implement antiquated isl_set_n_* in terms of isl_set_dim
[isl.git] / isl_convex_hull.c
blobf8565e0341e396d0aff8ee67f90f35721b043f5d
1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
8 */
10 #include "isl_lp.h"
11 #include "isl_map.h"
12 #include "isl_map_private.h"
13 #include "isl_mat.h"
14 #include "isl_set.h"
15 #include "isl_seq.h"
16 #include "isl_equalities.h"
17 #include "isl_tab.h"
19 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set);
21 static void swap_ineq(struct isl_basic_map *bmap, unsigned i, unsigned j)
23 isl_int *t;
25 if (i != j) {
26 t = bmap->ineq[i];
27 bmap->ineq[i] = bmap->ineq[j];
28 bmap->ineq[j] = t;
32 /* Return 1 if constraint c is redundant with respect to the constraints
33 * in bmap. If c is a lower [upper] bound in some variable and bmap
34 * does not have a lower [upper] bound in that variable, then c cannot
35 * be redundant and we do not need solve any lp.
37 int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap,
38 isl_int *c, isl_int *opt_n, isl_int *opt_d)
40 enum isl_lp_result res;
41 unsigned total;
42 int i, j;
44 if (!bmap)
45 return -1;
47 total = isl_basic_map_total_dim(*bmap);
48 for (i = 0; i < total; ++i) {
49 int sign;
50 if (isl_int_is_zero(c[1+i]))
51 continue;
52 sign = isl_int_sgn(c[1+i]);
53 for (j = 0; j < (*bmap)->n_ineq; ++j)
54 if (sign == isl_int_sgn((*bmap)->ineq[j][1+i]))
55 break;
56 if (j == (*bmap)->n_ineq)
57 break;
59 if (i < total)
60 return 0;
62 res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one,
63 opt_n, opt_d, NULL);
64 if (res == isl_lp_unbounded)
65 return 0;
66 if (res == isl_lp_error)
67 return -1;
68 if (res == isl_lp_empty) {
69 *bmap = isl_basic_map_set_to_empty(*bmap);
70 return 0;
72 return !isl_int_is_neg(*opt_n);
75 int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset,
76 isl_int *c, isl_int *opt_n, isl_int *opt_d)
78 return isl_basic_map_constraint_is_redundant(
79 (struct isl_basic_map **)bset, c, opt_n, opt_d);
82 /* Compute the convex hull of a basic map, by removing the redundant
83 * constraints. If the minimal value along the normal of a constraint
84 * is the same if the constraint is removed, then the constraint is redundant.
86 * Alternatively, we could have intersected the basic map with the
87 * corresponding equality and the checked if the dimension was that
88 * of a facet.
90 struct isl_basic_map *isl_basic_map_convex_hull(struct isl_basic_map *bmap)
92 struct isl_tab *tab;
94 if (!bmap)
95 return NULL;
97 bmap = isl_basic_map_gauss(bmap, NULL);
98 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
99 return bmap;
100 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT))
101 return bmap;
102 if (bmap->n_ineq <= 1)
103 return bmap;
105 tab = isl_tab_from_basic_map(bmap);
106 if (isl_tab_detect_implicit_equalities(tab) < 0)
107 goto error;
108 if (isl_tab_detect_redundant(tab) < 0)
109 goto error;
110 bmap = isl_basic_map_update_from_tab(bmap, tab);
111 isl_tab_free(tab);
112 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
113 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
114 return bmap;
115 error:
116 isl_tab_free(tab);
117 isl_basic_map_free(bmap);
118 return NULL;
121 struct isl_basic_set *isl_basic_set_convex_hull(struct isl_basic_set *bset)
123 return (struct isl_basic_set *)
124 isl_basic_map_convex_hull((struct isl_basic_map *)bset);
127 /* Check if the set set is bound in the direction of the affine
128 * constraint c and if so, set the constant term such that the
129 * resulting constraint is a bounding constraint for the set.
131 static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len)
133 int first;
134 int j;
135 isl_int opt;
136 isl_int opt_denom;
138 isl_int_init(opt);
139 isl_int_init(opt_denom);
140 first = 1;
141 for (j = 0; j < set->n; ++j) {
142 enum isl_lp_result res;
144 if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY))
145 continue;
147 res = isl_basic_set_solve_lp(set->p[j],
148 0, c, set->ctx->one, &opt, &opt_denom, NULL);
149 if (res == isl_lp_unbounded)
150 break;
151 if (res == isl_lp_error)
152 goto error;
153 if (res == isl_lp_empty) {
154 set->p[j] = isl_basic_set_set_to_empty(set->p[j]);
155 if (!set->p[j])
156 goto error;
157 continue;
159 if (first || isl_int_is_neg(opt)) {
160 if (!isl_int_is_one(opt_denom))
161 isl_seq_scale(c, c, opt_denom, len);
162 isl_int_sub(c[0], c[0], opt);
164 first = 0;
166 isl_int_clear(opt);
167 isl_int_clear(opt_denom);
168 return j >= set->n;
169 error:
170 isl_int_clear(opt);
171 isl_int_clear(opt_denom);
172 return -1;
175 struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset)
177 if (!bset)
178 return NULL;
180 if (ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL))
181 return bset;
183 bset = isl_basic_set_cow(bset);
184 if (!bset)
185 return NULL;
187 ISL_F_SET(bset, ISL_BASIC_MAP_RATIONAL);
189 return isl_basic_set_finalize(bset);
192 static struct isl_set *isl_set_set_rational(struct isl_set *set)
194 int i;
196 set = isl_set_cow(set);
197 if (!set)
198 return NULL;
199 for (i = 0; i < set->n; ++i) {
200 set->p[i] = isl_basic_set_set_rational(set->p[i]);
201 if (!set->p[i])
202 goto error;
204 return set;
205 error:
206 isl_set_free(set);
207 return NULL;
210 static struct isl_basic_set *isl_basic_set_add_equality(
211 struct isl_basic_set *bset, isl_int *c)
213 int i;
214 unsigned dim;
216 if (!bset)
217 return NULL;
219 if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
220 return bset;
222 isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error);
223 isl_assert(bset->ctx, bset->n_div == 0, goto error);
224 dim = isl_basic_set_n_dim(bset);
225 bset = isl_basic_set_cow(bset);
226 bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0);
227 i = isl_basic_set_alloc_equality(bset);
228 if (i < 0)
229 goto error;
230 isl_seq_cpy(bset->eq[i], c, 1 + dim);
231 return bset;
232 error:
233 isl_basic_set_free(bset);
234 return NULL;
237 static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c)
239 int i;
241 set = isl_set_cow(set);
242 if (!set)
243 return NULL;
244 for (i = 0; i < set->n; ++i) {
245 set->p[i] = isl_basic_set_add_equality(set->p[i], c);
246 if (!set->p[i])
247 goto error;
249 return set;
250 error:
251 isl_set_free(set);
252 return NULL;
255 /* Given a union of basic sets, construct the constraints for wrapping
256 * a facet around one of its ridges.
257 * In particular, if each of n the d-dimensional basic sets i in "set"
258 * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0
259 * and is defined by the constraints
260 * [ 1 ]
261 * A_i [ x ] >= 0
263 * then the resulting set is of dimension n*(1+d) and has as constraints
265 * [ a_i ]
266 * A_i [ x_i ] >= 0
268 * a_i >= 0
270 * \sum_i x_{i,1} = 1
272 static struct isl_basic_set *wrap_constraints(struct isl_set *set)
274 struct isl_basic_set *lp;
275 unsigned n_eq;
276 unsigned n_ineq;
277 int i, j, k;
278 unsigned dim, lp_dim;
280 if (!set)
281 return NULL;
283 dim = 1 + isl_set_n_dim(set);
284 n_eq = 1;
285 n_ineq = set->n;
286 for (i = 0; i < set->n; ++i) {
287 n_eq += set->p[i]->n_eq;
288 n_ineq += set->p[i]->n_ineq;
290 lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq);
291 if (!lp)
292 return NULL;
293 lp_dim = isl_basic_set_n_dim(lp);
294 k = isl_basic_set_alloc_equality(lp);
295 isl_int_set_si(lp->eq[k][0], -1);
296 for (i = 0; i < set->n; ++i) {
297 isl_int_set_si(lp->eq[k][1+dim*i], 0);
298 isl_int_set_si(lp->eq[k][1+dim*i+1], 1);
299 isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2);
301 for (i = 0; i < set->n; ++i) {
302 k = isl_basic_set_alloc_inequality(lp);
303 isl_seq_clr(lp->ineq[k], 1+lp_dim);
304 isl_int_set_si(lp->ineq[k][1+dim*i], 1);
306 for (j = 0; j < set->p[i]->n_eq; ++j) {
307 k = isl_basic_set_alloc_equality(lp);
308 isl_seq_clr(lp->eq[k], 1+dim*i);
309 isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim);
310 isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1));
313 for (j = 0; j < set->p[i]->n_ineq; ++j) {
314 k = isl_basic_set_alloc_inequality(lp);
315 isl_seq_clr(lp->ineq[k], 1+dim*i);
316 isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim);
317 isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1));
320 return lp;
323 /* Given a facet "facet" of the convex hull of "set" and a facet "ridge"
324 * of that facet, compute the other facet of the convex hull that contains
325 * the ridge.
327 * We first transform the set such that the facet constraint becomes
329 * x_1 >= 0
331 * I.e., the facet lies in
333 * x_1 = 0
335 * and on that facet, the constraint that defines the ridge is
337 * x_2 >= 0
339 * (This transformation is not strictly needed, all that is needed is
340 * that the ridge contains the origin.)
