the constructed map is an overapproximation of
736 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
737 * d = (\sum_i k_i \delta_i, \sum_i k_i) }
739 * The elements of the singleton \Delta_i's are collected as the
740 * rows of the steps matrix. For all these \Delta_i's together,
741 * a single path is constructed.
742 * For each of the other \Delta_i's, we compute an overapproximation
743 * of the paths along elements of \Delta_i.
744 * Since each of these paths performs an addition, composition is
745 * symmetric and we can simply compose all resulting paths in any order.
747 static __isl_give isl_map *construct_extended_path(__isl_take isl_dim *dim,
748 __isl_keep isl_map *map, int *project)
750 struct isl_mat *steps = NULL;
751 struct isl_map *path = NULL;
752 unsigned d;
753 int i, j, n;
755 d = isl_map_dim(map, isl_dim_in);
757 path = isl_map_identity(isl_dim_domain(isl_dim_copy(dim)));
759 steps = isl_mat_alloc(map->ctx, map->n, d);
760 if (!steps)
761 goto error;
763 n = 0;
764 for (i = 0; i < map->n; ++i) {
765 struct isl_basic_set *delta;
767 delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
769 for (j = 0; j < d; ++j) {
770 int fixed;
772 fixed = isl_basic_set_fast_dim_is_fixed(delta, j,
773 &steps->row[n][j]);
774 if (fixed < 0) {
775 isl_basic_set_free(delta);
776 goto error;
778 if (!fixed)
779 break;
783 if (j < d) {
784 path = isl_map_apply_range(path,
785 path_along_delta(isl_dim_copy(dim), delta));
786 path = isl_map_coalesce(path);
787 } else {
788 isl_basic_set_free(delta);
789 ++n;
793 if (n > 0) {
794 steps->n_row = n;
795 path = isl_map_apply_range(path,
796 path_along_steps(isl_dim_copy(dim), steps));
799 if (project && *project) {
800 *project = is_acyclic(isl_map_copy(path));
801 if (*project < 0)
802 goto error;
805 isl_dim_free(dim);
806 isl_mat_free(steps);
807 return path;
808 error:
809 isl_dim_free(dim);
810 isl_mat_free(steps);
811 isl_map_free(path);
812 return NULL;
815 static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
817 isl_set *i;
818 int no_overlap;
820 if (!isl_dim_tuple_match(set1->dim, isl_dim_set, set2->dim, isl_dim_set))
821 return 0;
823 i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2));
824 no_overlap = isl_set_is_empty(i);
825 isl_set_free(i);
827 return no_overlap < 0 ? -1 : !no_overlap;
830 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
831 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
832 * construct a map that is an overapproximation of the map
833 * that takes an element from the dom R \times Z to an
834 * element from ran R \times Z, such that the first n coordinates of the
835 * difference between them is a sum of differences between images
836 * and pre-images in one of the R_i and such that the last coordinate
837 * is equal to the number of steps taken.
838 * That is, let
840 * \Delta_i = { y - x | (x, y) in R_i }
842 * then the constructed map is an overapproximation of
844 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
845 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
846 * x in dom R and x + d in ran R and
847 * \sum_i k_i >= 1 }
849 static __isl_give isl_map *construct_component(__isl_take isl_dim *dim,
850 __isl_keep isl_map *map, int *exact, int project)
852 struct isl_set *domain = NULL;
853 struct isl_set *range = NULL;
854 struct isl_map *app = NULL;
855 struct isl_map *path = NULL;
857 domain = isl_map_domain(isl_map_copy(map));
858 domain = isl_set_coalesce(domain);
859 range = isl_map_range(isl_map_copy(map));
860 range = isl_set_coalesce(range);
861 if (!isl_set_overlaps(domain, range)) {
862 isl_set_free(domain);
863 isl_set_free(range);
864 isl_dim_free(dim);
866 map = isl_map_copy(map);
867 map = isl_map_add_dims(map, isl_dim_in, 1);
868 map = isl_map_add_dims(map, isl_dim_out, 1);
869 map = set_path_length(map, 1, 1);
870 return map;
872 app = isl_map_from_domain_and_range(domain, range);
873 app = isl_map_add_dims(app, isl_dim_in, 1);
874 app = isl_map_add_dims(app, isl_dim_out, 1);
876 path = construct_extended_path(isl_dim_copy(dim), map,
877 exact && *exact ? &project : NULL);
878 app = isl_map_intersect(app, path);
880 if (exact && *exact &&
881 (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
882 project)) < 0)
883 goto error;
885 isl_dim_free(dim);
886 app = set_path_length(app, 0, 1);
887 return app;
888 error:
889 isl_dim_free(dim);
890 isl_map_free(app);
891 return NULL;
894 /* Call construct_component and, if "project" is set, project out
895 * the final coordinates.
897 static __isl_give isl_map *construct_projected_component(
898 __isl_take isl_dim *dim,
899 __isl_keep isl_map *map, int *exact, int project)
901 isl_map *app;
902 unsigned d;
904 if (!dim)
905 return NULL;
906 d = isl_dim_size(dim, isl_dim_in);
908 app = construct_component(dim, map, exact, project);
909 if (project) {
910 app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
911 app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
913 return app;
916 /* Compute an extended version, i.e., with path lengths, of
917 * an overapproximation of the transitive closure of "bmap"
918 * with path lengths greater than or equal to zero and with
919 * domain and range equal to "dom".
921 static __isl_give isl_map *q_closure(__isl_take isl_dim *dim,
922 __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact)
924 int project = 1;
925 isl_map *path;
926 isl_map *map;
927 isl_map *app;
929 dom = isl_set_add_dims(dom, isl_dim_set, 1);
930 app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
931 map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
932 path = construct_extended_path(dim, map, &project);
933 app = isl_map_intersect(app, path);
935 if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
936 goto error;
938 return app;
939 error:
940 isl_map_free(app);
941 return NULL;
944 /* Check whether qc has any elements of length at least one
945 * with domain and/or range outside of dom and ran.
947 static int has_spurious_elements(__isl_keep isl_map *qc,
948 __isl_keep isl_set *dom, __isl_keep isl_set *ran)
950 isl_set *s;
951 int subset;
952 unsigned d;
954 if (!qc || !dom || !ran)
955 return -1;
957 d = isl_map_dim(qc, isl_dim_in);
959 qc = isl_map_copy(qc);
960 qc = set_path_length(qc, 0, 1);
961 qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
962 qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
964 s = isl_map_domain(isl_map_copy(qc));
965 subset = isl_set_is_subset(s, dom);
966 isl_set_free(s);
967 if (subset < 0)
968 goto error;
969 if (!subset) {
970 isl_map_free(qc);
971 return 1;
974 s = isl_map_range(qc);
975 subset = isl_set_is_subset(s, ran);
976 isl_set_free(s);
978 return subset < 0 ? -1 : !subset;
979 error:
980 isl_map_free(qc);
981 return -1;
984 #define LEFT 2
985 #define RIGHT 1
987 /* For each basic map in "map", except i, check whether it combines
988 * with the transitive closure that is reflexive on C combines
989 * to the left and to the right.
991 * In particular, if
993 * dom map_j \subseteq C
995 * then right[j] is set to 1. Otherwise, if
997 * ran map_i \cap dom map_j = \emptyset
999 * then right[j] is set to 0. Otherwise, composing to the right
1000 * is impossible.
1002 * Similar, for composing to the left, we have if
1004 * ran map_j \subseteq C
1006 * then left[j] is set to 1. Otherwise, if
1008 * dom map_i \cap ran map_j = \emptyset
1010 * then left[j] is set to 0. Otherwise, composing to the left
1011 * is impossible.
1013 * The return value is or'd with LEFT if composing to the left
1014 * is possible and with RIGHT if composing to the right is possible.