342 * Since the ridge contains the origin, the cone of the convex hull
343 * will be of the form
345 * x_1 >= 0
346 * x_2 >= a x_1
348 * with this second constraint defining the new facet.
349 * The constant a is obtained by settting x_1 in the cone of the
350 * convex hull to 1 and minimizing x_2.
351 * Now, each element in the cone of the convex hull is the sum
352 * of elements in the cones of the basic sets.
353 * If a_i is the dilation factor of basic set i, then the problem
354 * we need to solve is
356 * min \sum_i x_{i,2}
357 * st
358 * \sum_i x_{i,1} = 1
359 * a_i >= 0
360 * [ a_i ]
361 * A [ x_i ] >= 0
363 * with
364 * [ 1 ]
365 * A_i [ x_i ] >= 0
367 * the constraints of each (transformed) basic set.
368 * If a = n/d, then the constraint defining the new facet (in the transformed
369 * space) is
371 * -n x_1 + d x_2 >= 0
373 * In the original space, we need to take the same combination of the
374 * corresponding constraints "facet" and "ridge".
376 * If a = -infty = "-1/0", then we just return the original facet constraint.
377 * This means that the facet is unbounded, but has a bounded intersection
378 * with the union of sets.
380 isl_int *isl_set_wrap_facet(__isl_keep isl_set *set,
381 isl_int *facet, isl_int *ridge)
383 int i;
384 isl_ctx *ctx;
385 struct isl_mat *T = NULL;
386 struct isl_basic_set *lp = NULL;
387 struct isl_vec *obj;
388 enum isl_lp_result res;
389 isl_int num, den;
390 unsigned dim;
392 if (!set)
393 return NULL;
394 ctx = set->ctx;
395 set = isl_set_copy(set);
396 set = isl_set_set_rational(set);
398 dim = 1 + isl_set_n_dim(set);
399 T = isl_mat_alloc(ctx, 3, dim);
400 if (!T)
401 goto error;
402 isl_int_set_si(T->row[0][0], 1);
403 isl_seq_clr(T->row[0]+1, dim - 1);
404 isl_seq_cpy(T->row[1], facet, dim);
405 isl_seq_cpy(T->row[2], ridge, dim);
406 T = isl_mat_right_inverse(T);
407 set = isl_set_preimage(set, T);
408 T = NULL;
409 if (!set)
410 goto error;
411 lp = wrap_constraints(set);
412 obj = isl_vec_alloc(ctx, 1 + dim*set->n);
413 if (!obj)
414 goto error;
415 isl_int_set_si(obj->block.data[0], 0);
416 for (i = 0; i < set->n; ++i) {
417 isl_seq_clr(obj->block.data + 1 + dim*i, 2);
418 isl_int_set_si(obj->block.data[1 + dim*i+2], 1);
419 isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3);
421 isl_int_init(num);
422 isl_int_init(den);
423 res = isl_basic_set_solve_lp(lp, 0,
424 obj->block.data, ctx->one, &num, &den, NULL);
425 if (res == isl_lp_ok) {
426 isl_int_neg(num, num);
427 isl_seq_combine(facet, num, facet, den, ridge, dim);
429 isl_int_clear(num);
430 isl_int_clear(den);
431 isl_vec_free(obj);
432 isl_basic_set_free(lp);
433 isl_set_free(set);
434 if (res == isl_lp_error)
435 return NULL;
436 isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded,
437 return NULL);
438 return facet;
439 error:
440 isl_basic_set_free(lp);
441 isl_mat_free(T);
442 isl_set_free(set);
443 return NULL;
446 /* Compute the constraint of a facet of "set".
448 * We first compute the intersection with a bounding constraint
449 * that is orthogonal to one of the coordinate axes.
450 * If the affine hull of this intersection has only one equality,
451 * we have found a facet.
452 * Otherwise, we wrap the current bounding constraint around
453 * one of the equalities of the face (one that is not equal to
454 * the current bounding constraint).
455 * This process continues until we have found a facet.
456 * The dimension of the intersection increases by at least
457 * one on each iteration, so termination is guaranteed.
459 static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set)
461 struct isl_set *slice = NULL;
462 struct isl_basic_set *face = NULL;
463 int i;
464 unsigned dim = isl_set_n_dim(set);
465 int is_bound;
466 isl_mat *bounds;
468 isl_assert(set->ctx, set->n > 0, goto error);
469 bounds = isl_mat_alloc(set->ctx, 1, 1 + dim);
470 if (!bounds)
471 return NULL;
473 isl_seq_clr(bounds->row[0], dim);
474 isl_int_set_si(bounds->row[0][1 + dim - 1], 1);
475 is_bound = uset_is_bound(set, bounds->row[0], 1 + dim);
476 isl_assert(set->ctx, is_bound == 1, goto error);
477 isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim);
478 bounds->n_row = 1;
480 for (;;) {
481 slice = isl_set_copy(set);
482 slice = isl_set_add_basic_set_equality(slice, bounds->row[0]);
483 face = isl_set_affine_hull(slice);
484 if (!face)
485 goto error;
486 if (face->n_eq == 1) {
487 isl_basic_set_free(face);
488 break;
490 for (i = 0; i < face->n_eq; ++i)
491 if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) &&
492 !isl_seq_is_neg(bounds->row[0],
493 face->eq[i], 1 + dim))
494 break;
495 isl_assert(set->ctx, i < face->n_eq, goto error);
496 if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i]))
497 goto error;
498 isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col);
499 isl_basic_set_free(face);
502 return bounds;
503 error:
504 isl_basic_set_free(face);
505 isl_mat_free(bounds);
506 return NULL;
509 /* Given the bounding constraint "c" of a facet of the convex hull of "set",
510 * compute a hyperplane description of the facet, i.e., compute the facets
511 * of the facet.
513 * We compute an affine transformation that transforms the constraint
515 * [ 1 ]
516 * c [ x ] = 0
518 * to the constraint
520 * z_1 = 0
522 * by computing the right inverse U of a matrix that starts with the rows
524 * [ 1 0 ]
525 * [ c ]
527 * Then
528 * [ 1 ] [ 1 ]
529 * [ x ] = U [ z ]
530 * and
531 * [ 1 ] [ 1 ]
532 * [ z ] = Q [ x ]
534 * with Q = U^{-1}
535 * Since z_1 is zero, we can drop this variable as well as the corresponding
536 * column of U to obtain
538 * [ 1 ] [ 1 ]
539 * [ x ] = U' [ z' ]
540 * and
541 * [ 1 ] [ 1 ]
542 * [ z' ] = Q' [ x ]
544 * with Q' equal to Q, but without the corresponding row.
545 * After computing the facets of the facet in the z' space,
546 * we convert them back to the x space through Q.
548 static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c)
550 struct isl_mat *m, *U, *Q;
551 struct isl_basic_set *facet = NULL;
552 struct isl_ctx *ctx;
553 unsigned dim;
555 ctx = set->ctx;
556 set = isl_set_copy(set);
557 dim = isl_set_n_dim(set);
558 m = isl_mat_alloc(set->ctx, 2, 1 + dim);
559 if (!m)
560 goto error;
561 isl_int_set_si(m->row[0][0], 1);
562 isl_seq_clr(m->row[0]+1, dim);
563 isl_seq_cpy(m->row[1], c, 1+dim);
564 U = isl_mat_right_inverse(m);
565 Q = isl_mat_right_inverse(isl_mat_copy(U));
566 U = isl_mat_drop_cols(U, 1, 1);
567 Q = isl_mat_drop_rows(Q, 1, 1);
568 set = isl_set_preimage(set, U);
569 facet = uset_convex_hull_wrap_bounded(set);
570 facet = isl_basic_set_preimage(facet, Q);
571 if (facet)
572 isl_assert(ctx, facet->n_eq == 0, goto error);
573 return facet;
574 error:
575 isl_basic_set_free(facet);
576 isl_set_free(set);
577 return NULL;
580 /* Given an initial facet constraint, compute the remaining facets.
581 * We do this by running through all facets found so far and computing
582 * the adjacent facets through wrapping, adding those facets that we
583 * hadn't already found before.
585 * For each facet we have found so far, we first compute its facets
586 * in the resulting convex hull. That is, we compute the ridges
587 * of the resulting convex hull contained in the facet.
588 * We also compute the corresponding facet in the current approximation
589 * of the convex hull. There is no need to wrap around the ridges
590 * in this facet since that would result in a facet that is already
591 * present in the current approximation.
593 * This function can still be significantly optimized by checking which of
594 * the facets of the basic sets are also facets of the convex hull and
595 * using all the facets so far to help in constructing the facets of the
596 * facets
597 * and/or
598 * using the technique in section "3.1 Ridge Generation" of
599 * "Extended Convex Hull" by Fukuda et al.
601 static struct isl_basic_set *extend(struct isl_basic_set *hull,
602 struct isl_set *set)
604 int i, j, f;
605 int k;
606 struct isl_basic_set *facet = NULL;
607 struct isl_basic_set *hull_facet = NULL;
608 unsigned dim;
610 if (!hull)
611 return NULL;
613 isl_assert(set->ctx, set->n > 0, goto error);
615 dim = isl_set_n_dim(set);
617 for (i = 0; i < hull->n_ineq; ++i) {
618 facet = compute_facet(set, hull->ineq[i]);
619 facet = isl_basic_set_add_equality(facet, hull->ineq[i]);
620 facet = isl_basic_set_gauss(facet, NULL);
621 facet = isl_basic_set_normalize_constraints(facet);
622 hull_facet = isl_basic_set_copy(hull);
623 hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]);
624 hull_facet = isl_basic_set_gauss(hull_facet, NULL);
625 hull_facet = isl_basic_set_normalize_constraints(hull_facet);
626 if (!facet)
627 goto error;
628 hull = isl_basic_set_cow(hull);
629 hull = isl_basic_set_extend_dim(hull,
630 isl_dim_copy(hull->dim), 0, 0, facet->n_ineq);
631 for (j = 0; j < facet->n_ineq; ++j) {
632 for (f = 0; f < hull_facet->n_ineq; ++f)
633 if (isl_seq_eq(facet->ineq[j],
634 hull_facet->ineq[f], 1 + dim))
635 break;
636 if (f < hull_facet->n_ineq)
637 continue;
638 k = isl_basic_set_alloc_inequality(hull);
639 if (k < 0)
640 goto error;
641 isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim);
642 if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j]))
643 goto error;
645 isl_basic_set_free(hull_facet);
646 isl_basic_set_free(facet);
648 hull = isl_basic_set_simplify(hull);
649 hull = isl_basic_set_finalize(hull);
650 return hull;
651 error:
652 isl_basic_set_free(hull_facet);
653 isl_basic_set_free(facet);
654 isl_basic_set_free(hull);
655 return NULL;
658 /* Special case for computing the convex hull of a one dimensional set.
659 * We simply collect the lower and upper bounds of each basic set
660 * and the biggest of those.
662 static struct isl_basic_set *convex_hull_1d(struct isl_set *set)
664 struct isl_mat *c = NULL;
665 isl_int *lower = NULL;
666 isl_int *upper = NULL;
667 int i, j, k;
668 isl_int a, b;
669 struct isl_basic_set *hull;
671 for (i = 0; i < set->n; ++i) {
672 set->p[i] = isl_basic_set_simplify(set->p[i]);
673 if (!set->p[i])
674 goto error;
676 set = isl_set_remove_empty_parts(set);
677 if (!set)
678 goto error;
679 isl_assert(set->ctx, set->n > 0, goto error);
680 c = isl_mat_alloc(set->ctx, 2, 2);
681 if (!c)
682 goto error;
684 if (set->p[0]->n_eq > 0) {
685 isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error);
686 lower = c->row[0];
687 upper = c->row[1];
688 if (isl_int_is_pos(set->p[0]->eq[0][1])) {
689 isl_seq_cpy(lower, set->p[0]->eq[0], 2);
690 isl_seq_neg(upper, set->p[0]->eq[0], 2);
691 } else {
692 isl_seq_neg(lower, set->p[0]->eq[0], 2);
693 isl_seq_cpy(upper, set->p[0]->eq[0], 2);
695 } else {
696 for (j = 0; j < set->p[0]->n_ineq; ++j) {
697 if (isl_int_is_pos(set->p[0]->ineq[j][1])) {
698 lower = c->row[0];
699 isl_seq_cpy(lower, set->p[0]->ineq[j], 2);
700 } else {
701 upper = c->row[1];
702 isl_seq_cpy(upper, set->p[0]->ineq[j], 2);
707 isl_int_init(a);
708 isl_int_init(b);
709 for (i = 0; i < set->n; ++i) {
710 struct isl_basic_set *bset = set->p[i];
711 int has_lower = 0;
712 int has_upper = 0;
714 for (j = 0; j < bset->n_eq; ++j) {
715 has_lower = 1;
716 has_upper = 1;
717 if (lower) {
718 isl_int_mul(a, lower[0], bset->eq[j][1]);
719 isl_int_mul(b, lower[1], bset->eq[j][0]);
720 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
721 isl_seq_cpy(lower, bset->eq[j], 2);
722 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
723 isl_seq_neg(lower, bset->eq[j], 2);
725 if (upper) {
726 isl_int_mul(a, upper[0], bset->eq[j][1]);
727 isl_int_mul(b, upper[1], bset->eq[j][0]);
728 if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1]))
729 isl_seq_neg(upper, bset->eq[j], 2);
730 if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1]))
731 isl_seq_cpy(upper, bset->eq[j], 2);
734 for (j = 0; j < bset->n_ineq; ++j) {
735 if (isl_int_is_pos(bset->ineq[j][1]))
736 has_lower = 1;
737 if (isl_int_is_neg(bset->ineq[j][1]))
738 has_upper = 1;
739 if (lower && isl_int_is_pos(bset->ineq[j][1])) {
740 isl_int_mul(a, lower[0], bset->ineq[j][1]);
741 isl_int_mul(b, lower[1], bset->ineq[j][0]);
742 if (isl_int_lt(a, b))
743 isl_seq_cpy(lower, bset->ineq[j], 2);
745 if (upper && isl_int_is_neg(bset->ineq[j][1])) {
746 isl_int_mul(a, upper[0], bset->ineq[j][1]);
747 isl_int_mul(b, upper[1], bset->ineq[j][0]);
748 if (isl_int_gt(a, b))
749 isl_seq_cpy(upper, bset->ineq[j], 2);
752 if (!has_lower)
753 lower = NULL;
754 if (!has_upper)
755 upper = NULL;
757 isl_int_clear(a);
758 isl_int_clear(b);
760 hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2);
761 hull = isl_basic_set_set_rational(hull);
762 if (!hull)
763 goto error;
764 if (lower) {
765 k = isl_basic_set_alloc_inequality(hull);
766 isl_seq_cpy(hull->ineq[k], lower, 2);
768 if (upper) {
769 k = isl_basic_set_alloc_inequality(hull);
770 isl_seq_cpy(hull->ineq[k], upper, 2);
772 hull = isl_basic_set_finalize(hull);
773 isl_set_free(set);
774 isl_mat_free(c);
775 return hull;
776 error:
777 isl_set_free(set);
778 isl_mat_free(c);
779 return NULL;
782 /* Project out final n dimensions using Fourier-Motzkin */
783 static struct isl_set *set_project_out(struct isl_ctx *ctx,
784 struct isl_set *set, unsigned n)
786 return isl_set_remove_dims(set, isl_set_n_dim(set) - n, n);
789 static struct isl_basic_set *convex_hull_0d(struct isl_set *set)
791 struct isl_basic_set *convex_hull;
793 if (!set)
794 return NULL;
796 if (isl_set_is_empty(set))
797 convex_hull = isl_basic_set_empty(isl_dim_copy(set->dim));
798 else
799 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
800 isl_set_free(set);
801 return convex_hull;
804 /* Compute the convex hull of a pair of basic sets without any parameters or
805 * integer divisions using Fourier-Motzkin elimination.
806 * The convex hull is the set of all points that can be written as
807 * the sum of points from both basic sets (in homogeneous coordinates).
808 * We set up the constraints in a space with dimensions for each of
809 * the three sets and then project out the dimensions corresponding
810 * to the two original basic sets, retaining only those corresponding
811 * to the convex hull.
813 static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1,
814 struct isl_basic_set *bset2)
816 int i, j, k;
817 struct isl_basic_set *bset[2];
818 struct isl_basic_set *hull = NULL;
819 unsigned dim;
821 if (!bset1 || !bset2)
822 goto error;
824 dim = isl_basic_set_n_dim(bset1);
825 hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0,
826 1 + dim + bset1->n_eq + bset2->n_eq,
827 2 + bset1->n_ineq + bset2->n_ineq);
828 bset[0] = bset1;
829 bset[1] = bset2;
830 for (i = 0; i < 2; ++i) {
831 for (j = 0; j < bset[i]->n_eq; ++j) {
832 k = isl_basic_set_alloc_equality(hull);
833 if (k < 0)
834 goto error;
835 isl_seq_clr(hull->eq[k], (i+1) * (1+dim));
836 isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
837 isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j],
838 1+dim);
840 for (j = 0; j < bset[i]->n_ineq; ++j) {
841 k = isl_basic_set_alloc_inequality(hull);
842 if (k < 0)
843 goto error;
844 isl_seq_clr(hull->ineq[k], (i+1) * (1+dim));
845 isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim));
846 isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim),
847 bset[i]->ineq[j], 1+dim);
849 k = isl_basic_set_alloc_inequality(hull);
850 if (k < 0)
851 goto error;
852 isl_seq_clr(hull->ineq[k], 1+2+3*dim);
853 isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1);
855 for (j = 0; j < 1+dim; ++j) {
856 k = isl_basic_set_alloc_equality(hull);
857 if (k < 0)
858 goto error;
859 isl_seq_clr(hull->eq[k], 1+2+3*dim);
860 isl_int_set_si(hull->eq[k][j], -1);
861 isl_int_set_si(hull->eq[k][1+dim+j], 1);
862 isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1);
864 hull = isl_basic_set_set_rational(hull);
865 hull = isl_basic_set_remove_dims(hull, dim, 2*(1+dim));
866 hull = isl_basic_set_convex_hull(hull);
867 isl_basic_set_free(bset1);
868 isl_basic_set_free(bset2);
869 return hull;
870 error:
871 isl_basic_set_free(bset1);
872 isl_basic_set_free(bset2);
873 isl_basic_set_free(hull);
874 return NULL;
877 /* Is the set bounded for each value of the parameters?
879 int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset)
881 struct isl_tab *tab;
882 int bounded;
884 if (!bset)
885 return -1;
886 if (isl_basic_set_fast_is_empty(bset))
887 return 1;
889 tab = isl_tab_from_recession_cone(bset, 1);
890 bounded = isl_tab_cone_is_bounded(tab);
891 isl_tab_free(tab);
892 return bounded;
895 /* Is the set bounded for each value of the parameters?
897 int isl_set_is_bounded(__isl_keep isl_set *set)
899 int i;
901 if (!set)
902 return -1;
904 for (i = 0; i < set->n; ++i) {
905 int bounded = isl_basic_set_is_bounded(set->p[i]);
906 if (!bounded || bounded < 0)
907 return bounded;
909 return 1;
912 /* Compute the lineality space of the convex hull of bset1 and bset2.