1016 static int composability(__isl_keep isl_set *C, int i,
1017 isl_set **dom, isl_set **ran, int *left, int *right,
1018 __isl_keep isl_map *map)
1020 int j;
1021 int ok;
1023 ok = LEFT | RIGHT;
1024 for (j = 0; j < map->n && ok; ++j) {
1025 int overlaps, subset;
1026 if (j == i)
1027 continue;
1029 if (ok & RIGHT) {
1030 if (!dom[j])
1031 dom[j] = isl_set_from_basic_set(
1032 isl_basic_map_domain(
1033 isl_basic_map_copy(map->p[j])));
1034 if (!dom[j])
1035 return -1;
1036 overlaps = isl_set_overlaps(ran[i], dom[j]);
1037 if (overlaps < 0)
1038 return -1;
1039 if (!overlaps)
1040 right[j] = 0;
1041 else {
1042 subset = isl_set_is_subset(dom[j], C);
1043 if (subset < 0)
1044 return -1;
1045 if (subset)
1046 right[j] = 1;
1047 else
1048 ok &= ~RIGHT;
1052 if (ok & LEFT) {
1053 if (!ran[j])
1054 ran[j] = isl_set_from_basic_set(
1055 isl_basic_map_range(
1056 isl_basic_map_copy(map->p[j])));
1057 if (!ran[j])
1058 return -1;
1059 overlaps = isl_set_overlaps(dom[i], ran[j]);
1060 if (overlaps < 0)
1061 return -1;
1062 if (!overlaps)
1063 left[j] = 0;
1064 else {
1065 subset = isl_set_is_subset(ran[j], C);
1066 if (subset < 0)
1067 return -1;
1068 if (subset)
1069 left[j] = 1;
1070 else
1071 ok &= ~LEFT;
1076 return ok;
1079 static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1081 map = isl_map_reset(map, isl_dim_in);
1082 map = isl_map_reset(map, isl_dim_out);
1083 return map;
1086 /* Return a map that is a union of the basic maps in "map", except i,
1087 * composed to left and right with qc based on the entries of "left"
1088 * and "right".
1090 static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1091 __isl_take isl_map *qc, int *left, int *right)
1093 int j;
1094 isl_map *comp;
1096 comp = isl_map_empty(isl_map_get_dim(map));
1097 for (j = 0; j < map->n; ++j) {
1098 isl_map *map_j;
1100 if (j == i)
1101 continue;
1103 map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1104 map_j = anonymize(map_j);
1105 if (left && left[j])
1106 map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1107 if (right && right[j])
1108 map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1109 comp = isl_map_union(comp, map_j);
1112 comp = isl_map_compute_divs(comp);
1113 comp = isl_map_coalesce(comp);
1115 isl_map_free(qc);
1117 return comp;
1120 /* Compute the transitive closure of "map" incrementally by
1121 * computing
1123 * map_i^+ \cup qc^+
1125 * or
1127 * map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1129 * or
1131 * map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1133 * depending on whether left or right are NULL.
1135 static __isl_give isl_map *compute_incremental(
1136 __isl_take isl_dim *dim, __isl_keep isl_map *map,
1137 int i, __isl_take isl_map *qc, int *left, int *right, int *exact)
1139 isl_map *map_i;
1140 isl_map *tc;
1141 isl_map *rtc = NULL;
1143 if (!map)
1144 goto error;
1145 isl_assert(map->ctx, left || right, goto error);
1147 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1148 tc = construct_projected_component(isl_dim_copy(dim), map_i,
1149 exact, 1);
1150 isl_map_free(map_i);
1152 if (*exact)
1153 qc = isl_map_transitive_closure(qc, exact);
1155 if (!*exact) {
1156 isl_dim_free(dim);
1157 isl_map_free(tc);
1158 isl_map_free(qc);
1159 return isl_map_universe(isl_map_get_dim(map));
1162 if (!left || !right)
1163 rtc = isl_map_union(isl_map_copy(tc),
1164 isl_map_identity(isl_dim_domain(isl_map_get_dim(tc))));
1165 if (!right)
1166 qc = isl_map_apply_range(rtc, qc);
1167 if (!left)
1168 qc = isl_map_apply_range(qc, rtc);
1169 qc = isl_map_union(tc, qc);
1171 isl_dim_free(dim);
1173 return qc;
1174 error:
1175 isl_dim_free(dim);
1176 isl_map_free(qc);
1177 return NULL;
1180 /* Given a map "map", try to find a basic map such that
1181 * map^+ can be computed as
1183 * map^+ = map_i^+ \cup
1184 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1186 * with C the simple hull of the domain and range of the input map.
1187 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1188 * and by intersecting domain and range with C.
1189 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1190 * Also, we only use the incremental computation if all the transitive
1191 * closures are exact and if the number of basic maps in the union,
1192 * after computing the integer divisions, is smaller than the number
1193 * of basic maps in the input map.
1195 static int incemental_on_entire_domain(__isl_keep isl_dim *dim,
1196 __isl_keep isl_map *map,
1197 isl_set **dom, isl_set **ran, int *left, int *right,
1198 __isl_give isl_map **res)
1200 int i;
1201 isl_set *C;
1202 unsigned d;
1204 *res = NULL;
1206 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1207 isl_map_range(isl_map_copy(map)));
1208 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1209 if (!C)
1210 return -1;
1211 if (C->n != 1) {
1212 isl_set_free(C);
1213 return 0;
1216 d = isl_map_dim(map, isl_dim_in);
1218 for (i = 0; i < map->n; ++i) {
1219 isl_map *qc;
1220 int exact_i, spurious;
1221 int j;
1222 dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1223 isl_basic_map_copy(map->p[i])));
1224 ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1225 isl_basic_map_copy(map->p[i])));
1226 qc = q_closure(isl_dim_copy(dim), isl_set_copy(C),
1227 map->p[i], &exact_i);
1228 if (!qc)
1229 goto error;
1230 if (!exact_i) {
1231 isl_map_free(qc);
1232 continue;
1234 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1235 if (spurious) {
1236 isl_map_free(qc);
1237 if (spurious < 0)
1238 goto error;
1239 continue;
1241 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1242 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1243 qc = isl_map_compute_divs(qc);
1244 for (j = 0; j < map->n; ++j)
1245 left[j] = right[j] = 1;
1246 qc = compose(map, i, qc, left, right);
1247 if (!qc)
1248 goto error;
1249 if (qc->n >= map->n) {
1250 isl_map_free(qc);
1251 continue;
1253 *res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1254 left, right, &exact_i);
1255 if (!*res)
1256 goto error;
1257 if (exact_i)
1258 break;
1259 isl_map_free(*res);
1260 *res = NULL;
1263 isl_set_free(C);
1265 return *res != NULL;
1266 error:
1267 isl_set_free(C);
1268 return -1;
1271 /* Try and compute the transitive closure of "map" as
1273 * map^+ = map_i^+ \cup
1274 * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1276 * with C either the simple hull of the domain and range of the entire
1277 * map or the simple hull of domain and range of map_i.