914 * We first compute the intersection of the recession cone of bset1
915 * with the negative of the recession cone of bset2 and then compute
916 * the linear hull of the resulting cone.
918 static struct isl_basic_set *induced_lineality_space(
919 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
921 int i, k;
922 struct isl_basic_set *lin = NULL;
923 unsigned dim;
925 if (!bset1 || !bset2)
926 goto error;
928 dim = isl_basic_set_total_dim(bset1);
929 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset1), 0,
930 bset1->n_eq + bset2->n_eq,
931 bset1->n_ineq + bset2->n_ineq);
932 lin = isl_basic_set_set_rational(lin);
933 if (!lin)
934 goto error;
935 for (i = 0; i < bset1->n_eq; ++i) {
936 k = isl_basic_set_alloc_equality(lin);
937 if (k < 0)
938 goto error;
939 isl_int_set_si(lin->eq[k][0], 0);
940 isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim);
942 for (i = 0; i < bset1->n_ineq; ++i) {
943 k = isl_basic_set_alloc_inequality(lin);
944 if (k < 0)
945 goto error;
946 isl_int_set_si(lin->ineq[k][0], 0);
947 isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim);
949 for (i = 0; i < bset2->n_eq; ++i) {
950 k = isl_basic_set_alloc_equality(lin);
951 if (k < 0)
952 goto error;
953 isl_int_set_si(lin->eq[k][0], 0);
954 isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim);
956 for (i = 0; i < bset2->n_ineq; ++i) {
957 k = isl_basic_set_alloc_inequality(lin);
958 if (k < 0)
959 goto error;
960 isl_int_set_si(lin->ineq[k][0], 0);
961 isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim);
964 isl_basic_set_free(bset1);
965 isl_basic_set_free(bset2);
966 return isl_basic_set_affine_hull(lin);
967 error:
968 isl_basic_set_free(lin);
969 isl_basic_set_free(bset1);
970 isl_basic_set_free(bset2);
971 return NULL;
974 static struct isl_basic_set *uset_convex_hull(struct isl_set *set);
976 /* Given a set and a linear space "lin" of dimension n > 0,
977 * project the linear space from the set, compute the convex hull
978 * and then map the set back to the original space.
980 * Let
982 * M x = 0
984 * describe the linear space. We first compute the Hermite normal
985 * form H = M U of M = H Q, to obtain
987 * H Q x = 0
989 * The last n rows of H will be zero, so the last n variables of x' = Q x
990 * are the one we want to project out. We do this by transforming each
991 * basic set A x >= b to A U x' >= b and then removing the last n dimensions.
992 * After computing the convex hull in x'_1, i.e., A' x'_1 >= b',
993 * we transform the hull back to the original space as A' Q_1 x >= b',
994 * with Q_1 all but the last n rows of Q.
996 static struct isl_basic_set *modulo_lineality(struct isl_set *set,
997 struct isl_basic_set *lin)
999 unsigned total = isl_basic_set_total_dim(lin);
1000 unsigned lin_dim;
1001 struct isl_basic_set *hull;
1002 struct isl_mat *M, *U, *Q;
1004 if (!set || !lin)
1005 goto error;
1006 lin_dim = total - lin->n_eq;
1007 M = isl_mat_sub_alloc(set->ctx, lin->eq, 0, lin->n_eq, 1, total);
1008 M = isl_mat_left_hermite(M, 0, &U, &Q);
1009 if (!M)
1010 goto error;
1011 isl_mat_free(M);
1012 isl_basic_set_free(lin);
1014 Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim);
1016 U = isl_mat_lin_to_aff(U);
1017 Q = isl_mat_lin_to_aff(Q);
1019 set = isl_set_preimage(set, U);
1020 set = isl_set_remove_dims(set, total - lin_dim, lin_dim);
1021 hull = uset_convex_hull(set);
1022 hull = isl_basic_set_preimage(hull, Q);
1024 return hull;
1025 error:
1026 isl_basic_set_free(lin);
1027 isl_set_free(set);
1028 return NULL;
1031 /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space,
1032 * set up an LP for solving
1034 * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j}
1036 * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0
1037 * The next \alpha{ij} correspond to the equalities and come in pairs.
1038 * The final \alpha{ij} correspond to the inequalities.
1040 static struct isl_basic_set *valid_direction_lp(
1041 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1043 struct isl_dim *dim;
1044 struct isl_basic_set *lp;
1045 unsigned d;
1046 int n;
1047 int i, j, k;
1049 if (!bset1 || !bset2)
1050 goto error;
1051 d = 1 + isl_basic_set_total_dim(bset1);
1052 n = 2 +
1053 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq;
1054 dim = isl_dim_set_alloc(bset1->ctx, 0, n);
1055 lp = isl_basic_set_alloc_dim(dim, 0, d, n);
1056 if (!lp)
1057 goto error;
1058 for (i = 0; i < n; ++i) {
1059 k = isl_basic_set_alloc_inequality(lp);
1060 if (k < 0)
1061 goto error;
1062 isl_seq_clr(lp->ineq[k] + 1, n);
1063 isl_int_set_si(lp->ineq[k][0], -1);
1064 isl_int_set_si(lp->ineq[k][1 + i], 1);
1066 for (i = 0; i < d; ++i) {
1067 k = isl_basic_set_alloc_equality(lp);
1068 if (k < 0)
1069 goto error;
1070 n = 0;
1071 isl_int_set_si(lp->eq[k][n++], 0);
1072 /* positivity constraint 1 >= 0 */
1073 isl_int_set_si(lp->eq[k][n++], i == 0);
1074 for (j = 0; j < bset1->n_eq; ++j) {
1075 isl_int_set(lp->eq[k][n++], bset1->eq[j][i]);
1076 isl_int_neg(lp->eq[k][n++], bset1->eq[j][i]);
1078 for (j = 0; j < bset1->n_ineq; ++j)
1079 isl_int_set(lp->eq[k][n++], bset1->ineq[j][i]);
1080 /* positivity constraint 1 >= 0 */
1081 isl_int_set_si(lp->eq[k][n++], -(i == 0));
1082 for (j = 0; j < bset2->n_eq; ++j) {
1083 isl_int_neg(lp->eq[k][n++], bset2->eq[j][i]);
1084 isl_int_set(lp->eq[k][n++], bset2->eq[j][i]);
1086 for (j = 0; j < bset2->n_ineq; ++j)
1087 isl_int_neg(lp->eq[k][n++], bset2->ineq[j][i]);
1089 lp = isl_basic_set_gauss(lp, NULL);
1090 isl_basic_set_free(bset1);
1091 isl_basic_set_free(bset2);
1092 return lp;
1093 error:
1094 isl_basic_set_free(bset1);
1095 isl_basic_set_free(bset2);
1096 return NULL;
1099 /* Compute a vector s in the homogeneous space such that <s, r> > 0
1100 * for all rays in the homogeneous space of the two cones that correspond
1101 * to the input polyhedra bset1 and bset2.
1103 * We compute s as a vector that satisfies
1105 * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*)
1107 * with h_{ij} the normals of the facets of polyhedron i
1108 * (including the "positivity constraint" 1 >= 0) and \alpha_{ij}
1109 * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1.
1110 * We first set up an LP with as variables the \alpha{ij}.
1111 * In this formulation, for each polyhedron i,
1112 * the first constraint is the positivity constraint, followed by pairs
1113 * of variables for the equalities, followed by variables for the inequalities.
1114 * We then simply pick a feasible solution and compute s using (*).
1116 * Note that we simply pick any valid direction and make no attempt
1117 * to pick a "good" or even the "best" valid direction.
1119 static struct isl_vec *valid_direction(
1120 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1122 struct isl_basic_set *lp;
1123 struct isl_tab *tab;
1124 struct isl_vec *sample = NULL;
1125 struct isl_vec *dir;
1126 unsigned d;
1127 int i;
1128 int n;
1130 if (!bset1 || !bset2)
1131 goto error;
1132 lp = valid_direction_lp(isl_basic_set_copy(bset1),
1133 isl_basic_set_copy(bset2));
1134 tab = isl_tab_from_basic_set(lp);
1135 sample = isl_tab_get_sample_value(tab);
1136 isl_tab_free(tab);
1137 isl_basic_set_free(lp);
1138 if (!sample)
1139 goto error;
1140 d = isl_basic_set_total_dim(bset1);
1141 dir = isl_vec_alloc(bset1->ctx, 1 + d);
1142 if (!dir)
1143 goto error;
1144 isl_seq_clr(dir->block.data + 1, dir->size - 1);
1145 n = 1;
1146 /* positivity constraint 1 >= 0 */
1147 isl_int_set(dir->block.data[0], sample->block.data[n++]);
1148 for (i = 0; i < bset1->n_eq; ++i) {
1149 isl_int_sub(sample->block.data[n],
1150 sample->block.data[n], sample->block.data[n+1]);
1151 isl_seq_combine(dir->block.data,
1152 bset1->ctx->one, dir->block.data,
1153 sample->block.data[n], bset1->eq[i], 1 + d);
1155 n += 2;
1157 for (i = 0; i < bset1->n_ineq; ++i)
1158 isl_seq_combine(dir->block.data,
1159 bset1->ctx->one, dir->block.data,
1160 sample->block.data[n++], bset1->ineq[i], 1 + d);
1161 isl_vec_free(sample);
1162 isl_seq_normalize(bset1->ctx, dir->el, dir->size);
1163 isl_basic_set_free(bset1);
1164 isl_basic_set_free(bset2);
1165 return dir;
1166 error:
1167 isl_vec_free(sample);
1168 isl_basic_set_free(bset1);
1169 isl_basic_set_free(bset2);
1170 return NULL;
1173 /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1},
1174 * compute b_i' + A_i' x' >= 0, with
1176 * [ b_i A_i ] [ y' ] [ y' ]
1177 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1179 * In particular, add the "positivity constraint" and then perform
1180 * the mapping.