1279 static __isl_give isl_map *incremental_closure(__isl_take isl_dim *dim,
1280 __isl_keep isl_map *map, int *exact, int project)
1282 int i;
1283 isl_set **dom = NULL;
1284 isl_set **ran = NULL;
1285 int *left = NULL;
1286 int *right = NULL;
1287 isl_set *C;
1288 unsigned d;
1289 isl_map *res = NULL;
1291 if (!project)
1292 return construct_projected_component(dim, map, exact, project);
1294 if (!map)
1295 goto error;
1296 if (map->n <= 1)
1297 return construct_projected_component(dim, map, exact, project);
1299 d = isl_map_dim(map, isl_dim_in);
1301 dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1302 ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1303 left = isl_calloc_array(map->ctx, int, map->n);
1304 right = isl_calloc_array(map->ctx, int, map->n);
1305 if (!ran || !dom || !left || !right)
1306 goto error;
1308 if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0)
1309 goto error;
1311 for (i = 0; !res && i < map->n; ++i) {
1312 isl_map *qc;
1313 int exact_i, spurious, comp;
1314 if (!dom[i])
1315 dom[i] = isl_set_from_basic_set(
1316 isl_basic_map_domain(
1317 isl_basic_map_copy(map->p[i])));
1318 if (!dom[i])
1319 goto error;
1320 if (!ran[i])
1321 ran[i] = isl_set_from_basic_set(
1322 isl_basic_map_range(
1323 isl_basic_map_copy(map->p[i])));
1324 if (!ran[i])
1325 goto error;
1326 C = isl_set_union(isl_set_copy(dom[i]),
1327 isl_set_copy(ran[i]));
1328 C = isl_set_from_basic_set(isl_set_simple_hull(C));
1329 if (!C)
1330 goto error;
1331 if (C->n != 1) {
1332 isl_set_free(C);
1333 continue;
1335 comp = composability(C, i, dom, ran, left, right, map);
1336 if (!comp || comp < 0) {
1337 isl_set_free(C);
1338 if (comp < 0)
1339 goto error;
1340 continue;
1342 qc = q_closure(isl_dim_copy(dim), C, map->p[i], &exact_i);
1343 if (!qc)
1344 goto error;
1345 if (!exact_i) {
1346 isl_map_free(qc);
1347 continue;
1349 spurious = has_spurious_elements(qc, dom[i], ran[i]);
1350 if (spurious) {
1351 isl_map_free(qc);
1352 if (spurious < 0)
1353 goto error;
1354 continue;
1356 qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1357 qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1358 qc = isl_map_compute_divs(qc);
1359 qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1360 (comp & RIGHT) ? right : NULL);
1361 if (!qc)
1362 goto error;
1363 if (qc->n >= map->n) {
1364 isl_map_free(qc);
1365 continue;
1367 res = compute_incremental(isl_dim_copy(dim), map, i, qc,
1368 (comp & LEFT) ? left : NULL,
1369 (comp & RIGHT) ? right : NULL, &exact_i);
1370 if (!res)
1371 goto error;
1372 if (exact_i)
1373 break;
1374 isl_map_free(res);
1375 res = NULL;
1378 for (i = 0; i < map->n; ++i) {
1379 isl_set_free(dom[i]);
1380 isl_set_free(ran[i]);
1382 free(dom);
1383 free(ran);
1384 free(left);
1385 free(right);
1387 if (res) {
1388 isl_dim_free(dim);
1389 return res;
1392 return construct_projected_component(dim, map, exact, project);
1393 error:
1394 if (dom)
1395 for (i = 0; i < map->n; ++i)
1396 isl_set_free(dom[i]);
1397 free(dom);
1398 if (ran)
1399 for (i = 0; i < map->n; ++i)
1400 isl_set_free(ran[i]);
1401 free(ran);
1402 free(left);
1403 free(right);
1404 isl_dim_free(dim);
1405 return NULL;
1408 /* Given an array of sets "set", add "dom" at position "pos"
1409 * and search for elements at earlier positions that overlap with "dom".
1410 * If any can be found, then merge all of them, together with "dom", into
1411 * a single set and assign the union to the first in the array,
1412 * which becomes the new group leader for all groups involved in the merge.
1413 * During the search, we only consider group leaders, i.e., those with
1414 * group[i] = i, as the other sets have already been combined
1415 * with one of the group leaders.
1417 static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1419 int i;
1421 group[pos] = pos;
1422 set[pos] = isl_set_copy(dom);
1424 for (i = pos - 1; i >= 0; --i) {
1425 int o;
1427 if (group[i] != i)
1428 continue;
1430 o = isl_set_overlaps(set[i], dom);
1431 if (o < 0)
1432 goto error;
1433 if (!o)
1434 continue;
1436 set[i] = isl_set_union(set[i], set[group[pos]]);
1437 set[group[pos]] = NULL;
1438 if (!set[i])
1439 goto error;
1440 group[group[pos]] = i;
1441 group[pos] = i;
1444 isl_set_free(dom);
1445 return 0;
1446 error:
1447 isl_set_free(dom);
1448 return -1;
1451 /* Replace each entry in the n by n grid of maps by the cross product
1452 * with the relation { [i] -> [i + 1] }.
1454 static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1456 int i, j, k;
1457 isl_dim *dim;
1458 isl_basic_map *bstep;
1459 isl_map *step;
1460 unsigned nparam;
1462 if (!map)
1463 return -1;
1465 dim = isl_map_get_dim(map);
1466 nparam = isl_dim_size(dim, isl_dim_param);
1467 dim = isl_dim_drop(dim, isl_dim_in, 0, isl_dim_size(dim, isl_dim_in));
1468 dim = isl_dim_drop(dim, isl_dim_out, 0, isl_dim_size(dim, isl_dim_out));
1469 dim = isl_dim_add(dim, isl_dim_in, 1);
1470 dim = isl_dim_add(dim, isl_dim_out, 1);
1471 bstep = isl_basic_map_alloc_dim(dim, 0, 1, 0);
1472 k = isl_basic_map_alloc_equality(bstep);
1473 if (k < 0) {
1474 isl_basic_map_free(bstep);
1475 return -1;
1477 isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep));
1478 isl_int_set_si(bstep->eq[k][0], 1);
1479 isl_int_set_si(bstep->eq[k][1 + nparam], 1);
1480 isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1);
1481 bstep = isl_basic_map_finalize(bstep);
1482 step = isl_map_from_basic_map(bstep);
1484 for (i = 0; i < n; ++i)
1485 for (j = 0; j < n; ++j)
1486 grid[i][j] = isl_map_product(grid[i][j],
1487 isl_map_copy(step));
1489 isl_map_free(step);
1491 return 0;
1494 /* The core of the Floyd-Warshall algorithm.
1495 * Updates the given n x x matrix of relations in place.
1497 * The algorithm iterates over all vertices. In each step, the whole
1498 * matrix is updated to include all paths that go to the current vertex,
1499 * possibly stay there a while (including passing through earlier vertices)
1500 * and then come back. At the start of each iteration, the diagonal
1501 * element corresponding to the current vertex is replaced by its
1502 * transitive closure to account for all indirect paths that stay
1503 * in the current vertex.
1505 static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact)
1507 int r, p, q;
1509 for (r = 0; r < n; ++r) {
1510 int r_exact;
1511 grid[r][r] = isl_map_transitive_closure(grid[r][r],
1512 (exact && *exact) ? &r_exact : NULL);
1513 if (exact && *exact && !r_exact)
1514 *exact = 0;
1516 for (p = 0; p < n; ++p)
1517 for (q = 0; q < n; ++q) {
1518 isl_map *loop;
1519 if (p == r && q == r)
1520 continue;
1521 loop = isl_map_apply_range(
1522 isl_map_copy(grid[p][r]),
1523 isl_map_copy(grid[r][q]));
1524 grid[p][q] = isl_map_union(grid[p][q], loop);
1525 loop = isl_map_apply_range(
1526 isl_map_copy(grid[p][r]),
1527 isl_map_apply_range(
1528 isl_map_copy(grid[r][r]),
1529 isl_map_copy(grid[r][q])));
1530 grid[p][q] = isl_map_union(grid[p][q], loop);
1531 grid[p][q] = isl_map_coalesce(grid[p][q]);
1536 /* Given a partition of the domains and ranges of the basic maps in "map",
1537 * apply the Floyd-Warshall algorithm with the elements in the partition
1538 * as vertices.
1540 * In particular, there are "n" elements in the partition and "group" is
1541 * an array of length 2 * map->n with entries in [0,n-1].
1543 * We first construct a matrix of relations based on the partition information,
1544 * apply Floyd-Warshall on this matrix of relations and then take the
1545 * union of all entries in the matrix as the final result.
1547 * If we are actually computing the power instead of the transitive closure,
1548 * i.e., when "project" is not set, then the result should have the
1549 * path lengths encoded as the difference between an extra pair of
1550 * coordinates. We therefore apply the nested transitive closures
1551 * to relations that include these lengths. In particular, we replace
1552 * the input relation by the cross product with the unit length relation
1553 * { [i] -> [i + 1] }.
1555 static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_dim *dim,
1556 __isl_keep isl_map *map, int *exact, int project, int *group, int n)
1558 int i, j, k;
1559 isl_map ***grid = NULL;
1560 isl_map *app;
1562 if (!map)
1563 goto error;
1565 if (n == 1) {
1566 free(group);
1567 return incremental_closure(dim, map, exact, project);
1570 grid = isl_calloc_array(map->ctx, isl_map **, n);
1571 if (!grid)
1572 goto error;
1573 for (i = 0; i < n; ++i) {
1574 grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1575 if (!grid[i])
1576 goto error;
1577 for (j = 0; j < n; ++j)
1578 grid[i][j] = isl_map_empty(isl_map_get_dim(map));
1581 for (k = 0; k < map->n; ++k) {
1582 i = group[2 * k];
1583 j = group[2 * k + 1];
1584 grid[i][j] = isl_map_union(grid[i][j],
1585 isl_map_from_basic_map(
1586 isl_basic_map_copy(map->p[k])));
1589 if (!project && add_length(map, grid, n) < 0)
1590 goto error;
1592 floyd_warshall_iterate(grid, n, exact);
1594 app = isl_map_empty(isl_map_get_dim(map));
1596 for (i = 0; i < n; ++i) {
1597 for (j = 0; j < n; ++j)
1598 app = isl_map_union(app, grid[i][j]);
1599 free(grid[i]);
1601 free(grid);
1603 free(group);
1604 isl_dim_free(dim);
1606 return app;
1607 error:
1608 if (grid)
1609 for (i = 0; i < n; ++i) {
1610 if (!grid[i])
1611 continue;
1612 for (j = 0; j < n; ++j)
1613 isl_map_free(grid[i][j]);
1614 free(grid[i]);
1616 free(grid);
1617 free(group);
1618 isl_dim_free(dim);
1619 return NULL;
1622 /* Partition the domains and ranges of the n basic relations in list
1623 * into disjoint cells.
1625 * To find the partition, we simply consider all of the domains
1626 * and ranges in turn and combine those that overlap.
1627 * "set" contains the partition elements and "group" indicates
1628 * to which partition element a given domain or range belongs.
1629 * The domain of basic map i corresponds to element 2 * i in these arrays,
1630 * while the domain corresponds to element 2 * i + 1.
1631 * During the construction group[k] is either equal to k,
1632 * in which case set[k] contains the union of all the domains and
1633 * ranges in the corresponding group, or is equal to some l < k,
1634 * with l another domain or range in the same group.
1636 static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1637 isl_set ***set, int *n_group)
1639 int i;
1640 int *group = NULL;
1641 int g;
1643 *set = isl_calloc_array(ctx, isl_set *, 2 * n);
1644 group = isl_alloc_array(ctx, int, 2 * n);
1646 if (!*set || !group)
1647 goto error;
1649 for (i = 0; i < n; ++i) {
1650 isl_set *dom;
1651 dom = isl_set_from_basic_set(isl_basic_map_domain(
1652 isl_basic_map_copy(list[i])));
1653 if (merge(*set, group, dom, 2 * i) < 0)
1654 goto error;
1655 dom = isl_set_from_basic_set(isl_basic_map_range(
1656 isl_basic_map_copy(list[i])));
1657 if (merge(*set, group, dom, 2 * i + 1) < 0)
1658 goto error;
1661 g = 0;
1662 for (i = 0; i < 2 * n; ++i)
1663 if (group[i] == i) {
1664 if (g != i) {
1665 (*set)[g] = (*set)[i];
1666 (*set)[i] = NULL;
1668 group[i] = g++;
1669 } else
1670 group[i] = group[group[i]];
1672 *n_group = g;
1674 return group;
1675 error:
1676 if (*set) {
1677 for (i = 0; i < 2 * n; ++i)
1678 isl_set_free((*set)[i]);
1679 free(*set);
1680 *set = NULL;
1682 free(group);
1683 return NULL;
1686 /* Check if the domains and ranges of the basic maps in "map" can
1687 * be partitioned, and if so, apply Floyd-Warshall on the elements
1688 * of the partition. Note that we also apply this algorithm
1689 * if we want to compute the power, i.e., when "project" is not set.
1690 * However, the results are unlikely to be exact since the recursive
1691 * calls inside the Floyd-Warshall algorithm typically result in
1692 * non-linear path lengths quite quickly.
1694 static __isl_give isl_map *floyd_warshall(__isl_take isl_dim *dim,
1695 __isl_keep isl_map *map, int *exact, int project)
1697 int i;
1698 isl_set **set = NULL;
1699 int *group = NULL;
1700 int n;
1702 if (!map)
1703 goto error;
1704 if (map->n <= 1)
1705 return incremental_closure(dim, map, exact, project);
1707 group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1708 if (!group)
1709 goto error;
1711 for (i = 0; i < 2 * map->n; ++i)
1712 isl_set_free(set[i]);
1714 free(set);
1716 return floyd_warshall_with_groups(dim, map, exact, project, group, n);
1717 error:
1718 isl_dim_free(dim);
1719 return NULL;
1722 /* Structure for representing the nodes in the graph being traversed
1723 * using Tarjan's algorithm.
1724 * index represents the order in which nodes are visited.
1725 * min_index is the index of the root of a (sub)component.
1726 * on_stack indicates whether the node is currently on the stack.
1728 struct basic_map_sort_node {
1729 int index;
1730 int min_index;
1731 int on_stack;
1733 /* Structure for representing the graph being traversed
1734 * using Tarjan's algorithm.
1735 * len is the number of nodes
1736 * node is an array of nodes
1737 * stack contains the nodes on the path from the root to the current node
1738 * sp is the stack pointer
1739 * index is the index of the last node visited
1740 * order contains the elements of the components separated by -1
1741 * op represents the current position in order
1743 * check_closed is set if we may have used the fact that
1744 * a pair of basic maps can be interchanged
1746 struct basic_map_sort {
1747 int len;
1748 struct basic_map_sort_node *node;
1749 int *stack;
1750 int sp;
1751 int index;
1752 int *order;
1753 int op;
1754 int check_closed;
1757 static void basic_map_sort_free(struct basic_map_sort *s)
1759 if (!s)
1760 return;
1761 free(s->node);
1762 free(s->stack);
1763 free(s->order);
1764 free(s);
1767 static struct basic_map_sort *basic_map_sort_alloc(struct isl_ctx *ctx, int len)
1769 struct basic_map_sort *s;
1770 int i;
1772 s = isl_calloc_type(ctx, struct basic_map_sort);
1773 if (!s)
1774 return NULL;
1775 s->len = len;
1776 s->node = isl_alloc_array(ctx, struct basic_map_sort_node, len);
1777 if (!s->node)
1778 goto error;
1779 for (i = 0; i < len; ++i)
1780 s->node[i].index = -1;
1781 s->stack = isl_alloc_array(ctx, int, len);
1782 if (!s->stack)
1783 goto error;
1784 s->order = isl_alloc_array(ctx, int, 2 * len);
1785 if (!s->order)
1786 goto error;
1788 s->sp = 0;
1789 s->index = 0;
1790 s->op = 0;
1792 s->check_closed = 0;
1794 return s;
1795 error:
1796 basic_map_sort_free(s);
1797 return NULL;
1800 /* Check whether in the computation of the transitive closure
1801 * "bmap1" (R_1) should follow (or be part of the same component as)
1802 * "bmap2" (R_2).
1804 * That is check whether
1806 * R_1 \circ R_2
1808 * is a subset of
1810 * R_2 \circ R_1
1812 * If so, then there is no reason for R_1 to immediately follow R_2
1813 * in any path.
1815 * *check_closed is set if the subset relation holds while
1816 * R_1 \circ R_2 is not empty.
1818 static int basic_map_follows(__isl_keep isl_basic_map *bmap1,
1819 __isl_keep isl_basic_map *bmap2, int *check_closed)
1821 struct isl_map *map12 = NULL;
1822 struct isl_map *map21 = NULL;
1823 int subset;
1825 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap2->dim, isl_dim_out))
1826 return 0;
1828 map21 = isl_map_from_basic_map(
1829 isl_basic_map_apply_range(
1830 isl_basic_map_copy(bmap2),
1831 isl_basic_map_copy(bmap1)));
1832 subset = isl_map_is_empty(map21);
1833 if (subset < 0)
1834 goto error;
1835 if (subset) {
1836 isl_map_free(map21);
1837 return 0;
1840 if (!isl_dim_tuple_match(bmap1->dim, isl_dim_in, bmap1->dim, isl_dim_out) ||
1841 !isl_dim_tuple_match(bmap2->dim, isl_dim_in, bmap2->dim, isl_dim_out)) {
1842 isl_map_free(map21);
1843 return 1;
1846 map12 = isl_map_from_basic_map(
1847 isl_basic_map_apply_range(
1848 isl_basic_map_copy(bmap1),
1849 isl_basic_map_copy(bmap2)));
1851 subset = isl_map_is_subset(map21, map12);
1853 isl_map_free(map12);
1854 isl_map_free(map21);
1856 if (subset)
1857 *check_closed = 1;
1859 return subset < 0 ? -1 : !subset;
1860 error:
1861 isl_map_free(map21);
1862 return -1;
1865 /* Perform Tarjan's algorithm for computing the strongly connected components
1866 * in the graph with the disjuncts of "map" as vertices and with an
1867 * edge between any pair of disjuncts such that the first has
1868 * to be applied after the second.