1182 static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset,
1183 struct isl_mat *T)
1185 int k;
1187 if (!bset)
1188 goto error;
1189 bset = isl_basic_set_extend_constraints(bset, 0, 1);
1190 k = isl_basic_set_alloc_inequality(bset);
1191 if (k < 0)
1192 goto error;
1193 isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset));
1194 isl_int_set_si(bset->ineq[k][0], 1);
1195 bset = isl_basic_set_preimage(bset, T);
1196 return bset;
1197 error:
1198 isl_mat_free(T);
1199 isl_basic_set_free(bset);
1200 return NULL;
1203 /* Compute the convex hull of a pair of basic sets without any parameters or
1204 * integer divisions, where the convex hull is known to be pointed,
1205 * but the basic sets may be unbounded.
1207 * We turn this problem into the computation of a convex hull of a pair
1208 * _bounded_ polyhedra by "changing the direction of the homogeneous
1209 * dimension". This idea is due to Matthias Koeppe.
1211 * Consider the cones in homogeneous space that correspond to the
1212 * input polyhedra. The rays of these cones are also rays of the
1213 * polyhedra if the coordinate that corresponds to the homogeneous
1214 * dimension is zero. That is, if the inner product of the rays
1215 * with the homogeneous direction is zero.
1216 * The cones in the homogeneous space can also be considered to
1217 * correspond to other pairs of polyhedra by chosing a different
1218 * homogeneous direction. To ensure that both of these polyhedra
1219 * are bounded, we need to make sure that all rays of the cones
1220 * correspond to vertices and not to rays.
1221 * Let s be a direction such that <s, r> > 0 for all rays r of both cones.
1222 * Then using s as a homogeneous direction, we obtain a pair of polytopes.
1223 * The vector s is computed in valid_direction.
1225 * Note that we need to consider _all_ rays of the cones and not just
1226 * the rays that correspond to rays in the polyhedra. If we were to
1227 * only consider those rays and turn them into vertices, then we
1228 * may inadvertently turn some vertices into rays.
1230 * The standard homogeneous direction is the unit vector in the 0th coordinate.
1231 * We therefore transform the two polyhedra such that the selected
1232 * direction is mapped onto this standard direction and then proceed
1233 * with the normal computation.
1234 * Let S be a non-singular square matrix with s as its first row,
1235 * then we want to map the polyhedra to the space
1237 * [ y' ] [ y ] [ y ] [ y' ]
1238 * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ]
1240 * We take S to be the unimodular completion of s to limit the growth
1241 * of the coefficients in the following computations.
1243 * Let b_i + A_i x >= 0 be the constraints of polyhedron i.
1244 * We first move to the homogeneous dimension
1246 * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ]
1247 * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ]
1249 * Then we change directoin
1251 * [ b_i A_i ] [ y' ] [ y' ]
1252 * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0
1254 * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0
1255 * resulting in b' + A' x' >= 0, which we then convert back
1257 * [ y ] [ y ]
1258 * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0
1260 * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra.
1262 static struct isl_basic_set *convex_hull_pair_pointed(
1263 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
1265 struct isl_ctx *ctx = NULL;
1266 struct isl_vec *dir = NULL;
1267 struct isl_mat *T = NULL;
1268 struct isl_mat *T2 = NULL;
1269 struct isl_basic_set *hull;
1270 struct isl_set *set;
1272 if (!bset1 || !bset2)
1273 goto error;
1274 ctx = bset1->ctx;
1275 dir = valid_direction(isl_basic_set_copy(bset1),
1276 isl_basic_set_copy(bset2));
1277 if (!dir)
1278 goto error;
1279 T = isl_mat_alloc(bset1->ctx, dir->size, dir->size);
1280 if (!T)
1281 goto error;
1282 isl_seq_cpy(T->row[0], dir->block.data, dir->size);
1283 T = isl_mat_unimodular_complete(T, 1);
1284 T2 = isl_mat_right_inverse(isl_mat_copy(T));
1286 bset1 = homogeneous_map(bset1, isl_mat_copy(T2));
1287 bset2 = homogeneous_map(bset2, T2);
1288 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1289 set = isl_set_add_basic_set(set, bset1);
1290 set = isl_set_add_basic_set(set, bset2);
1291 hull = uset_convex_hull(set);
1292 hull = isl_basic_set_preimage(hull, T);
1294 isl_vec_free(dir);
1296 return hull;
1297 error:
1298 isl_vec_free(dir);
1299 isl_basic_set_free(bset1);
1300 isl_basic_set_free(bset2);
1301 return NULL;
1304 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set);
1305 static struct isl_basic_set *modulo_affine_hull(
1306 struct isl_set *set, struct isl_basic_set *affine_hull);
1308 /* Compute the convex hull of a pair of basic sets without any parameters or
1309 * integer divisions.
1311 * This function is called from uset_convex_hull_unbounded, which
1312 * means that the complete convex hull is unbounded. Some pairs
1313 * of basic sets may still be bounded, though.
1314 * They may even lie inside a lower dimensional space, in which
1315 * case they need to be handled inside their affine hull since
1316 * the main algorithm assumes that the result is full-dimensional.
1318 * If the convex hull of the two basic sets would have a non-trivial
1319 * lineality space, we first project out this lineality space.
1321 static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1,
1322 struct isl_basic_set *bset2)
1324 isl_basic_set *lin, *aff;
1325 int bounded1, bounded2;
1327 aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1),
1328 isl_basic_set_copy(bset2)));
1329 if (!aff)
1330 goto error;
1331 if (aff->n_eq != 0)
1332 return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff);
1333 isl_basic_set_free(aff);
1335 bounded1 = isl_basic_set_is_bounded(bset1);
1336 bounded2 = isl_basic_set_is_bounded(bset2);
1338 if (bounded1 < 0 || bounded2 < 0)
1339 goto error;
1341 if (bounded1 && bounded2)
1342 uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2));
1344 if (bounded1 || bounded2)
1345 return convex_hull_pair_pointed(bset1, bset2);
1347 lin = induced_lineality_space(isl_basic_set_copy(bset1),
1348 isl_basic_set_copy(bset2));
1349 if (!lin)
1350 goto error;
1351 if (isl_basic_set_is_universe(lin)) {
1352 isl_basic_set_free(bset1);
1353 isl_basic_set_free(bset2);
1354 return lin;
1356 if (lin->n_eq < isl_basic_set_total_dim(lin)) {
1357 struct isl_set *set;
1358 set = isl_set_alloc_dim(isl_basic_set_get_dim(bset1), 2, 0);
1359 set = isl_set_add_basic_set(set, bset1);
1360 set = isl_set_add_basic_set(set, bset2);
1361 return modulo_lineality(set, lin);
1363 isl_basic_set_free(lin);
1365 return convex_hull_pair_pointed(bset1, bset2);
1366 error:
1367 isl_basic_set_free(bset1);
1368 isl_basic_set_free(bset2);
1369 return NULL;
1372 /* Compute the lineality space of a basic set.
1373 * We currently do not allow the basic set to have any divs.
1374 * We basically just drop the constants and turn every inequality
1375 * into an equality.
1377 struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset)
1379 int i, k;
1380 struct isl_basic_set *lin = NULL;
1381 unsigned dim;
1383 if (!bset)
1384 goto error;
1385 isl_assert(bset->ctx, bset->n_div == 0, goto error);
1386 dim = isl_basic_set_total_dim(bset);
1388 lin = isl_basic_set_alloc_dim(isl_basic_set_get_dim(bset), 0, dim, 0);
1389 if (!lin)
1390 goto error;
1391 for (i = 0; i < bset->n_eq; ++i) {
1392 k = isl_basic_set_alloc_equality(lin);
1393 if (k < 0)
1394 goto error;
1395 isl_int_set_si(lin->eq[k][0], 0);
1396 isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim);
1398 lin = isl_basic_set_gauss(lin, NULL);
1399 if (!lin)
1400 goto error;
1401 for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) {
1402 k = isl_basic_set_alloc_equality(lin);
1403 if (k < 0)
1404 goto error;
1405 isl_int_set_si(lin->eq[k][0], 0);
1406 isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim);
1407 lin = isl_basic_set_gauss(lin, NULL);
1408 if (!lin)
1409 goto error;
1411 isl_basic_set_free(bset);
1412 return lin;
1413 error:
1414 isl_basic_set_free(lin);
1415 isl_basic_set_free(bset);
1416 return NULL;
1419 /* Compute the (linear) hull of the lineality spaces of the basic sets in the
1420 * "underlying" set "set".
1422 static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set)
1424 int i;
1425 struct isl_set *lin = NULL;
1427 if (!set)
1428 return NULL;
1429 if (set->n == 0) {
1430 struct isl_dim *dim = isl_set_get_dim(set);
1431 isl_set_free(set);
1432 return isl_basic_set_empty(dim);
1435 lin = isl_set_alloc_dim(isl_set_get_dim(set), set->n, 0);
1436 for (i = 0; i < set->n; ++i)
1437 lin = isl_set_add_basic_set(lin,
1438 isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i])));
1439 isl_set_free(set);
1440 return isl_set_affine_hull(lin);
1443 /* Compute the convex hull of a set without any parameters or
1444 * integer divisions.
1445 * In each step, we combined two basic sets until only one
1446 * basic set is left.