1870 static int power_components_tarjan(struct basic_map_sort *s,
1871 __isl_keep isl_basic_map **list, int i)
1873 int j;
1875 s->node[i].index = s->index;
1876 s->node[i].min_index = s->index;
1877 s->node[i].on_stack = 1;
1878 s->index++;
1879 s->stack[s->sp++] = i;
1881 for (j = s->len - 1; j >= 0; --j) {
1882 int f;
1884 if (j == i)
1885 continue;
1886 if (s->node[j].index >= 0 &&
1887 (!s->node[j].on_stack ||
1888 s->node[j].index > s->node[i].min_index))
1889 continue;
1891 f = basic_map_follows(list[i], list[j], &s->check_closed);
1892 if (f < 0)
1893 return -1;
1894 if (!f)
1895 continue;
1897 if (s->node[j].index < 0) {
1898 power_components_tarjan(s, list, j);
1899 if (s->node[j].min_index < s->node[i].min_index)
1900 s->node[i].min_index = s->node[j].min_index;
1901 } else if (s->node[j].index < s->node[i].min_index)
1902 s->node[i].min_index = s->node[j].index;
1905 if (s->node[i].index != s->node[i].min_index)
1906 return 0;
1908 do {
1909 j = s->stack[--s->sp];
1910 s->node[j].on_stack = 0;
1911 s->order[s->op++] = j;
1912 } while (j != i);
1913 s->order[s->op++] = -1;
1915 return 0;
1918 /* Decompose the "len" basic relations in "list" into strongly connected
1919 * components.
1921 static struct basic_map_sort *basic_map_sort_init(isl_ctx *ctx, int len,
1922 __isl_keep isl_basic_map **list)
1924 int i;
1925 struct basic_map_sort *s = NULL;
1927 s = basic_map_sort_alloc(ctx, len);
1928 if (!s)
1929 return NULL;
1930 for (i = len - 1; i >= 0; --i) {
1931 if (s->node[i].index >= 0)
1932 continue;
1933 if (power_components_tarjan(s, list, i) < 0)
1934 goto error;
1937 return s;
1938 error:
1939 basic_map_sort_free(s);
1940 return NULL;
1943 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1944 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1945 * construct a map that is an overapproximation of the map
1946 * that takes an element from the dom R \times Z to an
1947 * element from ran R \times Z, such that the first n coordinates of the
1948 * difference between them is a sum of differences between images
1949 * and pre-images in one of the R_i and such that the last coordinate
1950 * is equal to the number of steps taken.
1951 * If "project" is set, then these final coordinates are not included,
1952 * i.e., a relation of type Z^n -> Z^n is returned.
1953 * That is, let
1955 * \Delta_i = { y - x | (x, y) in R_i }
1957 * then the constructed map is an overapproximation of
1959 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1960 * d = (\sum_i k_i \delta_i, \sum_i k_i) and
1961 * x in dom R and x + d in ran R }
1963 * or
1965 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1966 * d = (\sum_i k_i \delta_i) and
1967 * x in dom R and x + d in ran R }
1969 * if "project" is set.
1971 * We first split the map into strongly connected components, perform
1972 * the above on each component and then join the results in the correct
1973 * order, at each join also taking in the union of both arguments
1974 * to allow for paths that do not go through one of the two arguments.
1976 static __isl_give isl_map *construct_power_components(__isl_take isl_dim *dim,
1977 __isl_keep isl_map *map, int *exact, int project)
1979 int i, n, c;
1980 struct isl_map *path = NULL;
1981 struct basic_map_sort *s = NULL;
1982 int *orig_exact;
1983 int local_exact;
1985 if (!map)
1986 goto error;
1987 if (map->n <= 1)
1988 return floyd_warshall(dim, map, exact, project);
1990 s = basic_map_sort_init(map->ctx, map->n, map->p);
1991 if (!s)
1992 goto error;
1994 orig_exact = exact;
1995 if (s->check_closed && !exact)
1996 exact = &local_exact;
1998 c = 0;
1999 i = 0;
2000 n = map->n;
2001 if (project)
2002 path = isl_map_empty(isl_map_get_dim(map));
2003 else
2004 path = isl_map_empty(isl_dim_copy(dim));
2005 path = anonymize(path);
2006 while (n) {
2007 struct isl_map *comp;
2008 isl_map *path_comp, *path_comb;
2009 comp = isl_map_alloc_dim(isl_map_get_dim(map), n, 0);
2010 while (s->order[i] != -1) {
2011 comp = isl_map_add_basic_map(comp,
2012 isl_basic_map_copy(map->p[s->order[i]]));
2013 --n;
2014 ++i;
2016 path_comp = floyd_warshall(isl_dim_copy(dim),
2017 comp, exact, project);
2018 path_comp = anonymize(path_comp);
2019 path_comb = isl_map_apply_range(isl_map_copy(path),
2020 isl_map_copy(path_comp));
2021 path = isl_map_union(path, path_comp);
2022 path = isl_map_union(path, path_comb);
2023 isl_map_free(comp);
2024 ++i;
2025 ++c;
2028 if (c > 1 && s->check_closed && !*exact) {
2029 int closed;
2031 closed = isl_map_is_transitively_closed(path);
2032 if (closed < 0)
2033 goto error;
2034 if (!closed) {
2035 basic_map_sort_free(s);
2036 isl_map_free(path);
2037 return floyd_warshall(dim, map, orig_exact, project);
2041 basic_map_sort_free(s);
2042 isl_dim_free(dim);
2044 return path;
2045 error:
2046 basic_map_sort_free(s);
2047 isl_dim_free(dim);
2048 isl_map_free(path);
2049 return NULL;
2052 /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
2053 * construct a map that is an overapproximation of the map
2054 * that takes an element from the space D to another
2055 * element from the same space, such that the difference between
2056 * them is a strictly positive sum of differences between images
2057 * and pre-images in one of the R_i.
2058 * The number of differences in the sum is equated to parameter "param".
2059 * That is, let
2061 * \Delta_i = { y - x | (x, y) in R_i }
2063 * then the constructed map is an overapproximation of
2065 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2066 * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
2067 * or
2069 * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
2070 * d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
2072 * if "project" is set.
2074 * If "project" is not set, then
2075 * we construct an extended mapping with an extra coordinate
2076 * that indicates the number of steps taken. In particular,
2077 * the difference in the last coordinate is equal to the number
2078 * of steps taken to move from a domain element to the corresponding
2079 * image element(s).
2081 static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
2082 int *exact, int project)
2084 struct isl_map *app = NULL;
2085 struct isl_dim *dim = NULL;
2086 unsigned d;
2088 if (!map)
2089 return NULL;
2091 dim = isl_map_get_dim(map);
2093 d = isl_dim_size(dim, isl_dim_in);
2094 dim = isl_dim_add(dim, isl_dim_in, 1);
2095 dim = isl_dim_add(dim, isl_dim_out, 1);
2097 app = construct_power_components(isl_dim_copy(dim), map,
2098 exact, project);
2100 isl_dim_free(dim);
2102 return app;
2105 /* Compute the positive powers of "map", or an overapproximation.
2106 * If the result is exact, then *exact is set to 1.
2108 * If project is set, then we are actually interested in the transitive
2109 * closure, so we can use a more relaxed exactness check.
2110 * The lengths of the paths are also projected out instead of being
2111 * encoded as the difference between an extra pair of final coordinates.
2113 static __isl_give isl_map *map_power(__isl_take isl_map *map,
2114 int *exact, int project)
2116 struct isl_map *app = NULL;
2118 if (exact)
2119 *exact = 1;
2121 if (!map)
2122 return NULL;
2124 isl_assert(map->ctx,
2125 isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out),
2126 goto error);
2128 app = construct_power(map, exact, project);
2130 isl_map_free(map);
2131 return app;
2132 error:
2133 isl_map_free(map);
2134 isl_map_free(app);
2135 return NULL;
2138 /* Compute the positive powers of "map", or an overapproximation.
2139 * The power is given by parameter "param". If the result is exact,
2140 * then *exact is set to 1.
2141 * map_power constructs an extended relation with the path lengths
2142 * encoded as the difference between the final coordinates.