1447 * The input basic sets are assumed not to have a non-trivial
1448 * lineality space. If any of the intermediate results has
1449 * a non-trivial lineality space, it is projected out.
1451 static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set)
1453 struct isl_basic_set *convex_hull = NULL;
1455 convex_hull = isl_set_copy_basic_set(set);
1456 set = isl_set_drop_basic_set(set, convex_hull);
1457 if (!set)
1458 goto error;
1459 while (set->n > 0) {
1460 struct isl_basic_set *t;
1461 t = isl_set_copy_basic_set(set);
1462 if (!t)
1463 goto error;
1464 set = isl_set_drop_basic_set(set, t);
1465 if (!set)
1466 goto error;
1467 convex_hull = convex_hull_pair(convex_hull, t);
1468 if (set->n == 0)
1469 break;
1470 t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull));
1471 if (!t)
1472 goto error;
1473 if (isl_basic_set_is_universe(t)) {
1474 isl_basic_set_free(convex_hull);
1475 convex_hull = t;
1476 break;
1478 if (t->n_eq < isl_basic_set_total_dim(t)) {
1479 set = isl_set_add_basic_set(set, convex_hull);
1480 return modulo_lineality(set, t);
1482 isl_basic_set_free(t);
1484 isl_set_free(set);
1485 return convex_hull;
1486 error:
1487 isl_set_free(set);
1488 isl_basic_set_free(convex_hull);
1489 return NULL;
1492 /* Compute an initial hull for wrapping containing a single initial
1493 * facet.
1494 * This function assumes that the given set is bounded.
1496 static struct isl_basic_set *initial_hull(struct isl_basic_set *hull,
1497 struct isl_set *set)
1499 struct isl_mat *bounds = NULL;
1500 unsigned dim;
1501 int k;
1503 if (!hull)
1504 goto error;
1505 bounds = initial_facet_constraint(set);
1506 if (!bounds)
1507 goto error;
1508 k = isl_basic_set_alloc_inequality(hull);
1509 if (k < 0)
1510 goto error;
1511 dim = isl_set_n_dim(set);
1512 isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error);
1513 isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col);
1514 isl_mat_free(bounds);
1516 return hull;
1517 error:
1518 isl_basic_set_free(hull);
1519 isl_mat_free(bounds);
1520 return NULL;
1523 struct max_constraint {
1524 struct isl_mat *c;
1525 int count;
1526 int ineq;
1529 static int max_constraint_equal(const void *entry, const void *val)
1531 struct max_constraint *a = (struct max_constraint *)entry;
1532 isl_int *b = (isl_int *)val;
1534 return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1);
1537 static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1538 isl_int *con, unsigned len, int n, int ineq)
1540 struct isl_hash_table_entry *entry;
1541 struct max_constraint *c;
1542 uint32_t c_hash;
1544 c_hash = isl_seq_get_hash(con + 1, len);
1545 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1546 con + 1, 0);
1547 if (!entry)
1548 return;
1549 c = entry->data;
1550 if (c->count < n) {
1551 isl_hash_table_remove(ctx, table, entry);
1552 return;
1554 c->count++;
1555 if (isl_int_gt(c->c->row[0][0], con[0]))
1556 return;
1557 if (isl_int_eq(c->c->row[0][0], con[0])) {
1558 if (ineq)
1559 c->ineq = ineq;
1560 return;
1562 c->c = isl_mat_cow(c->c);
1563 isl_int_set(c->c->row[0][0], con[0]);
1564 c->ineq = ineq;
1567 /* Check whether the constraint hash table "table" constains the constraint
1568 * "con".
1570 static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table,
1571 isl_int *con, unsigned len, int n)
1573 struct isl_hash_table_entry *entry;
1574 struct max_constraint *c;
1575 uint32_t c_hash;
1577 c_hash = isl_seq_get_hash(con + 1, len);
1578 entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal,
1579 con + 1, 0);
1580 if (!entry)
1581 return 0;
1582 c = entry->data;
1583 if (c->count < n)
1584 return 0;
1585 return isl_int_eq(c->c->row[0][0], con[0]);
1588 /* Check for inequality constraints of a basic set without equalities
1589 * such that the same or more stringent copies of the constraint appear
1590 * in all of the basic sets. Such constraints are necessarily facet
1591 * constraints of the convex hull.
1593 * If the resulting basic set is by chance identical to one of
1594 * the basic sets in "set", then we know that this basic set contains
1595 * all other basic sets and is therefore the convex hull of set.
1596 * In this case we set *is_hull to 1.
1598 static struct isl_basic_set *common_constraints(struct isl_basic_set *hull,
1599 struct isl_set *set, int *is_hull)
1601 int i, j, s, n;
1602 int min_constraints;
1603 int best;
1604 struct max_constraint *constraints = NULL;
1605 struct isl_hash_table *table = NULL;
1606 unsigned total;
1608 *is_hull = 0;
1610 for (i = 0; i < set->n; ++i)
1611 if (set->p[i]->n_eq == 0)
1612 break;
1613 if (i >= set->n)
1614 return hull;
1615 min_constraints = set->p[i]->n_ineq;
1616 best = i;
1617 for (i = best + 1; i < set->n; ++i) {
1618 if (set->p[i]->n_eq != 0)
1619 continue;
1620 if (set->p[i]->n_ineq >= min_constraints)
1621 continue;
1622 min_constraints = set->p[i]->n_ineq;
1623 best = i;
1625 constraints = isl_calloc_array(hull->ctx, struct max_constraint,
1626 min_constraints);
1627 if (!constraints)
1628 return hull;
1629 table = isl_alloc_type(hull->ctx, struct isl_hash_table);
1630 if (isl_hash_table_init(hull->ctx, table, min_constraints))
1631 goto error;
1633 total = isl_dim_total(set->dim);
1634 for (i = 0; i < set->p[best]->n_ineq; ++i) {
1635 constraints[i].c = isl_mat_sub_alloc(hull->ctx,
1636 set->p[best]->ineq + i, 0, 1, 0, 1 + total);
1637 if (!constraints[i].c)
1638 goto error;
1639 constraints[i].ineq = 1;
1641 for (i = 0; i < min_constraints; ++i) {
1642 struct isl_hash_table_entry *entry;
1643 uint32_t c_hash;
1644 c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total);
1645 entry = isl_hash_table_find(hull->ctx, table, c_hash,
1646 max_constraint_equal, constraints[i].c->row[0] + 1, 1);
1647 if (!entry)
1648 goto error;
1649 isl_assert(hull->ctx, !entry->data, goto error);
1650 entry->data = &constraints[i];
1653 n = 0;
1654 for (s = 0; s < set->n; ++s) {
1655 if (s == best)
1656 continue;
1658 for (i = 0; i < set->p[s]->n_eq; ++i) {
1659 isl_int *eq = set->p[s]->eq[i];
1660 for (j = 0; j < 2; ++j) {
1661 isl_seq_neg(eq, eq, 1 + total);
1662 update_constraint(hull->ctx, table,
1663 eq, total, n, 0);
1666 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1667 isl_int *ineq = set->p[s]->ineq[i];
1668 update_constraint(hull->ctx, table, ineq, total, n,
1669 set->p[s]->n_eq == 0);
1671 ++n;
1674 for (i = 0; i < min_constraints; ++i) {
1675 if (constraints[i].count < n)
1676 continue;
1677 if (!constraints[i].ineq)
1678 continue;
1679 j = isl_basic_set_alloc_inequality(hull);
1680 if (j < 0)
1681 goto error;
1682 isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total);
1685 for (s = 0; s < set->n; ++s) {
1686 if (set->p[s]->n_eq)
1687 continue;
1688 if (set->p[s]->n_ineq != hull->n_ineq)
1689 continue;
1690 for (i = 0; i < set->p[s]->n_ineq; ++i) {
1691 isl_int *ineq = set->p[s]->ineq[i];
1692 if (!has_constraint(hull->ctx, table, ineq, total, n))
1693 break;
1695 if (i == set->p[s]->n_ineq)
1696 *is_hull = 1;
1699 isl_hash_table_clear(table);
1700 for (i = 0; i < min_constraints; ++i)
1701 isl_mat_free(constraints[i].c);
1702 free(constraints);
1703 free(table);
1704 return hull;
1705 error:
1706 isl_hash_table_clear(table);
1707 free(table);
1708 if (constraints)
1709 for (i = 0; i < min_constraints; ++i)
1710 isl_mat_free(constraints[i].c);
1711 free(constraints);
1712 return hull;
1715 /* Create a template for the convex hull of "set" and fill it up
1716 * obvious facet constraints, if any. If the result happens to
1717 * be the convex hull of "set" then *is_hull is set to 1.
1719 static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull)
1721 struct isl_basic_set *hull;
1722 unsigned n_ineq;
1723 int i;
1725 n_ineq = 1;
1726 for (i = 0; i < set->n; ++i) {
1727 n_ineq += set->p[i]->n_eq;
1728 n_ineq += set->p[i]->n_ineq;
1730 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
1731 hull = isl_basic_set_set_rational(hull);
1732 if (!hull)
1733 return NULL;
1734 return common_constraints(hull, set, is_hull);
1737 static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set)
1739 struct isl_basic_set *hull;
1740 int is_hull;
1742 hull = proto_hull(set, &is_hull);
1743 if (hull && !is_hull) {
1744 if (hull->n_ineq == 0)
1745 hull = initial_hull(hull, set);
1746 hull = extend(hull, set);
1748 isl_set_free(set);
1750 return hull;
1753 /* Compute the convex hull of a set without any parameters or
1754 * integer divisions. Depending on whether the set is bounded,
1755 * we pass control to the wrapping based convex hull or
1756 * the Fourier-Motzkin elimination based convex hull.
1757 * We also handle a few special cases before checking the boundedness.
1759 static struct isl_basic_set *uset_convex_hull(struct isl_set *set)
1761 struct isl_basic_set *convex_hull = NULL;
1762 struct isl_basic_set *lin;
1764 if (isl_set_n_dim(set) == 0)
1765 return convex_hull_0d(set);
1767 set = isl_set_coalesce(set);
1768 set = isl_set_set_rational(set);
1770 if (!set)
1771 goto error;
1772 if (!set)
1773 return NULL;
1774 if (set->n == 1) {
1775 convex_hull = isl_basic_set_copy(set->p[0]);
1776 isl_set_free(set);
1777 return convex_hull;
1779 if (isl_set_n_dim(set) == 1)
1780 return convex_hull_1d(set);
1782 if (isl_set_is_bounded(set))
1783 return uset_convex_hull_wrap(set);
1785 lin = uset_combined_lineality_space(isl_set_copy(set));
1786 if (!lin)
1787 goto error;
1788 if (isl_basic_set_is_universe(lin)) {
1789 isl_set_free(set);
1790 return lin;
1792 if (lin->n_eq < isl_basic_set_total_dim(lin))
1793 return modulo_lineality(set, lin);
1794 isl_basic_set_free(lin);
1796 return uset_convex_hull_unbounded(set);
1797 error:
1798 isl_set_free(set);
1799 isl_basic_set_free(convex_hull);
1800 return NULL;
1803 /* This is the core procedure, where "set" is a "pure" set, i.e.,
1804 * without parameters or divs and where the convex hull of set is
1805 * known to be full-dimensional.
1807 static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set)
1809 struct isl_basic_set *convex_hull = NULL;
1811 if (!set)
1812 goto error;
1814 if (isl_set_n_dim(set) == 0) {
1815 convex_hull = isl_basic_set_universe(isl_dim_copy(set->dim));
1816 isl_set_free(set);
1817 convex_hull = isl_basic_set_set_rational(convex_hull);
1818 return convex_hull;
1821 set = isl_set_set_rational(set);
1822 set = isl_set_coalesce(set);
1823 if (!set)
1824 goto error;
1825 if (set->n == 1) {
1826 convex_hull = isl_basic_set_copy(set->p[0]);
1827 isl_set_free(set);
1828 return convex_hull;
1830 if (isl_set_n_dim(set) == 1)
1831 return convex_hull_1d(set);
1833 return uset_convex_hull_wrap(set);
1834 error:
1835 isl_set_free(set);
1836 return NULL;
1839 /* Compute the convex hull of set "set" with affine hull "affine_hull",
1840 * We first remove the equalities (transforming the set), compute the
1841 * convex hull of the transformed set and then add the equalities back
1842 * (after performing the inverse transformation.
1844 static struct isl_basic_set *modulo_affine_hull(
1845 struct isl_set *set, struct isl_basic_set *affine_hull)
1847 struct isl_mat *T;
1848 struct isl_mat *T2;
1849 struct isl_basic_set *dummy;
1850 struct isl_basic_set *convex_hull;
1852 dummy = isl_basic_set_remove_equalities(
1853 isl_basic_set_copy(affine_hull), &T, &T2);
1854 if (!dummy)
1855 goto error;
1856 isl_basic_set_free(dummy);
1857 set = isl_set_preimage(set, T);
1858 convex_hull = uset_convex_hull(set);
1859 convex_hull = isl_basic_set_preimage(convex_hull, T2);
1860 convex_hull = isl_basic_set_intersect(convex_hull, affine_hull);
1861 return convex_hull;
1862 error:
1863 isl_basic_set_free(affine_hull);
1864 isl_set_free(set);
1865 return NULL;
1868 /* Compute the convex hull of a map.
1870 * The implementation was inspired by "Extended Convex Hull" by Fukuda et al.,
1871 * specifically, the wrapping of facets to obtain new facets.
1873 struct isl_basic_map *isl_map_convex_hull(struct isl_map *map)
1875 struct isl_basic_set *bset;
1876 struct isl_basic_map *model = NULL;
1877 struct isl_basic_set *affine_hull = NULL;
1878 struct isl_basic_map *convex_hull = NULL;
1879 struct isl_set *set = NULL;
1880 struct isl_ctx *ctx;
1882 if (!map)
1883 goto error;
1885 ctx = map->ctx;
1886 if (map->n == 0) {
1887 convex_hull = isl_basic_map_empty_like_map(map);
1888 isl_map_free(map);
1889 return convex_hull;
1892 map = isl_map_detect_equalities(map);
1893 map = isl_map_align_divs(map);
1894 model = isl_basic_map_copy(map->p[0]);
1895 set = isl_map_underlying_set(map);
1896 if (!set)
1897 goto error;
1899 affine_hull = isl_set_affine_hull(isl_set_copy(set));
1900 if (!affine_hull)
1901 goto error;
1902 if (affine_hull->n_eq != 0)
1903 bset = modulo_affine_hull(set, affine_hull);
1904 else {
1905 isl_basic_set_free(affine_hull);
1906 bset = uset_convex_hull(set);
1909 convex_hull = isl_basic_map_overlying_set(bset, model);
1910 if (!convex_hull)
1911 return NULL;
1913 ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT);
1914 ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES);
1915 ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL);
1916 return convex_hull;
1917 error:
1918 isl_set_free(set);
1919 isl_basic_map_free(model);
1920 return NULL;
1923 struct isl_basic_set *isl_set_convex_hull(struct isl_set *set)
1925 return (struct isl_basic_set *)
1926 isl_map_convex_hull((struct isl_map *)set);
1929 struct sh_data_entry {
1930 struct isl_hash_table *table;
1931 struct isl_tab *tab;
1934 /* Holds the data needed during the simple hull computation.
1935 * In particular,
1936 * n the number of basic sets in the original set
1937 * hull_table a hash table of already computed constraints
1938 * in the simple hull
1939 * p for each basic set,
1940 * table a hash table of the constraints
1941 * tab the tableau corresponding to the basic set
1943 struct sh_data {
1944 struct isl_ctx *ctx;
1945 unsigned n;
1946 struct isl_hash_table *hull_table;
1947 struct sh_data_entry p[1];
1950 static void sh_data_free(struct sh_data *data)
1952 int i;
1954 if (!data)
1955 return;
1956 isl_hash_table_free(data->ctx, data->hull_table);
1957 for (i = 0; i < data->n; ++i) {
1958 isl_hash_table_free(data->ctx, data->p[i].table);
1959 isl_tab_free(data->p[i].tab);
1961 free(data);
1964 struct ineq_cmp_data {
1965 unsigned len;
1966 isl_int *p;
1969 static int has_ineq(const void *entry, const void *val)
1971 isl_int *row = (isl_int *)entry;
1972 struct ineq_cmp_data *v = (struct ineq_cmp_data *)val;
1974 return isl_seq_eq(row + 1, v->p + 1, v->len) ||
1975 isl_seq_is_neg(row + 1, v->p + 1, v->len);
1978 static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table,
1979 isl_int *ineq, unsigned len)
1981 uint32_t c_hash;
1982 struct ineq_cmp_data v;
1983 struct isl_hash_table_entry *entry;
1985 v.len = len;
1986 v.p = ineq;
1987 c_hash = isl_seq_get_hash(ineq + 1, len);
1988 entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1);
1989 if (!entry)
1990 return - 1;
1991 entry->data = ineq;
1992 return 0;
1995 /* Fill hash table "table" with the constraints of "bset".
1996 * Equalities are added as two inequalities.
1997 * The value in the hash table is a pointer to the (in)equality of "bset".
1999 static int hash_basic_set(struct isl_hash_table *table,
2000 struct isl_basic_set *bset)
2002 int i, j;
2003 unsigned dim = isl_basic_set_total_dim(bset);
2005 for (i = 0; i < bset->n_eq; ++i) {
2006 for (j = 0; j < 2; ++j) {
2007 isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim);
2008 if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0)
2009 return -1;
2012 for (i = 0; i < bset->n_ineq; ++i) {
2013 if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0)
2014 return -1;
2016 return 0;
2019 static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq)
2021 struct sh_data *data;
2022 int i;
2024 data = isl_calloc(set->ctx, struct sh_data,
2025 sizeof(struct sh_data) +
2026 (set->n - 1) * sizeof(struct sh_data_entry));
2027 if (!data)
2028 return NULL;
2029 data->ctx = set->ctx;
2030 data->n = set->n;
2031 data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq);
2032 if (!data->hull_table)
2033 goto error;
2034 for (i = 0; i < set->n; ++i) {
2035 data->p[i].table = isl_hash_table_alloc(set->ctx,
2036 2 * set->p[i]->n_eq + set->p[i]->n_ineq);
2037 if (!data->p[i].table)
2038 goto error;
2039 if (hash_basic_set(data->p[i].table, set->p[i]) < 0)
2040 goto error;
2042 return data;
2043 error:
2044 sh_data_free(data);
2045 return NULL;
2048 /* Check if inequality "ineq" is a bound for basic set "j" or if
2049 * it can be relaxed (by increasing the constant term) to become
2050 * a bound for that basic set. In the latter case, the constant
2051 * term is updated.