2143 * In the final step, this difference is equated to the parameter "param"
2144 * and made positive. The extra coordinates are subsequently projected out.
2146 __isl_give isl_map *isl_map_power(__isl_take isl_map *map, unsigned param,
2147 int *exact)
2149 isl_dim *target_dim;
2150 isl_dim *dim;
2151 isl_map *diff;
2152 unsigned d;
2154 if (!map)
2155 return NULL;
2157 isl_assert(map->ctx, param < isl_map_dim(map, isl_dim_param),
2158 goto error);
2160 d = isl_map_dim(map, isl_dim_in);
2162 map = isl_map_compute_divs(map);
2163 map = isl_map_coalesce(map);
2165 if (isl_map_fast_is_empty(map))
2166 return map;
2168 target_dim = isl_map_get_dim(map);
2169 map = map_power(map, exact, 0);
2171 dim = isl_map_get_dim(map);
2172 diff = equate_parameter_to_length(dim, param);
2173 map = isl_map_intersect(map, diff);
2174 map = isl_map_project_out(map, isl_dim_in, d, 1);
2175 map = isl_map_project_out(map, isl_dim_out, d, 1);
2177 map = isl_map_reset_dim(map, target_dim);
2179 return map;
2180 error:
2181 isl_map_free(map);
2182 return NULL;
2185 /* Compute a relation that maps each element in the range of the input
2186 * relation to the lengths of all paths composed of edges in the input
2187 * relation that end up in the given range element.
2188 * The result may be an overapproximation, in which case *exact is set to 0.
2189 * The resulting relation is very similar to the power relation.
2190 * The difference are that the domain has been projected out, the
2191 * range has become the domain and the exponent is the range instead
2192 * of a parameter.
2194 __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2195 int *exact)
2197 isl_dim *dim;
2198 isl_map *diff;
2199 unsigned d;
2200 unsigned param;
2202 if (!map)
2203 return NULL;
2205 d = isl_map_dim(map, isl_dim_in);
2206 param = isl_map_dim(map, isl_dim_param);
2208 map = isl_map_compute_divs(map);
2209 map = isl_map_coalesce(map);
2211 if (isl_map_fast_is_empty(map)) {
2212 if (exact)
2213 *exact = 1;
2214 map = isl_map_project_out(map, isl_dim_out, 0, d);
2215 map = isl_map_add_dims(map, isl_dim_out, 1);
2216 return map;
2219 map = map_power(map, exact, 0);
2221 map = isl_map_add_dims(map, isl_dim_param, 1);
2222 dim = isl_map_get_dim(map);
2223 diff = equate_parameter_to_length(dim, param);
2224 map = isl_map_intersect(map, diff);
2225 map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2226 map = isl_map_project_out(map, isl_dim_out, d, 1);
2227 map = isl_map_reverse(map);
2228 map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2230 return map;
2233 /* Check whether equality i of bset is a pure stride constraint
2234 * on a single dimensions, i.e., of the form
2236 * v = k e
2238 * with k a constant and e an existentially quantified variable.
2240 static int is_eq_stride(__isl_keep isl_basic_set *bset, int i)
2242 int k;
2243 unsigned nparam;
2244 unsigned d;
2245 unsigned n_div;
2246 int pos1;
2247 int pos2;
2249 if (!bset)
2250 return -1;
2252 if (!isl_int_is_zero(bset->eq[i][0]))
2253 return 0;
2255 nparam = isl_basic_set_dim(bset, isl_dim_param);
2256 d = isl_basic_set_dim(bset, isl_dim_set);
2257 n_div = isl_basic_set_dim(bset, isl_dim_div);
2259 if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1)
2260 return 0;
2261 pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d);
2262 if (pos1 == -1)
2263 return 0;
2264 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1,
2265 d - pos1 - 1) != -1)
2266 return 0;
2268 pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div);
2269 if (pos2 == -1)
2270 return 0;
2271 if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1,
2272 n_div - pos2 - 1) != -1)
2273 return 0;
2274 if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) &&
2275 !isl_int_is_negone(bset->eq[i][1 + nparam + pos1]))
2276 return 0;
2278 return 1;
2281 /* Given a map, compute the smallest superset of this map that is of the form
2283 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2285 * (where p ranges over the (non-parametric) dimensions),
2286 * compute the transitive closure of this map, i.e.,
2288 * { i -> j : exists k > 0:
2289 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2291 * and intersect domain and range of this transitive closure with
2292 * the given domain and range.
2294 * If with_id is set, then try to include as much of the identity mapping
2295 * as possible, by computing
2297 * { i -> j : exists k >= 0:
2298 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2300 * instead (i.e., allow k = 0).
2302 * In practice, we compute the difference set
2304 * delta = { j - i | i -> j in map },
2306 * look for stride constraint on the individual dimensions and compute
2307 * (constant) lower and upper bounds for each individual dimension,
2308 * adding a constraint for each bound not equal to infinity.
2310 static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2311 __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2313 int i;
2314 int k;
2315 unsigned d;
2316 unsigned nparam;
2317 unsigned total;
2318 isl_dim *dim;
2319 isl_set *delta;
2320 isl_map *app = NULL;
2321 isl_basic_set *aff = NULL;
2322 isl_basic_map *bmap = NULL;
2323 isl_vec *obj = NULL;
2324 isl_int opt;
2326 isl_int_init(opt);
2328 delta = isl_map_deltas(isl_map_copy(map));
2330 aff = isl_set_affine_hull(isl_set_copy(delta));
2331 if (!aff)
2332 goto error;
2333 dim = isl_map_get_dim(map);
2334 d = isl_dim_size(dim, isl_dim_in);
2335 nparam = isl_dim_size(dim, isl_dim_param);
2336 total = isl_dim_total(dim);
2337 bmap = isl_basic_map_alloc_dim(dim,
2338 aff->n_div + 1, aff->n_div, 2 * d + 1);
2339 for (i = 0; i < aff->n_div + 1; ++i) {
2340 k = isl_basic_map_alloc_div(bmap);
2341 if (k < 0)
2342 goto error;
2343 isl_int_set_si(bmap->div[k][0], 0);
2345 for (i = 0; i < aff->n_eq; ++i) {
2346 if (!is_eq_stride(aff, i))
2347 continue;
2348 k = isl_basic_map_alloc_equality(bmap);
2349 if (k < 0)
2350 goto error;
2351 isl_seq_clr(bmap->eq[k], 1 + nparam);
2352 isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2353 aff->eq[i] + 1 + nparam, d);
2354 isl_seq_neg(bmap->eq[k] + 1 + nparam,
2355 aff->eq[i] + 1 + nparam, d);
2356 isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2357 aff->eq[i] + 1 + nparam + d, aff->n_div);
2358 isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2360 obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2361 if (!obj)
2362 goto error;
2363 isl_seq_clr(obj->el, 1 + nparam + d);
2364 for (i = 0; i < d; ++ i) {
2365 enum isl_lp_result res;
2367 isl_int_set_si(obj->el[1 + nparam + i], 1);
2369 res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2370 NULL, NULL);
2371 if (res == isl_lp_error)
2372 goto error;
2373 if (res == isl_lp_ok) {
2374 k = isl_basic_map_alloc_inequality(bmap);
2375 if (k < 0)
2376 goto error;
2377 isl_seq_clr(bmap->ineq[k],
2378 1 + nparam + 2 * d + bmap->n_div);
2379 isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2380 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2381 isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2384 res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2385 NULL, NULL);
2386 if (res == isl_lp_error)
2387 goto error;
2388 if (res == isl_lp_ok) {
2389 k = isl_basic_map_alloc_inequality(bmap);
2390 if (k < 0)
2391 goto error;
2392 isl_seq_clr(bmap->ineq[k],
2393 1 + nparam + 2 * d + bmap->n_div);
2394 isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2395 isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2396 isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2399 isl_int_set_si(obj->el[1 + nparam + i], 0);
2401 k = isl_basic_map_alloc_inequality(bmap);
2402 if (k < 0)
2403 goto error;
2404 isl_seq_clr(bmap->ineq[k],
2405 1 + nparam + 2 * d + bmap->n_div);
2406 if (!with_id)
2407 isl_int_set_si(bmap->ineq[k][0], -1);
2408 isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2410 app = isl_map_from_domain_and_range(dom, ran);
2412 isl_vec_free(obj);
2413 isl_basic_set_free(aff);
2414 isl_map_free(map);
2415 bmap = isl_basic_map_finalize(bmap);
2416 isl_set_free(delta);
2417 isl_int_clear(opt);
2419 map = isl_map_from_basic_map(bmap);
2420 map = isl_map_intersect(map, app);
2422 return map;
2423 error:
2424 isl_vec_free(obj);
2425 isl_basic_map_free(bmap);
2426 isl_basic_set_free(aff);
2427 isl_set_free(dom);
2428 isl_set_free(ran);
2429 isl_map_free(map);
2430 isl_set_free(delta);
2431 isl_int_clear(opt);
2432 return NULL;
2435 /* Given a map, compute the smallest superset of this map that is of the form
2437 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2439 * (where p ranges over the (non-parametric) dimensions),
2440 * compute the transitive closure of this map, i.e.,
2442 * { i -> j : exists k > 0:
2443 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2445 * and intersect domain and range of this transitive closure with
2446 * domain and range of the original map.