2052 * Return 1 if "ineq" is a bound
2053 * 0 if "ineq" may attain arbitrarily small values on basic set "j"
2054 * -1 if some error occurred
2056 static int is_bound(struct sh_data *data, struct isl_set *set, int j,
2057 isl_int *ineq)
2059 enum isl_lp_result res;
2060 isl_int opt;
2062 if (!data->p[j].tab) {
2063 data->p[j].tab = isl_tab_from_basic_set(set->p[j]);
2064 if (!data->p[j].tab)
2065 return -1;
2068 isl_int_init(opt);
2070 res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one,
2071 &opt, NULL, 0);
2072 if (res == isl_lp_ok && isl_int_is_neg(opt))
2073 isl_int_sub(ineq[0], ineq[0], opt);
2075 isl_int_clear(opt);
2077 return (res == isl_lp_ok || res == isl_lp_empty) ? 1 :
2078 res == isl_lp_unbounded ? 0 : -1;
2081 /* Check if inequality "ineq" from basic set "i" can be relaxed to
2082 * become a bound on the whole set. If so, add the (relaxed) inequality
2083 * to "hull".
2085 * We first check if "hull" already contains a translate of the inequality.
2086 * If so, we are done.
2087 * Then, we check if any of the previous basic sets contains a translate
2088 * of the inequality. If so, then we have already considered this
2089 * inequality and we are done.
2090 * Otherwise, for each basic set other than "i", we check if the inequality
2091 * is a bound on the basic set.
2092 * For previous basic sets, we know that they do not contain a translate
2093 * of the inequality, so we directly call is_bound.
2094 * For following basic sets, we first check if a translate of the
2095 * inequality appears in its description and if so directly update
2096 * the inequality accordingly.
2098 static struct isl_basic_set *add_bound(struct isl_basic_set *hull,
2099 struct sh_data *data, struct isl_set *set, int i, isl_int *ineq)
2101 uint32_t c_hash;
2102 struct ineq_cmp_data v;
2103 struct isl_hash_table_entry *entry;
2104 int j, k;
2106 if (!hull)
2107 return NULL;
2109 v.len = isl_basic_set_total_dim(hull);
2110 v.p = ineq;
2111 c_hash = isl_seq_get_hash(ineq + 1, v.len);
2113 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2114 has_ineq, &v, 0);
2115 if (entry)
2116 return hull;
2118 for (j = 0; j < i; ++j) {
2119 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2120 c_hash, has_ineq, &v, 0);
2121 if (entry)
2122 break;
2124 if (j < i)
2125 return hull;
2127 k = isl_basic_set_alloc_inequality(hull);
2128 isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len);
2129 if (k < 0)
2130 goto error;
2132 for (j = 0; j < i; ++j) {
2133 int bound;
2134 bound = is_bound(data, set, j, hull->ineq[k]);
2135 if (bound < 0)
2136 goto error;
2137 if (!bound)
2138 break;
2140 if (j < i) {
2141 isl_basic_set_free_inequality(hull, 1);
2142 return hull;
2145 for (j = i + 1; j < set->n; ++j) {
2146 int bound, neg;
2147 isl_int *ineq_j;
2148 entry = isl_hash_table_find(hull->ctx, data->p[j].table,
2149 c_hash, has_ineq, &v, 0);
2150 if (entry) {
2151 ineq_j = entry->data;
2152 neg = isl_seq_is_neg(ineq_j + 1,
2153 hull->ineq[k] + 1, v.len);
2154 if (neg)
2155 isl_int_neg(ineq_j[0], ineq_j[0]);
2156 if (isl_int_gt(ineq_j[0], hull->ineq[k][0]))
2157 isl_int_set(hull->ineq[k][0], ineq_j[0]);
2158 if (neg)
2159 isl_int_neg(ineq_j[0], ineq_j[0]);
2160 continue;
2162 bound = is_bound(data, set, j, hull->ineq[k]);
2163 if (bound < 0)
2164 goto error;
2165 if (!bound)
2166 break;
2168 if (j < set->n) {
2169 isl_basic_set_free_inequality(hull, 1);
2170 return hull;
2173 entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash,
2174 has_ineq, &v, 1);
2175 if (!entry)
2176 goto error;
2177 entry->data = hull->ineq[k];
2179 return hull;
2180 error:
2181 isl_basic_set_free(hull);
2182 return NULL;
2185 /* Check if any inequality from basic set "i" can be relaxed to
2186 * become a bound on the whole set. If so, add the (relaxed) inequality
2187 * to "hull".
2189 static struct isl_basic_set *add_bounds(struct isl_basic_set *bset,
2190 struct sh_data *data, struct isl_set *set, int i)
2192 int j, k;
2193 unsigned dim = isl_basic_set_total_dim(bset);
2195 for (j = 0; j < set->p[i]->n_eq; ++j) {
2196 for (k = 0; k < 2; ++k) {
2197 isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim);
2198 bset = add_bound(bset, data, set, i, set->p[i]->eq[j]);
2201 for (j = 0; j < set->p[i]->n_ineq; ++j)
2202 bset = add_bound(bset, data, set, i, set->p[i]->ineq[j]);
2203 return bset;
2206 /* Compute a superset of the convex hull of set that is described
2207 * by only translates of the constraints in the constituents of set.
2209 static struct isl_basic_set *uset_simple_hull(struct isl_set *set)
2211 struct sh_data *data = NULL;
2212 struct isl_basic_set *hull = NULL;
2213 unsigned n_ineq;
2214 int i;
2216 if (!set)
2217 return NULL;
2219 n_ineq = 0;
2220 for (i = 0; i < set->n; ++i) {
2221 if (!set->p[i])
2222 goto error;
2223 n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq;
2226 hull = isl_basic_set_alloc_dim(isl_dim_copy(set->dim), 0, 0, n_ineq);
2227 if (!hull)
2228 goto error;
2230 data = sh_data_alloc(set, n_ineq);
2231 if (!data)
2232 goto error;
2234 for (i = 0; i < set->n; ++i)
2235 hull = add_bounds(hull, data, set, i);
2237 sh_data_free(data);
2238 isl_set_free(set);
2240 return hull;
2241 error:
2242 sh_data_free(data);
2243 isl_basic_set_free(hull);
2244 isl_set_free(set);
2245 return NULL;
2248 /* Compute a superset of the convex hull of map that is described
2249 * by only translates of the constraints in the constituents of map.
2251 struct isl_basic_map *isl_map_simple_hull(struct isl_map *map)
2253 struct isl_set *set = NULL;
2254 struct isl_basic_map *model = NULL;
2255 struct isl_basic_map *hull;
2256 struct isl_basic_map *affine_hull;
2257 struct isl_basic_set *bset = NULL;
2259 if (!map)
2260 return NULL;
2261 if (map->n == 0) {
2262 hull = isl_basic_map_empty_like_map(map);
2263 isl_map_free(map);
2264 return hull;
2266 if (map->n == 1) {
2267 hull = isl_basic_map_copy(map->p[0]);
2268 isl_map_free(map);
2269 return hull;
2272 map = isl_map_detect_equalities(map);
2273 affine_hull = isl_map_affine_hull(isl_map_copy(map));
2274 map = isl_map_align_divs(map);
2275 model = isl_basic_map_copy(map->p[0]);
2277 set = isl_map_underlying_set(map);
2279 bset = uset_simple_hull(set);
2281 hull = isl_basic_map_overlying_set(bset, model);
2283 hull = isl_basic_map_intersect(hull, affine_hull);
2284 hull = isl_basic_map_convex_hull(hull);
2285 ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT);
2286 ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES);
2288 return hull;
2291 struct isl_basic_set *isl_set_simple_hull(struct isl_set *set)
2293 return (struct isl_basic_set *)
2294 isl_map_simple_hull((struct isl_map *)set);
2297 /* Given a set "set", return parametric bounds on the dimension "dim".
2299 static struct isl_basic_set *set_bounds(struct isl_set *set, int dim)
2301 unsigned set_dim = isl_set_dim(set, isl_dim_set);
2302 set = isl_set_copy(set);
2303 set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1));
2304 set = isl_set_eliminate_dims(set, 0, dim);
2305 return isl_set_convex_hull(set);
2308 /* Computes a "simple hull" and then check if each dimension in the
2309 * resulting hull is bounded by a symbolic constant. If not, the
2310 * hull is intersected with the corresponding bounds on the whole set.
2312 struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set)
2314 int i, j;
2315 struct isl_basic_set *hull;
2316 unsigned nparam, left;
2317 int removed_divs = 0;
2319 hull = isl_set_simple_hull(isl_set_copy(set));
2320 if (!hull)
2321 goto error;
2323 nparam = isl_basic_set_dim(hull, isl_dim_param);
2324 for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) {
2325 int lower = 0, upper = 0;
2326 struct isl_basic_set *bounds;
2328 left = isl_basic_set_total_dim(hull) - nparam - i - 1;
2329 for (j = 0; j < hull->n_eq; ++j) {
2330 if (isl_int_is_zero(hull->eq[j][1 + nparam + i]))
2331 continue;
2332 if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1,
2333 left) == -1)
2334 break;
2336 if (j < hull->n_eq)
2337 continue;
2339 for (j = 0; j < hull->n_ineq; ++j) {
2340 if (isl_int_is_zero(hull->ineq[j][1 + nparam + i]))
2341 continue;
2342 if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1,
2343 left) != -1 ||
2344 isl_seq_first_non_zero(hull->ineq[j]+1+nparam,
2345 i) != -1)
2346 continue;
2347 if (isl_int_is_pos(hull->ineq[j][1 + nparam + i]))
2348 lower = 1;
2349 else
2350 upper = 1;
2351 if (lower && upper)
2352 break;
2355 if (lower && upper)
2356 continue;
2358 if (!removed_divs) {
2359 set = isl_set_remove_divs(set);
2360 if (!set)
2361 goto error;
2362 removed_divs = 1;
2364 bounds = set_bounds(set, i);
2365 hull = isl_basic_set_intersect(hull, bounds);
2366 if (!hull)
2367 goto error;
2370 isl_set_free(set);
2371 return hull;
2372 error:
2373 isl_set_free(set);
2374 return NULL;