2448 static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2450 isl_set *domain;
2451 isl_set *range;
2453 domain = isl_map_domain(isl_map_copy(map));
2454 domain = isl_set_coalesce(domain);
2455 range = isl_map_range(isl_map_copy(map));
2456 range = isl_set_coalesce(range);
2458 return box_closure_on_domain(map, domain, range, 0);
2461 /* Given a map, compute the smallest superset of this map that is of the form
2463 * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2465 * (where p ranges over the (non-parametric) dimensions),
2466 * compute the transitive and partially reflexive closure of this map, i.e.,
2468 * { i -> j : exists k >= 0:
2469 * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2471 * and intersect domain and range of this transitive closure with
2472 * the given domain.
2474 static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2475 __isl_take isl_set *dom)
2477 return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2480 /* Check whether app is the transitive closure of map.
2481 * In particular, check that app is acyclic and, if so,
2482 * check that
2484 * app \subset (map \cup (map \circ app))
2486 static int check_exactness_omega(__isl_keep isl_map *map,
2487 __isl_keep isl_map *app)
2489 isl_set *delta;
2490 int i;
2491 int is_empty, is_exact;
2492 unsigned d;
2493 isl_map *test;
2495 delta = isl_map_deltas(isl_map_copy(app));
2496 d = isl_set_dim(delta, isl_dim_set);
2497 for (i = 0; i < d; ++i)
2498 delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2499 is_empty = isl_set_is_empty(delta);
2500 isl_set_free(delta);
2501 if (is_empty < 0)
2502 return -1;
2503 if (!is_empty)
2504 return 0;
2506 test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2507 test = isl_map_union(test, isl_map_copy(map));
2508 is_exact = isl_map_is_subset(app, test);
2509 isl_map_free(test);
2511 return is_exact;
2514 /* Check if basic map M_i can be combined with all the other
2515 * basic maps such that
2517 * (\cup_j M_j)^+
2519 * can be computed as
2521 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2523 * In particular, check if we can compute a compact representation
2524 * of
2526 * M_i^* \circ M_j \circ M_i^*
2528 * for each j != i.
2529 * Let M_i^? be an extension of M_i^+ that allows paths
2530 * of length zero, i.e., the result of box_closure(., 1).
2531 * The criterion, as proposed by Kelly et al., is that
2532 * id = M_i^? - M_i^+ can be represented as a basic map
2533 * and that
2535 * id \circ M_j \circ id = M_j
2537 * for each j != i.
2539 * If this function returns 1, then tc and qc are set to
2540 * M_i^+ and M_i^?, respectively.
2542 static int can_be_split_off(__isl_keep isl_map *map, int i,
2543 __isl_give isl_map **tc, __isl_give isl_map **qc)
2545 isl_map *map_i, *id = NULL;
2546 int j = -1;
2547 isl_set *C;
2549 *tc = NULL;
2550 *qc = NULL;
2552 C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2553 isl_map_range(isl_map_copy(map)));
2554 C = isl_set_from_basic_set(isl_set_simple_hull(C));
2555 if (!C)
2556 goto error;
2558 map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2559 *tc = box_closure(isl_map_copy(map_i));
2560 *qc = box_closure_with_identity(map_i, C);
2561 id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2563 if (!id || !*qc)
2564 goto error;
2565 if (id->n != 1 || (*qc)->n != 1)
2566 goto done;
2568 for (j = 0; j < map->n; ++j) {
2569 isl_map *map_j, *test;
2570 int is_ok;
2572 if (i == j)
2573 continue;
2574 map_j = isl_map_from_basic_map(
2575 isl_basic_map_copy(map->p[j]));
2576 test = isl_map_apply_range(isl_map_copy(id),
2577 isl_map_copy(map_j));
2578 test = isl_map_apply_range(test, isl_map_copy(id));
2579 is_ok = isl_map_is_equal(test, map_j);
2580 isl_map_free(map_j);
2581 isl_map_free(test);
2582 if (is_ok < 0)
2583 goto error;
2584 if (!is_ok)
2585 break;
2588 done:
2589 isl_map_free(id);
2590 if (j == map->n)
2591 return 1;
2593 isl_map_free(*qc);
2594 isl_map_free(*tc);
2595 *qc = NULL;
2596 *tc = NULL;
2598 return 0;
2599 error:
2600 isl_map_free(id);
2601 isl_map_free(*qc);
2602 isl_map_free(*tc);
2603 *qc = NULL;
2604 *tc = NULL;
2605 return -1;
2608 static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2609 int *exact)
2611 isl_map *app;
2613 app = box_closure(isl_map_copy(map));
2614 if (exact)
2615 *exact = check_exactness_omega(map, app);
2617 isl_map_free(map);
2618 return app;
2621 /* Compute an overapproximation of the transitive closure of "map"
2622 * using a variation of the algorithm from
2623 * "Transitive Closure of Infinite Graphs and its Applications"
2624 * by Kelly et al.
2626 * We first check whether we can can split of any basic map M_i and
2627 * compute
2629 * (\cup_j M_j)^+
2631 * as
2633 * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2635 * using a recursive call on the remaining map.
2637 * If not, we simply call box_closure on the whole map.
2639 static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2640 int *exact)
2642 int i, j;
2643 int exact_i;
2644 isl_map *app;
2646 if (!map)
2647 return NULL;
2648 if (map->n == 1)
2649 return box_closure_with_check(map, exact);
2651 for (i = 0; i < map->n; ++i) {
2652 int ok;
2653 isl_map *qc, *tc;
2654 ok = can_be_split_off(map, i, &tc, &qc);
2655 if (ok < 0)
2656 goto error;
2657 if (!ok)
2658 continue;
2660 app = isl_map_alloc_dim(isl_map_get_dim(map), map->n - 1, 0);
2662 for (j = 0; j < map->n; ++j) {
2663 if (j == i)
2664 continue;
2665 app = isl_map_add_basic_map(app,
2666 isl_basic_map_copy(map->p[j]));
2669 app = isl_map_apply_range(isl_map_copy(qc), app);
2670 app = isl_map_apply_range(app, qc);
2672 app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2673 exact_i = check_exactness_omega(map, app);
2674 if (exact_i == 1) {
2675 if (exact)
2676 *exact = exact_i;
2677 isl_map_free(map);
2678 return app;
2680 isl_map_free(app);
2681 if (exact_i < 0)
2682 goto error;
2685 return box_closure_with_check(map, exact);
2686 error:
2687 isl_map_free(map);
2688 return NULL;
2691 /* Compute the transitive closure of "map", or an overapproximation.
2692 * If the result is exact, then *exact is set to 1.
2693 * Simply use map_power to compute the powers of map, but tell
2694 * it to project out the lengths of the paths instead of equating
2695 * the length to a parameter.
2697 __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2698 int *exact)
2700 isl_dim *target_dim;
2701 int closed;
2703 if (!map)
2704 goto error;
2706 if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2707 return transitive_closure_omega(map, exact);
2709 map = isl_map_compute_divs(map);
2710 map = isl_map_coalesce(map);
2711 closed = isl_map_is_transitively_closed(map);
2712 if (closed < 0)
2713 goto error;
2714 if (closed) {
2715 if (exact)
2716 *exact = 1;
2717 return map;
2720 target_dim = isl_map_get_dim(map);
2721 map = map_power(map, exact, 1);
2722 map = isl_map_reset_dim(map, target_dim);
2724 return map;
2725 error:
2726 isl_map_free(map);
2727 return NULL;
2730 static int inc_count(__isl_take isl_map *map, void *user)
2732 int *n = user;
2734 *n += map->n;
2736 isl_map_free(map);
2738 return 0;
2741 static int collect_basic_map(__isl_take isl_map *map, void *user)
2743 int i;
2744 isl_basic_map ***next = user;
2746 for (i = 0; i < map->n; ++i) {
2747 **next = isl_basic_map_copy(map->p[i]);
2748 if (!**next)
2749 goto error;
2750 (*next)++;
2753 isl_map_free(map);
2754 return 0;
2755 error:
2756 isl_map_free(map);
2757 return -1;
2760 /* Perform Floyd-Warshall on the given list of basic relations.
2761 * The basic relations may live in different dimensions,
2762 * but basic relations that get assigned to the diagonal of the
2763 * grid have domains and ranges of the same dimension and so
2764 * the standard algorithm can be used because the nested transitive
2765 * closures are only applied to diagonal elements and because all
2766 * compositions are peformed on relations with compatible domains and ranges.
2768 static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2769 __isl_keep isl_basic_map **list, int n, int *exact)
2771 int i, j, k;
2772 int n_group;
2773 int *group = NULL;
2774 isl_set **set = NULL;
2775 isl_map ***grid = NULL;
2776 isl_union_map *app;
2778 group = setup_groups(ctx, list, n, &set, &n_group);
2779 if (!group)
2780 goto error;
2782 grid = isl_calloc_array(ctx, isl_map **, n_group);
2783 if (!grid)
2784 goto error;
2785 for (i = 0; i < n_group; ++i) {
2786 grid[i] = isl_calloc_array(map->ctx, isl_map *, n_group);
2787 if (!grid[i])
2788 goto error;
2789 for (j = 0; j < n_group; ++j) {
2790 isl_dim *dim1, *dim2, *dim;
2791 dim1 = isl_dim_reverse(isl_set_get_dim(set[i]));
2792 dim2 = isl_set_get_dim(set[j]);
2793 dim = isl_dim_join(dim1, dim2);
2794 grid[i][j] = isl_map_empty(dim);
2798 for (k = 0; k < n; ++k) {
2799 i = group[2 * k];
2800 j = group[2 * k + 1];
2801 grid[i][j] = isl_map_union(grid[i][j],
2802 isl_map_from_basic_map(
2803 isl_basic_map_copy(list[k])));
2806 floyd_warshall_iterate(grid, n_group, exact);
2808 app = isl_union_map_empty(isl_map_get_dim(grid[0][0]));
2810 for (i = 0; i < n_group; ++i) {
2811 for (j = 0; j < n_group; ++j)
2812 app = isl_union_map_add_map(app, grid[i][j]);
2813 free(grid[i]);
2815 free(grid);
2817 for (i = 0; i < 2 * n; ++i)
2818 isl_set_free(set[i]);
2819 free(set);
2821 free(group);
2822 return app;
2823 error:
2824 if (grid)
2825 for (i = 0; i < n_group; ++i) {
2826 if (!grid[i])
2827 continue;
2828 for (j = 0; j < n_group; ++j)
2829 isl_map_free(grid[i][j]);
2830 free(grid[i]);
2832 free(grid);
2833 if (set) {
2834 for (i = 0; i < 2 * n; ++i)
2835 isl_set_free(set[i]);
2836 free(set);
2838 free(group);
2839 return NULL;
2842 /* Perform Floyd-Warshall on the given union relation.
2843 * The implementation is very similar to that for non-unions.
2844 * The main difference is that it is applied unconditionally.
2845 * We first extract a list of basic maps from the union map
2846 * and then perform the algorithm on this list.
2848 static __isl_give isl_union_map *union_floyd_warshall(
2849 __isl_take isl_union_map *umap, int *exact)
2851 int i, n;
2852 isl_ctx *ctx;
2853 isl_basic_map **list;
2854 isl_basic_map **next;
2855 isl_union_map *res;
2857 n = 0;
2858 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2859 goto error;
2861 ctx = isl_union_map_get_ctx(umap);
2862 list = isl_calloc_array(ctx, isl_basic_map *, n);
2863 if (!list)
2864 goto error;
2866 next = list;
2867 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2868 goto error;
2870 res = union_floyd_warshall_on_list(ctx, list, n, exact);
2872 if (list) {
2873 for (i = 0; i < n; ++i)
2874 isl_basic_map_free(list[i]);
2875 free(list);
2878 isl_union_map_free(umap);
2879 return res;
2880 error:
2881 if (list) {
2882 for (i = 0; i < n; ++i)
2883 isl_basic_map_free(list[i]);
2884 free(list);
2886 isl_union_map_free(umap);
2887 return NULL;
2890 /* Decompose the give union relation into strongly connected components.
2891 * The implementation is essentially the same as that of
2892 * construct_power_components with the major difference that all
2893 * operations are performed on union maps.
2895 static __isl_give isl_union_map *union_components(
2896 __isl_take isl_union_map *umap, int *exact)
2898 int i;
2899 int n;
2900 isl_ctx *ctx;
2901 isl_basic_map **list;
2902 isl_basic_map **next;
2903 isl_union_map *path = NULL;
2904 struct basic_map_sort *s = NULL;
2905 int c, l;
2906 int recheck = 0;
2908 n = 0;
2909 if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2910 goto error;
2912 if (n <= 1)
2913 return union_floyd_warshall(umap, exact);
2915 ctx = isl_union_map_get_ctx(umap);
2916 list = isl_calloc_array(ctx, isl_basic_map *, n);
2917 if (!list)
2918 goto error;
2920 next = list;
2921 if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2922 goto error;
2924 s = basic_map_sort_init(ctx, n, list);
2925 if (!s)
2926 goto error;
2928 c = 0;
2929 i = 0;
2930 l = n;
2931 path = isl_union_map_empty(isl_union_map_get_dim(umap));
2932 while (l) {
2933 isl_union_map *comp;
2934 isl_union_map *path_comp, *path_comb;
2935 comp = isl_union_map_empty(isl_union_map_get_dim(umap));
2936 while (s->order[i] != -1) {
2937 comp = isl_union_map_add_map(comp,
2938 isl_map_from_basic_map(
2939 isl_basic_map_copy(list[s->order[i]])));
2940 --l;
2941 ++i;
2943 path_comp = union_floyd_warshall(comp, exact);
2944 path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2945 isl_union_map_copy(path_comp));
2946 path = isl_union_map_union(path, path_comp);
2947 path = isl_union_map_union(path, path_comb);
2948 ++i;
2949 ++c;
2952 if (c > 1 && s->check_closed && !*exact) {
2953 int closed;
2955 closed = isl_union_map_is_transitively_closed(path);
2956 if (closed < 0)
2957 goto error;
2958 recheck = !closed;
2961 basic_map_sort_free(s);
2963 for (i = 0; i < n; ++i)
2964 isl_basic_map_free(list[i]);
2965 free(list);
2967 if (recheck) {
2968 isl_union_map_free(path);
2969 return union_floyd_warshall(umap, exact);
2972 isl_union_map_free(umap);
2974 return path;
2975 error:
2976 basic_map_sort_free(s);
2977 if (list) {
2978 for (i = 0; i < n; ++i)
2979 isl_basic_map_free(list[i]);
2980 free(list);
2982 isl_union_map_free(umap);
2983 isl_union_map_free(path);
2984 return NULL;
2987 /* Compute the transitive closure of "umap", or an overapproximation.
2988 * If the result is exact, then *exact is set to 1.
2990 __isl_give isl_union_map *isl_union_map_transitive_closure(
2991 __isl_take isl_union_map *umap, int *exact)
2993 int closed;
2995 if (!umap)
2996 return NULL;
2998 if (exact)
2999 *exact = 1;
3001 umap = isl_union_map_compute_divs(umap);
3002 umap = isl_union_map_coalesce(umap);
3003 closed = isl_union_map_is_transitively_closed(umap);
3004 if (closed < 0)
3005 goto error;
3006 if (closed)
3007 return umap;
3008 umap = union_components(umap, exact);
3009 return umap;
3010 error:
3011 isl_union_map_free(umap);
3012 return NULL;